Improving the Spatial Prediction of Soil Organic Carbon Content in Two Contrasting Climatic Regions by Stacking Machine Learning Models and Rescanning Covariate Space
Understanding the spatial distribution of soil organic carbon (SOC) content over different climatic regions will enhance our knowledge of carbon gains and losses due to climatic change. However, little is known about the SOC content in the contrasting arid and sub-humid regions of Iran, whose comple...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 12; no. 7; p. 1095 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
29.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding the spatial distribution of soil organic carbon (SOC) content over different climatic regions will enhance our knowledge of carbon gains and losses due to climatic change. However, little is known about the SOC content in the contrasting arid and sub-humid regions of Iran, whose complex SOC–landscape relationships pose a challenge to spatial analysis. Machine learning (ML) models with a digital soil mapping framework can solve such complex relationships. Current research focusses on ensemble ML models to increase the accuracy of prediction. The usual ensemble method is boosting or weighted averaging. This study proposes a novel ensemble technique: the stacking of multiple ML models through a meta-learning model. In addition, we tested the ensemble through rescanning the covariate space to maximize the prediction accuracy. We first applied six state-of-the-art ML models (i.e., Cubist, random forests (RF), extreme gradient boosting (XGBoost), classical artificial neural network models (ANN), neural network ensemble based on model averaging (AvNNet), and deep learning neural networks (DNN)) to predict and map the spatial distribution of SOC content at six soil depth intervals for both regions. In addition, the stacking of multiple ML models through a meta-learning model with/without rescanning the covariate space were tested and applied to maximize the prediction accuracy. Out of six ML models, the DNN resulted in the best modeling accuracies, followed by RF, XGBoost, AvNNet, ANN, and Cubist. Importantly, the stacking of models indicated a significant improvement in the prediction of SOC content, especially when combined with rescanning the covariate space. For instance, the RMSE values for SOC content prediction of the upper 0–5 cm of the soil profiles of the arid site and the sub-humid site by the proposed stacking approaches were 17% and 9% respectively, less than that obtained by the DNN models—the best individual model. This indicates that rescanning the original covariate space by a meta-learning model can extract more information and improve the SOC content prediction accuracy. Overall, our results suggest that the stacking of diverse sets of models could be used to more accurately estimate the spatial distribution of SOC content in different climatic regions. |
---|---|
AbstractList | Understanding the spatial distribution of soil organic carbon (SOC) content over different climatic regions will enhance our knowledge of carbon gains and losses due to climatic change. However, little is known about the SOC content in the contrasting arid and sub-humid regions of Iran, whose complex SOC–landscape relationships pose a challenge to spatial analysis. Machine learning (ML) models with a digital soil mapping framework can solve such complex relationships. Current research focusses on ensemble ML models to increase the accuracy of prediction. The usual ensemble method is boosting or weighted averaging. This study proposes a novel ensemble technique: the stacking of multiple ML models through a meta-learning model. In addition, we tested the ensemble through rescanning the covariate space to maximize the prediction accuracy. We first applied six state-of-the-art ML models (i.e., Cubist, random forests (RF), extreme gradient boosting (XGBoost), classical artificial neural network models (ANN), neural network ensemble based on model averaging (AvNNet), and deep learning neural networks (DNN)) to predict and map the spatial distribution of SOC content at six soil depth intervals for both regions. In addition, the stacking of multiple ML models through a meta-learning model with/without rescanning the covariate space were tested and applied to maximize the prediction accuracy. Out of six ML models, the DNN resulted in the best modeling accuracies, followed by RF, XGBoost, AvNNet, ANN, and Cubist. Importantly, the stacking of models indicated a significant improvement in the prediction of SOC content, especially when combined with rescanning the covariate space. For instance, the RMSE values for SOC content prediction of the upper 0–5 cm of the soil profiles of the arid site and the sub-humid site by the proposed stacking approaches were 17% and 9% respectively, less than that obtained by the DNN models—the best individual model. This indicates that rescanning the original covariate space by a meta-learning model can extract more information and improve the SOC content prediction accuracy. Overall, our results suggest that the stacking of diverse sets of models could be used to more accurately estimate the spatial distribution of SOC content in different climatic regions. |
Author | Valavi, Roozbeh Behrens, Thorsten Scholten, Thomas Sarmadian, Fereydoon Davatgar, Naser Taghizadeh-Mehrjardi, Ruhollah Amirian-Chakan, Alireza Zeraatpisheh, Mojtaba Rentschler, Tobias Schmidt, Karsten |
Author_xml | – sequence: 1 givenname: Ruhollah orcidid: 0000-0002-4620-6624 surname: Taghizadeh-Mehrjardi fullname: Taghizadeh-Mehrjardi, Ruhollah – sequence: 2 givenname: Karsten orcidid: 0000-0003-0337-3024 surname: Schmidt fullname: Schmidt, Karsten – sequence: 3 givenname: Alireza surname: Amirian-Chakan fullname: Amirian-Chakan, Alireza – sequence: 4 givenname: Tobias orcidid: 0000-0003-3878-5539 surname: Rentschler fullname: Rentschler, Tobias – sequence: 5 givenname: Mojtaba orcidid: 0000-0001-7209-0744 surname: Zeraatpisheh fullname: Zeraatpisheh, Mojtaba – sequence: 6 givenname: Fereydoon surname: Sarmadian fullname: Sarmadian, Fereydoon – sequence: 7 givenname: Roozbeh orcidid: 0000-0003-2495-5277 surname: Valavi fullname: Valavi, Roozbeh – sequence: 8 givenname: Naser surname: Davatgar fullname: Davatgar, Naser – sequence: 9 givenname: Thorsten surname: Behrens fullname: Behrens, Thorsten – sequence: 10 givenname: Thomas orcidid: 0000-0002-4875-2602 surname: Scholten fullname: Scholten, Thomas |
BookMark | eNptUttuEzEQXaEiUUpf-AJLvCCkUF_25ke04hIpqIiUZ2vWHqcOGzvYTlF_iO_E2YCKKvwy4-MzRz4z87w688FjVb1k9K0Qkl7FxDjtGJXNk-q8ZHxRc8nP_smfVZcpbWk5QjBJ6_Pq13K3j-HO-Q3Jt0jWe8gOJvIlonE6u-BJsGQd3ESu4wa802SAOBZ4CD6jz8R5cvMzzNcIKR-FhsntiowmX3FTFBIZ78k6g_5-fPwM-tZ5JCuE6GcgGJwSAW8KP2nwMzqEO4gO8vwljS-qpxamhJd_4kX17cP7m-HTYnX9cTm8Wy103dK8GAXqDkzTSztSZA2rBVroJa-xsz2XHQfDjaDCMk3p2Dcom5F2ArRlLWAvLqrlSdcE2Kp9LEbivQrg1AyEuFEQi7UJVd8w1lhpqGFYtyMHq7VgXNBuNK1GXbRen7RKg38cMGW1c0njNIHHcEiKy77lHae8K9RXj6jbcIi-OFVc9E3T0b5uCoueWDqGlCJapV2G45BK692kGFXHPVAPe1BK3jwq-evpP-TfD9u2cQ |
CitedBy_id | crossref_primary_10_1080_26395940_2022_2102543 crossref_primary_10_1016_j_geodrs_2023_e00728 crossref_primary_10_1016_j_ejrh_2024_101739 crossref_primary_10_3390_land12020494 crossref_primary_10_3390_computers13010002 crossref_primary_10_1007_s12517_023_11670_0 crossref_primary_10_1016_j_compag_2022_107077 crossref_primary_10_1016_j_apgeog_2021_102495 crossref_primary_10_3390_su16156569 crossref_primary_10_1016_j_scitotenv_2021_147216 crossref_primary_10_1080_10106049_2021_1920636 crossref_primary_10_3390_rs14235909 crossref_primary_10_1007_s42106_020_00106_4 crossref_primary_10_3390_su12135384 crossref_primary_10_1007_s11146_022_09929_6 crossref_primary_10_17221_94_2022_SWR crossref_primary_10_1016_j_agwat_2023_108364 crossref_primary_10_3390_land13081331 crossref_primary_10_1007_s10661_025_13918_6 crossref_primary_10_1080_10095020_2022_2026743 crossref_primary_10_1080_17583004_2022_2106310 crossref_primary_10_1007_s10661_021_09561_6 crossref_primary_10_1080_08839514_2024_2434309 crossref_primary_10_3390_rs15082152 crossref_primary_10_3390_rs14061521 crossref_primary_10_3390_app132212268 crossref_primary_10_47115_bsagriculture_1565025 crossref_primary_10_1016_j_catena_2024_108216 crossref_primary_10_1016_j_indcrop_2023_117806 crossref_primary_10_1007_s44353_024_00012_0 crossref_primary_10_3390_rs14215571 crossref_primary_10_1139_cjss_2021_0133 crossref_primary_10_1007_s12145_021_00638_x crossref_primary_10_3390_rs17030420 crossref_primary_10_1016_j_geoderma_2023_116457 crossref_primary_10_1016_j_ecolind_2022_109420 crossref_primary_10_3390_rs16020405 crossref_primary_10_1007_s12665_021_10084_z crossref_primary_10_1016_j_geoderma_2020_114793 crossref_primary_10_1016_j_geoderma_2021_114998 crossref_primary_10_3389_fenvs_2021_692959 crossref_primary_10_3390_rs15082118 crossref_primary_10_3390_rs14030472 crossref_primary_10_1080_01431161_2021_1945158 crossref_primary_10_1016_j_catena_2023_107197 crossref_primary_10_3390_rs12213609 crossref_primary_10_3390_rs17020189 crossref_primary_10_1007_s11356_024_35481_2 crossref_primary_10_1016_j_scitotenv_2023_166112 crossref_primary_10_3390_rs15040876 crossref_primary_10_1007_s12517_022_09629_8 crossref_primary_10_1016_j_asr_2023_10_051 crossref_primary_10_1080_15481603_2023_2177448 crossref_primary_10_3390_agronomy12112742 crossref_primary_10_3390_f14030483 crossref_primary_10_1016_j_apr_2020_08_029 crossref_primary_10_1016_j_ecolind_2024_112644 crossref_primary_10_1016_j_ecolind_2024_112246 crossref_primary_10_3390_rs16152778 crossref_primary_10_1016_j_ecolind_2021_108287 crossref_primary_10_1016_j_geoderma_2022_115695 crossref_primary_10_1016_j_still_2023_105681 crossref_primary_10_1016_j_jia_2023_02_011 crossref_primary_10_3390_agriculture14081230 crossref_primary_10_3390_rs16030438 crossref_primary_10_3390_rs15194713 crossref_primary_10_3390_su15010469 crossref_primary_10_1016_j_scitotenv_2022_161150 crossref_primary_10_1016_j_scitotenv_2020_142291 crossref_primary_10_1016_j_icheatmasstransfer_2023_107228 crossref_primary_10_1016_j_jafr_2024_101033 crossref_primary_10_1016_j_ecolind_2024_112294 crossref_primary_10_1002_ldr_4505 crossref_primary_10_1016_j_ecoinf_2024_102732 crossref_primary_10_1016_j_jenvman_2022_117194 crossref_primary_10_1016_j_geoderma_2020_114890 crossref_primary_10_1016_j_geoderma_2021_115108 crossref_primary_10_3390_s24113519 crossref_primary_10_1016_j_catena_2022_106485 crossref_primary_10_1016_j_isprsjprs_2022_04_026 crossref_primary_10_1016_j_nhres_2024_05_001 crossref_primary_10_1061_JTEPBS_TEENG_8820 crossref_primary_10_3390_rs15112907 crossref_primary_10_3390_plants12030501 crossref_primary_10_1016_j_jenvman_2022_117127 crossref_primary_10_1109_ACCESS_2021_3080689 crossref_primary_10_1371_journal_pone_0269791 crossref_primary_10_1109_ACCESS_2023_3348412 crossref_primary_10_1016_j_molliq_2024_125745 crossref_primary_10_1016_j_atmosres_2022_106159 crossref_primary_10_1016_j_measurement_2022_111706 crossref_primary_10_1016_j_catena_2021_105280 crossref_primary_10_1016_j_jenvman_2025_125035 crossref_primary_10_1016_j_geoderma_2022_116208 crossref_primary_10_1016_j_catena_2025_108718 crossref_primary_10_1061_JWRMD5_WRENG_5858 crossref_primary_10_1080_10106049_2021_1926558 crossref_primary_10_3390_rs12203384 crossref_primary_10_1016_j_jclepro_2023_136885 crossref_primary_10_1080_10106049_2021_1926553 crossref_primary_10_1016_j_ecolind_2024_112865 crossref_primary_10_1007_s10661_023_11681_0 crossref_primary_10_1016_j_catena_2021_105723 crossref_primary_10_3389_fsoil_2022_890437 crossref_primary_10_1016_j_geodrs_2023_e00745 crossref_primary_10_1016_j_pce_2022_103198 crossref_primary_10_7717_peerj_17836 crossref_primary_10_1021_acs_energyfuels_2c03033 crossref_primary_10_3390_s24227317 crossref_primary_10_3390_rs12142234 crossref_primary_10_1002_joc_7987 crossref_primary_10_3390_rs13204067 crossref_primary_10_1038_s41598_022_13514_5 crossref_primary_10_3390_land12010032 crossref_primary_10_1016_j_jssas_2022_07_006 crossref_primary_10_1016_j_catena_2023_107392 crossref_primary_10_1016_j_scitotenv_2020_142661 crossref_primary_10_1109_TGRS_2024_3446042 crossref_primary_10_3390_buildings15020288 crossref_primary_10_3390_rs16020336 crossref_primary_10_3390_agronomy13102516 crossref_primary_10_1016_j_geodrs_2023_e00619 crossref_primary_10_1016_j_jclepro_2023_138650 crossref_primary_10_1016_j_jhydrol_2023_129985 crossref_primary_10_1016_j_compag_2022_107246 crossref_primary_10_3390_su15076067 crossref_primary_10_3389_fenvs_2021_809995 crossref_primary_10_1016_j_geodrs_2025_e00933 crossref_primary_10_1016_j_ecolind_2020_106736 crossref_primary_10_1007_s10666_024_09973_x crossref_primary_10_1016_j_asr_2024_04_055 crossref_primary_10_3390_land14040677 crossref_primary_10_1007_s13753_024_00590_6 crossref_primary_10_1016_j_agwat_2024_109147 crossref_primary_10_3390_rs13071229 crossref_primary_10_1016_j_compag_2023_107821 |
Cites_doi | 10.1016/j.ecolind.2018.01.049 10.1016/j.geoderma.2018.09.007 10.1016/j.geoderma.2015.12.003 10.2136/sssaj2007.0410 10.1016/j.geoderma.2019.06.016 10.1016/j.scitotenv.2018.11.230 10.1016/j.compag.2019.105172 10.18637/jss.v036.i11 10.1007/978-1-4614-6849-3 10.1111/ejss.12790 10.3390/rs10101555 10.1016/j.geoderma.2019.03.017 10.1016/j.geodrs.2020.e00256 10.1016/0034-4257(88)90106-X 10.1016/j.cageo.2005.12.009 10.1111/j.1365-2486.2009.01940.x 10.1093/jpe/rtw065 10.1038/s41598-018-33516-6 10.1117/12.2323820 10.2136/sssaj2016.11.0376 10.1007/s12665-018-7374-x 10.1016/j.geoderma.2014.04.033 10.1016/j.geoderma.2020.114237 10.1021/acs.jpcc.8b03405 10.1016/j.geoderma.2007.06.003 10.1007/s10705-017-9870-x 10.1016/j.geoderma.2018.07.026 10.1016/j.rse.2011.11.026 10.1016/j.geoderma.2010.03.002 10.1007/s10661-017-5830-9 10.1016/j.rse.2019.01.006 10.1111/2041-210X.13107 10.2136/sssaj2017.04.0122 10.1007/978-3-319-04084-4_1 10.3390/rs12010085 10.1007/BF00994018 10.1016/j.neucom.2017.09.047 10.1080/17583004.2018.1553434 10.1016/j.chemolab.2008.06.003 10.1371/journal.pone.0169748 10.1038/s41598-019-45156-5 10.1016/j.catena.2018.06.018 10.1016/B978-0-12-405942-9.00001-3 10.1109/72.329697 10.1016/j.geoderma.2013.07.020 10.1016/j.scitotenv.2014.06.088 10.1016/j.still.2019.104477 10.1111/j.1365-2656.2008.01390.x 10.1016/j.geoderma.2019.114008 10.1016/S0016-7061(03)00223-4 10.1002/jpln.200521962 10.1016/j.still.2019.104465 10.1111/j.1365-2389.2009.01205.x 10.1002/2016MS000686 10.1016/j.geodrs.2019.e00250 10.1016/j.ecolmodel.2007.05.011 10.1371/journal.pone.0105519 10.1016/j.rse.2015.11.032 10.1016/j.geoderma.2007.11.016 10.5194/soil-5-79-2019 10.1029/2018WR022643 10.1007/BF00117832 10.1016/j.catena.2018.11.010 10.1016/S0140-1963(03)00077-6 10.1080/17583004.2017.1330593 10.1016/j.catena.2019.104424 10.1029/2005RG000183 10.1016/j.ecolmodel.2004.12.007 10.1016/j.geodrs.2018.e00198 10.1016/j.geoderma.2008.05.008 10.1016/j.geoderma.2018.12.037 10.1016/j.rse.2018.09.015 10.1016/j.atmosres.2015.09.021 10.1016/j.catena.2016.12.014 10.18637/jss.v028.i05 10.1016/j.scitotenv.2018.02.204 10.1111/ejss.12475 10.1016/j.ecolind.2014.12.028 10.1002/widm.1249 10.1016/j.scitotenv.2019.02.420 10.1016/j.geoderma.2018.09.006 10.1080/13658816.2019.1696968 10.1016/j.rse.2017.06.031 10.5194/soil-5-107-2019 10.1002/widm.1283 10.1038/s41598-018-28244-w 10.1016/j.asoc.2019.105837 10.1007/978-1-4020-8592-5_2 10.1371/journal.pone.0220881 10.1016/j.geoderma.2016.06.017 10.1016/j.geoderma.2009.10.007 10.1016/j.geoderma.2018.05.020 10.1162/neco.2006.18.7.1527 10.1002/jpln.201500313 10.1016/B978-0-12-800137-0.00003-0 10.1016/j.agee.2018.02.012 10.1016/j.apm.2019.12.016 10.1007/s11104-010-0425-z 10.1007/978-3-319-69048-3_7 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs12071095 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Engineering Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_85115f9d0d1e46b2afcc312307bd6cec 10_3390_rs12071095 |
GeographicLocations | Iran France |
GeographicLocations_xml | – name: Iran – name: France |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c460t-b3ec7ad589fb0e15143efa8924e7f82972ad2d303f1c00b85e95b073acf16ae83 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:32:18 EDT 2025 Fri Jul 11 03:36:05 EDT 2025 Fri Jul 25 12:11:09 EDT 2025 Tue Jul 01 04:15:04 EDT 2025 Thu Apr 24 22:55:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-b3ec7ad589fb0e15143efa8924e7f82972ad2d303f1c00b85e95b073acf16ae83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4875-2602 0000-0003-2495-5277 0000-0001-7209-0744 0000-0003-0337-3024 0000-0003-3878-5539 0000-0002-4620-6624 |
OpenAccessLink | https://doaj.org/article/85115f9d0d1e46b2afcc312307bd6cec |
PQID | 2385570845 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_85115f9d0d1e46b2afcc312307bd6cec proquest_miscellaneous_2986272027 proquest_journals_2385570845 crossref_citationtrail_10_3390_rs12071095 crossref_primary_10_3390_rs12071095 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200329 |
PublicationDateYYYYMMDD | 2020-03-29 |
PublicationDate_xml | – month: 03 year: 2020 text: 20200329 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Caubet (ref_36) 2019; 337 ref_91 Kerry (ref_22) 2017; 189 Mishra (ref_116) 2009; 73 Wang (ref_102) 2018; 630 ref_12 Vasques (ref_117) 2010; 156 ref_11 Tajik (ref_40) 2020; 20 Behrens (ref_74) 2010; 61 Behrens (ref_31) 2018; 8 ref_95 Hinge (ref_25) 2018; 77 Minasny (ref_2) 2018; 69 Malone (ref_54) 2009; 154 Hagan (ref_82) 1994; 5 Chen (ref_107) 2019; 655 Valavi (ref_97) 2019; 10 Shangguan (ref_109) 2017; 9 Tziachris (ref_104) 2019; 174 Wang (ref_68) 2018; 122 Wulder (ref_59) 2016; 185 ref_24 Suthaharan (ref_88) 2019; 9 Zeraatpisheh (ref_21) 2019; 338 Goidts (ref_49) 2009; 15 Kuhn (ref_85) 2008; 28 Hinton (ref_86) 2006; 18 Breiman (ref_35) 1996; 24 Zhao (ref_27) 2020; 169 Meyer (ref_83) 2016; 169 ref_72 ref_70 ref_79 Guo (ref_28) 2020; 196 Arrouays (ref_55) 2014; Volume 125 Friedman (ref_92) 2008; 33 Bernhard (ref_8) 2018; 170 Wiesmeier (ref_76) 2011; 340 Sagi (ref_38) 2018; 8 Poggio (ref_63) 2019; 346 Somarathna (ref_112) 2017; 81 ref_81 Chen (ref_42) 2020; 366 ref_80 Goebes (ref_101) 2019; 9 Yang (ref_29) 2020; 196 Grimm (ref_15) 2008; 146 Zeraatpisheh (ref_9) 2020; 188 McBratney (ref_14) 2003; 117 Stumpf (ref_18) 2018; 258 Rentschler (ref_17) 2019; 14 Moreno (ref_16) 2017; 7 Owusu (ref_23) 2020; 360 Nabiollahi (ref_30) 2019; 10 Ajami (ref_6) 2016; 281 Dharumarajan (ref_26) 2020; 20 ref_50 ref_58 Elith (ref_114) 2005; 186 Breiman (ref_73) 1984; 37 Minasny (ref_44) 2014; 213 Elith (ref_78) 2008; 77 Ma (ref_10) 2019; 70 Ramcharan (ref_106) 2018; 82 Huete (ref_64) 1988; 25 Laub (ref_115) 2018; 330 Zhai (ref_90) 2018; 275 Drusch (ref_60) 2012; 120 Drucker (ref_94) 1997; 28 Minasny (ref_5) 2013; 118 ref_69 Hengl (ref_105) 2017; 109 Gorelick (ref_61) 2017; 202 Stumpf (ref_46) 2016; 179 Gholizadeh (ref_48) 2018; 218 ref_62 Vaudour (ref_103) 2019; 223 Hounkpatin (ref_75) 2018; 8 Peters (ref_77) 2007; 207 Xiong (ref_56) 2014; 493 Nawar (ref_99) 2017; 151 Scholten (ref_1) 2017; 10 Minasny (ref_45) 2006; 32 Adhikari (ref_4) 2019; 667 Wang (ref_19) 2018; 88 Keskin (ref_67) 2019; 339 Minasny (ref_71) 2008; 94 Jafari (ref_100) 2004; 56 Malone (ref_37) 2014; 232 ref_110 ref_113 Padarian (ref_111) 2019; 16 Ribeiro (ref_39) 2020; 86 Wiesmeier (ref_52) 2019; 333 Liaw (ref_66) 2002; 2 Baker (ref_84) 2008; 144 Don (ref_3) 2007; 141 Were (ref_20) 2015; 52 Cortes (ref_93) 1995; 20 Padarian (ref_33) 2019; 5 ref_108 Bischl (ref_96) 2016; 17 ref_47 Nelson (ref_53) 1996; 5 ref_43 Shen (ref_87) 2018; 54 ref_41 Ng (ref_32) 2019; 352 Wadoux (ref_34) 2019; 5 Kursa (ref_65) 2010; 36 Srivastava (ref_89) 2014; 15 Neupane (ref_51) 2017; 8 Khaledian (ref_98) 2019; 81 Behrens (ref_13) 2006; 169 Nabiollahi (ref_7) 2016; 266 Farr (ref_57) 2007; 45 |
References_xml | – volume: 88 start-page: 425 year: 2018 ident: ref_19 article-title: Estimating soil organic carbon stocks using different modeling techniques in the semi-arid rangelands of eastern Australia publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2018.01.049 – volume: 337 start-page: 99 year: 2019 ident: ref_36 article-title: Merging country, continental and global predictions of soil texture: Lessons from ensemble modeling in france publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.007 – volume: 37 start-page: 237 year: 1984 ident: ref_73 article-title: Classification and regression trees publication-title: Wadsworth Int. Group – volume: 266 start-page: 98 year: 2016 ident: ref_7 article-title: Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2015.12.003 – volume: 73 start-page: 614 year: 2009 ident: ref_116 article-title: Predicting soil organic carbon stock using profile depth distribution functions and ordinary kriging publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2007.0410 – ident: ref_80 – volume: 352 start-page: 251 year: 2019 ident: ref_32 article-title: Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra publication-title: Geoderma doi: 10.1016/j.geoderma.2019.06.016 – volume: 655 start-page: 273 year: 2019 ident: ref_107 article-title: A high-resolution map of soil pH in China made by hybrid modeling of sparse soil data and environmental covariates and its implications for pollution publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.230 – volume: 169 start-page: 105172 year: 2020 ident: ref_27 article-title: Extended model prediction of high-resolution soil organic matter over a large area using limited number of field samples publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.105172 – volume: 36 start-page: 1 year: 2010 ident: ref_65 article-title: Feature selection with the Boruta package publication-title: J. Stat. Softw. doi: 10.18637/jss.v036.i11 – ident: ref_70 doi: 10.1007/978-1-4614-6849-3 – volume: 70 start-page: 216 year: 2019 ident: ref_10 article-title: Pedology and digital soil mapping (DSM) publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12790 – ident: ref_62 doi: 10.3390/rs10101555 – volume: 346 start-page: 63 year: 2019 ident: ref_63 article-title: Modeling the extent of northern peat soil and its uncertainty with Sentinel: Scotland as example of highly cloudy region publication-title: Geoderma doi: 10.1016/j.geoderma.2019.03.017 – volume: 20 start-page: e00256 year: 2020 ident: ref_40 article-title: Digital mapping of soil organic carbon using ensemble learning model in Mollisols of Hyrcanian forests, northern Iran publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2020.e00256 – volume: 25 start-page: 295 year: 1988 ident: ref_64 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – volume: 32 start-page: 1378 year: 2006 ident: ref_45 article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.12.009 – volume: 15 start-page: 2981 year: 2009 ident: ref_49 article-title: Driving forces of soil organic carbon evolution at the landscape and regional scale using data from a stratified soil monitoring publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2009.01940.x – volume: 33 start-page: 1 year: 2008 ident: ref_92 article-title: Regularization Paths for Generalized Linear Models via Coordinate Descent publication-title: J. Stat. Sotw. – volume: 10 start-page: 111 year: 2017 ident: ref_1 article-title: On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems—A study from SE China publication-title: J. Plant Ecol. doi: 10.1093/jpe/rtw065 – volume: 8 start-page: 15244 year: 2018 ident: ref_31 article-title: Multi-scale digital soil mapping with deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-018-33516-6 – ident: ref_47 doi: 10.1117/12.2323820 – volume: 81 start-page: 1413 year: 2017 ident: ref_112 article-title: More data or a better model? Figuring out what matters most for the spatial prediction of soil carbon publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2016.11.0376 – volume: 77 start-page: 172 year: 2018 ident: ref_25 article-title: Prediction of soil organic carbon stock using digital mapping approach in humid India publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-7374-x – volume: 232 start-page: 34 year: 2014 ident: ref_37 article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data publication-title: Geoderma doi: 10.1016/j.geoderma.2014.04.033 – volume: 366 start-page: 114237 year: 2020 ident: ref_42 article-title: Model averaging for mapping topsoil organic carbon in France publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114237 – volume: 122 start-page: 8868 year: 2018 ident: ref_68 article-title: Significantly improving the prediction of molecular atomization energies by an ensemble of machine learning algorithms and rescanning input space: A stacked generalization approach publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b03405 – volume: 141 start-page: 272 year: 2007 ident: ref_3 article-title: Spatial and vertical variation of soil carbon at two grassland sites—implications for measuring soil carbon stocks publication-title: Geoderma doi: 10.1016/j.geoderma.2007.06.003 – volume: 109 start-page: 77 year: 2017 ident: ref_105 article-title: Soil nutrient maps of Sub-Saharan Africa: Assessment of soil nutrient content at 250 m spatial resolution using machine learning publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-017-9870-x – volume: 333 start-page: 149 year: 2019 ident: ref_52 article-title: Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales publication-title: Geoderma doi: 10.1016/j.geoderma.2018.07.026 – volume: 120 start-page: 25 year: 2012 ident: ref_60 article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.026 – volume: 156 start-page: 326 year: 2010 ident: ref_117 article-title: Regional modeling of soil carbon at multiple depths within a subtropical watershed publication-title: Geoderma doi: 10.1016/j.geoderma.2010.03.002 – volume: 189 start-page: 131 year: 2017 ident: ref_22 article-title: Spatial 3D distribution of soil organic carbon under different land use types publication-title: Enviro. Monit. Assess. doi: 10.1007/s10661-017-5830-9 – volume: 223 start-page: 21 year: 2019 ident: ref_103 article-title: Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.006 – volume: 10 start-page: 225 year: 2019 ident: ref_97 article-title: blockCV: An R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13107 – volume: 82 start-page: 186 year: 2018 ident: ref_106 article-title: Soil property and class maps of the conterminous United States at 100-meter spatial resolution publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2017.04.0122 – ident: ref_11 doi: 10.1007/978-3-319-04084-4_1 – ident: ref_41 doi: 10.3390/rs12010085 – volume: 20 start-page: 273 year: 1995 ident: ref_93 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 2 start-page: 18 year: 2002 ident: ref_66 article-title: Classification and regression by randomForest publication-title: R News – volume: 275 start-page: 1043 year: 2018 ident: ref_90 article-title: Ensemble dropout extreme learning machine via fuzzy integral for data classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.047 – volume: 10 start-page: 63 year: 2019 ident: ref_30 article-title: Assessing soil organic carbon stocks under land-use change scenarios using random forest models publication-title: Carbon Manag. doi: 10.1080/17583004.2018.1553434 – volume: 94 start-page: 72 year: 2008 ident: ref_71 article-title: Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy publication-title: Chem. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2008.06.003 – ident: ref_108 doi: 10.1371/journal.pone.0169748 – volume: 9 start-page: 8635 year: 2019 ident: ref_101 article-title: The strength of soil-plant interactions under forest is related to a Critical Soil Depth publication-title: Sci. Rep. doi: 10.1038/s41598-019-45156-5 – volume: 170 start-page: 335 year: 2018 ident: ref_8 article-title: Pedogenic and microbial interrelations to regional climate and local topography: New insights from a climate gradient (arid to humid) along the Coastal Cordillera of Chile publication-title: Catena doi: 10.1016/j.catena.2018.06.018 – volume: 17 start-page: 5938 year: 2016 ident: ref_96 article-title: mlr: Machine learning in R publication-title: J. Mach. Learn. Res. – volume: 118 start-page: 1 year: 2013 ident: ref_5 article-title: Digital soil mapping of carbon publication-title: Adv. Agron. doi: 10.1016/B978-0-12-405942-9.00001-3 – volume: 5 start-page: 989 year: 1994 ident: ref_82 article-title: Training feedforward networks with the Marquardt algorithm publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.329697 – volume: 213 start-page: 15 year: 2014 ident: ref_44 article-title: Digital mapping of soil salinity in Ardakan region, central Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.020 – volume: 493 start-page: 974 year: 2014 ident: ref_56 article-title: Interaction effects of climate and land use/land cover change on soil organic carbon sequestration publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.06.088 – ident: ref_81 – volume: 196 start-page: 104477 year: 2020 ident: ref_28 article-title: Mapping field-scale soil organic carbon with unmanned aircraft system-acquired time series multispectral images publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.104477 – volume: 77 start-page: 802 year: 2008 ident: ref_78 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. doi: 10.1111/j.1365-2656.2008.01390.x – volume: 360 start-page: 114008 year: 2020 ident: ref_23 article-title: Spatial prediction of soil organic carbon stocks in Ghana using legacy data publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114008 – volume: 117 start-page: 3 year: 2003 ident: ref_14 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 169 start-page: 434 year: 2006 ident: ref_13 article-title: Digital soil mapping in Germany—A review publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200521962 – volume: 196 start-page: 104465 year: 2020 ident: ref_29 article-title: Improving prediction of soil organic carbon content in croplands using phenological parameters extracted from NDVI time series data publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.104465 – volume: 61 start-page: 133 year: 2010 ident: ref_74 article-title: The ConMap approach for terrain-based digital soil mapping publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2009.01205.x – volume: 9 start-page: 65 year: 2017 ident: ref_109 article-title: Mapping the global depth to bedrock for land surface modeling publication-title: J. Adv. Model. Earth Syst. doi: 10.1002/2016MS000686 – volume: 7 start-page: 179 year: 2017 ident: ref_16 article-title: Application of artificial neural networks to estimate soil organic carbon in a high-organic-matter Mollisol publication-title: Span. J. Soil Sci. SJSS – ident: ref_95 – volume: 20 start-page: e00250 year: 2020 ident: ref_26 article-title: Digital soil mapping of key GlobalSoilMap properties in Northern Karnataka Plateau publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2019.e00250 – volume: 207 start-page: 304 year: 2007 ident: ref_77 article-title: Random forests as a tool for ecohydrological distribution modeling publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2007.05.011 – ident: ref_24 doi: 10.1371/journal.pone.0105519 – volume: 185 start-page: 271 year: 2016 ident: ref_59 article-title: The global Landsat archive: Status, consolidation, and direction publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.11.032 – volume: 144 start-page: 212 year: 2008 ident: ref_84 article-title: Optimisation of pedotransfer functions using an artificial neural network ensemble method publication-title: Geoderma doi: 10.1016/j.geoderma.2007.11.016 – volume: 5 start-page: 79 year: 2019 ident: ref_33 article-title: Using deep learning for digital soil mapping publication-title: Soil doi: 10.5194/soil-5-79-2019 – volume: 54 start-page: 8558 year: 2018 ident: ref_87 article-title: A transdisciplinary review of deep learning research and its relevance for water resources scientists publication-title: Water Resour. Res. doi: 10.1029/2018WR022643 – ident: ref_113 – volume: 24 start-page: 49 year: 1996 ident: ref_35 article-title: Stacked regressions publication-title: Mach. Learn. doi: 10.1007/BF00117832 – volume: 174 start-page: 206 year: 2019 ident: ref_104 article-title: Assessment of spatial hybrid methods for predicting soil organic matter using DEM derivatives and soil parameters publication-title: Catena doi: 10.1016/j.catena.2018.11.010 – volume: 56 start-page: 627 year: 2004 ident: ref_100 article-title: Effective environmental factors in the distribution of vegetation types in Poshtkouh rangelands of Yazd Province (Iran) publication-title: J. Arid Environ. doi: 10.1016/S0140-1963(03)00077-6 – volume: 8 start-page: 277 year: 2017 ident: ref_51 article-title: Artificial bee colony feature selection algorithm combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter in South Dakota, USA publication-title: Carbon Manag. doi: 10.1080/17583004.2017.1330593 – volume: 188 start-page: 104424 year: 2020 ident: ref_9 article-title: Conventional and digital soil mapping in Iran: Past, present, and future publication-title: Catena doi: 10.1016/j.catena.2019.104424 – volume: 45 start-page: 1 year: 2007 ident: ref_57 article-title: The shuttle radar topography mission publication-title: Rev. Geophys. doi: 10.1029/2005RG000183 – volume: 186 start-page: 280 year: 2005 ident: ref_114 article-title: The evaluation strip: A new and robust method for plotting predicted responses from species distribution models publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2004.12.007 – ident: ref_58 – volume: 16 start-page: e00198 year: 2019 ident: ref_111 article-title: Using deep learning to predict soil properties from regional spectral data publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2018.e00198 – volume: 146 start-page: 102 year: 2008 ident: ref_15 article-title: Soil organic carbon concentrations and stocks on Barro Colorado Island—Digital soil mapping using Random Forests analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2008.05.008 – volume: 339 start-page: 40 year: 2019 ident: ref_67 article-title: Digital mapping of soil carbon fractions with machine learning publication-title: Geoderma doi: 10.1016/j.geoderma.2018.12.037 – ident: ref_69 – volume: 218 start-page: 89 year: 2018 ident: ref_48 article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.015 – volume: 5 start-page: 961 year: 1996 ident: ref_53 article-title: Total carbon, organic carbon, and organic matter publication-title: Methods Soil Anal. Part 3 Chem. Methods – volume: 169 start-page: 424 year: 2016 ident: ref_83 article-title: Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2015.09.021 – volume: 151 start-page: 118 year: 2017 ident: ref_99 article-title: Predictive performance of mobile vis-near infrared spectroscopy for key soil properties at different geographical scales by using spiking and data mining techniques publication-title: Catena doi: 10.1016/j.catena.2016.12.014 – volume: 28 start-page: 1 year: 2008 ident: ref_85 article-title: Building Predictive Models in R Using the caret Package publication-title: J. Stat. Softw. doi: 10.18637/jss.v028.i05 – volume: 630 start-page: 367 year: 2018 ident: ref_102 article-title: High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.02.204 – volume: 69 start-page: 39 year: 2018 ident: ref_2 article-title: Limited effect of organic matter on soil available water capacity publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12475 – volume: 52 start-page: 394 year: 2015 ident: ref_20 article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2014.12.028 – volume: 8 start-page: e1249 year: 2018 ident: ref_38 article-title: Ensemble learning: A survey publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1249 – volume: 667 start-page: 833 year: 2019 ident: ref_4 article-title: Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use and climate change publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.420 – ident: ref_72 – volume: 338 start-page: 445 year: 2019 ident: ref_21 article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.006 – ident: ref_110 doi: 10.1080/13658816.2019.1696968 – volume: 202 start-page: 18 year: 2017 ident: ref_61 article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – volume: 5 start-page: 107 year: 2019 ident: ref_34 article-title: Multi-source data integration for soil mapping using deep learning publication-title: Soil doi: 10.5194/soil-5-107-2019 – volume: 9 start-page: e1283 year: 2019 ident: ref_88 article-title: Big data analytics: Machine learning and Bayesian learning perspectives—What is done? What is not? publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1283 – volume: 8 start-page: 9959 year: 2018 ident: ref_75 article-title: Predicting reference soil groups using legacy data: A data pruning and Random Forest approach for tropical environment (Dano catchment, Burkina Faso) publication-title: Sci. Rep. doi: 10.1038/s41598-018-28244-w – volume: 86 start-page: 105837 year: 2020 ident: ref_39 article-title: Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105837 – ident: ref_12 doi: 10.1007/978-1-4020-8592-5_2 – volume: 28 start-page: 779 year: 1997 ident: ref_94 article-title: Support vector regression machines publication-title: Adv. Neural Inf. Process. Syst. – volume: 14 start-page: e0220881 year: 2019 ident: ref_17 article-title: Comparison of catchment scale 3D and 2.5 D modeling of soil organic carbon stocks in Jiangxi Province, PR China publication-title: PLoS ONE doi: 10.1371/journal.pone.0220881 – volume: 281 start-page: 1 year: 2016 ident: ref_6 article-title: Environmental factors controlling soil organic carbon storage in loess soils of a subhumid region, northern Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2016.06.017 – ident: ref_79 – volume: 154 start-page: 138 year: 2009 ident: ref_54 article-title: Mapping continuous depth functions of soil carbon storage and available water capacity publication-title: Geoderma doi: 10.1016/j.geoderma.2009.10.007 – volume: 330 start-page: 177 year: 2018 ident: ref_115 article-title: A mixed model for landscape soil organic carbon prediction across continuous profile depth in the mountainous subtropics publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.020 – volume: 18 start-page: 1527 year: 2006 ident: ref_86 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 179 start-page: 499 year: 2016 ident: ref_46 article-title: Incorporating limited field operability and legacy soil samples in a hypercube sampling design for digital soil mapping publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201500313 – volume: Volume 125 start-page: 93 year: 2014 ident: ref_55 article-title: GlobalSoilMap: Toward a fine-resolution global grid of soil properties publication-title: Advances in Agronomy doi: 10.1016/B978-0-12-800137-0.00003-0 – volume: 258 start-page: 129 year: 2018 ident: ref_18 article-title: Spatio-temporal land use dynamics and soil organic carbon in Swiss agroecosystems publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2018.02.012 – ident: ref_91 – volume: 81 start-page: 401 year: 2019 ident: ref_98 article-title: Selecting appropriate machine learning methods for digital soil mapping publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.12.016 – ident: ref_43 – volume: 340 start-page: 7 year: 2011 ident: ref_76 article-title: Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem publication-title: Plant Soil doi: 10.1007/s11104-010-0425-z – volume: 15 start-page: 1929 year: 2014 ident: ref_89 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref_50 doi: 10.1007/978-3-319-69048-3_7 |
SSID | ssj0000331904 |
Score | 2.5787218 |
Snippet | Understanding the spatial distribution of soil organic carbon (SOC) content over different climatic regions will enhance our knowledge of carbon gains and... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1095 |
SubjectTerms | Arid regions artificial intelligence Artificial neural networks Carbon Carbon content Climate change climatic zones Deep learning Digital mapping digital soil mapping Information processing Iran Learning algorithms Learning theory Machine learning machine learning models Model accuracy Neural networks Organic carbon Organic soils Precipitation prediction Predictions Remote sensing Sea level Soil depth Soil improvement Soil mapping soil organic carbon Soil profiles Soil properties soil surveys Soils Spatial analysis spatial block cross-validation Spatial distribution Stacking stacking of models Studies Teaching methods Topography |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxRBEG50c9CL-MTVREr04mFIz7v7JGZJCEJCiAnkNvRTF5aZZGaj5A_5O63q6Z0EDGFP21vbDFPd9erq72Pss0YvYmovE4OPmRSWDglVapO60jYrvc1kuB59dFwdnhffL8qLWHAbYlvlxiYGQ207QzXyXXQthBYlivLr5VVCrFF0uhopNB6zLTTBQszY1t7-8cnpVGXhOS4xXoy4pDnm97v9kGbkVolQ4o4nCoD9_9nj4GQOnrNnMTqEb6M6X7BHrn3JnkSi8l83r9jfqQgAGLkBEQrjAoKTns5b6B1D5-FHt1zBeMnSwEL1GocDClW7hmULZ3-68LVXA_U8w2K1DLitcOqoOXkAfQMYgxoqosNRaLZ0EHFYcYCocwZQrUX5wYyURzjfb0y6MW6lRzLuNTs_2D9bHCaRaiExRcXXic6dqZUthfSau5SiKOeVwOTM1Z5u32bKZhbdnU8N51qUTpYarYMyPq2UE_kbNmu71r1lUGVW4gf_kJvCVVxILkyGk6O0dtLO2ZfNa29MxCEnOoxVg_kIqai5VdGcfZpkL0f0jXul9kh7kwQhZoeBrv_ZxA3YUGRZemm5TV1R6Ux5Y_KU2uC1rYwzc7a90X0Tt_HQ3C66Ofs4_YwbkE5VVOu6a5SRmBTWVEN69_AU79nTjJJ1TuR522y27q_dDkY0a_0hLtt_RW36Nw priority: 102 providerName: ProQuest |
Title | Improving the Spatial Prediction of Soil Organic Carbon Content in Two Contrasting Climatic Regions by Stacking Machine Learning Models and Rescanning Covariate Space |
URI | https://www.proquest.com/docview/2385570845 https://www.proquest.com/docview/2986272027 https://doaj.org/article/85115f9d0d1e46b2afcc312307bd6cec |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZpcmgvoU1bumm6TGgvPZjI8lPHZJttCNkQ8oDcjJ5kYbGDvUnJH-rv7IzsbBda6KX4YCyPZSGNNTPW6PsY-6LRipjCy8hgM6PU0iKhim1U5NqKzFshw_bo2Xl-cpOe3ma3a1RflBPWwwP3HXdAHkHmpeU2dmmuhfLGJDGlL2ubG2do9kWbtxZMhTk4QdXiaY9HmmBcf9B2sSBzSkQSaxYoAPX_MQ8H4zJ9zbYHrxAO-9a8YRuu3mEvB4Lyu6e37Ocq-Af02ICIhFFx4KKldRbqW2g8XDXzBfSbKw1MVKuxOKBP1UuY13D9owmXreoo1xkmi3nAa4VLR0nJHegnQN_T0M9zmIUkSwcD_ioWEGVOB6q2KN-ZnuoI63vEYBv9VWqSce_YzfT4enISDRQLkUlzvox04kyhbFZKr7mLyXtyXpUYlLnC065boaywaOZ8bDjXZeZkpnFWUMbHuXJl8p5t1k3tPjDIhZV44AOJSV3OS8lLI7BylNZO2hH7-tztlRnwx4kGY1FhHEJDVP0eohH7vJK971E3_ip1RKO3kiCk7FCA-lMN-lP9S39GbO957Kvh8-0q9GMImqxM8R37q9v44dFqiqpd84AyEoPBgv4d7f6PdnxkrwSF8pyo9fbY5rJ9cJ_Q31nqMXtRTr-P2dbht9nZFZ6Pjs8vLsdB4X8BGyIGJA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigXxFMECiwCDhysrteP2AeEIBBS2lQIUqk3s0-IFNnFTqnyhzjyG5lZP4oE4lbllPVkZWVm57Uz8wE8U2hF9NjlgcbXDGJDl4QyNME4VUYkzojct0fPj9LZcfzhJDnZgl99LwyVVfY60StqU2nKke-haaFpUVmcvDr9HhBqFN2u9hAarVgc2M05hmzNy_23yN_nQkzfLSazoEMVCHSc8nWgIqvH0iRZ7hS3ITkM1skM4xA7dtRoKqQRBjW7CzXnKktsnig8CFK7MJU2i3DfK3A1jtCSU2f69P2Q0-ERCjSP2ymo-Jzv1U0oyIgTfMUfds_DA_yl_b1Jm96A650vyl63wnMTtmx5C3Y6WPRvm9vwc0g5MPQTGcEXo7iyjzXd7hBHWeXY52q5Ym1Lp2YTWStc9jOvyjVblmxxXvmvtWyowppNVks_JZZ9slQK3TC1YejxakrZs7kv7bSsm_qKCwTU0zBZGqRvdAuwhPv9wBAfvWR6JW3vwPGlsOAubJdVae8BS4XJ8YM_iHRsU57lPNMCN0dqZXMzghf9317obuo5gW-sCox-iEXFBYtG8HSgPW1nffyT6g1xb6Cg-dx-oaq_Ft1xL8iPTVxuuAltnCohndZRSEX3yqTa6hHs9rwvOqXRFBciPoInw2M87nSHI0tbnSFNjiHomDJW9_-_xWPYmS3mh8Xh_tHBA7gmKE3ACbZvF7bX9Zl9iL7UWj3yAszgy2WfmN-8DTZE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKdIKbAIOHCwsl6_DwjRtFFLaRSVVurN7JNGiuxip1T5Q_wIfh0zfqRIIG6VT16PV5ZnZuexs_MBvFFoRXTiMk_jZ3qhoU1C6RsviZURkTMia45HH03j_dPw01l0tgG_-rMwVFbZr4nNQm1KTTnyEZoW6haVhtHIdWURs93Jh4vvHiFI0U5rD6fRisihXV1h-Fa_P9hFXr8VYrJ3Mt73OoQBT4cxX3oqsDqRJkozp7j1yXmwTqYYk9jE0aFTIY0wuMo7X3Ou0shmkUKlkNr5sbRpgPPegs2EoqIBbO7sTWfH6wwPD1C8edj2RA2CjI-q2hdk0gnM4g8r2IAF_GULGgM3uQ_3Os-UfWxF6QFs2OIh3OlA0s9Xj-DnOgHB0GtkBGaMwstmFe31EH9Z6diXcr5g7QFPzcayUjjcdMAqlmxesJOrsrmtZE311my8mDc9Y9mxpcLomqkVQ_9XUwKfHTWFnpZ1PWBxgGB7aiYLg_S1buGWcL4fGPCjz0yfpO1jOL0RJjyBQVEW9imwWJgML3wh0KGNeZrxVAucHKmVzcwQ3vW_PdddD3SC4ljkGAsRi_JrFg3h9Zr2ou388U-qHeLemoK6dTcDZfUt75Q_J682cpnhxrdhrIR0Wgc-leArE2urh7Dd8z7vlpA6vxb4IbxaP0blpx0dWdjyEmkyDEgTyl9t_X-Kl3AbtSX_fDA9fAZ3BeUMOGH4bcNgWV3a5-hYLdWLToIZfL1ppfkNAmU71g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+Spatial+Prediction+of+Soil+Organic+Carbon+Content+in+Two+Contrasting+Climatic+Regions+by+Stacking+Machine+Learning+Models+and+Rescanning+Covariate+Space&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Taghizadeh-Mehrjardi%2C+Ruhollah&rft.au=Schmidt%2C+Karsten&rft.au=Amirian-Chakan%2C+Alireza&rft.au=Rentschler%2C+Tobias&rft.date=2020-03-29&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=7&rft_id=info:doi/10.3390%2Frs12071095&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |