Comparing environmental impacts of beef production systems: A review of life cycle assessments
Livestock production, and especially beef production, has a major impact on the environment. Environmental impacts, however, vary largely among beef systems. Understanding these differences is crucial to mitigate impacts of future global beef production. The objective of this research, therefore, wa...
Saved in:
Published in | Livestock science Vol. 178; pp. 279 - 288 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1871-1413 1878-0490 |
DOI | 10.1016/j.livsci.2015.06.020 |
Cover
Loading…
Abstract | Livestock production, and especially beef production, has a major impact on the environment. Environmental impacts, however, vary largely among beef systems. Understanding these differences is crucial to mitigate impacts of future global beef production. The objective of this research, therefore, was to compare cradle-to-farm-gate environmental impacts of beef produced in contrasting systems. We reviewed 14 studies that compared contrasting systems using life cycle assessment (LCA). Systems studied were classified by three main characteristics of beef production: origin of calves (bred by a dairy cow or a suckler cow), type of production (organic or non-organic) and type of diet fed to fattening calves (<50% (roughage-based) or ≥50% (concentrate-based) concentrates). This review yielded lower global warming potential (GWP; on average 41% lower), acidification potential (41% lower), eutrophication potential (49% lower), energy use (23% lower) and land use (49% lower) per unit of beef for dairy-based compared with suckler-based systems. In suckler-based systems, maintaining the mother cow is the dominant contributor to all impacts, which is attributable to the low reproductive rate of cattle and the fact that all emissions are allocated to the production of beef. GWP was slightly lower (on average 7%) for organic compared with non-organic systems, whereas organic systems showed higher eutrophication potential, acidification potential and land use (36%, 56%, and 22% higher), and lower energy use (30% lower) per unit of beef produced. Except for GWP, however, these results should be interpreted with care because impacts were compared in few studies. Lower GWP (on average 28% lower), energy use (13% lower) and land use (41% lower) per unit of beef were found for concentrate-based compared with roughage-based systems, whereas no clear pattern was found for acidification and eutrophication potential. An LCA comparison of beef systems that differ in type of diet, however, is limited because current LCA methodology does not account for the competition for land between humans and animals. To enhance future food supply, grassland less suitable for crop production, therefore, might be preferred over high productive cropland for direct production of animal feed. Furthermore, studies included in our review did not include all relevant impact categories, such as loss of biodiversity or water use. We concluded that beef production from dual-purpose cows or dairy cows inseminated with beef breeds show largest potential to mitigate environmental impacts of beef. Marginal grasslands unsuitable for dairy farming may be used for production of suckler-based beef to contribute to availability and access to animal-source food.
•Environmental impacts were lower for dairy-based than for suckler-based beef.•Global warming potential (GWP) was similar for organic and non-organic beef.•GWP, energy use and land use were lower for concentrate- than roughage-based beef.•Dairy-based beef showed largest potential to mitigate environmental impacts of beef.•Comparison of beef systems did not include all relevant impact categories. |
---|---|
AbstractList | Livestock production, and especially beef production, has a major impact on the environment. Environmental impacts, however, vary largely among beef systems. Understanding these differences is crucial to mitigate impacts of future global beef production. The objective of this research, therefore, was to compare cradle-to-farm-gate environmental impacts of beef produced in contrasting systems. We reviewed 14 studies that compared contrasting systems using life cycle assessment (LCA). Systems studied were classified by three main characteristics of beef production: origin of calves (bred by a dairy cow or a suckler cow), type of production (organic or non-organic) and type of diet fed to fattening calves (<50% (roughage-based) or ≥50% (concentrate-based) concentrates). This review yielded lower global warming potential (GWP; on average 41% lower), acidification potential (41% lower), eutrophication potential (49% lower), energy use (23% lower) and land use (49% lower) per unit of beef for dairy-based compared with suckler-based systems. In suckler-based systems, maintaining the mother cow is the dominant contributor to all impacts, which is attributable to the low reproductive rate of cattle and the fact that all emissions are allocated to the production of beef. GWP was slightly lower (on average 7%) for organic compared with non-organic systems, whereas organic systems showed higher eutrophication potential, acidification potential and land use (36%, 56%, and 22% higher), and lower energy use (30% lower) per unit of beef produced. Except for GWP, however, these results should be interpreted with care because impacts were compared in few studies. Lower GWP (on average 28% lower), energy use (13% lower) and land use (41% lower) per unit of beef were found for concentrate-based compared with roughage-based systems, whereas no clear pattern was found for acidification and eutrophication potential. An LCA comparison of beef systems that differ in type of diet, however, is limited because current LCA methodology does not account for the competition for land between humans and animals. To enhance future food supply, grassland less suitable for crop production, therefore, might be preferred over high productive cropland for direct production of animal feed. Furthermore, studies included in our review did not include all relevant impact categories, such as loss of biodiversity or water use. We concluded that beef production from dual-purpose cows or dairy cows inseminated with beef breeds show largest potential to mitigate environmental impacts of beef. Marginal grasslands unsuitable for dairy farming may be used for production of suckler-based beef to contribute to availability and access to animal-source food. Livestock production, and especially beef production, has a major impact on the environment. Environmental impacts, however, vary largely among beef systems. Understanding these differences is crucial to mitigate impacts of future global beef production. The objective of this research, therefore, was to compare cradle-to-farm-gate environmental impacts of beef produced in contrasting systems. We reviewed 14 studies that compared contrasting systems using life cycle assessment (LCA). Systems studied were classified by three main characteristics of beef production: origin of calves (bred by a dairy cow or a suckler cow), type of production (organic or non-organic) and type of diet fed to fattening calves ( Livestock production, and especially beef production, has a major impact on the environment. Environmental impacts, however, vary largely among beef systems. Understanding these differences is crucial to mitigate impacts of future global beef production. The objective of this research, therefore, was to compare cradle-to-farm-gate environmental impacts of beef produced in contrasting systems. We reviewed 14 studies that compared contrasting systems using life cycle assessment (LCA). Systems studied were classified by three main characteristics of beef production: origin of calves (bred by a dairy cow or a suckler cow), type of production (organic or non-organic) and type of diet fed to fattening calves (<50% (roughage-based) or ≥50% (concentrate-based) concentrates). This review yielded lower global warming potential (GWP; on average 41% lower), acidification potential (41% lower), eutrophication potential (49% lower), energy use (23% lower) and land use (49% lower) per unit of beef for dairy-based compared with suckler-based systems. In suckler-based systems, maintaining the mother cow is the dominant contributor to all impacts, which is attributable to the low reproductive rate of cattle and the fact that all emissions are allocated to the production of beef. GWP was slightly lower (on average 7%) for organic compared with non-organic systems, whereas organic systems showed higher eutrophication potential, acidification potential and land use (36%, 56%, and 22% higher), and lower energy use (30% lower) per unit of beef produced. Except for GWP, however, these results should be interpreted with care because impacts were compared in few studies. Lower GWP (on average 28% lower), energy use (13% lower) and land use (41% lower) per unit of beef were found for concentrate-based compared with roughage-based systems, whereas no clear pattern was found for acidification and eutrophication potential. An LCA comparison of beef systems that differ in type of diet, however, is limited because current LCA methodology does not account for the competition for land between humans and animals. To enhance future food supply, grassland less suitable for crop production, therefore, might be preferred over high productive cropland for direct production of animal feed. Furthermore, studies included in our review did not include all relevant impact categories, such as loss of biodiversity or water use. We concluded that beef production from dual-purpose cows or dairy cows inseminated with beef breeds show largest potential to mitigate environmental impacts of beef. Marginal grasslands unsuitable for dairy farming may be used for production of suckler-based beef to contribute to availability and access to animal-source food. •Environmental impacts were lower for dairy-based than for suckler-based beef.•Global warming potential (GWP) was similar for organic and non-organic beef.•GWP, energy use and land use were lower for concentrate- than roughage-based beef.•Dairy-based beef showed largest potential to mitigate environmental impacts of beef.•Comparison of beef systems did not include all relevant impact categories. |
Author | de Vries, M. de Boer, I.J.M. van Middelaar, C.E. |
Author_xml | – sequence: 1 givenname: M. surname: de Vries fullname: de Vries, M. email: marion.devries@wur.nl – sequence: 2 givenname: C.E. surname: van Middelaar fullname: van Middelaar, C.E. email: corina.vanmiddelaar@wur.nl – sequence: 3 givenname: I.J.M. surname: de Boer fullname: de Boer, I.J.M. email: imke.deboer@wur.nl |
BookMark | eNqFkc1q3DAUhUVJoUnaN-hCy27sSrYs21kUwtCfQKCbdlshy1dBgyxNdeUZ5u0jdwqFLtrVEeJ-R7rn3JCrEAMQ8pazmjMu3-9r745oXN0w3tVM1qxhL8g1H_qhYmJkV7_OvOKCt6_IDeKesU6IQVyTH7u4HHRy4YlCOLoUwwIha09duTYZabR0ArD0kOK8muxioHjGDAve0Xua4OjgtA15Z4Gas_FANSIgbj74mry02iO8-a235Punj992X6rHr58fdvePlRGS5UrbqZ2tlKA7aHo7DsZqW6Sb7Gw7K4yErtdMW7B924uhbfXUM25HLpputKy9JXcX35N-glC2gaCCTsahitop76ak01md1qSC3-SwTqjEyLuBF_jdBS47_lwBs1ocGvBeB4grKj4I2TZNw-Wfd0yKiAmsMi7rLZWctPOKM7U1ovbq0ojaGlFMqtJIgcVf8CG5ZfvXf7APFwxKgCXupMoEBAOzS2CymqP7t8EzoMOuPQ |
CitedBy_id | crossref_primary_10_3390_su12020558 crossref_primary_10_1016_j_animal_2025_101488 crossref_primary_10_1093_tas_txab144 crossref_primary_10_1002_ieam_4701 crossref_primary_10_1007_s13593_023_00938_0 crossref_primary_10_1016_j_cvfa_2021_11_006 crossref_primary_10_1007_s11625_021_01087_7 crossref_primary_10_3168_jds_2021_21499 crossref_primary_10_1093_ajcn_nqaa313 crossref_primary_10_1186_s13570_021_00217_1 crossref_primary_10_1111_brv_12726 crossref_primary_10_1007_s11356_021_18372_8 crossref_primary_10_3168_jds_2020_19519 crossref_primary_10_1007_s11367_024_02411_w crossref_primary_10_1016_j_livsci_2023_105393 crossref_primary_10_1186_s12711_023_00792_4 crossref_primary_10_1016_j_livsci_2018_01_008 crossref_primary_10_1016_j_livsci_2023_105392 crossref_primary_10_1007_s13593_016_0392_8 crossref_primary_10_3390_ani13061020 crossref_primary_10_1016_j_envint_2019_105084 crossref_primary_10_1016_j_jclepro_2022_134552 crossref_primary_10_1111_ajae_12485 crossref_primary_10_1016_j_agsy_2020_102936 crossref_primary_10_1016_j_jneb_2018_07_006 crossref_primary_10_1016_j_jclepro_2021_128705 crossref_primary_10_1111_1750_3841_14324 crossref_primary_10_3168_jds_2020_19077 crossref_primary_10_1016_j_ecolind_2016_05_024 crossref_primary_10_3389_fsufs_2019_00005 crossref_primary_10_46265_genresj_LWUP7415 crossref_primary_10_1016_j_animal_2022_100680 crossref_primary_10_1016_j_scitotenv_2021_147344 crossref_primary_10_3390_su12093828 crossref_primary_10_3390_su132111860 crossref_primary_10_1016_j_jenvman_2021_112523 crossref_primary_10_1016_j_agsy_2016_10_014 crossref_primary_10_1007_s13593_023_00883_y crossref_primary_10_2139_ssrn_4188403 crossref_primary_10_1088_1748_9326_aa8eff crossref_primary_10_21615_cesmvz_14_2_7 crossref_primary_10_1080_09593330_2021_1974577 crossref_primary_10_1016_j_eiar_2019_02_003 crossref_primary_10_1016_j_jclepro_2018_06_116 crossref_primary_10_1017_S175173111700115X crossref_primary_10_1016_j_ecoser_2022_101494 crossref_primary_10_1016_j_foohum_2024_100295 crossref_primary_10_1016_j_scitotenv_2021_147077 crossref_primary_10_1080_1828051X_2018_1423581 crossref_primary_10_1016_j_scitotenv_2021_145573 crossref_primary_10_1016_j_scitotenv_2024_177644 crossref_primary_10_3390_foods9091176 crossref_primary_10_1002_aenm_202100771 crossref_primary_10_3390_agriculture15050472 crossref_primary_10_1016_j_jclepro_2016_03_045 crossref_primary_10_1016_j_scitotenv_2019_136120 crossref_primary_10_1016_j_aquaculture_2022_738264 crossref_primary_10_1017_S1751731118001726 crossref_primary_10_3390_ani11041059 crossref_primary_10_1073_pnas_2321245121 crossref_primary_10_1016_j_jclepro_2016_10_048 crossref_primary_10_1016_j_agsy_2023_103672 crossref_primary_10_3390_su12219274 crossref_primary_10_1016_j_agsy_2020_102860 crossref_primary_10_3390_su17041600 crossref_primary_10_1016_j_livsci_2021_104646 crossref_primary_10_1016_j_resconrec_2016_01_020 crossref_primary_10_1016_j_agsy_2023_103837 crossref_primary_10_1016_j_gfs_2019_06_003 crossref_primary_10_1016_j_livsci_2024_105531 crossref_primary_10_1111_tbed_14205 crossref_primary_10_1079_PAVSNNR202116057 crossref_primary_10_1016_j_jclepro_2017_11_159 crossref_primary_10_1016_j_foodpol_2018_05_003 crossref_primary_10_1016_j_jclepro_2016_11_138 crossref_primary_10_1016_j_spc_2020_11_003 crossref_primary_10_2478_rtuect_2021_0025 crossref_primary_10_1016_j_jclepro_2020_124108 crossref_primary_10_1080_00071668_2024_2409192 crossref_primary_10_1016_j_ecoser_2021_101344 crossref_primary_10_1016_j_jclepro_2021_127750 crossref_primary_10_2527_jas_2015_0141 crossref_primary_10_1016_j_animal_2021_100247 crossref_primary_10_1016_j_jclepro_2022_131918 crossref_primary_10_3390_su10072560 crossref_primary_10_1016_j_agsy_2016_04_003 crossref_primary_10_1016_j_scitotenv_2016_10_075 crossref_primary_10_1016_j_jclepro_2022_130941 crossref_primary_10_1016_j_jclepro_2017_10_113 crossref_primary_10_1007_s13593_024_00977_1 crossref_primary_10_1016_j_tifs_2021_01_086 crossref_primary_10_1079_PAVSNNR202116044 crossref_primary_10_1007_s11367_022_02105_1 crossref_primary_10_1016_j_jclepro_2019_119888 crossref_primary_10_1016_j_agsy_2021_103109 crossref_primary_10_1017_S1742170522000187 crossref_primary_10_1016_j_jclepro_2020_123744 crossref_primary_10_11109_JAES_2021_23_1_044 crossref_primary_10_3390_agronomy9020101 crossref_primary_10_1016_j_animal_2021_100358 crossref_primary_10_1016_j_resenv_2023_100126 crossref_primary_10_1186_s40100_022_00212_z crossref_primary_10_3389_fsufs_2021_564900 crossref_primary_10_1177_1463499620981544 crossref_primary_10_1016_j_agsy_2018_01_026 crossref_primary_10_1016_j_wasman_2015_09_038 crossref_primary_10_1017_S1751731119002519 crossref_primary_10_15232_aas_2018_01753 crossref_primary_10_3390_antiox11091715 crossref_primary_10_1016_j_agsy_2022_103530 crossref_primary_10_1016_j_jclepro_2022_131404 crossref_primary_10_1111_gcb_14321 crossref_primary_10_3390_ani10122267 crossref_primary_10_1016_j_agsy_2022_103379 crossref_primary_10_3390_ani13132182 crossref_primary_10_1016_j_jclepro_2022_131088 crossref_primary_10_1016_j_ecolmodel_2020_109259 crossref_primary_10_1002_fes3_143 crossref_primary_10_1111_jbg_12672 crossref_primary_10_1016_j_jclepro_2017_03_078 crossref_primary_10_1016_j_animal_2021_100224 crossref_primary_10_1016_j_spc_2024_07_026 crossref_primary_10_1080_1828051X_2023_2213254 crossref_primary_10_3390_agriculture8100165 crossref_primary_10_4081_ija_2022_2017 crossref_primary_10_3390_su15065278 crossref_primary_10_3389_fsufs_2020_596869 crossref_primary_10_1080_21711976_2023_2239046 crossref_primary_10_1007_s41130_020_00124_w crossref_primary_10_1016_j_agsy_2017_04_005 crossref_primary_10_1016_j_livsci_2022_104955 crossref_primary_10_3390_ani7030026 crossref_primary_10_3390_su11185120 crossref_primary_10_3389_fanim_2023_1228770 crossref_primary_10_1016_j_scitotenv_2024_170798 crossref_primary_10_15547_tjs_2019_s_01_088 crossref_primary_10_1590_1984_3143_ar2023_0060 crossref_primary_10_32604_phyton_2024_052513 crossref_primary_10_1080_1828051X_2023_2216712 crossref_primary_10_1007_s10745_016_9865_2 crossref_primary_10_1016_j_jenvman_2022_116400 crossref_primary_10_1016_j_agsy_2018_02_003 crossref_primary_10_1017_S0021859623000540 crossref_primary_10_1016_j_agsy_2017_05_011 crossref_primary_10_1016_j_scitotenv_2021_145932 crossref_primary_10_1016_j_livsci_2016_06_007 crossref_primary_10_2508_chikusan_94_397 crossref_primary_10_1016_j_envint_2019_05_031 crossref_primary_10_15232_aas_2023_02529 crossref_primary_10_1016_j_agsy_2024_104047 crossref_primary_10_1016_j_jclepro_2019_118241 crossref_primary_10_1016_j_rvsc_2024_105398 crossref_primary_10_1002_ieam_4761 crossref_primary_10_1016_j_jclepro_2017_11_241 crossref_primary_10_3390_su15043293 crossref_primary_10_1007_s11367_019_01679_7 crossref_primary_10_1016_j_gloenvcha_2020_102067 crossref_primary_10_1016_j_livsci_2024_105453 crossref_primary_10_3390_ani14233501 crossref_primary_10_1255_jnirs_1221 crossref_primary_10_1016_j_animal_2023_101051 crossref_primary_10_1021_acsfoodscitech_4c00281 crossref_primary_10_1016_j_scitotenv_2024_175037 crossref_primary_10_1016_j_jenvman_2022_115563 crossref_primary_10_1016_j_jenvman_2018_12_005 crossref_primary_10_1016_j_animal_2023_101059 crossref_primary_10_1088_1748_9326_ace204 crossref_primary_10_1016_j_agee_2019_106575 crossref_primary_10_1016_j_jclepro_2017_07_115 crossref_primary_10_1016_j_jclepro_2017_01_021 crossref_primary_10_1016_j_ecolind_2018_01_038 crossref_primary_10_1016_j_foodres_2025_116309 crossref_primary_10_1093_af_vfab043 crossref_primary_10_1016_j_livsci_2020_104091 crossref_primary_10_1017_S175173111800112X crossref_primary_10_1016_j_jclepro_2021_126192 crossref_primary_10_1016_j_agsy_2021_103148 crossref_primary_10_3390_su141912591 crossref_primary_10_1016_j_agsy_2023_103748 crossref_primary_10_3390_environments10050073 crossref_primary_10_3390_su13169251 crossref_primary_10_1016_j_jclepro_2023_138400 |
Cites_doi | 10.1016/j.jclepro.2013.08.012 10.1007/s11367-011-0346-y 10.1016/j.jclepro.2014.01.080 10.1016/j.livsci.2013.05.004 10.1016/j.agsy.2005.11.008 10.1016/S0309-1740(03)00130-X 10.1016/j.jclepro.2014.01.037 10.1016/j.agsy.2014.06.004 10.1016/j.smallrumres.2005.08.012 10.1007/s11367-008-0007-y 10.2134/jeq2013.03.0101 10.1016/j.agsy.2010.03.008 10.1017/S1751731111001467 10.1016/j.jclepro.2013.12.025 10.1016/j.agsy.2014.01.005 10.1016/j.agsy.2012.09.007 10.1016/j.cosust.2014.07.009 10.1016/j.agee.2011.05.010 10.1016/j.anifeedsci.2011.04.047 10.1016/j.agee.2007.09.005 10.1023/A:1012657230589 10.1021/es901131e 10.1016/j.envsci.2006.03.001 10.1071/AN11030 10.2134/jeq2007.0263 10.1017/S0021859609990165 10.1111/j.1740-0929.2007.00457.x 10.1016/j.livsci.2009.11.007 10.1017/S1751731114000202 10.2527/jas.2011-4653 10.2134/jeq2005.0121 10.1016/j.agsy.2007.06.001 10.1016/j.agsy.2008.05.003 10.1016/j.agsy.2005.03.006 10.1021/es103240z 10.3390/ani2020127 10.1016/j.agsy.2012.11.002 10.3168/jds.S0022-0302(92)77801-1 10.1177/003072709802700406 10.2527/jas.2013-6506 10.1016/j.agee.2014.03.003 10.1016/j.agsy.2010.03.009 10.1016/j.livsci.2012.02.010 10.1111/gcb.12160 10.1016/j.livsci.2015.01.021 10.2527/2004.8272115x 10.1016/j.jenvman.2012.08.018 10.1016/j.jclepro.2009.12.023 10.1016/j.livsci.2012.12.016 10.1016/j.meatsci.2014.07.005 10.2527/jas.2011-4870 10.1300/J064v30n01_03 10.2527/jas.2013-6632 10.3168/jds.S0022-0302(92)77976-4 10.1088/1748-9326/8/3/035052 10.2527/2005.83122863x |
ContentType | Journal Article |
Copyright | 2015 Wageningen University & Research |
Copyright_xml | – notice: 2015 – notice: Wageningen University & Research |
DBID | AAYXX CITATION 7S9 L.6 QVL |
DOI | 10.1016/j.livsci.2015.06.020 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic NARCIS:Publications |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1878-0490 |
EndPage | 288 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_491581 10_1016_j_livsci_2015_06_020 S187114131500308X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABBQC ABFNM ABGRD ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 QYZTP RIG ROL RPZ SDF SDG SEL SES SEW SNL SPCBC SSA SSH SSZ T5K Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACIEU ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION 7S9 L.6 AALMO ABPIF ABPTK ADALY IPNFZ QVL |
ID | FETCH-LOGICAL-c460t-afb3df66ea5e27f98cfaff985bfdf5f4c6e57a0afef7374833ab701f914259f03 |
IEDL.DBID | .~1 |
ISSN | 1871-1413 |
IngestDate | Thu Oct 13 09:30:13 EDT 2022 Fri Jul 11 09:03:12 EDT 2025 Thu Apr 24 23:09:45 EDT 2025 Tue Jul 01 03:16:10 EDT 2025 Fri Feb 23 02:29:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Emission Dairy Grazing Cattle Greenhouse gas Suckler |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-afb3df66ea5e27f98cfaff985bfdf5f4c6e57a0afef7374833ab701f914259f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1846322216 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_491581 proquest_miscellaneous_1846322216 crossref_citationtrail_10_1016_j_livsci_2015_06_020 crossref_primary_10_1016_j_livsci_2015_06_020 elsevier_sciencedirect_doi_10_1016_j_livsci_2015_06_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-01 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Livestock science |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | De Rancourt, Fois, Lavín, Tchakérian, Vallerand (bib15) 2006; 62 Henle, Alard, Clitherow, Cobb, Firbank, Kull, McCracken, Moritz, Niemelä, Rebane, Wascher, Watt, Young (bib25) 2008; 124 ISO, 2006. Environmental management. The ISO 14000 family of international standards ISO standard collection on CD-rom, Genève, Switzerland. Phetteplace, Johnson, Seidl (bib45) 2001; 60 Vergé, Dyer, Desjardins, Worth (bib66) 2008; 98 FAOSTAT, 2013. Electronic Database of the Food and Agriculture Organization of the UN. Accessed October 2013. Ruviaro, de Léis, Lampert, Barcellos, Dewes (bib54) 2015; 96 OECD (bib38) 2001 Udo, Cornelissen (bib64) 1998; 27 Ogino, Orito, Shimada, Hirooka (bib40) 2007; 78 Veysset, Lherm, Bébin, Roulenc, Benoit (bib67) 2014; 188 Beauchemin, Janzen, Little, McAllister, McGinn (bib5) 2011; 166–167 FAO (bib20) 2002 Ridoutt, Page, Opie, Huang, Bellotti (bib49) 2014; 73 Guinée, J.B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., de Bruijn, H., van Duin, R., Huijbregts, M.A.J., Lindeijer, E., Roorda, A.A.H., van der Ven, B.L., Weidema B.P. (Eds.), 2002. Handbook on Life Cycle Assessment; Operational Guide to the ISO Standards. Institute for Environmental Sciences, Leiden, The Netherlands. White, Brady, Capper, Johnson (bib69) 2014; 130 Skinner (bib57) 2008; 37 Mader (bib33) 2003; 81 Edwards-Jones, Plassmann, Harris (bib19) 2009; 147 Hietala, Bouquet, Juga (bib500) 2015; 64 Alig, Grandl, Mieleitner, Nemecek, Gaillard (bib2) 2012 Capper, Hayes (bib8) 2012; 90 Holter, Young (bib26) 1992; 75 Casey, Holden (bib10) 2006; 90 Grunert, Bredahl, Brunsø (bib23) 2004; 66 Casey, Holden (bib9) 2006; 35 Opio, Gerber, Mottet, Falcucci, Tempio, MacLeod, Vellinga, Henderson, Steinfeld (bib42) 2013 Modernel, Astigarraga, Picasso (bib34) 2013; 8 Oishi, Kato, Ogino, Hirooka (bib41) 2013; 115 Thomassen, van Calker, Smits, Iepema, de Boer (bib61) 2008; 96 Ripoll-Bosch, de Boer, Bernués, Vellinga (bib51) 2013; 116 Ogino, Kaku, Osada, Shimada (bib39) 2004; 82 Weiler, Udo, Viets, Crane, De Boer (bib68) 2014; 8 Zehetmeier, Baudracco, Hoffmann, Heißenhuber (bib71) 2012; 6 Alexandratos, Bruinsma (bib1) 2012 Pimentel, Pimentel (bib47) 1996 Ridoutt, Sanguansri, Freer, Harper (bib50) 2012; 17 Smith, Haberl, Popp, Erb, Lauk, Harper, Tubiello, de Siqueira Pinto, Jafari, Sohi, Masera, Böttcher, Berndes, Bustamante, Ahammad, Clark, Dong, Elsiddig, Mbow, Ravindranath, Rice, Robledo Abad, Romanovskaya, Sperling, Herrero, House, Rose (bib58) 2013; 19 De Vries, De Boer (bib16) 2010; 128 Dick, Abreu da Silva, Dewes (bib17) 2015; 96 Tuomisto, Hodge, Riordan, Macdonald (bib63) 2012; 112 Claassen, Carriazo, Ueda (bib14) 2010 Roer, Johansen, Bakken, Daugstad, Fystro, Strømman (bib52) 2013; 155 Rotz, Isenberg, Stackhouse-Lawson, Pollak (bib53) 2013; 91 Seidel (bib55) 2014; 8 Capper (bib7) 2012; 2 Picasso, Modernel, Becoña, Salvo, Gutiérrez, Astigarraga (bib46) 2014; 98 Peters, Rowley, Wiedemann, Tucker, Short, Schulz (bib44) 2010; 44 Bonesmo, Beauchemin, Harstad, Skjelvåg (bib6) 2013; 152 Williams, Audsley, Sandars (bib510) 2006 Cederberg, Meyer, Flysjö (bib12) 2009 Nguyen, Hermansen, Mogensen (bib36) 2010; 18 Touchberry (bib62) 1992; 75 Stackhouse-Lawson, Rotz, Oltjen, Mitloehner (bib59) 2012; 90 Millennium Ecosystem Assessment (bib501) 2005 Mogensen, Kristensen, Nielsen, Spleth, Henriksson, Swensson, Hessle, Vestergaard (bib35) 2015; 174 Cederberg, Persson, Neovius, Molander, Clift (bib13) 2011; 45 Sitz, Calkins, Feuz, Umberger, Eskridge (bib56) 2005; 83 Thomassen, Dalgaard, Heijungs, De Boer (bib60) 2008; 13 Foley, Crosson, Lovett, Boland, O’Mara, Kenny (bib22) 2011; 142 Lovett, Shalloo, Dillon, O’Mara (bib31) 2006; 88 White, Capper (bib70) 2013; 91 Beauchemin, Henry Janzen, Little, McAllister, McGinn (bib4) 2010; 103 Pelletier, Pirog, Rasmussen (bib43) 2010; 103 Audsley, Brander, Chatterton, Murphy-Bokern, Webster, Williams (bib3) 2009 Cederberg, Darelius (bib11) 2002 LEI (bib30) 2008 Nguyen, van der Werf, Eugène, Veysset, Devun, Chesneau, Doreau (bib37) 2012; 145 Zonderland-Thomassen, Lieffering, Ledgard (bib72) 2014; 73 Lupo, Clay, Benning, Stone (bib32) 2013; 42 Koknaroglu, Ekinci, Hoffman (bib29) 2007; 30 Plieninger, Höchtl, Spek (bib48) 2006; 9 Hünerberg, Little, Beauchemin, McGinn, O’Connor, Okine, Harstad, Kröbel, McAllister (bib27) 2014; 127 Eady, Viner, MacDonnell (bib18) 2011; 51 UNFCCC, 2014. Agenda Item 4: Report of the Ad Hoc Working Group on the Durban Platform for Enhanced Action. Conference of the Parties, Lima, 1–12 December 2014. De Rancourt (10.1016/j.livsci.2015.06.020_bib15) 2006; 62 Hünerberg (10.1016/j.livsci.2015.06.020_bib27) 2014; 127 Nguyen (10.1016/j.livsci.2015.06.020_bib36) 2010; 18 Pimentel (10.1016/j.livsci.2015.06.020_bib47) 1996 Henle (10.1016/j.livsci.2015.06.020_bib25) 2008; 124 LEI (10.1016/j.livsci.2015.06.020_bib30) 2008 Alig (10.1016/j.livsci.2015.06.020_bib2) 2012 Weiler (10.1016/j.livsci.2015.06.020_bib68) 2014; 8 Ogino (10.1016/j.livsci.2015.06.020_bib40) 2007; 78 Capper (10.1016/j.livsci.2015.06.020_bib7) 2012; 2 Ridoutt (10.1016/j.livsci.2015.06.020_bib49) 2014; 73 Touchberry (10.1016/j.livsci.2015.06.020_bib62) 1992; 75 Beauchemin (10.1016/j.livsci.2015.06.020_bib5) 2011; 166–167 Mogensen (10.1016/j.livsci.2015.06.020_bib35) 2015; 174 Alexandratos (10.1016/j.livsci.2015.06.020_bib1) 2012 10.1016/j.livsci.2015.06.020_bib21 10.1016/j.livsci.2015.06.020_bib65 10.1016/j.livsci.2015.06.020_bib24 Dick (10.1016/j.livsci.2015.06.020_bib17) 2015; 96 Picasso (10.1016/j.livsci.2015.06.020_bib46) 2014; 98 10.1016/j.livsci.2015.06.020_bib28 Hietala (10.1016/j.livsci.2015.06.020_bib500) 2015; 64 Udo (10.1016/j.livsci.2015.06.020_bib64) 1998; 27 Stackhouse-Lawson (10.1016/j.livsci.2015.06.020_bib59) 2012; 90 Ogino (10.1016/j.livsci.2015.06.020_bib39) 2004; 82 OECD (10.1016/j.livsci.2015.06.020_bib38) 2001 Audsley (10.1016/j.livsci.2015.06.020_bib3) 2009 Peters (10.1016/j.livsci.2015.06.020_bib44) 2010; 44 Casey (10.1016/j.livsci.2015.06.020_bib9) 2006; 35 Ripoll-Bosch (10.1016/j.livsci.2015.06.020_bib51) 2013; 116 Rotz (10.1016/j.livsci.2015.06.020_bib53) 2013; 91 Lupo (10.1016/j.livsci.2015.06.020_bib32) 2013; 42 Cederberg (10.1016/j.livsci.2015.06.020_bib11) 2002 Ruviaro (10.1016/j.livsci.2015.06.020_bib54) 2015; 96 Nguyen (10.1016/j.livsci.2015.06.020_bib37) 2012; 145 Roer (10.1016/j.livsci.2015.06.020_bib52) 2013; 155 Modernel (10.1016/j.livsci.2015.06.020_bib34) 2013; 8 Oishi (10.1016/j.livsci.2015.06.020_bib41) 2013; 115 Bonesmo (10.1016/j.livsci.2015.06.020_bib6) 2013; 152 White (10.1016/j.livsci.2015.06.020_bib70) 2013; 91 Casey (10.1016/j.livsci.2015.06.020_bib10) 2006; 90 Beauchemin (10.1016/j.livsci.2015.06.020_bib4) 2010; 103 Phetteplace (10.1016/j.livsci.2015.06.020_bib45) 2001; 60 Sitz (10.1016/j.livsci.2015.06.020_bib56) 2005; 83 Williams (10.1016/j.livsci.2015.06.020_bib510) 2006 Claassen (10.1016/j.livsci.2015.06.020_bib14) 2010 Tuomisto (10.1016/j.livsci.2015.06.020_bib63) 2012; 112 Zonderland-Thomassen (10.1016/j.livsci.2015.06.020_bib72) 2014; 73 Edwards-Jones (10.1016/j.livsci.2015.06.020_bib19) 2009; 147 Grunert (10.1016/j.livsci.2015.06.020_bib23) 2004; 66 Koknaroglu (10.1016/j.livsci.2015.06.020_bib29) 2007; 30 Capper (10.1016/j.livsci.2015.06.020_bib8) 2012; 90 Vergé (10.1016/j.livsci.2015.06.020_bib66) 2008; 98 Thomassen (10.1016/j.livsci.2015.06.020_bib60) 2008; 13 Mader (10.1016/j.livsci.2015.06.020_bib33) 2003; 81 Eady (10.1016/j.livsci.2015.06.020_bib18) 2011; 51 Foley (10.1016/j.livsci.2015.06.020_bib22) 2011; 142 Holter (10.1016/j.livsci.2015.06.020_bib26) 1992; 75 Veysset (10.1016/j.livsci.2015.06.020_bib67) 2014; 188 Ridoutt (10.1016/j.livsci.2015.06.020_bib50) 2012; 17 Cederberg (10.1016/j.livsci.2015.06.020_bib12) 2009 Seidel (10.1016/j.livsci.2015.06.020_bib55) 2014; 8 Plieninger (10.1016/j.livsci.2015.06.020_bib48) 2006; 9 Zehetmeier (10.1016/j.livsci.2015.06.020_bib71) 2012; 6 Skinner (10.1016/j.livsci.2015.06.020_bib57) 2008; 37 Lovett (10.1016/j.livsci.2015.06.020_bib31) 2006; 88 White (10.1016/j.livsci.2015.06.020_bib69) 2014; 130 De Vries (10.1016/j.livsci.2015.06.020_bib16) 2010; 128 FAO (10.1016/j.livsci.2015.06.020_bib20) 2002 Pelletier (10.1016/j.livsci.2015.06.020_bib43) 2010; 103 Cederberg (10.1016/j.livsci.2015.06.020_bib13) 2011; 45 Millennium Ecosystem Assessment (10.1016/j.livsci.2015.06.020_bib501) 2005 Smith (10.1016/j.livsci.2015.06.020_bib58) 2013; 19 Opio (10.1016/j.livsci.2015.06.020_bib42) 2013 Thomassen (10.1016/j.livsci.2015.06.020_bib61) 2008; 96 |
References_xml | – volume: 73 start-page: 24 year: 2014 end-page: 30 ident: bib49 article-title: Carbon, water and land use footprints of beef cattle production systems in southern Australia publication-title: J. Clean Prod. – volume: 115 start-page: 95 year: 2013 end-page: 103 ident: bib41 article-title: Economic and environmental impacts of changes in culling parity of cows and diet composition in Japanese beef cow–calf production systems publication-title: Agric. Syst. – volume: 103 start-page: 380 year: 2010 end-page: 389 ident: bib43 article-title: Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States publication-title: Agric. Syst. – volume: 166–167 start-page: 663 year: 2011 end-page: 677 ident: bib5 article-title: Mitigation of greenhouse gas emissions from beef production in western Canada – evaluation using farm-based life cycle assessment publication-title: Anim. Feed. Sci. Tech. – year: 2008 ident: bib30 publication-title: Land- en tuinbouwcijfers 2008 (Agricultural and Horticultural Statistical Data in the Netherlands 2008) – volume: 90 start-page: 4641 year: 2012 end-page: 4655 ident: bib59 article-title: Carbon footprint and ammonia emissions of California beef production systems publication-title: J. Anim. Sci. – year: 2010 ident: bib14 publication-title: Grassland Conversion for Crop Production in the United States: Defining Indicators for Policy Analysis. OECD Agri-Environmental Indicators: Lessons Learned and Future Directions – year: 2006 ident: bib510 article-title: Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. Main Report. Defra Research Project IS0205 – volume: 45 start-page: 1773 year: 2011 end-page: 1779 ident: bib13 article-title: Including carbon emissions from deforestation in the carbon footprint of brazilian beef publication-title: Environ. Sci. Technol. – volume: 91 start-page: 5427 year: 2013 end-page: 5437 ident: bib53 article-title: A simulation-based approach for evaluating and comparing the environmental footprints of beef production systems publication-title: J. Anim. Sci. – volume: 90 start-page: 3527 year: 2012 end-page: 3537 ident: bib8 article-title: The environmental and economic impact of removing growth-enhancing technologies from U.S. beef production publication-title: J. Anim. Sci. – volume: 44 start-page: 1327 year: 2010 end-page: 1332 ident: bib44 article-title: Red meat production in Australia: life cycle assessment and comparison with overseas studies publication-title: Environ. Sci. Technol. – volume: 6 start-page: 154 year: 2012 end-page: 166 ident: bib71 article-title: Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach publication-title: Animal – volume: 98 start-page: 126 year: 2008 end-page: 134 ident: bib66 article-title: Greenhouse gas emissions from the Canadian beef industry publication-title: Agric. Syst. – volume: 98 start-page: 346 year: 2014 end-page: 354 ident: bib46 article-title: Sustainability of meat production beyond carbon footprint: a synthesis of case studies from grazing systems in Uruguay publication-title: Meat Sci. – volume: 51 start-page: 667 year: 2011 end-page: 681 ident: bib18 article-title: On-farm greenhouse gas emissions and water use: case studies in the Queensland beef industry publication-title: Anim. Prod. Sci. – reference: ISO, 2006. Environmental management. The ISO 14000 family of international standards ISO standard collection on CD-rom, Genève, Switzerland. – volume: 66 start-page: 259 year: 2004 end-page: 272 ident: bib23 article-title: Consumer perception of meat quality and implications for product development in the meat sector—a review publication-title: Meat Sci. – year: 2001 ident: bib38 article-title: Multifunctionality. Towards an Analytical Framework – reference: UNFCCC, 2014. Agenda Item 4: Report of the Ad Hoc Working Group on the Durban Platform for Enhanced Action. Conference of the Parties, Lima, 1–12 December 2014. – volume: 8 start-page: 29 year: 2014 end-page: 38 ident: bib68 article-title: Handling multi-functionality of livestock in a life cycle assessment: the case of smallholder dairying in Kenya publication-title: Curr. Opin. Environ. Sustain. – year: 2009 ident: bib12 article-title: Life Cycle Inventory of Greenhouse Gas Emissions and Use of Land and Energy in Brazilian Beef Production – volume: 142 start-page: 222 year: 2011 end-page: 230 ident: bib22 article-title: Whole-farm systems modelling of greenhouse gas emissions from pastoral suckler beef cow production systems publication-title: Agric. Ecosyst. Environ. – volume: 103 start-page: 371 year: 2010 end-page: 379 ident: bib4 article-title: Life cycle assessment of greenhouse gas emissions from beef production in western Canada: a case study publication-title: Agric. Syst. – volume: 78 start-page: 424 year: 2007 end-page: 432 ident: bib40 article-title: Evaluating environmental impacts of the Japanese beef cow–calf system by the life cycle assessment method publication-title: Anim. Sci. J. – year: 2005 ident: bib501 article-title: Ecosystems and Human Well-being: Synthesis – year: 2012 ident: bib1 article-title: World Agriculture Towards 2030/2050: The 2012 Revision – year: 2002 ident: bib20 publication-title: Organic Agriculture, Environment and Food Security – reference: FAOSTAT, 2013. Electronic Database of the Food and Agriculture Organization of the UN. Accessed October 2013. – volume: 17 start-page: 165 year: 2012 end-page: 175 ident: bib50 article-title: Water footprint of livestock: comparison of six geographically defined beef production systems publication-title: Int. J. Life Cycle Assess. – year: 2013 ident: bib42 article-title: Greenhouse Gas Emissions from Ruminant Supply Chains – A Global Life Cycle Assessment – volume: 37 start-page: 1319 year: 2008 end-page: 1326 ident: bib57 article-title: High biomass removal limits carbon sequestration potential of mature temperate pastures publication-title: J. Environ. Qual. – volume: 62 start-page: 167 year: 2006 end-page: 179 ident: bib15 article-title: Mediterranean sheep and goats production: an uncertain future publication-title: Small Rumin. Res. – volume: 30 start-page: 5 year: 2007 end-page: 20 ident: bib29 article-title: Cultural energy analysis of pasturing systems for cattle finishing programs publication-title: J. Sustain. Agric. – volume: 75 start-page: 2165 year: 1992 end-page: 2175 ident: bib26 article-title: Methane prediction in dry and lactating holstein cows publication-title: J. Dairy Sci. – volume: 145 start-page: 239 year: 2012 end-page: 251 ident: bib37 article-title: Effects of type of ration and allocation methods on the environmental impacts of beef-production systems publication-title: Livest. Sci. – volume: 127 start-page: 19 year: 2014 end-page: 27 ident: bib27 article-title: Feeding high concentrations of corn dried distillers’ grains decreases methane, but increases nitrous oxide emissions from beef cattle production publication-title: Agric. Syst. – volume: 155 start-page: 384 year: 2013 end-page: 396 ident: bib52 article-title: Environmental impacts of combined milk and meat production in Norway according to a life cycle assessment with expanded system boundaries publication-title: Livest. Sci. – volume: 18 start-page: 756 year: 2010 end-page: 766 ident: bib36 article-title: Environmental consequences of different beef production systems in the EU publication-title: J. Clean. Prod. – volume: 112 start-page: 309 year: 2012 end-page: 320 ident: bib63 article-title: Does organic farming reduce environmental impacts? – a meta-analysis of European research publication-title: J. Environ. Manag. – volume: 64 start-page: 199 year: 2015 end-page: 209 ident: bib500 article-title: Effect of replacement rate, crossbreeding and sexed semen on the efficiency of beef production from dairy herds in Finland publication-title: Acta. Agric. Scand. A – volume: 116 start-page: 60 year: 2013 end-page: 68 ident: bib51 article-title: Accounting for multi-functionality of sheep farming in the carbon footprint of lamb: a comparison of three contrasting Mediterranean systems publication-title: Agric. Syst. – volume: 8 start-page: S160 year: 2014 end-page: S164 ident: bib55 article-title: Update on sexed semen technology in cattle publication-title: Animal – volume: 60 start-page: 99 year: 2001 end-page: 102 ident: bib45 article-title: Greenhouse gas emissions from simulated beef and dairy livestock systems in the United States publication-title: Nutr. Cycl. Agroecosyst. – volume: 27 start-page: 237 year: 1998 end-page: 242 ident: bib64 article-title: Livestock in resource-poor farming systems publication-title: Outlook Agric. – volume: 130 start-page: 1 year: 2014 end-page: 12 ident: bib69 article-title: Optimizing diet and pasture management to improve sustainability of U.S. beef production publication-title: Agric. Syst. – volume: 2 start-page: 127 year: 2012 end-page: 143 ident: bib7 article-title: Is the grass always greener? Comparing the environmental impact of conventional, natural and grass-fed beef production systems publication-title: Animals – volume: 13 start-page: 339 year: 2008 end-page: 349 ident: bib60 article-title: Attributional and consequential LCA of milk production publication-title: Int. J. Life Cycle Assess. – volume: 174 start-page: 126 year: 2015 end-page: 143 ident: bib35 article-title: Greenhouse gas emissions from beef production systems in Denmark and Sweden publication-title: Livest. Sci. – volume: 124 start-page: 60 year: 2008 end-page: 71 ident: bib25 article-title: Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe – a review publication-title: Agric. Ecosyst. Environ. – reference: Guinée, J.B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., de Bruijn, H., van Duin, R., Huijbregts, M.A.J., Lindeijer, E., Roorda, A.A.H., van der Ven, B.L., Weidema B.P. (Eds.), 2002. Handbook on Life Cycle Assessment; Operational Guide to the ISO Standards. Institute for Environmental Sciences, Leiden, The Netherlands. – year: 2002 ident: bib11 article-title: Using LCA Methodology to Assess the Potential Environmental Impact of Intensive Beef and Pork Production – volume: 96 start-page: 426 year: 2015 end-page: 434 ident: bib17 article-title: Life cycle assessment of beef cattle production in two typical grassland systems of southern Brazil publication-title: J. Clean Prod. – volume: 90 start-page: 79 year: 2006 end-page: 98 ident: bib10 article-title: Quantification of GHG emissions from sucker-beef production in Ireland publication-title: Agric. Syst. – volume: 147 start-page: 707 year: 2009 end-page: 719 ident: bib19 article-title: Carbon footprinting of lamb and beef production systems: insights from an empirical analysis of farms in Wales, UK publication-title: J. Agric. Sci. – volume: 8 start-page: 035052 year: 2013 ident: bib34 article-title: Global versus local environmental impacts of grazing and confined beef production systems publication-title: Environ. Res. Lett. – volume: 81 start-page: E110 year: 2003 end-page: E119 ident: bib33 article-title: Environmental stress in confined beef cattle publication-title: J. Anim. Sci. – volume: 75 start-page: 640 year: 1992 end-page: 667 ident: bib62 article-title: Crossbreeding effects in dairy cattle: the Illinois experiment, 1949 to 1969 publication-title: J. Dairy Sci. – volume: 83 start-page: 2863 year: 2005 end-page: 2868 ident: bib56 article-title: Consumer sensory acceptance and value of domestic, Canadian, and Australian grass-fed beef steaks publication-title: J. Anim. Sci. – volume: 88 start-page: 156 year: 2006 end-page: 179 ident: bib31 article-title: A systems approach to quantify greenhouse gas fluxes from pastoral dairy production as affected by management regime publication-title: Agric. Syst. – volume: 82 start-page: 2115 year: 2004 end-page: 2122 ident: bib39 article-title: Environmental impacts of the Japanese beef-fattening system with different feeding lengths as evaluated by a life-cycle assessment method publication-title: J. Anim. Sci. – volume: 152 start-page: 239 year: 2013 end-page: 252 ident: bib6 article-title: Greenhouse gas emission intensities of grass silage based dairy and beef production: a systems analysis of Norwegian farms publication-title: Livest. Sci. – year: 2012 ident: bib2 publication-title: Ökobilanz von Rind-, Schweine- und Geflügelfleisch, Schlussbericht September 2012 – volume: 91 start-page: 5801 year: 2013 end-page: 5812 ident: bib70 article-title: An environmental, economic, and social assessment of improving cattle finishing weight or average daily gain within U.S. beef production publication-title: J. Anim. Sci. – volume: 128 start-page: 1 year: 2010 end-page: 11 ident: bib16 article-title: Comparing environmental impacts for livestock products: a review of life cycle assessments publication-title: Livest. Sci. – volume: 73 start-page: 253 year: 2014 end-page: 262 ident: bib72 article-title: Water footprint of beef cattle and sheep produced in New Zealand: water scarcity and eutrophication impacts publication-title: J. Clean Prod. – volume: 42 start-page: 1386 year: 2013 end-page: 1394 ident: bib32 article-title: Life-cycle assessment of the beef cattle production system for the northern great plains, USA publication-title: J. Environ. Qual. – volume: 35 start-page: 231 year: 2006 end-page: 239 ident: bib9 article-title: Greenhouse gas emissions from conventional, agri-environmental scheme, and organic Irish suckler-beef units publication-title: J. Environ. Qual. – volume: 19 start-page: 2285 year: 2013 end-page: 2302 ident: bib58 article-title: How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? publication-title: Glob. Change Biol. – volume: 188 start-page: 180 year: 2014 end-page: 191 ident: bib67 article-title: Variability in greenhouse gas emissions, fossil energy consumption and farm economics in suckler beef production in 59 French farms publication-title: Agric. Ecosyst. Environ. – volume: 96 start-page: 95 year: 2008 end-page: 107 ident: bib61 article-title: Life cycle assessment of conventional and organic milk production in the Netherlands publication-title: Agric. Syst. – year: 2009 ident: bib3 article-title: How Low Can We Go? An Assessment of Greenhouse Gas Emissions from the UK Food System and the Scope to Reduce Them by 2050 – volume: 9 start-page: 317 year: 2006 end-page: 321 ident: bib48 article-title: Traditional land-use and nature conservation in European rural landscapes publication-title: Environ. Sci. Policy – volume: 96 start-page: 435 year: 2015 end-page: 443 ident: bib54 article-title: Carbon footprint in different beef production systems on a southern Brazilian farm: a case study publication-title: J. Clean Prod. – year: 1996 ident: bib47 article-title: Food, Energy and Society – volume: 73 start-page: 24 year: 2014 ident: 10.1016/j.livsci.2015.06.020_bib49 article-title: Carbon, water and land use footprints of beef cattle production systems in southern Australia publication-title: J. Clean Prod. doi: 10.1016/j.jclepro.2013.08.012 – volume: 17 start-page: 165 year: 2012 ident: 10.1016/j.livsci.2015.06.020_bib50 article-title: Water footprint of livestock: comparison of six geographically defined beef production systems publication-title: Int. J. Life Cycle Assess. doi: 10.1007/s11367-011-0346-y – year: 2009 ident: 10.1016/j.livsci.2015.06.020_bib12 – year: 1996 ident: 10.1016/j.livsci.2015.06.020_bib47 – volume: 96 start-page: 426 year: 2015 ident: 10.1016/j.livsci.2015.06.020_bib17 article-title: Life cycle assessment of beef cattle production in two typical grassland systems of southern Brazil publication-title: J. Clean Prod. doi: 10.1016/j.jclepro.2014.01.080 – volume: 155 start-page: 384 year: 2013 ident: 10.1016/j.livsci.2015.06.020_bib52 article-title: Environmental impacts of combined milk and meat production in Norway according to a life cycle assessment with expanded system boundaries publication-title: Livest. Sci. doi: 10.1016/j.livsci.2013.05.004 – volume: 90 start-page: 79 year: 2006 ident: 10.1016/j.livsci.2015.06.020_bib10 article-title: Quantification of GHG emissions from sucker-beef production in Ireland publication-title: Agric. Syst. doi: 10.1016/j.agsy.2005.11.008 – year: 2002 ident: 10.1016/j.livsci.2015.06.020_bib11 – volume: 66 start-page: 259 year: 2004 ident: 10.1016/j.livsci.2015.06.020_bib23 article-title: Consumer perception of meat quality and implications for product development in the meat sector—a review publication-title: Meat Sci. doi: 10.1016/S0309-1740(03)00130-X – ident: 10.1016/j.livsci.2015.06.020_bib65 – volume: 96 start-page: 435 year: 2015 ident: 10.1016/j.livsci.2015.06.020_bib54 article-title: Carbon footprint in different beef production systems on a southern Brazilian farm: a case study publication-title: J. Clean Prod. doi: 10.1016/j.jclepro.2014.01.037 – volume: 130 start-page: 1 year: 2014 ident: 10.1016/j.livsci.2015.06.020_bib69 article-title: Optimizing diet and pasture management to improve sustainability of U.S. beef production publication-title: Agric. Syst. doi: 10.1016/j.agsy.2014.06.004 – volume: 62 start-page: 167 year: 2006 ident: 10.1016/j.livsci.2015.06.020_bib15 article-title: Mediterranean sheep and goats production: an uncertain future publication-title: Small Rumin. Res. doi: 10.1016/j.smallrumres.2005.08.012 – volume: 13 start-page: 339 year: 2008 ident: 10.1016/j.livsci.2015.06.020_bib60 article-title: Attributional and consequential LCA of milk production publication-title: Int. J. Life Cycle Assess. doi: 10.1007/s11367-008-0007-y – volume: 42 start-page: 1386 year: 2013 ident: 10.1016/j.livsci.2015.06.020_bib32 article-title: Life-cycle assessment of the beef cattle production system for the northern great plains, USA publication-title: J. Environ. Qual. doi: 10.2134/jeq2013.03.0101 – volume: 103 start-page: 371 year: 2010 ident: 10.1016/j.livsci.2015.06.020_bib4 article-title: Life cycle assessment of greenhouse gas emissions from beef production in western Canada: a case study publication-title: Agric. Syst. doi: 10.1016/j.agsy.2010.03.008 – ident: 10.1016/j.livsci.2015.06.020_bib24 – year: 2002 ident: 10.1016/j.livsci.2015.06.020_bib20 – year: 2009 ident: 10.1016/j.livsci.2015.06.020_bib3 – ident: 10.1016/j.livsci.2015.06.020_bib28 – volume: 6 start-page: 154 year: 2012 ident: 10.1016/j.livsci.2015.06.020_bib71 article-title: Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach publication-title: Animal doi: 10.1017/S1751731111001467 – volume: 73 start-page: 253 year: 2014 ident: 10.1016/j.livsci.2015.06.020_bib72 article-title: Water footprint of beef cattle and sheep produced in New Zealand: water scarcity and eutrophication impacts publication-title: J. Clean Prod. doi: 10.1016/j.jclepro.2013.12.025 – year: 2012 ident: 10.1016/j.livsci.2015.06.020_bib2 – volume: 127 start-page: 19 year: 2014 ident: 10.1016/j.livsci.2015.06.020_bib27 article-title: Feeding high concentrations of corn dried distillers’ grains decreases methane, but increases nitrous oxide emissions from beef cattle production publication-title: Agric. Syst. doi: 10.1016/j.agsy.2014.01.005 – volume: 115 start-page: 95 year: 2013 ident: 10.1016/j.livsci.2015.06.020_bib41 article-title: Economic and environmental impacts of changes in culling parity of cows and diet composition in Japanese beef cow–calf production systems publication-title: Agric. Syst. doi: 10.1016/j.agsy.2012.09.007 – volume: 81 start-page: E110 year: 2003 ident: 10.1016/j.livsci.2015.06.020_bib33 article-title: Environmental stress in confined beef cattle publication-title: J. Anim. Sci. – volume: 8 start-page: 29 year: 2014 ident: 10.1016/j.livsci.2015.06.020_bib68 article-title: Handling multi-functionality of livestock in a life cycle assessment: the case of smallholder dairying in Kenya publication-title: Curr. Opin. Environ. Sustain. doi: 10.1016/j.cosust.2014.07.009 – volume: 142 start-page: 222 year: 2011 ident: 10.1016/j.livsci.2015.06.020_bib22 article-title: Whole-farm systems modelling of greenhouse gas emissions from pastoral suckler beef cow production systems publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2011.05.010 – volume: 166–167 start-page: 663 year: 2011 ident: 10.1016/j.livsci.2015.06.020_bib5 article-title: Mitigation of greenhouse gas emissions from beef production in western Canada – evaluation using farm-based life cycle assessment publication-title: Anim. Feed. Sci. Tech. doi: 10.1016/j.anifeedsci.2011.04.047 – volume: 64 start-page: 199 year: 2015 ident: 10.1016/j.livsci.2015.06.020_bib500 article-title: Effect of replacement rate, crossbreeding and sexed semen on the efficiency of beef production from dairy herds in Finland publication-title: Acta. Agric. Scand. A – volume: 124 start-page: 60 year: 2008 ident: 10.1016/j.livsci.2015.06.020_bib25 article-title: Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe – a review publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2007.09.005 – volume: 60 start-page: 99 year: 2001 ident: 10.1016/j.livsci.2015.06.020_bib45 article-title: Greenhouse gas emissions from simulated beef and dairy livestock systems in the United States publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1023/A:1012657230589 – volume: 44 start-page: 1327 year: 2010 ident: 10.1016/j.livsci.2015.06.020_bib44 article-title: Red meat production in Australia: life cycle assessment and comparison with overseas studies publication-title: Environ. Sci. Technol. doi: 10.1021/es901131e – volume: 9 start-page: 317 year: 2006 ident: 10.1016/j.livsci.2015.06.020_bib48 article-title: Traditional land-use and nature conservation in European rural landscapes publication-title: Environ. Sci. Policy doi: 10.1016/j.envsci.2006.03.001 – year: 2012 ident: 10.1016/j.livsci.2015.06.020_bib1 – volume: 51 start-page: 667 year: 2011 ident: 10.1016/j.livsci.2015.06.020_bib18 article-title: On-farm greenhouse gas emissions and water use: case studies in the Queensland beef industry publication-title: Anim. Prod. Sci. doi: 10.1071/AN11030 – ident: 10.1016/j.livsci.2015.06.020_bib21 – volume: 37 start-page: 1319 year: 2008 ident: 10.1016/j.livsci.2015.06.020_bib57 article-title: High biomass removal limits carbon sequestration potential of mature temperate pastures publication-title: J. Environ. Qual. doi: 10.2134/jeq2007.0263 – volume: 147 start-page: 707 year: 2009 ident: 10.1016/j.livsci.2015.06.020_bib19 article-title: Carbon footprinting of lamb and beef production systems: insights from an empirical analysis of farms in Wales, UK publication-title: J. Agric. Sci. doi: 10.1017/S0021859609990165 – volume: 78 start-page: 424 year: 2007 ident: 10.1016/j.livsci.2015.06.020_bib40 article-title: Evaluating environmental impacts of the Japanese beef cow–calf system by the life cycle assessment method publication-title: Anim. Sci. J. doi: 10.1111/j.1740-0929.2007.00457.x – year: 2008 ident: 10.1016/j.livsci.2015.06.020_bib30 – volume: 128 start-page: 1 year: 2010 ident: 10.1016/j.livsci.2015.06.020_bib16 article-title: Comparing environmental impacts for livestock products: a review of life cycle assessments publication-title: Livest. Sci. doi: 10.1016/j.livsci.2009.11.007 – volume: 8 start-page: S160 issue: Suppl. 1 year: 2014 ident: 10.1016/j.livsci.2015.06.020_bib55 article-title: Update on sexed semen technology in cattle publication-title: Animal doi: 10.1017/S1751731114000202 – volume: 90 start-page: 4641 year: 2012 ident: 10.1016/j.livsci.2015.06.020_bib59 article-title: Carbon footprint and ammonia emissions of California beef production systems publication-title: J. Anim. Sci. doi: 10.2527/jas.2011-4653 – volume: 35 start-page: 231 year: 2006 ident: 10.1016/j.livsci.2015.06.020_bib9 article-title: Greenhouse gas emissions from conventional, agri-environmental scheme, and organic Irish suckler-beef units publication-title: J. Environ. Qual. doi: 10.2134/jeq2005.0121 – volume: 96 start-page: 95 year: 2008 ident: 10.1016/j.livsci.2015.06.020_bib61 article-title: Life cycle assessment of conventional and organic milk production in the Netherlands publication-title: Agric. Syst. doi: 10.1016/j.agsy.2007.06.001 – year: 2013 ident: 10.1016/j.livsci.2015.06.020_bib42 – volume: 98 start-page: 126 year: 2008 ident: 10.1016/j.livsci.2015.06.020_bib66 article-title: Greenhouse gas emissions from the Canadian beef industry publication-title: Agric. Syst. doi: 10.1016/j.agsy.2008.05.003 – volume: 88 start-page: 156 year: 2006 ident: 10.1016/j.livsci.2015.06.020_bib31 article-title: A systems approach to quantify greenhouse gas fluxes from pastoral dairy production as affected by management regime publication-title: Agric. Syst. doi: 10.1016/j.agsy.2005.03.006 – year: 2006 ident: 10.1016/j.livsci.2015.06.020_bib510 – volume: 45 start-page: 1773 year: 2011 ident: 10.1016/j.livsci.2015.06.020_bib13 article-title: Including carbon emissions from deforestation in the carbon footprint of brazilian beef publication-title: Environ. Sci. Technol. doi: 10.1021/es103240z – volume: 2 start-page: 127 year: 2012 ident: 10.1016/j.livsci.2015.06.020_bib7 article-title: Is the grass always greener? Comparing the environmental impact of conventional, natural and grass-fed beef production systems publication-title: Animals doi: 10.3390/ani2020127 – volume: 116 start-page: 60 year: 2013 ident: 10.1016/j.livsci.2015.06.020_bib51 article-title: Accounting for multi-functionality of sheep farming in the carbon footprint of lamb: a comparison of three contrasting Mediterranean systems publication-title: Agric. Syst. doi: 10.1016/j.agsy.2012.11.002 – volume: 75 start-page: 640 year: 1992 ident: 10.1016/j.livsci.2015.06.020_bib62 article-title: Crossbreeding effects in dairy cattle: the Illinois experiment, 1949 to 1969 publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(92)77801-1 – year: 2001 ident: 10.1016/j.livsci.2015.06.020_bib38 – volume: 27 start-page: 237 year: 1998 ident: 10.1016/j.livsci.2015.06.020_bib64 article-title: Livestock in resource-poor farming systems publication-title: Outlook Agric. doi: 10.1177/003072709802700406 – volume: 91 start-page: 5427 year: 2013 ident: 10.1016/j.livsci.2015.06.020_bib53 article-title: A simulation-based approach for evaluating and comparing the environmental footprints of beef production systems publication-title: J. Anim. Sci. doi: 10.2527/jas.2013-6506 – volume: 188 start-page: 180 year: 2014 ident: 10.1016/j.livsci.2015.06.020_bib67 article-title: Variability in greenhouse gas emissions, fossil energy consumption and farm economics in suckler beef production in 59 French farms publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.03.003 – volume: 103 start-page: 380 year: 2010 ident: 10.1016/j.livsci.2015.06.020_bib43 article-title: Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States publication-title: Agric. Syst. doi: 10.1016/j.agsy.2010.03.009 – year: 2010 ident: 10.1016/j.livsci.2015.06.020_bib14 – volume: 145 start-page: 239 year: 2012 ident: 10.1016/j.livsci.2015.06.020_bib37 article-title: Effects of type of ration and allocation methods on the environmental impacts of beef-production systems publication-title: Livest. Sci. doi: 10.1016/j.livsci.2012.02.010 – volume: 19 start-page: 2285 year: 2013 ident: 10.1016/j.livsci.2015.06.020_bib58 article-title: How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? publication-title: Glob. Change Biol. doi: 10.1111/gcb.12160 – volume: 174 start-page: 126 year: 2015 ident: 10.1016/j.livsci.2015.06.020_bib35 article-title: Greenhouse gas emissions from beef production systems in Denmark and Sweden publication-title: Livest. Sci. doi: 10.1016/j.livsci.2015.01.021 – volume: 82 start-page: 2115 year: 2004 ident: 10.1016/j.livsci.2015.06.020_bib39 article-title: Environmental impacts of the Japanese beef-fattening system with different feeding lengths as evaluated by a life-cycle assessment method publication-title: J. Anim. Sci. doi: 10.2527/2004.8272115x – volume: 112 start-page: 309 year: 2012 ident: 10.1016/j.livsci.2015.06.020_bib63 article-title: Does organic farming reduce environmental impacts? – a meta-analysis of European research publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2012.08.018 – volume: 18 start-page: 756 year: 2010 ident: 10.1016/j.livsci.2015.06.020_bib36 article-title: Environmental consequences of different beef production systems in the EU publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2009.12.023 – volume: 152 start-page: 239 year: 2013 ident: 10.1016/j.livsci.2015.06.020_bib6 article-title: Greenhouse gas emission intensities of grass silage based dairy and beef production: a systems analysis of Norwegian farms publication-title: Livest. Sci. doi: 10.1016/j.livsci.2012.12.016 – volume: 98 start-page: 346 year: 2014 ident: 10.1016/j.livsci.2015.06.020_bib46 article-title: Sustainability of meat production beyond carbon footprint: a synthesis of case studies from grazing systems in Uruguay publication-title: Meat Sci. doi: 10.1016/j.meatsci.2014.07.005 – volume: 90 start-page: 3527 year: 2012 ident: 10.1016/j.livsci.2015.06.020_bib8 article-title: The environmental and economic impact of removing growth-enhancing technologies from U.S. beef production publication-title: J. Anim. Sci. doi: 10.2527/jas.2011-4870 – volume: 30 start-page: 5 year: 2007 ident: 10.1016/j.livsci.2015.06.020_bib29 article-title: Cultural energy analysis of pasturing systems for cattle finishing programs publication-title: J. Sustain. Agric. doi: 10.1300/J064v30n01_03 – volume: 91 start-page: 5801 year: 2013 ident: 10.1016/j.livsci.2015.06.020_bib70 article-title: An environmental, economic, and social assessment of improving cattle finishing weight or average daily gain within U.S. beef production publication-title: J. Anim. Sci. doi: 10.2527/jas.2013-6632 – volume: 75 start-page: 2165 year: 1992 ident: 10.1016/j.livsci.2015.06.020_bib26 article-title: Methane prediction in dry and lactating holstein cows publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(92)77976-4 – volume: 8 start-page: 035052 year: 2013 ident: 10.1016/j.livsci.2015.06.020_bib34 article-title: Global versus local environmental impacts of grazing and confined beef production systems publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/8/3/035052 – year: 2005 ident: 10.1016/j.livsci.2015.06.020_bib501 – volume: 83 start-page: 2863 year: 2005 ident: 10.1016/j.livsci.2015.06.020_bib56 article-title: Consumer sensory acceptance and value of domestic, Canadian, and Australian grass-fed beef steaks publication-title: J. Anim. Sci. doi: 10.2527/2005.83122863x |
SSID | ssj0054484 |
Score | 2.528198 |
SecondaryResourceType | review_article |
Snippet | Livestock production, and especially beef production, has a major impact on the environment. Environmental impacts, however, vary largely among beef systems.... |
SourceID | wageningen proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 279 |
SubjectTerms | acidification Animal Production Systems animal-based foods beef beef cattle biodiversity breeds calves Cattle crop production cropland Dairy dairy cows dairy farming Dierlijke Productiesystemen diet Emission emissions energy environmental impact eutrophication feeds finishing food availability global warming grasslands Grazing Greenhouse gas humans land use Leerstoelgroep Dierlijke productiesystemen life cycle assessment livestock production meat production production technology Suckler WIAS |
Title | Comparing environmental impacts of beef production systems: A review of life cycle assessments |
URI | https://dx.doi.org/10.1016/j.livsci.2015.06.020 https://www.proquest.com/docview/1846322216 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F491581 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swELYQe2EPCAYTsIE8iVfTpLHjZG9VNdRtghdA6hOWnfhQUZVWTTvEC7-duzjpOmkSEk9WonPi3Pnsc-7uO8bOi36RuizSwqM5IaSzpbCZB1GCLl1U6rz0dFC8uk5Hd_LXWI232LDLhaGwynbtD2t6s1q3d3otN3vzyaR3E6OtH-MajCYNga6MKYNdaprlFy_rMA-Fx4_Gs4zEgqi79Lkmxms6-YOPpgAv1aB4UtXv_29PG-bnzhNqetWkPm1sRZd7bLe1IfkgDHOfbfnqE_s4eFi0OBr-gN0PQ33B6oFvpLJhp5AVWfMZcOc98HlAfEXp8ADqXH_nAx4SWohoOgHPi2d8D7drEM_6kN1d_rgdjkRbSkEUMo2WwoJLSkhTb5Xva8izAixgoxyUoEAWqVfaRhY8aAKkSRLrdBRDHqNO5xAln9l2Nav8EeNA8DR9b_PEJZL8sImFzEplbQTa5fKYJR0HTdHijFO5i6npAsoeTeC7Ib4biqvrR8dMrHvNA87GG_S6E475Z74Y3Are6Pmtk6VBVSL_iK38bFUbPOym5HiKU_yGv0I2FVV1qg0Bcbe_1szTamGqKTWoNbWReayy-OTdY_rCdugqBBZ-ZdvLxcqforGzdGfNbD5jHwY_f4-uXwF9cASf |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELdYeRg8TOxLgzHmSXu1mjRxnOytqkBlQF8GUp9m2YkPdarSqmlB_Pe7ix3WSUhIPFlKfIlzZ5_PubvfMfa9HJSZzSMlHJoTIrWmEiZ3ICpQlY0qVVSODopXk2x8k_6cyukOG3W5MBRWGXS_1-mttg5X-oGb_eVs1v8Vo60fow5Gk4ZAV6av2C6hU8ke2x2eX4wnnUKWeAJpncvYXxBBl0HXhnnNZ3f4dIrxki2QJxX-fnqH2rJA9-5xsddt9tPWbnR2wN4EM5IP_Ujfsh1Xv2P7w9tVgNJw79nvkS8xWN_yrWw2JPKJkQ1fALfOAV960FcUEPe4zs0PPuQ-p4U6zWfgePmA7-HmEcez-cBuzk6vR2MRqimIMs2itTBgkwqyzBnpBgqKvAQD2EgLFUhIy8xJZSIDDhRh0iSJsSqKoYhxWRcQJR9Zr17U7hPjQAg1A2eKxCYpuWITA7lJpTERKFukhyzpOKjLADVOFS_muosp-6M93zXxXVNo3SA6ZOKRaumhNp7przrh6P-mjMbd4BnKb50sNa4mcpGY2i02jcbzbka-pzjDb_gnZF1TYadGExZ3-Lum7zcrXc-pwYXT6LSIZR4fvXhMX9nr8fXVpb48n1x8Znt0x8cZHrPeerVxX9D2WduTMLf_AljtB1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+environmental+impacts+of+beef+production+systems%3A+A+review+of+life+cycle+assessments&rft.jtitle=Livestock+science&rft.au=de+Vries%2C+M&rft.au=van+Middelaar%2C+C.E.&rft.au=de+Boer%2C+I.J.M.&rft.date=2015-08-01&rft.issn=1871-1413&rft.volume=178+p.279-288&rft.spage=279&rft.epage=288&rft_id=info:doi/10.1016%2Fj.livsci.2015.06.020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1871-1413&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1871-1413&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1871-1413&client=summon |