Stability and feasibility of state constrained MPC without stabilizing terminal constraints

In this paper we investigate stability and recursive feasibility of a nonlinear receding horizon control scheme without terminal constraints and costs but imposing state and control constraints. Under a local controllability assumption we show that every level set of the infinite horizon optimal val...

Full description

Saved in:
Bibliographic Details
Published inSystems & control letters Vol. 72; pp. 14 - 21
Main Authors Boccia, Andrea, Grüne, Lars, Worthmann, Karl
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0167-6911
1872-7956
DOI10.1016/j.sysconle.2014.08.002

Cover

Abstract In this paper we investigate stability and recursive feasibility of a nonlinear receding horizon control scheme without terminal constraints and costs but imposing state and control constraints. Under a local controllability assumption we show that every level set of the infinite horizon optimal value function is contained in the basin of attraction of the asymptotically stable equilibrium for sufficiently large optimization horizon N. For stabilizable linear systems we show the same for any compact subset of the interior of the viability kernel. Moreover, estimates for the necessary horizon length N are given via an analysis of the optimal value function at the boundary of the viability kernel.
AbstractList In this paper we investigate stability and recursive feasibility of a nonlinear receding horizon control scheme without terminal constraints and costs but imposing state and control constraints. Under a local controllability assumption we show that every level set of the infinite horizon optimal value function is contained in the basin of attraction of the asymptotically stable equilibrium for sufficiently large optimization horizon N. For stabilizable linear systems we show the same for any compact subset of the interior of the viability kernel. Moreover, estimates for the necessary horizon length N are given via an analysis of the optimal value function at the boundary of the viability kernel.
In this paper we investigate stability and recursive feasibility of a nonlinear receding horizon control scheme without terminal constraints and costs but imposing state and control constraints. Under a local controllability assumption we show that every level set of the infinite horizon optimal value function is contained in the basin of attraction of the asymptotically stable equilibrium for sufficiently large optimization horizon N. For stabilizable linear systems we show the same for any compact subset of the interior of the viability kernel. Moreover, estimates for the necessary horizon length N are given via an analysis of the optimal value function at the boundary of the viability kernel.
Author Grüne, Lars
Boccia, Andrea
Worthmann, Karl
Author_xml – sequence: 1
  givenname: Andrea
  orcidid: 0000-0002-8628-0159
  surname: Boccia
  fullname: Boccia, Andrea
  email: a.boccia@imperial.ac.uk
  organization: Control and Power Group, Electrical and Electronic Engineering, Imperial College London, United Kingdom
– sequence: 2
  givenname: Lars
  surname: Grüne
  fullname: Grüne, Lars
  email: lars.gruene@uni-bayreuth.de
  organization: Mathematical Institute, University of Bayreuth, 95440 Bayreuth, Germany
– sequence: 3
  givenname: Karl
  orcidid: 0000-0002-1450-2373
  surname: Worthmann
  fullname: Worthmann, Karl
  email: karl.worthmann@tu-ilmenau.de, karl.worthmann@googlemail.com
  organization: Institut für Mathematik, Technische Universität Ilmenau, 98693 Ilmenau, Germany
BackLink https://inria.hal.science/hal-00942897$$DView record in HAL
BookMark eNqFkMFLwzAUxoMouE3_BenVQ-tL26UteHAMdcJEQT15CGny4jK6RJo4mX-9LdsQvOz0eC-_73t535AcW2eRkAsKCQXKrpaJ33jpbINJCjRPoEwA0iMyoGWRxkU1Zsdk0IFFzCpKT8nQ-yV0BGTZgLy_BFGbxoRNJKyKNApvdr3TkQ8iYNR5-9AKY1FFj8_T6NuEhfsK_WuP_hj7EQVsV8aK5g8O_oycaNF4PN_VEXm7u32dzuL50_3DdDKPZc4gxDUgKpWzmpZsDGOWAqN5qmul6ixjdQG0EqXQWS41rStUWqHWVGRFKVnBELMRudz6LkTDP1uzEu2GO2H4bDLn_QygytOyKta0Y6-3rGyd9y1qLk13pHG2_3TDKfA-VL7k-1B5HyqHsnNJOzn7J9_vOyi82QqxC2JtsOVeGrQSlWlRBq6cOWTxC2sqmsM
CitedBy_id crossref_primary_10_1016_j_jfranklin_2024_106713
crossref_primary_10_1016_j_isatra_2024_07_036
crossref_primary_10_1016_j_automatica_2017_10_002
crossref_primary_10_1002_oca_2481
crossref_primary_10_1016_j_conengprac_2024_106128
crossref_primary_10_1016_j_arcontrol_2023_100914
crossref_primary_10_1002_asjc_3170
crossref_primary_10_1109_ACCESS_2023_3306070
crossref_primary_10_1109_TRO_2022_3152705
crossref_primary_10_1016_j_isatra_2020_06_027
crossref_primary_10_1109_TVT_2022_3221551
crossref_primary_10_1155_2021_6611992
crossref_primary_10_1016_j_ejcon_2022_100688
crossref_primary_10_1109_TIE_2023_3245185
crossref_primary_10_1109_TNNLS_2023_3273590
crossref_primary_10_1109_TCST_2022_3188399
crossref_primary_10_1002_rnc_6952
crossref_primary_10_1016_j_sysconle_2014_08_002
crossref_primary_10_1016_j_eng_2023_10_007
crossref_primary_10_1016_j_ifacol_2017_08_907
crossref_primary_10_1016_j_automatica_2023_111381
crossref_primary_10_1016_j_automatica_2022_110364
crossref_primary_10_1016_j_automatica_2016_09_045
crossref_primary_10_1016_j_automatica_2023_110942
crossref_primary_10_1016_j_ifacol_2024_09_035
crossref_primary_10_1080_00207179_2018_1489147
crossref_primary_10_1109_TSMC_2023_3320808
crossref_primary_10_1109_TCSI_2024_3415013
crossref_primary_10_1016_j_ifacol_2016_10_141
crossref_primary_10_1016_j_ast_2018_02_020
crossref_primary_10_1109_TAC_2021_3081080
crossref_primary_10_1137_19M1265995
crossref_primary_10_1109_TAC_2022_3200948
crossref_primary_10_1080_00051144_2021_1991148
crossref_primary_10_1007_s10013_019_00375_1
crossref_primary_10_1016_j_automatica_2020_108803
crossref_primary_10_1016_j_ifacol_2021_08_252
crossref_primary_10_1109_TNSE_2023_3252724
crossref_primary_10_1109_LCSYS_2020_3001514
crossref_primary_10_1137_21M1431655
crossref_primary_10_1016_j_ifacol_2020_12_1186
crossref_primary_10_1002_rnc_7117
crossref_primary_10_1016_j_ifacol_2021_08_538
crossref_primary_10_1016_j_robot_2021_103774
crossref_primary_10_1016_j_ifacol_2021_08_535
crossref_primary_10_1109_TAC_2018_2800789
crossref_primary_10_1109_TAC_2023_3235244
crossref_primary_10_1016_j_automatica_2017_04_058
crossref_primary_10_1016_j_ifacol_2021_08_539
crossref_primary_10_1109_TAC_2022_3173494
crossref_primary_10_1016_j_compchemeng_2022_107827
crossref_primary_10_1109_LCSYS_2020_2983384
crossref_primary_10_1080_23307706_2025_2456521
crossref_primary_10_1109_TCYB_2021_3081731
crossref_primary_10_1016_j_ifacol_2022_07_619
crossref_primary_10_1109_TAC_2024_3365569
crossref_primary_10_1109_TAC_2024_3431169
crossref_primary_10_1109_TAC_2024_3398494
crossref_primary_10_1109_LCSYS_2022_3178478
crossref_primary_10_1016_j_ifacol_2021_08_540
crossref_primary_10_1016_j_ifacol_2023_10_1320
crossref_primary_10_1016_j_ifacol_2020_12_407
crossref_primary_10_1016_j_automatica_2017_03_028
crossref_primary_10_1016_j_arcontrol_2023_100929
crossref_primary_10_1007_s12159_016_0141_z
crossref_primary_10_1016_j_robot_2020_103468
crossref_primary_10_1365_s13291_016_0134_5
crossref_primary_10_1016_j_ifacol_2023_02_029
crossref_primary_10_1002_oca_2691
crossref_primary_10_1007_s10846_024_02167_3
crossref_primary_10_1016_j_automatica_2021_109898
crossref_primary_10_1109_TAC_2023_3283731
crossref_primary_10_9746_jcmsi_10_39
crossref_primary_10_1007_s00332_022_09862_1
crossref_primary_10_1007_s11071_024_10465_6
crossref_primary_10_1016_j_automatica_2024_111759
crossref_primary_10_1016_j_automatica_2023_111417
crossref_primary_10_1016_j_conengprac_2022_105406
crossref_primary_10_1016_j_ifacol_2020_12_1682
crossref_primary_10_1007_s11071_024_10342_2
crossref_primary_10_1016_j_ejcon_2020_06_003
crossref_primary_10_1016_j_chaos_2024_114551
crossref_primary_10_1016_j_ifacol_2018_11_002
crossref_primary_10_1016_j_automatica_2017_04_038
crossref_primary_10_1016_j_actaastro_2016_11_033
crossref_primary_10_1137_17M112350X
crossref_primary_10_1137_23M1551195
crossref_primary_10_1016_j_automatica_2023_111050
Cites_doi 10.3182/20120823-5-NL-3013.00030
10.1080/00207179.2013.813647
10.1016/S0005-1098(00)00004-2
10.1109/TAC.2005.847055
10.1137/090758696
10.1137/0330020
10.1109/CCA.2006.285898
10.1137/070707853
10.1109/TAC.2005.846597
10.1016/j.automatica.2009.09.020
10.1109/ACC.2006.1655466
10.1016/j.sysconle.2014.08.002
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.sysconle.2014.08.002
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1872-7956
EndPage 21
ExternalDocumentID oai_HAL_hal_00942897v1
10_1016_j_sysconle_2014_08_002
S0167691114001595
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
TN5
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
VOOES
ID FETCH-LOGICAL-c460t-b0eedd46b1865056206142fbddb336b7019a8af34cf1b9edfdeff1a378c676ee3
IEDL.DBID AIKHN
ISSN 0167-6911
IngestDate Fri May 09 12:29:25 EDT 2025
Tue Jul 01 03:29:06 EDT 2025
Thu Apr 24 23:09:57 EDT 2025
Fri Feb 23 02:32:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Linear systems
Stability
Optimal control
State constraints
Feasibility
Optimal value functions
Nonlinear control
Predictive control
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-b0eedd46b1865056206142fbddb336b7019a8af34cf1b9edfdeff1a378c676ee3
ORCID 0000-0002-1450-2373
0000-0002-8628-0159
OpenAccessLink https://inria.hal.science/hal-00942897
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_00942897v1
crossref_citationtrail_10_1016_j_sysconle_2014_08_002
crossref_primary_10_1016_j_sysconle_2014_08_002
elsevier_sciencedirect_doi_10_1016_j_sysconle_2014_08_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Systems & control letters
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Kerrigan (br000050) 2000
Worthmann (br000035) 2011
Grüne (br000020) 2009; 48
Quincampoix (br000085) 1992; 30
Jadbabaie, Hauser (br000005) 2005; 50
S.E. Tuna, M.J. Messina, A.R. Teel, Shorter horizons for model predictive control, in: Proceedings of the American Control Conference, Minneapolis, Minnesota, USA, 2006, pp. 863–868.
Primbs, Nevistić (br000040) 2000; 36
Grüne, Pannek, Seehafer, Worthmann (br000025) 2010; 48
Aubin, Frankowska (br000075) 1990; vol. 2
Hinrichsen, Pritchard (br000080) 2005; vol. 48
Gondhalekar, Imura, Kashima (br000045) 2009; 45
Brezis (br000095) 2011
Grimm, Messina, Tuna, Teel (br000010) 2005; 50
L. Grüne, NMPC without terminal constraints, in: Proceedings of the IFAC Conference on Nonlinear Model Predictive Control 2012, NMPC’12, 2012, pp. 1–13.
T. Raff, S. Huber, Z.K. Nagy, F. Allgöwer, Nonlinear model predictive control of a four tank system: an experimental stability study, in: Proceedings of the IEEE Conference on Control Applications, Munich, Germany, 2006, pp. 237–242.
A. Boccia, L. Grüne, K. Worthmann, Stability and feasibility of state-constrained linear MPC without stabilizing terminal constraints, in: Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, MTNS2014, 2014, pp. 453–460.
Grüne, Pannek (br000030) 2011
Mayne (br000060) 2013; 86
Blanchini, Miani (br000065) 2008
Aubin (10.1016/j.sysconle.2014.08.002_br000075) 1990; vol. 2
Hinrichsen (10.1016/j.sysconle.2014.08.002_br000080) 2005; vol. 48
Jadbabaie (10.1016/j.sysconle.2014.08.002_br000005) 2005; 50
Grüne (10.1016/j.sysconle.2014.08.002_br000020) 2009; 48
10.1016/j.sysconle.2014.08.002_br000070
Worthmann (10.1016/j.sysconle.2014.08.002_br000035) 2011
10.1016/j.sysconle.2014.08.002_br000090
Blanchini (10.1016/j.sysconle.2014.08.002_br000065) 2008
Gondhalekar (10.1016/j.sysconle.2014.08.002_br000045) 2009; 45
Primbs (10.1016/j.sysconle.2014.08.002_br000040) 2000; 36
Grimm (10.1016/j.sysconle.2014.08.002_br000010) 2005; 50
10.1016/j.sysconle.2014.08.002_br000015
Grüne (10.1016/j.sysconle.2014.08.002_br000030) 2011
Brezis (10.1016/j.sysconle.2014.08.002_br000095) 2011
Mayne (10.1016/j.sysconle.2014.08.002_br000060) 2013; 86
Quincampoix (10.1016/j.sysconle.2014.08.002_br000085) 1992; 30
Grüne (10.1016/j.sysconle.2014.08.002_br000025) 2010; 48
Kerrigan (10.1016/j.sysconle.2014.08.002_br000050) 2000
10.1016/j.sysconle.2014.08.002_br000055
References_xml – volume: 50
  start-page: 674
  year: 2005
  end-page: 678
  ident: br000005
  article-title: On the stability of receding horizon control with a general terminal cost
  publication-title: IEEE Trans. Automat. Control
– reference: L. Grüne, NMPC without terminal constraints, in: Proceedings of the IFAC Conference on Nonlinear Model Predictive Control 2012, NMPC’12, 2012, pp. 1–13.
– volume: vol. 48
  year: 2005
  ident: br000080
  publication-title: Mathematical Systems Theory I
– volume: 45
  start-page: 2869
  year: 2009
  end-page: 2875
  ident: br000045
  article-title: Controlled invariant feasibility—a general approach to enforcing strong feasibility in MPC applied to move-blocking
  publication-title: Automatica
– year: 2011
  ident: br000035
  article-title: Stability analysis of unconstrained receding horizon control
– year: 2008
  ident: br000065
  article-title: Set-Theoretic Methods in Control
– reference: A. Boccia, L. Grüne, K. Worthmann, Stability and feasibility of state-constrained linear MPC without stabilizing terminal constraints, in: Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, MTNS2014, 2014, pp. 453–460.
– volume: 50
  start-page: 546
  year: 2005
  end-page: 558
  ident: br000010
  article-title: Model predictive control: for want of a local control Lyapunov function, all is not lost
  publication-title: IEEE Trans. Automat. Control
– volume: 48
  start-page: 4938
  year: 2010
  end-page: 4962
  ident: br000025
  article-title: Analysis of unconstrained nonlinear MPC schemes with varying control horizon
  publication-title: SIAM J. Control Optim.
– year: 2000
  ident: br000050
  article-title: Robust constraint satisfaction: invariant sets and predictive control
– volume: vol. 2
  year: 1990
  ident: br000075
  publication-title: Set-Valued Analysis
– reference: T. Raff, S. Huber, Z.K. Nagy, F. Allgöwer, Nonlinear model predictive control of a four tank system: an experimental stability study, in: Proceedings of the IEEE Conference on Control Applications, Munich, Germany, 2006, pp. 237–242.
– year: 2011
  ident: br000095
  publication-title: Functional Analysis, Sobolev Spaces and Partial Differential Equations
– reference: S.E. Tuna, M.J. Messina, A.R. Teel, Shorter horizons for model predictive control, in: Proceedings of the American Control Conference, Minneapolis, Minnesota, USA, 2006, pp. 863–868.
– volume: 36
  start-page: 965
  year: 2000
  end-page: 971
  ident: br000040
  article-title: Feasibility and stability of constrained finite receding horizon control
  publication-title: Automatica
– volume: 48
  start-page: 1206
  year: 2009
  end-page: 1228
  ident: br000020
  article-title: Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems
  publication-title: SIAM J. Control Optim.
– year: 2011
  ident: br000030
  publication-title: Nonlinear Model Predictive Control: Theory and Algorithms
– volume: 86
  start-page: 2090
  year: 2013
  end-page: 2095
  ident: br000060
  article-title: An apologia for stabilising terminal conditions in model predictive control
  publication-title: Internat. J. Control
– volume: 30
  start-page: 324
  year: 1992
  end-page: 335
  ident: br000085
  article-title: Differential inclusions and target problems
  publication-title: SIAM J. Control Optim.
– year: 2011
  ident: 10.1016/j.sysconle.2014.08.002_br000030
– ident: 10.1016/j.sysconle.2014.08.002_br000070
  doi: 10.3182/20120823-5-NL-3013.00030
– volume: vol. 2
  year: 1990
  ident: 10.1016/j.sysconle.2014.08.002_br000075
– year: 2011
  ident: 10.1016/j.sysconle.2014.08.002_br000035
– volume: 86
  start-page: 2090
  year: 2013
  ident: 10.1016/j.sysconle.2014.08.002_br000060
  article-title: An apologia for stabilising terminal conditions in model predictive control
  publication-title: Internat. J. Control
  doi: 10.1080/00207179.2013.813647
– year: 2008
  ident: 10.1016/j.sysconle.2014.08.002_br000065
– volume: 36
  start-page: 965
  year: 2000
  ident: 10.1016/j.sysconle.2014.08.002_br000040
  article-title: Feasibility and stability of constrained finite receding horizon control
  publication-title: Automatica
  doi: 10.1016/S0005-1098(00)00004-2
– volume: 50
  start-page: 546
  year: 2005
  ident: 10.1016/j.sysconle.2014.08.002_br000010
  article-title: Model predictive control: for want of a local control Lyapunov function, all is not lost
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2005.847055
– year: 2000
  ident: 10.1016/j.sysconle.2014.08.002_br000050
– volume: 48
  start-page: 4938
  issue: 8
  year: 2010
  ident: 10.1016/j.sysconle.2014.08.002_br000025
  article-title: Analysis of unconstrained nonlinear MPC schemes with varying control horizon
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/090758696
– volume: 30
  start-page: 324
  issue: 2
  year: 1992
  ident: 10.1016/j.sysconle.2014.08.002_br000085
  article-title: Differential inclusions and target problems
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0330020
– ident: 10.1016/j.sysconle.2014.08.002_br000055
  doi: 10.1109/CCA.2006.285898
– volume: vol. 48
  year: 2005
  ident: 10.1016/j.sysconle.2014.08.002_br000080
– volume: 48
  start-page: 1206
  year: 2009
  ident: 10.1016/j.sysconle.2014.08.002_br000020
  article-title: Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/070707853
– volume: 50
  start-page: 674
  year: 2005
  ident: 10.1016/j.sysconle.2014.08.002_br000005
  article-title: On the stability of receding horizon control with a general terminal cost
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2005.846597
– volume: 45
  start-page: 2869
  year: 2009
  ident: 10.1016/j.sysconle.2014.08.002_br000045
  article-title: Controlled invariant feasibility—a general approach to enforcing strong feasibility in MPC applied to move-blocking
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.09.020
– year: 2011
  ident: 10.1016/j.sysconle.2014.08.002_br000095
– ident: 10.1016/j.sysconle.2014.08.002_br000015
  doi: 10.1109/ACC.2006.1655466
– ident: 10.1016/j.sysconle.2014.08.002_br000090
  doi: 10.1016/j.sysconle.2014.08.002
SSID ssj0002033
Score 2.4641285
Snippet In this paper we investigate stability and recursive feasibility of a nonlinear receding horizon control scheme without terminal constraints and costs but...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 14
SubjectTerms Feasibility
Linear systems
Mathematics
Nonlinear control
Optimal control
Optimal value functions
Optimization and Control
Predictive control
Stability
State constraints
Title Stability and feasibility of state constrained MPC without stabilizing terminal constraints
URI https://dx.doi.org/10.1016/j.sysconle.2014.08.002
https://inria.hal.science/hal-00942897
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED71scCAeIrykoVY08Z5OMlYVaBCaYV4iEoMURzbolXVIhqQysBvx5c4pQyIgSmK44uts30P67s7gLNQSUpF4Fsy4NzyQkatEAE2PouE1r-RNkrwHrI_YN0H72roDyvQKWNhEFZpZH8h03NpbVpahputl9GodYcAeoZn1UPFH_lVqDtuxPwa1NuXve5gKZAdu6gojym-kWAlUHjcnC_m2vGcYMZM6jULZOVvOqr6XN625trnYhM2jNlI2sXMtqAip9uwvpJMcAeetN2YI10XJJkKomRikK8LMlMkDxwiKVqDWBRCCtK_6RC8hZ29ZfgVu37oHxEDj5l8d87mu_BwcX7f6VqmdIKVeszOLG5r3Sc8xmnIchsHHT9HcSG46zKOOdiTMFGulyrKIymUkErRxA3CVDNVSncPatPZVO4DSd0Ag2UT21ahJ4TDncSxfV8IfZoT7d82wC-ZFacmrzhObhKXALJxXDI5RibHWPfSdhrQWtK9FJk1_qSIyrWIf-yRWIv_P2lP9eItB8Kk2t32dYxtCK7UbmfwTg_-McAhrOFbgfM7glr2-iaPtb2S8ROoNj_pidmV-OzdPva-AMwn7VU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JTwIxFG4AD-rBuEZcG-N1mK2zHQmRjArEREhIPDTTaRshZCAymODB327fLIAHw8Frl-nktX1L873vIXTvS2Ga3HM04TGmEd81NR8ANo4bcGV_A-WUwDtkt-eGA_I0dIYV1CpzYQBWWej-XKdn2rpo0Qtp6rPRSH8FAL0Ld5WA4Q-cKtohju0Brq_xvcZ5WEZeTx4IvmH4RprwuDFfzlXYOQG-TJM0clzlXxaq-l6-tWa2p32IDgqnETfz_zpCFZEco_0NKsET9Ka8xgznusRRwrEUUYF7XeKpxFnaEI7BF4SSEILj7ksLwxvsdJFCLwz9Uh_CBThmsh6czk_RoP3Qb4VaUThBi4lrpBozlOXjxGWm72YeDoR9lmScM9t2GTCwR34kbRJLkwWCSy6kNCPb82MlUiHsM1RLpok4Rzi2PUiVjQxD-oRzi1mRZTgO5-ouRyq6rSOnFBaNC1Zx-LkJLeFjY1oKmYKQKVS9NKw60lfzZjmvxtYZQbkX9NcJoUr5b517pzZvtRBQaofNDoU2gFaqoNP7NC_-scAt2g373Q7tPPaeL9Ee9OSIvytUSz8W4lp5Lim7yU7mD2q57H0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+feasibility+of+state+constrained+MPC+without+stabilizing+terminal+constraints&rft.jtitle=Systems+%26+control+letters&rft.au=Boccia%2C+Andrea&rft.au=Gr%C3%BCne%2C+Lars&rft.au=Worthmann%2C+Karl&rft.date=2014-10-01&rft.issn=0167-6911&rft.volume=72&rft.spage=14&rft.epage=21&rft_id=info:doi/10.1016%2Fj.sysconle.2014.08.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sysconle_2014_08_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6911&client=summon