Inactivation of Escherichia coli Using the Atmospheric Pressure Plasma Jet of Ar gas

Germicidal treatments of Escherichia coli on Langmuir--Blodget (LB) agar were performed using the atmospheric pressure plasma jet sources of Ar gas in the ambient air. Shorter distances from the nozzle of the plasma jet device were more effective in achieving higher bactericidal effects on E. coli g...

Full description

Saved in:
Bibliographic Details
Published inJapanese Journal of Applied Physics Vol. 52; no. 3; pp. 036201 - 036201-4
Main Authors Homma, Takeshi, Furuta, Masakazu, Takemura, Yuichiro
Format Journal Article
LanguageEnglish
Published The Japan Society of Applied Physics 01.03.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Germicidal treatments of Escherichia coli on Langmuir--Blodget (LB) agar were performed using the atmospheric pressure plasma jet sources of Ar gas in the ambient air. Shorter distances from the nozzle of the plasma jet device were more effective in achieving higher bactericidal effects on E. coli grown on LB agar. The surface temperature of the agar was monitored and the spectroscopic analysis of the plasma jet was performed in order to evaluate the factors contributing to the bactericidal effect, such as heating, UV emission, and radical formation caused by the plasma jet. Although the plasma jet raised the surface temperature of LB agar up to about 40 °C, the bactericidal effect was not observed. Moreover, the bactericidal effect of UV (200--300 nm) emitted from the plasma jet was negligible compared with the effects of ions and radical species generated by the atmospheric plasma. The results suggest that the ions and radical species generated by the atmospheric pressure plasma jet are critical for high bactericidal effects on E. coli .
AbstractList Germicidal treatments of Escherichia coli on Langmuir-Blodget (LB) agar were performed using the atmospheric pressure plasma jet sources of Ar gas in the ambient air. Shorter distances from the nozzle of the plasma jet device were more effective in achieving higher bactericidal effects on E. coli grown on LB agar. The surface temperature of the agar was monitored and the spectroscopic analysis of the plasma jet was performed in order to evaluate the factors contributing to the bactericidal effect, such as heating, UV emission, and radical formation caused by the plasma jet. Although the plasma jet raised the surface temperature of LB agar up to about 40 [degrees]C, the bactericidal effect was not observed. Moreover, the bactericidal effect of UV (200-300 nm) emitted from the plasma jet was negligible compared with the effects of ions and radical species generated by the atmospheric plasma. The results suggest that the ions and radical species generated by the atmospheric pressure plasma jet are critical for high bactericidal effects on E. coli.
Germicidal treatments of Escherichia coli on Langmuir--Blodget (LB) agar were performed using the atmospheric pressure plasma jet sources of Ar gas in the ambient air. Shorter distances from the nozzle of the plasma jet device were more effective in achieving higher bactericidal effects on E. coli grown on LB agar. The surface temperature of the agar was monitored and the spectroscopic analysis of the plasma jet was performed in order to evaluate the factors contributing to the bactericidal effect, such as heating, UV emission, and radical formation caused by the plasma jet. Although the plasma jet raised the surface temperature of LB agar up to about 40 °C, the bactericidal effect was not observed. Moreover, the bactericidal effect of UV (200--300 nm) emitted from the plasma jet was negligible compared with the effects of ions and radical species generated by the atmospheric plasma. The results suggest that the ions and radical species generated by the atmospheric pressure plasma jet are critical for high bactericidal effects on E. coli .
Germicidal treatments of Escherichia coli on Langmuir–Blodget (LB) agar were performed using the atmospheric pressure plasma jet sources of Ar gas in the ambient air. Shorter distances from the nozzle of the plasma jet device were more effective in achieving higher bactericidal effects on E. coli grown on LB agar. The surface temperature of the agar was monitored and the spectroscopic analysis of the plasma jet was performed in order to evaluate the factors contributing to the bactericidal effect, such as heating, UV emission, and radical formation caused by the plasma jet. Although the plasma jet raised the surface temperature of LB agar up to about 40 °C, the bactericidal effect was not observed. Moreover, the bactericidal effect of UV (200–300 nm) emitted from the plasma jet was negligible compared with the effects of ions and radical species generated by the atmospheric plasma. The results suggest that the ions and radical species generated by the atmospheric pressure plasma jet are critical for high bactericidal effects on E. coli .
Author Takemura, Yuichiro
Homma, Takeshi
Furuta, Masakazu
Author_xml – sequence: 1
  givenname: Takeshi
  surname: Homma
  fullname: Homma, Takeshi
  organization: Graduated School of Sciences and Engineering, Kinki University, Higashiosaka, Osaka 577-8502, Japan
– sequence: 2
  givenname: Masakazu
  surname: Furuta
  fullname: Furuta, Masakazu
  organization: Radiation Research Center, Osaka Prefecture University, Sakai 599-8531, Japan
– sequence: 3
  givenname: Yuichiro
  surname: Takemura
  fullname: Takemura, Yuichiro
  organization: Graduated School of Sciences and Engineering, Kinki University, Higashiosaka, Osaka 577-8502, Japan
BookMark eNqNkEtLAzEUhYNUsK1uXQdXIsyYdzrLoVRtKdhFuw6ZkLSReZlMBf-9U0fcqODqcLnfOYtvAkZ1U1sArjFKJRfyfrXKNyknKaKCIHwGxpgymTAk-AiMESI4YRkhF2AS40t_Cs7wGGyXtTadf9Odb2rYOLiI5mCDNwevoWlKD3fR13vYHSzMu6qJ7ecXboKN8Rgs3JQ6VhqubHdq5wHudbwE506X0V595RTsHhbb-VOyfn5czvN1YphAXaJ1pllREKmlYxQ5i6QkEjNTYFFQa2kfaJbRAkkjnCDOaCqxK7jjvLBM0Cm4HXbb0LwebexU5aOxZalr2xyjwmKGGCOc4n-gUmZYkpns0XRATWhiDNapNvhKh3eFkTqZVifTihM1mO4LN0PBt7r9hn9Ad79Afyx-ALRqia4
CitedBy_id crossref_primary_10_1016_j_ceramint_2014_12_118
crossref_primary_10_1016_j_apsusc_2013_11_118
crossref_primary_10_1016_j_abb_2016_04_009
crossref_primary_10_1039_C8TC00110C
crossref_primary_10_7567_JJAP_53_110310
crossref_primary_10_1088_2516_1067_ab021c
crossref_primary_10_1088_2053_1591_3_8_085002
crossref_primary_10_1016_j_jallcom_2014_11_219
crossref_primary_10_1016_j_jallcom_2016_09_056
crossref_primary_10_3390_coatings8020052
crossref_primary_10_1016_j_jallcom_2016_03_185
crossref_primary_10_7567_JJAP_55_040302
crossref_primary_10_1007_s00253_018_8758_2
crossref_primary_10_1007_s11998_014_9638_z
crossref_primary_10_1615_PlasmaMed_2023047282
crossref_primary_10_1088_2053_1591_ab59a2
crossref_primary_10_3390_jcm8111930
crossref_primary_10_1149_2_0021410jss
crossref_primary_10_1016_j_jpowsour_2016_10_058
crossref_primary_10_1002_ppap_201400129
crossref_primary_10_1016_j_est_2017_03_007
crossref_primary_10_1016_j_bioelechem_2016_04_001
crossref_primary_10_1088_2053_1591_2_1_016504
Cites_doi 10.1016/j.ijms.2003.11.016
10.1134/1.1309476
10.1143/JJAP.47.5644
10.1128/AEM.49.6.1361-1365.1985
10.1063/1.2717576
10.1002/ppap.200900090
10.1038/161542b0
10.1016/S0257-8972(00)00803-3
10.1109/TPS.2005.844524
10.1063/1.2103394
10.1088/0022-3727/39/16/S05
10.1016/0092-8674(78)90317-3
10.1088/0022-3727/39/16/S07
10.1143/APEX.5.036201
10.1109/TPS.2006.877739
10.1109/TPS.2009.2024752
10.1038/sj.jim.2900482
10.1088/0022-3727/39/16/S06
10.1016/S0378-5173(01)00752-9
10.1016/j.surfcoat.2005.08.124
10.1111/j.1365-2672.2007.03385.x
10.1016/j.surfcoat.2004.07.042
10.1128/JB.134.3.1133-1140.1978
10.1063/1.3039808
10.1016/j.cap.2008.06.001
10.1016/S0927-7765(01)00324-1
10.1002/ppap.200600217
ContentType Journal Article
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
7QL
C1K
DOI 10.7567/JJAP.52.036201
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Bacteriology Abstracts (Microbiology B)

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1347-4065
EndPage 036201-4
ExternalDocumentID 10_7567_JJAP_52_036201
JJAP_52_036201
GroupedDBID 4.4
AALHV
ACGFS
ACNCT
AEFHF
ALMA_UNASSIGNED_HOLDINGS
ATQHT
CEBXE
F5P
IOP
MC8
N5L
QTG
RNS
ROL
RW3
SJN
AAYXX
CITATION
IZVLO
KOT
7U5
8FD
H8D
L7M
7QL
C1K
ID FETCH-LOGICAL-c460t-aa9a4bb27a7f430fe0772714cb16b3ee316b0893b07c6f62fca371fb5f55be463
ISSN 0021-4922
IngestDate Fri Jun 28 10:17:39 EDT 2024
Fri Jun 28 12:52:25 EDT 2024
Fri Aug 23 02:32:20 EDT 2024
Mon Jan 18 10:57:22 EST 2021
Mon Jan 18 10:57:19 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c460t-aa9a4bb27a7f430fe0772714cb16b3ee316b0893b07c6f62fca371fb5f55be463
Notes Schematic of the germicidal treatment by plasma jet, spectroscopic measurement, and thermometry. Growth inhibition of E. coli on LB agar after Ar plasma treatment [(a) untreated, (b) Ar gas only, and (c)--(e) Ar plasma-treated at distances of (c) 5, (d) 10, and (e) 15 mm from the nozzle of the plasma emission]. Relationship between the bacterial count of E. coli vs the distance from the plasma nozzle. The working gas was Ar gas, the gas flow rate was 20 l/min, the plasma exposure time was 60 s, and the distances from the nozzle were 5, 10, and 15 mm. Error bars indicate the standard deviation of 3 measured values. Temperature changes on the surface of the LB agar at various distances from the plasma nozzle. Total bacterial count of E. coli on LB agar in an incubator at 40 °C. Total bacterial count of E. coli exposed to Ar plasma jet through glass. UV/visible emission spectra of Ar plasma jet sources. UV/visible emission spectra of Ar plasma jet sources in the wavelength range from 200 to 1000 nm at various distances from nozzle. Emission spectra of Ar I and OH at various distances from nozzle.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1677917287
PQPubID 23500
PageCount 1
ParticipantIDs proquest_miscellaneous_1680442531
proquest_miscellaneous_1677917287
crossref_primary_10_7567_JJAP_52_036201
ipap_primary_JJAP_52_036201
ipap_primary_10_7567_JJAP_52_036201
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Japanese Journal of Applied Physics
PublicationYear 2013
Publisher The Japan Society of Applied Physics
Publisher_xml – name: The Japan Society of Applied Physics
References X. Deng, J. Shi, and M. G. Kong: IEEE Trans. Plasma Sci. 34 (2006) 1310.
I. Amano, Y. Tanino, K. Takeshima, and A. Mizuno: Int. J. Plasma Environ. Sci. Technol. 2 (2008) 100.
M. Laroussi and F. Leipold: Int. J. Mass Spectrom. 233 (2004) 81.
I. A. Soloshenko, V. V. Tsiolko, V. A. Khomich, A. I. Shchedrin, A. V. Ryabtsev, V. Y. Bazhenov, and I. L. Mikhno: Plasma Phys. Rep. 26 (2000) 792.
M. Vleugels, G. Shama, X. T. Deng, E. Greenacre, T. Brocklehurst, and M. G. Kong: IEEE Trans. Plasma Sci. 33 (2005) 824.
T. Yamamori, K. Ito, Y. Nakamura, and T. Yura: J. Bacteriol. 134 (1978) 1133.
R. M. Moman and H. Najmaldeen: Egypt. Acad. J. Biol. Sci. Microbiol. 2 (2010) 43.
K. Kelly-Wintenberg, T. C. Montie, C. Brickman, J. R. Roth, A. K. Carr, K. Sorge, L. C. Wadsworth, and P. P. Y. Tsai: J. Ind. Microbiol. Biotechnol. 20 (1998) 69.
X. T. Deng, J. J. Shi, and M. G. Kong: J. Appl. Phys. 101 (2007) 074701.
P. Muranyi, J. Wunderlich, and M. Heise: J. Appl. Microbiol. 103 (2007) 1535.
U. Cvelbar, D. Vujosevic, Z. Vratnica, and M. Mozetic: J. Phys. D 39 (2006) 3487.
H. G. Jenkins: Nature 161 (1948) 542.
J. Shen, C. Cheng, S. Fong, H. Xie, Y. Lan, G. Ni, Y. Meng, J. Luo, and X. Wang: Appl. Phys. Express 5 (2012) 036201.
M. Tanino, W. Xilu, K. Takashima, S. Katsura, and A. Mizuno: Int. J. Plasma Environ. Sci. Technol. 1 (2007) 102.
P. G. Lemaux, S. L. Herendeen, P. L. Bloch, and F. C. Neidhardt: Cell 13 (1978) 427.
Y. Takemura, N. Yamaguchi, and T. Hara: Jpn. J. Appl. Phys. 47 (2008) 5644.
M. K. Boudam, M. Moisan, B. Saoudi, C. Popovici, N. Gherardi, and F. Massines: J. Phys. D 39 (2006) 3494.
B. Gweon, D. B. Kim, S. Y. Moon, and W. Choe: Curr. Appl. Phys. 9 (2009) 625.
G. Fridman, A. D. Books, M. Balasubramanian, A. Fridman, A. Gutsol, V. N. Vasilets, H. Ayan, and G. Friedman: Plasma Processes Polym. 4 (2007) 370.
J. Goree, B. Liu, and D. Drake: J. Phys. D 39 (2006) 3479.
R. B. Gadri, J. R. Roth, T. C. Montie, K. K. Wintenberg, P. P. Y. Tsai, D. J. Helfritch, P. Feldman, D. M. Sherman, F. Karakaya, and Z. Chen: Surf. Coatings Technol. 131 (2000) 528.
S. Iwaguch, K. Matsumura, Y. Tokuoka, S. Wakui, and N. Kawashima: Colloids Surf. B 25 (2002) 299.
M. Moisan, J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian, and L. H. Yahia: Int. J. Pharm. 226 (2001) 1.
S. Ikawa, K. Kitano, and S. Hamaguchi: Plasma Processes Polym. 7 (2010) 33.
Y. Takemura, Y. Kubota, N. Yamaguchi, and T. Hara: IEEE Trans. Plasma Sci. 37 (2009) 1604.
J. C. H. Chang, S. F. Ossoff, D. C. Lobe, M. H. Dorfman, C. M. Dumals, R. G. Qualls, and J. D. Johnson: Appl. Environ. Microbiol. 49 (1985) 1361.
X. T. Deng, J. J. Shi, G. Shama, and M. G. Kong: Appl. Phys. Lett. 87 (2005) 153901.
H. Eto, Y. Ono, A. Ogino, and M. Nagatsu: Appl. Phys. Lett. 93 (2008) 221502.
H. Ohkawa, T. Akitsu, M. Tsuji, H. Kimura, M. Kogoma, and K. Fukushima: Surf. Coatings Technol. 200 (2006) 5829.
T. Akitsu, H. Ohkawa, M. Tsuji, H. Kimura, and M. Kogoma: Surf. Coatings Technol. 193 (2005) 29.
2007; 103
2007; 101
2005; 193
1948; 161
2006; 34
2000; 26
2006; 39
2005; 87
2000; 131
1978; 134
1978; 13
2008; 2
2008; 93
1998; 20
1985; 49
2001; 226
2004; 233
2002; 25
2008; 47
2009; 9
2007; 4
2007; 1
2010; 2
2012; 5
2010; 7
2006; 200
2005; 33
2009; 37
References_xml – volume: 233
  start-page: 81
  year: 2004
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/j.ijms.2003.11.016
– volume: 26
  start-page: 792
  year: 2000
  publication-title: Plasma Phys. Rep.
  doi: 10.1134/1.1309476
– volume: 47
  start-page: 5644
  year: 2008
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.47.5644
– volume: 49
  start-page: 1361
  year: 1985
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.49.6.1361-1365.1985
– volume: 101
  start-page: 074701
  year: 2007
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2717576
– volume: 7
  start-page: 33
  year: 2010
  publication-title: Plasma Processes Polym.
  doi: 10.1002/ppap.200900090
– volume: 161
  start-page: 542
  year: 1948
  publication-title: Nature
  doi: 10.1038/161542b0
– volume: 131
  start-page: 528
  year: 2000
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/S0257-8972(00)00803-3
– volume: 33
  start-page: 824
  year: 2005
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2005.844524
– volume: 87
  start-page: 153901
  year: 2005
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2103394
– volume: 39
  start-page: 3479
  year: 2006
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/39/16/S05
– volume: 13
  start-page: 427
  year: 1978
  publication-title: Cell
  doi: 10.1016/0092-8674(78)90317-3
– volume: 39
  start-page: 3494
  year: 2006
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/39/16/S07
– volume: 5
  start-page: 036201
  year: 2012
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.5.036201
– volume: 34
  start-page: 1310
  year: 2006
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2006.877739
– volume: 37
  start-page: 1604
  year: 2009
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2009.2024752
– volume: 20
  start-page: 69
  year: 1998
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1038/sj.jim.2900482
– volume: 1
  start-page: 102
  year: 2007
  publication-title: Int. J. Plasma Environ. Sci. Technol.
– volume: 39
  start-page: 3487
  year: 2006
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/39/16/S06
– volume: 226
  start-page: 1
  year: 2001
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(01)00752-9
– volume: 200
  start-page: 5829
  year: 2006
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/j.surfcoat.2005.08.124
– volume: 103
  start-page: 1535
  year: 2007
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2007.03385.x
– volume: 2
  start-page: 100
  year: 2008
  publication-title: Int. J. Plasma Environ. Sci. Technol.
– volume: 2
  start-page: 43
  year: 2010
  publication-title: Egypt. Acad. J. Biol. Sci. Microbiol.
– volume: 193
  start-page: 29
  year: 2005
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/j.surfcoat.2004.07.042
– volume: 134
  start-page: 1133
  year: 1978
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.134.3.1133-1140.1978
– volume: 93
  start-page: 221502
  year: 2008
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3039808
– volume: 9
  start-page: 625
  year: 2009
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2008.06.001
– volume: 25
  start-page: 299
  year: 2002
  publication-title: Colloids Surf. B
  doi: 10.1016/S0927-7765(01)00324-1
– volume: 4
  start-page: 370
  year: 2007
  publication-title: Plasma Processes Polym.
  doi: 10.1002/ppap.200600217
SSID ssj0026541
ssj0026590
ssj0026540
ssj0064762
Score 2.1721098
Snippet Germicidal treatments of Escherichia coli on Langmuir--Blodget (LB) agar were performed using the atmospheric pressure plasma jet sources of Ar gas in the...
Germicidal treatments of Escherichia coli on Langmuir–Blodget (LB) agar were performed using the atmospheric pressure plasma jet sources of Ar gas in the...
Germicidal treatments of Escherichia coli on Langmuir-Blodget (LB) agar were performed using the atmospheric pressure plasma jet sources of Ar gas in the...
SourceID proquest
crossref
ipap
SourceType Aggregation Database
Publisher
StartPage 036201
SubjectTerms Agar
Atmospheric pressure
Barometric pressure
Escherichia coli
Nozzles
Plasma (physics)
Radicals
Surface temperature
Title Inactivation of Escherichia coli Using the Atmospheric Pressure Plasma Jet of Ar gas
URI https://search.proquest.com/docview/1677917287
https://search.proquest.com/docview/1680442531
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKERI8IBggxgAZgcRDlJKLL-SxQkNbpcEeOmk8RXZiQ1U1qZKGh4kfz7Gdpu5A4_KSNrbTuD5fjj8754LQmzgqZUYiFYooUyFJdRYKqUXIylImhWJS2dQJZ5_YyQWZXdLL0eiH712ykZPi6rd-Jf8jVSgDuRov2X-Q7PCjUADfQb5wBAnD8a9kfFoZt4TvA-s7bo0IFsZ8OQABLwJnEGC9Rzarul3b2t4lsFEmY1G7EsFMWXOAaRN87W2Ftmx1XQUzS1RtjpwBAvVqZTnnXCxV-20xYKBrOkdGz0QrluKq2-0LLNWqsymNgi-d6WBT-_sNJvdD6u83WI81mMerwazUY8zWarXwdxmNBQjJnOvxRDkdmxIOy1aXImKrhGnigS31NKqZYfvbK6_AuQZd1_-cMvMGejabnk9oMvGv3YupbRrkNMldg1vodsIzagxCTz-fD8t1Rk0YnN1J7J1kQw0jnPUh6d0_dZFBTU_e7fdjj_mMF2ux_mX-t6Rm_gDd71cjeOqg9RCNVHWA7nkxKg_QnX60H6G5Dzdca-zBDRu4YQs3DHDDHtzwFm7YwQ0D3MzV0wYD3B6ji4_H8w8nYZ-UIywIizahEJkgUiZccE3SSKsI1mc8JoWMmUyVSuEjAhIsI14wzRJdiJTHWlJNKTz4LH2CxlVdqacIZ7pUheAw5wpKWCkFsFtNBKVlkaWal4fo7XbA8rWLvZLDmtUMbb4vwUP02oznH1sd7bW6XvtqK4wcVKx5byYqVXdtHjPOM5PHjd_U5n1EYP5L42c33uUI3d09VM_ReNN06gXQ2o18adH3EwBxmtE
link.rule.ids 315,786,790,27955,27956
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inactivation+of+Escherichia+coli+Using+the+Atmospheric+Pressure+Plasma+Jet+of+Ar+gas&rft.jtitle=Jpn+J+Appl+Phys&rft.au=Homma%2C+Takeshi&rft.au=Furuta%2C+Masakazu&rft.au=Takemura%2C+Yuichiro&rft.date=2013-03-01&rft.pub=The+Japan+Society+of+Applied+Physics&rft.issn=0021-4922&rft.eissn=1347-4065&rft.volume=52&rft.issue=3&rft.spage=036201&rft.epage=036201-4&rft_id=info:doi/10.7567%2FJJAP.52.036201&rft.externalDocID=JJAP_52_036201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-4922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-4922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-4922&client=summon