Improving the Spatial Prediction of Soil Organic Carbon Content in Two Contrasting Climatic Regions by Stacking Machine Learning Models and Rescanning Covariate Space

Understanding the spatial distribution of soil organic carbon (SOC) content over different climatic regions will enhance our knowledge of carbon gains and losses due to climatic change. However, little is known about the SOC content in the contrasting arid and sub-humid regions of Iran, whose comple...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 12; no. 7; p. 1095
Main Authors Taghizadeh-Mehrjardi, Ruhollah, Schmidt, Karsten, Amirian-Chakan, Alireza, Rentschler, Tobias, Zeraatpisheh, Mojtaba, Sarmadian, Fereydoon, Valavi, Roozbeh, Davatgar, Naser, Behrens, Thorsten, Scholten, Thomas
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 29.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding the spatial distribution of soil organic carbon (SOC) content over different climatic regions will enhance our knowledge of carbon gains and losses due to climatic change. However, little is known about the SOC content in the contrasting arid and sub-humid regions of Iran, whose complex SOC–landscape relationships pose a challenge to spatial analysis. Machine learning (ML) models with a digital soil mapping framework can solve such complex relationships. Current research focusses on ensemble ML models to increase the accuracy of prediction. The usual ensemble method is boosting or weighted averaging. This study proposes a novel ensemble technique: the stacking of multiple ML models through a meta-learning model. In addition, we tested the ensemble through rescanning the covariate space to maximize the prediction accuracy. We first applied six state-of-the-art ML models (i.e., Cubist, random forests (RF), extreme gradient boosting (XGBoost), classical artificial neural network models (ANN), neural network ensemble based on model averaging (AvNNet), and deep learning neural networks (DNN)) to predict and map the spatial distribution of SOC content at six soil depth intervals for both regions. In addition, the stacking of multiple ML models through a meta-learning model with/without rescanning the covariate space were tested and applied to maximize the prediction accuracy. Out of six ML models, the DNN resulted in the best modeling accuracies, followed by RF, XGBoost, AvNNet, ANN, and Cubist. Importantly, the stacking of models indicated a significant improvement in the prediction of SOC content, especially when combined with rescanning the covariate space. For instance, the RMSE values for SOC content prediction of the upper 0–5 cm of the soil profiles of the arid site and the sub-humid site by the proposed stacking approaches were 17% and 9% respectively, less than that obtained by the DNN models—the best individual model. This indicates that rescanning the original covariate space by a meta-learning model can extract more information and improve the SOC content prediction accuracy. Overall, our results suggest that the stacking of diverse sets of models could be used to more accurately estimate the spatial distribution of SOC content in different climatic regions.
AbstractList Understanding the spatial distribution of soil organic carbon (SOC) content over different climatic regions will enhance our knowledge of carbon gains and losses due to climatic change. However, little is known about the SOC content in the contrasting arid and sub-humid regions of Iran, whose complex SOC–landscape relationships pose a challenge to spatial analysis. Machine learning (ML) models with a digital soil mapping framework can solve such complex relationships. Current research focusses on ensemble ML models to increase the accuracy of prediction. The usual ensemble method is boosting or weighted averaging. This study proposes a novel ensemble technique: the stacking of multiple ML models through a meta-learning model. In addition, we tested the ensemble through rescanning the covariate space to maximize the prediction accuracy. We first applied six state-of-the-art ML models (i.e., Cubist, random forests (RF), extreme gradient boosting (XGBoost), classical artificial neural network models (ANN), neural network ensemble based on model averaging (AvNNet), and deep learning neural networks (DNN)) to predict and map the spatial distribution of SOC content at six soil depth intervals for both regions. In addition, the stacking of multiple ML models through a meta-learning model with/without rescanning the covariate space were tested and applied to maximize the prediction accuracy. Out of six ML models, the DNN resulted in the best modeling accuracies, followed by RF, XGBoost, AvNNet, ANN, and Cubist. Importantly, the stacking of models indicated a significant improvement in the prediction of SOC content, especially when combined with rescanning the covariate space. For instance, the RMSE values for SOC content prediction of the upper 0–5 cm of the soil profiles of the arid site and the sub-humid site by the proposed stacking approaches were 17% and 9% respectively, less than that obtained by the DNN models—the best individual model. This indicates that rescanning the original covariate space by a meta-learning model can extract more information and improve the SOC content prediction accuracy. Overall, our results suggest that the stacking of diverse sets of models could be used to more accurately estimate the spatial distribution of SOC content in different climatic regions.
Author Valavi, Roozbeh
Behrens, Thorsten
Scholten, Thomas
Sarmadian, Fereydoon
Davatgar, Naser
Taghizadeh-Mehrjardi, Ruhollah
Amirian-Chakan, Alireza
Zeraatpisheh, Mojtaba
Rentschler, Tobias
Schmidt, Karsten
Author_xml – sequence: 1
  givenname: Ruhollah
  orcidid: 0000-0002-4620-6624
  surname: Taghizadeh-Mehrjardi
  fullname: Taghizadeh-Mehrjardi, Ruhollah
– sequence: 2
  givenname: Karsten
  orcidid: 0000-0003-0337-3024
  surname: Schmidt
  fullname: Schmidt, Karsten
– sequence: 3
  givenname: Alireza
  surname: Amirian-Chakan
  fullname: Amirian-Chakan, Alireza
– sequence: 4
  givenname: Tobias
  orcidid: 0000-0003-3878-5539
  surname: Rentschler
  fullname: Rentschler, Tobias
– sequence: 5
  givenname: Mojtaba
  orcidid: 0000-0001-7209-0744
  surname: Zeraatpisheh
  fullname: Zeraatpisheh, Mojtaba
– sequence: 6
  givenname: Fereydoon
  surname: Sarmadian
  fullname: Sarmadian, Fereydoon
– sequence: 7
  givenname: Roozbeh
  orcidid: 0000-0003-2495-5277
  surname: Valavi
  fullname: Valavi, Roozbeh
– sequence: 8
  givenname: Naser
  surname: Davatgar
  fullname: Davatgar, Naser
– sequence: 9
  givenname: Thorsten
  surname: Behrens
  fullname: Behrens, Thorsten
– sequence: 10
  givenname: Thomas
  orcidid: 0000-0002-4875-2602
  surname: Scholten
  fullname: Scholten, Thomas
BookMark eNptUttuEzEQXaEiUUpf-AJLvCCkUF_25ke04hIpqIiUZ2vWHqcOGzvYTlF_iO_E2YCKKvwy4-MzRz4z87w688FjVb1k9K0Qkl7FxDjtGJXNk-q8ZHxRc8nP_smfVZcpbWk5QjBJ6_Pq13K3j-HO-Q3Jt0jWe8gOJvIlonE6u-BJsGQd3ESu4wa802SAOBZ4CD6jz8R5cvMzzNcIKR-FhsntiowmX3FTFBIZ78k6g_5-fPwM-tZ5JCuE6GcgGJwSAW8KP2nwMzqEO4gO8vwljS-qpxamhJd_4kX17cP7m-HTYnX9cTm8Wy103dK8GAXqDkzTSztSZA2rBVroJa-xsz2XHQfDjaDCMk3p2Dcom5F2ArRlLWAvLqrlSdcE2Kp9LEbivQrg1AyEuFEQi7UJVd8w1lhpqGFYtyMHq7VgXNBuNK1GXbRen7RKg38cMGW1c0njNIHHcEiKy77lHae8K9RXj6jbcIi-OFVc9E3T0b5uCoueWDqGlCJapV2G45BK692kGFXHPVAPe1BK3jwq-evpP-TfD9u2cQ
CitedBy_id crossref_primary_10_1080_26395940_2022_2102543
crossref_primary_10_1016_j_geodrs_2023_e00728
crossref_primary_10_1016_j_ejrh_2024_101739
crossref_primary_10_3390_land12020494
crossref_primary_10_3390_computers13010002
crossref_primary_10_1007_s12517_023_11670_0
crossref_primary_10_1016_j_compag_2022_107077
crossref_primary_10_1016_j_apgeog_2021_102495
crossref_primary_10_3390_su16156569
crossref_primary_10_1016_j_scitotenv_2021_147216
crossref_primary_10_1080_10106049_2021_1920636
crossref_primary_10_3390_rs14235909
crossref_primary_10_1007_s42106_020_00106_4
crossref_primary_10_3390_su12135384
crossref_primary_10_1007_s11146_022_09929_6
crossref_primary_10_17221_94_2022_SWR
crossref_primary_10_1016_j_agwat_2023_108364
crossref_primary_10_3390_land13081331
crossref_primary_10_1007_s10661_025_13918_6
crossref_primary_10_1080_10095020_2022_2026743
crossref_primary_10_1080_17583004_2022_2106310
crossref_primary_10_1007_s10661_021_09561_6
crossref_primary_10_1080_08839514_2024_2434309
crossref_primary_10_3390_rs15082152
crossref_primary_10_3390_rs14061521
crossref_primary_10_3390_app132212268
crossref_primary_10_47115_bsagriculture_1565025
crossref_primary_10_1016_j_catena_2024_108216
crossref_primary_10_1016_j_indcrop_2023_117806
crossref_primary_10_1007_s44353_024_00012_0
crossref_primary_10_3390_rs14215571
crossref_primary_10_1139_cjss_2021_0133
crossref_primary_10_1007_s12145_021_00638_x
crossref_primary_10_3390_rs17030420
crossref_primary_10_1016_j_geoderma_2023_116457
crossref_primary_10_1016_j_ecolind_2022_109420
crossref_primary_10_3390_rs16020405
crossref_primary_10_1007_s12665_021_10084_z
crossref_primary_10_1016_j_geoderma_2020_114793
crossref_primary_10_1016_j_geoderma_2021_114998
crossref_primary_10_3389_fenvs_2021_692959
crossref_primary_10_3390_rs15082118
crossref_primary_10_3390_rs14030472
crossref_primary_10_1080_01431161_2021_1945158
crossref_primary_10_1016_j_catena_2023_107197
crossref_primary_10_3390_rs12213609
crossref_primary_10_3390_rs17020189
crossref_primary_10_1007_s11356_024_35481_2
crossref_primary_10_1016_j_scitotenv_2023_166112
crossref_primary_10_3390_rs15040876
crossref_primary_10_1007_s12517_022_09629_8
crossref_primary_10_1016_j_asr_2023_10_051
crossref_primary_10_1080_15481603_2023_2177448
crossref_primary_10_3390_agronomy12112742
crossref_primary_10_3390_f14030483
crossref_primary_10_1016_j_apr_2020_08_029
crossref_primary_10_1016_j_ecolind_2024_112644
crossref_primary_10_1016_j_ecolind_2024_112246
crossref_primary_10_3390_rs16152778
crossref_primary_10_1016_j_ecolind_2021_108287
crossref_primary_10_1016_j_geoderma_2022_115695
crossref_primary_10_1016_j_still_2023_105681
crossref_primary_10_1016_j_jia_2023_02_011
crossref_primary_10_3390_agriculture14081230
crossref_primary_10_3390_rs16030438
crossref_primary_10_3390_rs15194713
crossref_primary_10_3390_su15010469
crossref_primary_10_1016_j_scitotenv_2022_161150
crossref_primary_10_1016_j_scitotenv_2020_142291
crossref_primary_10_1016_j_icheatmasstransfer_2023_107228
crossref_primary_10_1016_j_jafr_2024_101033
crossref_primary_10_1016_j_ecolind_2024_112294
crossref_primary_10_1002_ldr_4505
crossref_primary_10_1016_j_ecoinf_2024_102732
crossref_primary_10_1016_j_jenvman_2022_117194
crossref_primary_10_1016_j_geoderma_2020_114890
crossref_primary_10_1016_j_geoderma_2021_115108
crossref_primary_10_3390_s24113519
crossref_primary_10_1016_j_catena_2022_106485
crossref_primary_10_1016_j_isprsjprs_2022_04_026
crossref_primary_10_1016_j_nhres_2024_05_001
crossref_primary_10_1061_JTEPBS_TEENG_8820
crossref_primary_10_3390_rs15112907
crossref_primary_10_3390_plants12030501
crossref_primary_10_1016_j_jenvman_2022_117127
crossref_primary_10_1109_ACCESS_2021_3080689
crossref_primary_10_1371_journal_pone_0269791
crossref_primary_10_1109_ACCESS_2023_3348412
crossref_primary_10_1016_j_molliq_2024_125745
crossref_primary_10_1016_j_atmosres_2022_106159
crossref_primary_10_1016_j_measurement_2022_111706
crossref_primary_10_1016_j_catena_2021_105280
crossref_primary_10_1016_j_jenvman_2025_125035
crossref_primary_10_1016_j_geoderma_2022_116208
crossref_primary_10_1016_j_catena_2025_108718
crossref_primary_10_1061_JWRMD5_WRENG_5858
crossref_primary_10_1080_10106049_2021_1926558
crossref_primary_10_3390_rs12203384
crossref_primary_10_1016_j_jclepro_2023_136885
crossref_primary_10_1080_10106049_2021_1926553
crossref_primary_10_1016_j_ecolind_2024_112865
crossref_primary_10_1007_s10661_023_11681_0
crossref_primary_10_1016_j_catena_2021_105723
crossref_primary_10_3389_fsoil_2022_890437
crossref_primary_10_1016_j_geodrs_2023_e00745
crossref_primary_10_1016_j_pce_2022_103198
crossref_primary_10_7717_peerj_17836
crossref_primary_10_1021_acs_energyfuels_2c03033
crossref_primary_10_3390_s24227317
crossref_primary_10_3390_rs12142234
crossref_primary_10_1002_joc_7987
crossref_primary_10_3390_rs13204067
crossref_primary_10_1038_s41598_022_13514_5
crossref_primary_10_3390_land12010032
crossref_primary_10_1016_j_jssas_2022_07_006
crossref_primary_10_1016_j_catena_2023_107392
crossref_primary_10_1016_j_scitotenv_2020_142661
crossref_primary_10_1109_TGRS_2024_3446042
crossref_primary_10_3390_buildings15020288
crossref_primary_10_3390_rs16020336
crossref_primary_10_3390_agronomy13102516
crossref_primary_10_1016_j_geodrs_2023_e00619
crossref_primary_10_1016_j_jclepro_2023_138650
crossref_primary_10_1016_j_jhydrol_2023_129985
crossref_primary_10_1016_j_compag_2022_107246
crossref_primary_10_3390_su15076067
crossref_primary_10_3389_fenvs_2021_809995
crossref_primary_10_1016_j_geodrs_2025_e00933
crossref_primary_10_1016_j_ecolind_2020_106736
crossref_primary_10_1007_s10666_024_09973_x
crossref_primary_10_1016_j_asr_2024_04_055
crossref_primary_10_3390_land14040677
crossref_primary_10_1007_s13753_024_00590_6
crossref_primary_10_1016_j_agwat_2024_109147
crossref_primary_10_3390_rs13071229
crossref_primary_10_1016_j_compag_2023_107821
Cites_doi 10.1016/j.ecolind.2018.01.049
10.1016/j.geoderma.2018.09.007
10.1016/j.geoderma.2015.12.003
10.2136/sssaj2007.0410
10.1016/j.geoderma.2019.06.016
10.1016/j.scitotenv.2018.11.230
10.1016/j.compag.2019.105172
10.18637/jss.v036.i11
10.1007/978-1-4614-6849-3
10.1111/ejss.12790
10.3390/rs10101555
10.1016/j.geoderma.2019.03.017
10.1016/j.geodrs.2020.e00256
10.1016/0034-4257(88)90106-X
10.1016/j.cageo.2005.12.009
10.1111/j.1365-2486.2009.01940.x
10.1093/jpe/rtw065
10.1038/s41598-018-33516-6
10.1117/12.2323820
10.2136/sssaj2016.11.0376
10.1007/s12665-018-7374-x
10.1016/j.geoderma.2014.04.033
10.1016/j.geoderma.2020.114237
10.1021/acs.jpcc.8b03405
10.1016/j.geoderma.2007.06.003
10.1007/s10705-017-9870-x
10.1016/j.geoderma.2018.07.026
10.1016/j.rse.2011.11.026
10.1016/j.geoderma.2010.03.002
10.1007/s10661-017-5830-9
10.1016/j.rse.2019.01.006
10.1111/2041-210X.13107
10.2136/sssaj2017.04.0122
10.1007/978-3-319-04084-4_1
10.3390/rs12010085
10.1007/BF00994018
10.1016/j.neucom.2017.09.047
10.1080/17583004.2018.1553434
10.1016/j.chemolab.2008.06.003
10.1371/journal.pone.0169748
10.1038/s41598-019-45156-5
10.1016/j.catena.2018.06.018
10.1016/B978-0-12-405942-9.00001-3
10.1109/72.329697
10.1016/j.geoderma.2013.07.020
10.1016/j.scitotenv.2014.06.088
10.1016/j.still.2019.104477
10.1111/j.1365-2656.2008.01390.x
10.1016/j.geoderma.2019.114008
10.1016/S0016-7061(03)00223-4
10.1002/jpln.200521962
10.1016/j.still.2019.104465
10.1111/j.1365-2389.2009.01205.x
10.1002/2016MS000686
10.1016/j.geodrs.2019.e00250
10.1016/j.ecolmodel.2007.05.011
10.1371/journal.pone.0105519
10.1016/j.rse.2015.11.032
10.1016/j.geoderma.2007.11.016
10.5194/soil-5-79-2019
10.1029/2018WR022643
10.1007/BF00117832
10.1016/j.catena.2018.11.010
10.1016/S0140-1963(03)00077-6
10.1080/17583004.2017.1330593
10.1016/j.catena.2019.104424
10.1029/2005RG000183
10.1016/j.ecolmodel.2004.12.007
10.1016/j.geodrs.2018.e00198
10.1016/j.geoderma.2008.05.008
10.1016/j.geoderma.2018.12.037
10.1016/j.rse.2018.09.015
10.1016/j.atmosres.2015.09.021
10.1016/j.catena.2016.12.014
10.18637/jss.v028.i05
10.1016/j.scitotenv.2018.02.204
10.1111/ejss.12475
10.1016/j.ecolind.2014.12.028
10.1002/widm.1249
10.1016/j.scitotenv.2019.02.420
10.1016/j.geoderma.2018.09.006
10.1080/13658816.2019.1696968
10.1016/j.rse.2017.06.031
10.5194/soil-5-107-2019
10.1002/widm.1283
10.1038/s41598-018-28244-w
10.1016/j.asoc.2019.105837
10.1007/978-1-4020-8592-5_2
10.1371/journal.pone.0220881
10.1016/j.geoderma.2016.06.017
10.1016/j.geoderma.2009.10.007
10.1016/j.geoderma.2018.05.020
10.1162/neco.2006.18.7.1527
10.1002/jpln.201500313
10.1016/B978-0-12-800137-0.00003-0
10.1016/j.agee.2018.02.012
10.1016/j.apm.2019.12.016
10.1007/s11104-010-0425-z
10.1007/978-3-319-69048-3_7
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs12071095
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Engineering Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_85115f9d0d1e46b2afcc312307bd6cec
10_3390_rs12071095
GeographicLocations Iran
France
GeographicLocations_xml – name: Iran
– name: France
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c460t-b3ec7ad589fb0e15143efa8924e7f82972ad2d303f1c00b85e95b073acf16ae83
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:32:18 EDT 2025
Fri Jul 11 03:36:05 EDT 2025
Fri Jul 25 12:11:09 EDT 2025
Tue Jul 01 04:15:04 EDT 2025
Thu Apr 24 22:55:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-b3ec7ad589fb0e15143efa8924e7f82972ad2d303f1c00b85e95b073acf16ae83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4875-2602
0000-0003-2495-5277
0000-0001-7209-0744
0000-0003-0337-3024
0000-0003-3878-5539
0000-0002-4620-6624
OpenAccessLink https://doaj.org/article/85115f9d0d1e46b2afcc312307bd6cec
PQID 2385570845
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_85115f9d0d1e46b2afcc312307bd6cec
proquest_miscellaneous_2986272027
proquest_journals_2385570845
crossref_citationtrail_10_3390_rs12071095
crossref_primary_10_3390_rs12071095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200329
PublicationDateYYYYMMDD 2020-03-29
PublicationDate_xml – month: 03
  year: 2020
  text: 20200329
  day: 29
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Caubet (ref_36) 2019; 337
ref_91
Kerry (ref_22) 2017; 189
Mishra (ref_116) 2009; 73
Wang (ref_102) 2018; 630
ref_12
Vasques (ref_117) 2010; 156
ref_11
Tajik (ref_40) 2020; 20
Behrens (ref_74) 2010; 61
Behrens (ref_31) 2018; 8
ref_95
Hinge (ref_25) 2018; 77
Minasny (ref_2) 2018; 69
Malone (ref_54) 2009; 154
Hagan (ref_82) 1994; 5
Chen (ref_107) 2019; 655
Valavi (ref_97) 2019; 10
Shangguan (ref_109) 2017; 9
Tziachris (ref_104) 2019; 174
Wang (ref_68) 2018; 122
Wulder (ref_59) 2016; 185
ref_24
Suthaharan (ref_88) 2019; 9
Zeraatpisheh (ref_21) 2019; 338
Goidts (ref_49) 2009; 15
Kuhn (ref_85) 2008; 28
Hinton (ref_86) 2006; 18
Breiman (ref_35) 1996; 24
Zhao (ref_27) 2020; 169
Meyer (ref_83) 2016; 169
ref_72
ref_70
ref_79
Guo (ref_28) 2020; 196
Arrouays (ref_55) 2014; Volume 125
Friedman (ref_92) 2008; 33
Bernhard (ref_8) 2018; 170
Wiesmeier (ref_76) 2011; 340
Sagi (ref_38) 2018; 8
Poggio (ref_63) 2019; 346
Somarathna (ref_112) 2017; 81
ref_81
Chen (ref_42) 2020; 366
ref_80
Goebes (ref_101) 2019; 9
Yang (ref_29) 2020; 196
Grimm (ref_15) 2008; 146
Zeraatpisheh (ref_9) 2020; 188
McBratney (ref_14) 2003; 117
Stumpf (ref_18) 2018; 258
Rentschler (ref_17) 2019; 14
Moreno (ref_16) 2017; 7
Owusu (ref_23) 2020; 360
Nabiollahi (ref_30) 2019; 10
Ajami (ref_6) 2016; 281
Dharumarajan (ref_26) 2020; 20
ref_50
ref_58
Elith (ref_114) 2005; 186
Breiman (ref_73) 1984; 37
Minasny (ref_44) 2014; 213
Elith (ref_78) 2008; 77
Ma (ref_10) 2019; 70
Ramcharan (ref_106) 2018; 82
Huete (ref_64) 1988; 25
Laub (ref_115) 2018; 330
Zhai (ref_90) 2018; 275
Drusch (ref_60) 2012; 120
Drucker (ref_94) 1997; 28
Minasny (ref_5) 2013; 118
ref_69
Hengl (ref_105) 2017; 109
Gorelick (ref_61) 2017; 202
Stumpf (ref_46) 2016; 179
Gholizadeh (ref_48) 2018; 218
ref_62
Vaudour (ref_103) 2019; 223
Hounkpatin (ref_75) 2018; 8
Peters (ref_77) 2007; 207
Xiong (ref_56) 2014; 493
Nawar (ref_99) 2017; 151
Scholten (ref_1) 2017; 10
Minasny (ref_45) 2006; 32
Adhikari (ref_4) 2019; 667
Wang (ref_19) 2018; 88
Keskin (ref_67) 2019; 339
Minasny (ref_71) 2008; 94
Jafari (ref_100) 2004; 56
Malone (ref_37) 2014; 232
ref_110
ref_113
Padarian (ref_111) 2019; 16
Ribeiro (ref_39) 2020; 86
Wiesmeier (ref_52) 2019; 333
Liaw (ref_66) 2002; 2
Baker (ref_84) 2008; 144
Don (ref_3) 2007; 141
Were (ref_20) 2015; 52
Cortes (ref_93) 1995; 20
Padarian (ref_33) 2019; 5
ref_108
Bischl (ref_96) 2016; 17
ref_47
Nelson (ref_53) 1996; 5
ref_43
Shen (ref_87) 2018; 54
ref_41
Ng (ref_32) 2019; 352
Wadoux (ref_34) 2019; 5
Kursa (ref_65) 2010; 36
Srivastava (ref_89) 2014; 15
Neupane (ref_51) 2017; 8
Khaledian (ref_98) 2019; 81
Behrens (ref_13) 2006; 169
Nabiollahi (ref_7) 2016; 266
Farr (ref_57) 2007; 45
References_xml – volume: 88
  start-page: 425
  year: 2018
  ident: ref_19
  article-title: Estimating soil organic carbon stocks using different modeling techniques in the semi-arid rangelands of eastern Australia
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2018.01.049
– volume: 337
  start-page: 99
  year: 2019
  ident: ref_36
  article-title: Merging country, continental and global predictions of soil texture: Lessons from ensemble modeling in france
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.007
– volume: 37
  start-page: 237
  year: 1984
  ident: ref_73
  article-title: Classification and regression trees
  publication-title: Wadsworth Int. Group
– volume: 266
  start-page: 98
  year: 2016
  ident: ref_7
  article-title: Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.12.003
– volume: 73
  start-page: 614
  year: 2009
  ident: ref_116
  article-title: Predicting soil organic carbon stock using profile depth distribution functions and ordinary kriging
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2007.0410
– ident: ref_80
– volume: 352
  start-page: 251
  year: 2019
  ident: ref_32
  article-title: Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.06.016
– volume: 655
  start-page: 273
  year: 2019
  ident: ref_107
  article-title: A high-resolution map of soil pH in China made by hybrid modeling of sparse soil data and environmental covariates and its implications for pollution
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.230
– volume: 169
  start-page: 105172
  year: 2020
  ident: ref_27
  article-title: Extended model prediction of high-resolution soil organic matter over a large area using limited number of field samples
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105172
– volume: 36
  start-page: 1
  year: 2010
  ident: ref_65
  article-title: Feature selection with the Boruta package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v036.i11
– ident: ref_70
  doi: 10.1007/978-1-4614-6849-3
– volume: 70
  start-page: 216
  year: 2019
  ident: ref_10
  article-title: Pedology and digital soil mapping (DSM)
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12790
– ident: ref_62
  doi: 10.3390/rs10101555
– volume: 346
  start-page: 63
  year: 2019
  ident: ref_63
  article-title: Modeling the extent of northern peat soil and its uncertainty with Sentinel: Scotland as example of highly cloudy region
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.03.017
– volume: 20
  start-page: e00256
  year: 2020
  ident: ref_40
  article-title: Digital mapping of soil organic carbon using ensemble learning model in Mollisols of Hyrcanian forests, northern Iran
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2020.e00256
– volume: 25
  start-page: 295
  year: 1988
  ident: ref_64
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– volume: 32
  start-page: 1378
  year: 2006
  ident: ref_45
  article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.12.009
– volume: 15
  start-page: 2981
  year: 2009
  ident: ref_49
  article-title: Driving forces of soil organic carbon evolution at the landscape and regional scale using data from a stratified soil monitoring
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2009.01940.x
– volume: 33
  start-page: 1
  year: 2008
  ident: ref_92
  article-title: Regularization Paths for Generalized Linear Models via Coordinate Descent
  publication-title: J. Stat. Sotw.
– volume: 10
  start-page: 111
  year: 2017
  ident: ref_1
  article-title: On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems—A study from SE China
  publication-title: J. Plant Ecol.
  doi: 10.1093/jpe/rtw065
– volume: 8
  start-page: 15244
  year: 2018
  ident: ref_31
  article-title: Multi-scale digital soil mapping with deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33516-6
– ident: ref_47
  doi: 10.1117/12.2323820
– volume: 81
  start-page: 1413
  year: 2017
  ident: ref_112
  article-title: More data or a better model? Figuring out what matters most for the spatial prediction of soil carbon
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2016.11.0376
– volume: 77
  start-page: 172
  year: 2018
  ident: ref_25
  article-title: Prediction of soil organic carbon stock using digital mapping approach in humid India
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-7374-x
– volume: 232
  start-page: 34
  year: 2014
  ident: ref_37
  article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.04.033
– volume: 366
  start-page: 114237
  year: 2020
  ident: ref_42
  article-title: Model averaging for mapping topsoil organic carbon in France
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114237
– volume: 122
  start-page: 8868
  year: 2018
  ident: ref_68
  article-title: Significantly improving the prediction of molecular atomization energies by an ensemble of machine learning algorithms and rescanning input space: A stacked generalization approach
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b03405
– volume: 141
  start-page: 272
  year: 2007
  ident: ref_3
  article-title: Spatial and vertical variation of soil carbon at two grassland sites—implications for measuring soil carbon stocks
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.06.003
– volume: 109
  start-page: 77
  year: 2017
  ident: ref_105
  article-title: Soil nutrient maps of Sub-Saharan Africa: Assessment of soil nutrient content at 250 m spatial resolution using machine learning
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-017-9870-x
– volume: 333
  start-page: 149
  year: 2019
  ident: ref_52
  article-title: Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.07.026
– volume: 120
  start-page: 25
  year: 2012
  ident: ref_60
  article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.026
– volume: 156
  start-page: 326
  year: 2010
  ident: ref_117
  article-title: Regional modeling of soil carbon at multiple depths within a subtropical watershed
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.03.002
– volume: 189
  start-page: 131
  year: 2017
  ident: ref_22
  article-title: Spatial 3D distribution of soil organic carbon under different land use types
  publication-title: Enviro. Monit. Assess.
  doi: 10.1007/s10661-017-5830-9
– volume: 223
  start-page: 21
  year: 2019
  ident: ref_103
  article-title: Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.006
– volume: 10
  start-page: 225
  year: 2019
  ident: ref_97
  article-title: blockCV: An R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13107
– volume: 82
  start-page: 186
  year: 2018
  ident: ref_106
  article-title: Soil property and class maps of the conterminous United States at 100-meter spatial resolution
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2017.04.0122
– ident: ref_11
  doi: 10.1007/978-3-319-04084-4_1
– ident: ref_41
  doi: 10.3390/rs12010085
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_93
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 2
  start-page: 18
  year: 2002
  ident: ref_66
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 275
  start-page: 1043
  year: 2018
  ident: ref_90
  article-title: Ensemble dropout extreme learning machine via fuzzy integral for data classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.047
– volume: 10
  start-page: 63
  year: 2019
  ident: ref_30
  article-title: Assessing soil organic carbon stocks under land-use change scenarios using random forest models
  publication-title: Carbon Manag.
  doi: 10.1080/17583004.2018.1553434
– volume: 94
  start-page: 72
  year: 2008
  ident: ref_71
  article-title: Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy
  publication-title: Chem. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2008.06.003
– ident: ref_108
  doi: 10.1371/journal.pone.0169748
– volume: 9
  start-page: 8635
  year: 2019
  ident: ref_101
  article-title: The strength of soil-plant interactions under forest is related to a Critical Soil Depth
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45156-5
– volume: 170
  start-page: 335
  year: 2018
  ident: ref_8
  article-title: Pedogenic and microbial interrelations to regional climate and local topography: New insights from a climate gradient (arid to humid) along the Coastal Cordillera of Chile
  publication-title: Catena
  doi: 10.1016/j.catena.2018.06.018
– volume: 17
  start-page: 5938
  year: 2016
  ident: ref_96
  article-title: mlr: Machine learning in R
  publication-title: J. Mach. Learn. Res.
– volume: 118
  start-page: 1
  year: 2013
  ident: ref_5
  article-title: Digital soil mapping of carbon
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-405942-9.00001-3
– volume: 5
  start-page: 989
  year: 1994
  ident: ref_82
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.329697
– volume: 213
  start-page: 15
  year: 2014
  ident: ref_44
  article-title: Digital mapping of soil salinity in Ardakan region, central Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.020
– volume: 493
  start-page: 974
  year: 2014
  ident: ref_56
  article-title: Interaction effects of climate and land use/land cover change on soil organic carbon sequestration
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.06.088
– ident: ref_81
– volume: 196
  start-page: 104477
  year: 2020
  ident: ref_28
  article-title: Mapping field-scale soil organic carbon with unmanned aircraft system-acquired time series multispectral images
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2019.104477
– volume: 77
  start-page: 802
  year: 2008
  ident: ref_78
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2008.01390.x
– volume: 360
  start-page: 114008
  year: 2020
  ident: ref_23
  article-title: Spatial prediction of soil organic carbon stocks in Ghana using legacy data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114008
– volume: 117
  start-page: 3
  year: 2003
  ident: ref_14
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 169
  start-page: 434
  year: 2006
  ident: ref_13
  article-title: Digital soil mapping in Germany—A review
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200521962
– volume: 196
  start-page: 104465
  year: 2020
  ident: ref_29
  article-title: Improving prediction of soil organic carbon content in croplands using phenological parameters extracted from NDVI time series data
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2019.104465
– volume: 61
  start-page: 133
  year: 2010
  ident: ref_74
  article-title: The ConMap approach for terrain-based digital soil mapping
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2009.01205.x
– volume: 9
  start-page: 65
  year: 2017
  ident: ref_109
  article-title: Mapping the global depth to bedrock for land surface modeling
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1002/2016MS000686
– volume: 7
  start-page: 179
  year: 2017
  ident: ref_16
  article-title: Application of artificial neural networks to estimate soil organic carbon in a high-organic-matter Mollisol
  publication-title: Span. J. Soil Sci. SJSS
– ident: ref_95
– volume: 20
  start-page: e00250
  year: 2020
  ident: ref_26
  article-title: Digital soil mapping of key GlobalSoilMap properties in Northern Karnataka Plateau
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2019.e00250
– volume: 207
  start-page: 304
  year: 2007
  ident: ref_77
  article-title: Random forests as a tool for ecohydrological distribution modeling
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2007.05.011
– ident: ref_24
  doi: 10.1371/journal.pone.0105519
– volume: 185
  start-page: 271
  year: 2016
  ident: ref_59
  article-title: The global Landsat archive: Status, consolidation, and direction
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.11.032
– volume: 144
  start-page: 212
  year: 2008
  ident: ref_84
  article-title: Optimisation of pedotransfer functions using an artificial neural network ensemble method
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.11.016
– volume: 5
  start-page: 79
  year: 2019
  ident: ref_33
  article-title: Using deep learning for digital soil mapping
  publication-title: Soil
  doi: 10.5194/soil-5-79-2019
– volume: 54
  start-page: 8558
  year: 2018
  ident: ref_87
  article-title: A transdisciplinary review of deep learning research and its relevance for water resources scientists
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR022643
– ident: ref_113
– volume: 24
  start-page: 49
  year: 1996
  ident: ref_35
  article-title: Stacked regressions
  publication-title: Mach. Learn.
  doi: 10.1007/BF00117832
– volume: 174
  start-page: 206
  year: 2019
  ident: ref_104
  article-title: Assessment of spatial hybrid methods for predicting soil organic matter using DEM derivatives and soil parameters
  publication-title: Catena
  doi: 10.1016/j.catena.2018.11.010
– volume: 56
  start-page: 627
  year: 2004
  ident: ref_100
  article-title: Effective environmental factors in the distribution of vegetation types in Poshtkouh rangelands of Yazd Province (Iran)
  publication-title: J. Arid Environ.
  doi: 10.1016/S0140-1963(03)00077-6
– volume: 8
  start-page: 277
  year: 2017
  ident: ref_51
  article-title: Artificial bee colony feature selection algorithm combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter in South Dakota, USA
  publication-title: Carbon Manag.
  doi: 10.1080/17583004.2017.1330593
– volume: 188
  start-page: 104424
  year: 2020
  ident: ref_9
  article-title: Conventional and digital soil mapping in Iran: Past, present, and future
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104424
– volume: 45
  start-page: 1
  year: 2007
  ident: ref_57
  article-title: The shuttle radar topography mission
  publication-title: Rev. Geophys.
  doi: 10.1029/2005RG000183
– volume: 186
  start-page: 280
  year: 2005
  ident: ref_114
  article-title: The evaluation strip: A new and robust method for plotting predicted responses from species distribution models
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2004.12.007
– ident: ref_58
– volume: 16
  start-page: e00198
  year: 2019
  ident: ref_111
  article-title: Using deep learning to predict soil properties from regional spectral data
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2018.e00198
– volume: 146
  start-page: 102
  year: 2008
  ident: ref_15
  article-title: Soil organic carbon concentrations and stocks on Barro Colorado Island—Digital soil mapping using Random Forests analysis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.05.008
– volume: 339
  start-page: 40
  year: 2019
  ident: ref_67
  article-title: Digital mapping of soil carbon fractions with machine learning
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.12.037
– ident: ref_69
– volume: 218
  start-page: 89
  year: 2018
  ident: ref_48
  article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.015
– volume: 5
  start-page: 961
  year: 1996
  ident: ref_53
  article-title: Total carbon, organic carbon, and organic matter
  publication-title: Methods Soil Anal. Part 3 Chem. Methods
– volume: 169
  start-page: 424
  year: 2016
  ident: ref_83
  article-title: Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2015.09.021
– volume: 151
  start-page: 118
  year: 2017
  ident: ref_99
  article-title: Predictive performance of mobile vis-near infrared spectroscopy for key soil properties at different geographical scales by using spiking and data mining techniques
  publication-title: Catena
  doi: 10.1016/j.catena.2016.12.014
– volume: 28
  start-page: 1
  year: 2008
  ident: ref_85
  article-title: Building Predictive Models in R Using the caret Package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v028.i05
– volume: 630
  start-page: 367
  year: 2018
  ident: ref_102
  article-title: High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.204
– volume: 69
  start-page: 39
  year: 2018
  ident: ref_2
  article-title: Limited effect of organic matter on soil available water capacity
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12475
– volume: 52
  start-page: 394
  year: 2015
  ident: ref_20
  article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2014.12.028
– volume: 8
  start-page: e1249
  year: 2018
  ident: ref_38
  article-title: Ensemble learning: A survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1249
– volume: 667
  start-page: 833
  year: 2019
  ident: ref_4
  article-title: Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use and climate change
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.420
– ident: ref_72
– volume: 338
  start-page: 445
  year: 2019
  ident: ref_21
  article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.006
– ident: ref_110
  doi: 10.1080/13658816.2019.1696968
– volume: 202
  start-page: 18
  year: 2017
  ident: ref_61
  article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 5
  start-page: 107
  year: 2019
  ident: ref_34
  article-title: Multi-source data integration for soil mapping using deep learning
  publication-title: Soil
  doi: 10.5194/soil-5-107-2019
– volume: 9
  start-page: e1283
  year: 2019
  ident: ref_88
  article-title: Big data analytics: Machine learning and Bayesian learning perspectives—What is done? What is not?
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1283
– volume: 8
  start-page: 9959
  year: 2018
  ident: ref_75
  article-title: Predicting reference soil groups using legacy data: A data pruning and Random Forest approach for tropical environment (Dano catchment, Burkina Faso)
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-28244-w
– volume: 86
  start-page: 105837
  year: 2020
  ident: ref_39
  article-title: Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105837
– ident: ref_12
  doi: 10.1007/978-1-4020-8592-5_2
– volume: 28
  start-page: 779
  year: 1997
  ident: ref_94
  article-title: Support vector regression machines
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 14
  start-page: e0220881
  year: 2019
  ident: ref_17
  article-title: Comparison of catchment scale 3D and 2.5 D modeling of soil organic carbon stocks in Jiangxi Province, PR China
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0220881
– volume: 281
  start-page: 1
  year: 2016
  ident: ref_6
  article-title: Environmental factors controlling soil organic carbon storage in loess soils of a subhumid region, northern Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.06.017
– ident: ref_79
– volume: 154
  start-page: 138
  year: 2009
  ident: ref_54
  article-title: Mapping continuous depth functions of soil carbon storage and available water capacity
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.10.007
– volume: 330
  start-page: 177
  year: 2018
  ident: ref_115
  article-title: A mixed model for landscape soil organic carbon prediction across continuous profile depth in the mountainous subtropics
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.020
– volume: 18
  start-page: 1527
  year: 2006
  ident: ref_86
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 179
  start-page: 499
  year: 2016
  ident: ref_46
  article-title: Incorporating limited field operability and legacy soil samples in a hypercube sampling design for digital soil mapping
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201500313
– volume: Volume 125
  start-page: 93
  year: 2014
  ident: ref_55
  article-title: GlobalSoilMap: Toward a fine-resolution global grid of soil properties
  publication-title: Advances in Agronomy
  doi: 10.1016/B978-0-12-800137-0.00003-0
– volume: 258
  start-page: 129
  year: 2018
  ident: ref_18
  article-title: Spatio-temporal land use dynamics and soil organic carbon in Swiss agroecosystems
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2018.02.012
– ident: ref_91
– volume: 81
  start-page: 401
  year: 2019
  ident: ref_98
  article-title: Selecting appropriate machine learning methods for digital soil mapping
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.12.016
– ident: ref_43
– volume: 340
  start-page: 7
  year: 2011
  ident: ref_76
  article-title: Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0425-z
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_89
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref_50
  doi: 10.1007/978-3-319-69048-3_7
SSID ssj0000331904
Score 2.5787218
Snippet Understanding the spatial distribution of soil organic carbon (SOC) content over different climatic regions will enhance our knowledge of carbon gains and...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1095
SubjectTerms Arid regions
artificial intelligence
Artificial neural networks
Carbon
Carbon content
Climate change
climatic zones
Deep learning
Digital mapping
digital soil mapping
Information processing
Iran
Learning algorithms
Learning theory
Machine learning
machine learning models
Model accuracy
Neural networks
Organic carbon
Organic soils
Precipitation
prediction
Predictions
Remote sensing
Sea level
Soil depth
Soil improvement
Soil mapping
soil organic carbon
Soil profiles
Soil properties
soil surveys
Soils
Spatial analysis
spatial block cross-validation
Spatial distribution
Stacking
stacking of models
Studies
Teaching methods
Topography
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxRBEG50c9CL-MTVREr04mFIz7v7JGZJCEJCiAnkNvRTF5aZZGaj5A_5O63q6Z0EDGFP21vbDFPd9erq72Pss0YvYmovE4OPmRSWDglVapO60jYrvc1kuB59dFwdnhffL8qLWHAbYlvlxiYGQ207QzXyXXQthBYlivLr5VVCrFF0uhopNB6zLTTBQszY1t7-8cnpVGXhOS4xXoy4pDnm97v9kGbkVolQ4o4nCoD9_9nj4GQOnrNnMTqEb6M6X7BHrn3JnkSi8l83r9jfqQgAGLkBEQrjAoKTns5b6B1D5-FHt1zBeMnSwEL1GocDClW7hmULZ3-68LVXA_U8w2K1DLitcOqoOXkAfQMYgxoqosNRaLZ0EHFYcYCocwZQrUX5wYyURzjfb0y6MW6lRzLuNTs_2D9bHCaRaiExRcXXic6dqZUthfSau5SiKOeVwOTM1Z5u32bKZhbdnU8N51qUTpYarYMyPq2UE_kbNmu71r1lUGVW4gf_kJvCVVxILkyGk6O0dtLO2ZfNa29MxCEnOoxVg_kIqai5VdGcfZpkL0f0jXul9kh7kwQhZoeBrv_ZxA3YUGRZemm5TV1R6Ux5Y_KU2uC1rYwzc7a90X0Tt_HQ3C66Ofs4_YwbkE5VVOu6a5SRmBTWVEN69_AU79nTjJJ1TuR522y27q_dDkY0a_0hLtt_RW36Nw
  priority: 102
  providerName: ProQuest
Title Improving the Spatial Prediction of Soil Organic Carbon Content in Two Contrasting Climatic Regions by Stacking Machine Learning Models and Rescanning Covariate Space
URI https://www.proquest.com/docview/2385570845
https://www.proquest.com/docview/2986272027
https://doaj.org/article/85115f9d0d1e46b2afcc312307bd6cec
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZpcmgvoU1bumm6TGgvPZjI8lPHZJttCNkQ8oDcjJ5kYbGDvUnJH-rv7IzsbBda6KX4YCyPZSGNNTPW6PsY-6LRipjCy8hgM6PU0iKhim1U5NqKzFshw_bo2Xl-cpOe3ma3a1RflBPWwwP3HXdAHkHmpeU2dmmuhfLGJDGlL2ubG2do9kWbtxZMhTk4QdXiaY9HmmBcf9B2sSBzSkQSaxYoAPX_MQ8H4zJ9zbYHrxAO-9a8YRuu3mEvB4Lyu6e37Ocq-Af02ICIhFFx4KKldRbqW2g8XDXzBfSbKw1MVKuxOKBP1UuY13D9owmXreoo1xkmi3nAa4VLR0nJHegnQN_T0M9zmIUkSwcD_ioWEGVOB6q2KN-ZnuoI63vEYBv9VWqSce_YzfT4enISDRQLkUlzvox04kyhbFZKr7mLyXtyXpUYlLnC065boaywaOZ8bDjXZeZkpnFWUMbHuXJl8p5t1k3tPjDIhZV44AOJSV3OS8lLI7BylNZO2hH7-tztlRnwx4kGY1FhHEJDVP0eohH7vJK971E3_ip1RKO3kiCk7FCA-lMN-lP9S39GbO957Kvh8-0q9GMImqxM8R37q9v44dFqiqpd84AyEoPBgv4d7f6PdnxkrwSF8pyo9fbY5rJ9cJ_Q31nqMXtRTr-P2dbht9nZFZ6Pjs8vLsdB4X8BGyIGJA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigXxFMECiwCDhysrteP2AeEIBBS2lQIUqk3s0-IFNnFTqnyhzjyG5lZP4oE4lbllPVkZWVm57Uz8wE8U2hF9NjlgcbXDGJDl4QyNME4VUYkzojct0fPj9LZcfzhJDnZgl99LwyVVfY60StqU2nKke-haaFpUVmcvDr9HhBqFN2u9hAarVgc2M05hmzNy_23yN_nQkzfLSazoEMVCHSc8nWgIqvH0iRZ7hS3ITkM1skM4xA7dtRoKqQRBjW7CzXnKktsnig8CFK7MJU2i3DfK3A1jtCSU2f69P2Q0-ERCjSP2ymo-Jzv1U0oyIgTfMUfds_DA_yl_b1Jm96A650vyl63wnMTtmx5C3Y6WPRvm9vwc0g5MPQTGcEXo7iyjzXd7hBHWeXY52q5Ym1Lp2YTWStc9jOvyjVblmxxXvmvtWyowppNVks_JZZ9slQK3TC1YejxakrZs7kv7bSsm_qKCwTU0zBZGqRvdAuwhPv9wBAfvWR6JW3vwPGlsOAubJdVae8BS4XJ8YM_iHRsU57lPNMCN0dqZXMzghf9317obuo5gW-sCox-iEXFBYtG8HSgPW1nffyT6g1xb6Cg-dx-oaq_Ft1xL8iPTVxuuAltnCohndZRSEX3yqTa6hHs9rwvOqXRFBciPoInw2M87nSHI0tbnSFNjiHomDJW9_-_xWPYmS3mh8Xh_tHBA7gmKE3ACbZvF7bX9Zl9iL7UWj3yAszgy2WfmN-8DTZE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKdIKbAIOHCwsl6_DwjRtFFLaRSVVurN7JNGiuxip1T5Q_wIfh0zfqRIIG6VT16PV5ZnZuexs_MBvFFoRXTiMk_jZ3qhoU1C6RsviZURkTMia45HH03j_dPw01l0tgG_-rMwVFbZr4nNQm1KTTnyEZoW6haVhtHIdWURs93Jh4vvHiFI0U5rD6fRisihXV1h-Fa_P9hFXr8VYrJ3Mt73OoQBT4cxX3oqsDqRJkozp7j1yXmwTqYYk9jE0aFTIY0wuMo7X3Ou0shmkUKlkNr5sbRpgPPegs2EoqIBbO7sTWfH6wwPD1C8edj2RA2CjI-q2hdk0gnM4g8r2IAF_GULGgM3uQ_3Os-UfWxF6QFs2OIh3OlA0s9Xj-DnOgHB0GtkBGaMwstmFe31EH9Z6diXcr5g7QFPzcayUjjcdMAqlmxesJOrsrmtZE311my8mDc9Y9mxpcLomqkVQ_9XUwKfHTWFnpZ1PWBxgGB7aiYLg_S1buGWcL4fGPCjz0yfpO1jOL0RJjyBQVEW9imwWJgML3wh0KGNeZrxVAucHKmVzcwQ3vW_PdddD3SC4ljkGAsRi_JrFg3h9Zr2ou388U-qHeLemoK6dTcDZfUt75Q_J682cpnhxrdhrIR0Wgc-leArE2urh7Dd8z7vlpA6vxb4IbxaP0blpx0dWdjyEmkyDEgTyl9t_X-Kl3AbtSX_fDA9fAZ3BeUMOGH4bcNgWV3a5-hYLdWLToIZfL1ppfkNAmU71g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+Spatial+Prediction+of+Soil+Organic+Carbon+Content+in+Two+Contrasting+Climatic+Regions+by+Stacking+Machine+Learning+Models+and+Rescanning+Covariate+Space&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Taghizadeh-Mehrjardi%2C+Ruhollah&rft.au=Schmidt%2C+Karsten&rft.au=Amirian-Chakan%2C+Alireza&rft.au=Rentschler%2C+Tobias&rft.date=2020-03-29&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=7&rft_id=info:doi/10.3390%2Frs12071095&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon