Regularized inversion of aerosol hygroscopic growth factor probability density function: application to humidity-controlled fast integrated mobility spectrometer measurements
Aerosol hygroscopic growth plays an important role in atmospheric particle chemistry and the effects of aerosol on radiation and hence climate. The hygroscopic growth is often characterized by a growth factor probability density function (GF-PDF), where the growth factor is defined as the ratio of t...
Saved in:
Published in | Atmospheric measurement techniques Vol. 15; no. 8; pp. 2579 - 2590 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
28.04.2022
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aerosol hygroscopic growth plays an important role in
atmospheric particle chemistry and the effects of aerosol on radiation and
hence climate. The hygroscopic growth is often characterized by a growth
factor probability density function (GF-PDF), where the growth factor is
defined as the ratio of the particle size at a specified relative humidity
to its dry size. Parametric, least-squares methods are the most widely used
algorithms for inverting the GF-PDF from measurements of the humidified tandem
differential mobility analyzer (HTDMA) and have been recently applied to
the GF-PDF inversion from measurements of the humidity-controlled fast
integrated mobility spectrometer (HFIMS). However, these least-squares
methods suffer from noise amplification due to the lack of regularization in
solving the ill-posed problem, resulting in significant fluctuations in the
retrieved GF-PDF and even occasional failures of convergence. In this study,
we introduce nonparametric, regularized methods to invert the aerosol GF-PDF and
apply them to HFIMS measurements. Based on the HFIMS kernel function, the
forward convolution is transformed into a matrix-based form, which
facilitates the application of the nonparametric inversion methods with
regularizations, including Tikhonov regularization and Twomey's iterative
regularization. Inversions of the GF-PDF using the nonparameteric methods
with regularization are demonstrated using HFIMS measurements simulated from
representative GF-PDFs of ambient aerosols. The characteristics of
reconstructed GF-PDFs resulting from different inversion methods, including
previously developed least-squares methods, are quantitatively compared. The
result shows that Twomey's method generally outperforms other inversion
methods. The capabilities of Twomey's method in reconstructing the
pre-defined GF-PDFs and recovering the mode parameters are validated. |
---|---|
AbstractList | Aerosol hygroscopic growth plays an important role in atmospheric particle chemistry and the effects of aerosol on radiation and hence climate. The hygroscopic growth is often characterized by a growth factor probability density function (GF-PDF), where the growth factor is defined as the ratio of the particle size at a specified relative humidity to its dry size. Parametric, least-squares methods are the most widely used algorithms for inverting the GF-PDF from measurements of the humidified tandem differential mobility analyzer (HTDMA) and have been recently applied to the GF-PDF inversion from measurements of the humidity-controlled fast integrated mobility spectrometer (HFIMS). However, these least-squares methods suffer from noise amplification due to the lack of regularization in solving the ill-posed problem, resulting in significant fluctuations in the retrieved GF-PDF and even occasional failures of convergence. In this study, we introduce nonparametric, regularized methods to invert the aerosol GF-PDF and apply them to HFIMS measurements. Based on the HFIMS kernel function, the forward convolution is transformed into a matrix-based form, which facilitates the application of the nonparametric inversion methods with regularizations, including Tikhonov regularization and Twomey's iterative regularization. Inversions of the GF-PDF using the nonparameteric methods with regularization are demonstrated using HFIMS measurements simulated from representative GF-PDFs of ambient aerosols. The characteristics of reconstructed GF-PDFs resulting from different inversion methods, including previously developed least-squares methods, are quantitatively compared. The result shows that Twomey's method generally outperforms other inversion methods. The capabilities of Twomey's method in reconstructing the pre-defined GF-PDFs and recovering the mode parameters are validated. Aerosol hygroscopic growth plays an important role in atmospheric particle chemistry and the effects of aerosol on radiation and hence climate. The hygroscopic growth is often characterized by a growth factor probability density function (GF-PDF), where the growth factor is defined as the ratio of the particle size at a specified relative humidity to its dry size. Parametric, least-squares methods are the most widely used algorithms for inverting the GF-PDF from measurements of the humidified tandem differential mobility analyzer (HTDMA) and have been recently applied to the GF-PDF inversion from measurements of the humidity-controlled fast integrated mobility spectrometer (HFIMS). However, these least-squares methods suffer from noise amplification due to the lack of regularization in solving the ill-posed problem, resulting in significant fluctuations in the retrieved GF-PDF and even occasional failures of convergence. In this study, we introduce nonparametric, regularized methods to invert the aerosol GF-PDF and apply them to HFIMS measurements. Based on the HFIMS kernel function, the forward convolution is transformed into a matrix-based form, which facilitates the application of the nonparametric inversion methods with regularizations, including Tikhonov regularization and Twomey's iterative regularization. Inversions of the GF-PDF using the nonparameteric methods with regularization are demonstrated using HFIMS measurements simulated from representative GF-PDFs of ambient aerosols. The characteristics of reconstructed GF-PDFs resulting from different inversion methods, including previously developed least-squares methods, are quantitatively compared. The result shows that Twomey's method generally outperforms other inversion methods. The capabilities of Twomey's method in reconstructing the pre-defined GF-PDFs and recovering the mode parameters are validated. The new Aerosol hygroscopic growth plays an important role in atmospheric particle chemistry and the effects of aerosol on radiation and hence climate. The hygroscopic growth is often characterized by a growth factor probability density function (GF-PDF), where the growth factor is defined as the ratio of the particle size at a specified relative humidity to its dry size. Parametric, least-squares methods are the most widely used algorithms for inverting the GF-PDF from measurements of the humidified tandem differential mobility analyzer (HTDMA) and have been recently applied to the GF-PDF inversion from measurements of the humidity-controlled fast integrated mobility spectrometer (HFIMS). However, these least-squares methods suffer from noise amplification due to the lack of regularization in solving the ill-posed problem, resulting in significant fluctuations in the retrieved GF-PDF and even occasional failures of convergence. In this study, we introduce nonparametric, regularized methods to invert the aerosol GF-PDF and apply them to HFIMS measurements. Based on the HFIMS kernel function, the forward convolution is transformed into a matrix-based form, which facilitates the application of the nonparametric inversion methods with regularizations, including Tikhonov regularization and Twomey's iterative regularization. Inversions of the GF-PDF using the nonparameteric methods with regularization are demonstrated using HFIMS measurements simulated from representative GF-PDFs of ambient aerosols. The characteristics of reconstructed GF-PDFs resulting from different inversion methods, including previously developed least-squares methods, are quantitatively compared. The result shows that Twomey's method generally outperforms other inversion methods. The capabilities of Twomey's method in reconstructing the pre-defined GF-PDFs and recovering the mode parameters are validated. |
Audience | Academic |
Author | Wang, Yang Hering, Susanne Wang, Jian Spielman, Steven Zhang, Jiaoshi |
Author_xml | – sequence: 1 fullname: Zhang, Jiaoshi – sequence: 2 fullname: Wang, Yang – sequence: 3 fullname: Spielman, Steven – sequence: 4 fullname: Hering, Susanne – sequence: 5 fullname: Wang, Jian |
BackLink | https://www.osti.gov/biblio/1870734$$D View this record in Osti.gov |
BookMark | eNptkktv1DAUhSNUJNrCnqUFKxYpthM_wq6qeIxUCanA2nKc64xHiT3YTmH4UfxGHKYCRkJe-F7r8zny9bmoznzwUFXPCb5ipGtf6znXhNWUia6mmNJH1TmRXNSStfLsn_pJdZHSDmPeEkHPq593MC6Tju4HDMj5e4jJBY-CRRpiSGFC28NYChP2zqBSfctbZLXJIaJ9DL3u3eTyAQ3g07rbxZtcFN4gvd9Pzui1QTmg7TK7oRC1CT7HME3Fz-qUi2mGMepc-jk8qKU9mALNkCGiGXRaIszgc3paPbZ6SvDsYb-svrx7-_nmQ3378f3m5vq2Ni3HudadBE6ZNT0e2magQyOo4YJ3jbWWdcKAtlRiLiV0HdeYGcYMwaZhgrR93zeX1eaoOwS9U_voZh0PKminfh-EOCodszMTKJCEMdpaSUTXWmgkt3xo9KBtKzs7iKL14qgVUnYqGZfBbMsUfHmjIlJg0bQFenmEylC_LpCy2oUl-vJGRTnjWGLKm7_UqIuz8zbkqM3sklHXApOOsGJfqKv_UGUNMLtiDNaV85MLr04urF8E3_Ool5TU5tPdKYuPrCmpSBHsn-kQrNYkqpJERZhak6jWJDa_APQZ1vs |
Cites_doi | 10.1080/02786826.2017.1338664 10.1029/95JD02119 10.1137/0914086 10.1080/02786826.2020.1825615 10.1175/1520-0450(1994)033<0791:APTAGI>2.0.CO;2 10.1016/S0021-8502(98)00066-4 10.1080/02786820802157823 10.1016/0021-9991(75)90028-5 10.1016/0021-8502(86)90031-5 10.1016/j.jaerosci.2015.11.001 10.1080/02786828708959153 10.5194/amt-14-5625-2021 10.1016/j.jaerosci.2008.06.005 10.5194/acp-20-12515-2020 10.1137/1034115 10.1080/02786826.2019.1628917 10.5194/acp-7-6131-2007 10.1137/0917062 10.1080/02786820300952 10.1016/j.jaerosci.2021.105862 10.1016/B978-0-08-022932-4.50014-8 10.1016/j.jaerosci.2008.07.013 10.1111/j.1600-0889.2008.00350.x 10.5194/amt-14-7909-2021 10.1016/j.jaerosci.2019.105484 10.1080/027868202753339032 10.5194/amt-10-4915-2017 10.1016/j.jaerosci.2018.03.006 10.1007/BF02149761 10.1007/978-3-662-03537-5 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 Copernicus GmbH 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 Copernicus GmbH – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center |
CorporateAuthor_xml | – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center |
DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L7M P5Z P62 PCBAR PIMPY PQEST PQQKQ PQUKI PRINS OTOTI DOA |
DOI | 10.5194/amt-15-2579-2022 |
DatabaseName | CrossRef Science in Context Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China OSTI.GOV Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Environmental Sciences |
EISSN | 1867-8548 |
EndPage | 2590 |
ExternalDocumentID | oai_doaj_org_article_e815524f81794fe386f6d3adaf489fd7 1870734 A701915386 10_5194_amt_15_2579_2022 |
GroupedDBID | 23N 3V. 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABUWG ACGFO ADBBV AEGXH AENEX AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS BBORY BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z ESX GROUPED_DOAJ H13 HCIFZ IAO IEA ISR ITC K6- KQ8 LK5 M7R M~E OK1 P2P P62 PCBAR PIMPY PQQKQ PROAC Q2X RIG RKB RNS TR2 TUS 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W H8D H96 KL. L.G L7M PQEST PQUKI PRINS ABPTK N95 OTOTI |
ID | FETCH-LOGICAL-c460t-a98e625fcb0d43d2d372c67693fff597ceaf280688e996a05c55c10c35714bbb3 |
IEDL.DBID | BENPR |
ISSN | 1867-8548 1867-1381 |
IngestDate | Tue Oct 22 15:00:43 EDT 2024 Thu May 18 22:20:32 EDT 2023 Thu Oct 10 21:07:43 EDT 2024 Thu Feb 22 23:59:41 EST 2024 Fri Feb 02 04:01:23 EST 2024 Thu Aug 01 19:19:04 EDT 2024 Fri Aug 23 03:22:40 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-a98e625fcb0d43d2d372c67693fff597ceaf280688e996a05c55c10c35714bbb3 |
Notes | USDOE Office of Science (SC), Biological and Environmental Research (BER) SC0013103; DESC0006312; SC0021017; SC0006312 |
ORCID | 0000-0001-8428-3527 0000-0002-0543-0443 0000-0001-6536-310X 0000-0002-2815-4170 000000016536310X 0000000205430443 0000000184283527 0000000228154170 |
OpenAccessLink | https://www.proquest.com/docview/2656080263?pq-origsite=%requestingapplication% |
PQID | 2656080263 |
PQPubID | 105742 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e815524f81794fe386f6d3adaf489fd7 osti_scitechconnect_1870734 proquest_journals_2656080263 gale_infotracmisc_A701915386 gale_infotracacademiconefile_A701915386 gale_incontextgauss_ISR_A701915386 crossref_primary_10_5194_amt_15_2579_2022 |
PublicationCentury | 2000 |
PublicationDate | 2022-04-28 |
PublicationDateYYYYMMDD | 2022-04-28 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau – name: Germany |
PublicationTitle | Atmospheric measurement techniques |
PublicationYear | 2022 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref16 doi: 10.1080/02786826.2017.1338664 – ident: ref15 doi: 10.1029/95JD02119 – ident: ref8 doi: 10.1137/0914086 – ident: ref12 doi: 10.1080/02786826.2020.1825615 – ident: ref26 doi: 10.1175/1520-0450(1994)033<0791:APTAGI>2.0.CO;2 – ident: ref9 doi: 10.1016/S0021-8502(98)00066-4 – ident: ref23 doi: 10.1080/02786820802157823 – ident: ref22 – ident: ref27 doi: 10.1016/0021-9991(75)90028-5 – ident: ref18 doi: 10.1016/0021-8502(86)90031-5 – ident: ref19 doi: 10.1016/j.jaerosci.2015.11.001 – ident: ref11 doi: 10.1080/02786828708959153 – ident: ref31 doi: 10.5194/amt-14-5625-2021 – ident: ref13 doi: 10.1016/j.jaerosci.2008.06.005 – ident: ref32 doi: 10.5194/acp-20-12515-2020 – ident: ref6 doi: 10.1137/1034115 – ident: ref29 doi: 10.1080/02786826.2019.1628917 – ident: ref30 – ident: ref3 doi: 10.5194/acp-7-6131-2007 – ident: ref5 doi: 10.1137/0917062 – ident: ref25 doi: 10.1080/02786820300952 – ident: ref21 doi: 10.1016/j.jaerosci.2021.105862 – ident: ref10 doi: 10.1016/B978-0-08-022932-4.50014-8 – ident: ref4 doi: 10.1016/j.jaerosci.2008.07.013 – ident: ref24 doi: 10.1111/j.1600-0889.2008.00350.x – ident: ref14 doi: 10.5194/amt-14-7909-2021 – ident: ref20 doi: 10.1016/j.jaerosci.2019.105484 – ident: ref1 doi: 10.1080/027868202753339032 – ident: ref17 doi: 10.5194/amt-10-4915-2017 – ident: ref28 doi: 10.1016/j.jaerosci.2018.03.006 – ident: ref7 doi: 10.1007/BF02149761 – ident: ref2 doi: 10.1007/978-3-662-03537-5 |
SSID | ssj0064172 |
Score | 2.3410196 |
Snippet | Aerosol hygroscopic growth plays an important role in
atmospheric particle chemistry and the effects of aerosol on radiation and
hence climate. The hygroscopic... The new Aerosol hygroscopic growth plays an important role in atmospheric particle chemistry and the effects of aerosol on radiation and hence climate. The... Aerosol hygroscopic growth plays an important role in atmospheric particle chemistry and the effects of aerosol on radiation and hence climate. The hygroscopic... |
SourceID | doaj osti proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 2579 |
SubjectTerms | Aerosols Algorithms Convolution Distribution (Probability theory) Efficiency Environmental Sciences Growth factors Humidity Hygroscopicity Ill posed problems Inversion Inversions Kernel functions Least squares Measurement Methods Mobility Probability density function Probability density functions Probability theory Radiation Regularization Regularization methods Relative humidity Specific gravity |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggniK0RRZCIA5W83ASh1upqApSORQq9WY5fnQj7cbVJkvV_ih-IzN2dumKAxdO-5rdjfON52GPvyHkbVMKU2snWO2UYrzKNGtKkzJVtBy8gwMfi-uQZ9-q0wv-9bK8vNfqC2vCIj1wvHGHViBJGHcCNcfZQlSuMoUyynHROBPPkafNJpmKNrjiWWjbhGxtyLKXxQ1KiFb4oVqOLCsZqGoDKpLnOw4p8PZvrfPMwzT7y0gHz3PymDyaQkZ6FC_1CXlg-6ckOYNo16_Cojh9R48XHYSe4dUz8us8NJhfdXfW0K7_GZfEqHdUWbgGv6Dz2ytksfTXnabw7Gac09h4h2KDmUjdfUsNFrfDI_o-xO8jvbfdTUdP5-tlZ0CCTQXvC_g_p4aRbkkoDF366dfCmU4kRwAk6fLP0uTwnFycfP5xfMqmvgxM8yodmWqEhbTJ6TY1vDC5Kepch6aKzjlIULRVDjdshbCQTam01GWps1QXZZ3xtm2LF2TW-96-JBSPT0EMpG1lOLdpIzIFTjs1YHYsREZ5Qj5swJHXkX5DQtqCQEoAUmalRCAlApmQT4jeVg6Js8MboE5yUif5L3VKyBvEXiI1Ro-1N1dqPQzyy_dzeYTM9eggqoS8n4ScH1dKq-koA4wJ2bR2JPd3JGHu6p2P91DFJEQ7SNmrsbZJw6jAiNYFhy9vNE9OlmWQObIlCcici1f_Y7x75CHeO9wfy8U-mY2rtT2AMGtsX4cZ9RulUChs priority: 102 providerName: Directory of Open Access Journals |
Title | Regularized inversion of aerosol hygroscopic growth factor probability density function: application to humidity-controlled fast integrated mobility spectrometer measurements |
URI | https://www.proquest.com/docview/2656080263 https://www.osti.gov/biblio/1870734 https://doaj.org/article/e815524f81794fe386f6d3adaf489fd7 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF7R9MIF8RShJVohBOKwqh9re90LaquGgtQKBSr1tlrvI4mUZEPsUJUfxW9kxt6kREic4sQTx87svGe_IeRtmQlTaCdY4ZRiPI81KzMTMZVWHKyDAxuLecjLq_zimn-5yW5Cwq0ObZUbndgqauM15siPEkSJERAxpB-XPxhOjcLqahihsUf2E4gUoh7ZPz2_-jra6OKcx-34JkRtQ7S9uCtUgtfCj9S8YXHGYMmWsFSSZMcwtfj9Wy3d8yBu_yjr1gINH5NHwXWkJx2vn5AHdvGU9C_B6_WrNjlO39Gz2RRc0PbdM_J71A6aX01_WUOni59daox6R5WFe_AzOrkbI5qlX041haPbZkK7ATwUB810EN531GCTO7yiDUQ-HtO_yt608XSynk8NULDQ-D6D33OqbugWjMLQuQ9Xa_d2IkgCcJTO71OU9XNyPTz_fnbBwnwGpnkeNUyVwkL45HQVGZ6axKRFotvhis45CFS0VQ4Lt0JYiKpUlOks03Gk06yIeVVV6QvSW_iFfUkobqMCX0jb3HBuo1LECox3ZED9WPCQkj75sGGOXHYwHBLCF2SkBEbKOJPISImM7JNT5N6WDgG02w_8aiyDPEorEHuOO4EKydlU5C43qTLKcVE6U_TJG-S9RIiMBfbgjNW6ruXnbyN5ggj2aCjyPnkfiJxvVkqrsKUBnglRtXYoD3coQYb1zukDXGISvB6E7tXY46ThqUCZFimHL29Wngwappb38vDq_6cPyEP8V7AClohD0mtWa_saHKmmGpA9Mfw0CDIzaNMRfwDx8iK_ |
link.rule.ids | 230,315,783,787,867,888,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BOMAF8RRpC6wQAnFY1Y-1veaCSkVIoemhtFJvq_U-kkhJNsQOqPwofiMzayclQuIUJ544dmbnPfsNIa_LTJhCO8EKpxTjeaxZmZmIqbTiYB0c2FjMQ47O8uEl_3KVXXUJt7prq9zoxKCojdeYIz9MECVGQMSQflh-Zzg1Cqur3QiN2-QOT8FW407xweeNJs55HIY3IWYbYu3FbZkSfBZ-qOYNizMGC7aEhZIkO2YpoPdvdXTPg7D9o6qD_Rk8IPc7x5EetZx-SG7ZxSPSH4HP61chNU7f0OPZFBzQ8O4x-X0exsyvpr-sodPFjzYxRr2jysI9-BmdXI8Ry9Ivp5rC0c9mQtvxOxTHzLQA3tfUYIs7vKIFRC6-p38VvWnj6WQ9nxqgYF3b-wx-z6m6oVsoCkPnvrta2NmJEAnATzq_SVDWT8jl4NPF8ZB10xmY5nnUMFUKC8GT01VkeGoSkxaJDqMVnXMQpmirHJZthbAQU6ko01mm40inWRHzqqrSp6S38Av7jFDcRAWekLa54dxGpYgVmO7IgPKx4B8lffJuwxy5bEE4JAQvyEgJjJRxJpGREhnZJx-Re1s6hM8OH_jVWHbSKK1A5DnuBKojZ1ORu9ykyijHRelM0SevkPcSATIW2IEzVuu6liffzuUR4tejmcj75G1H5HyzUlp1GxrgmRBTa4fyYIcSJFjvnN7HJSbB50HgXo0dThqeClRpkXL48mblyU6_1PJGGvb-f_oluTu8GJ3K05Ozr_vkHv5DWAtLxAHpNau1fQ4uVVO9CHLzB1FqIm8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BKiEuiKcwLbBCCMRhFT_W9poLakujFmhUBSr1tlrvI4mUxCF2QOVH8RuZsTcpERKnOPHEsTPvndlvCHldpMLk2gmWO6UYzyLNitSETCUlB-_gwMfiOuT5MDu95J-u0ivf_1T7tsqNTWwNtak0rpH3Y0SJEZAxJH3n2yIuPg4-LL8znCCFlVY_TuM22ct5loQ9snd0MrwYbexyxqN2lBMiuCHyXtQVLSGC4X01b1iUMhDfAsQmjnecVIvlv7XYvQpU7x_D3XqjwX1yz4eR9LDj-wNyyy4ekuAcIuBq1S6U0zf0eDaFcLR994j8HrVD51fTX9bQ6eJHt0xGK0eVhXuoZnRyPUZky2o51RSOfjYT2g3joTh0poPzvqYGG97hFf0h8vQ9_asETpuKTtbzqQEK5pvgZ_B7TtUN3QJTGDqv_NXafZ4ImADcpfOb5cr6MbkcnHw7PmV-VgPTPAsbpgphIZVyugwNT0xskjzW7aBF5xwkLdoqh0VcISxkWCpMdZrqKNRJmke8LMvkCektqoV9SihuqYK4SNvMcG7DQkQKHHlowBRZiJbigLzbMEcuO0gOCakMMlICI2WUSmSkREYG5Ai5t6VDMO32g2o1ll43pRWIQ8edQOPkbCIyl5lEGeW4KJzJA_IKeS8RLmOBgjdW67qWZ19H8hDR7NFpZAF564lc1ayUVn57AzwTImztUB7sUII-653T-yhiEiIghPHV2O-k4anAsOYJhy9vJE96a1PLG9149v_TL8kdUBr55Wz4eZ_cxT8IC2OxOCC9ZrW2zyG-asoXXnH-ALv_KAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularized+inversion+of+aerosol+hygroscopic+growth+factor+probability+density+function%3A+application+to+humidity-controlled+fast+integrated+mobility+spectrometer+measurements&rft.jtitle=Atmospheric+measurement+techniques&rft.au=Zhang%2C+Jiaoshi&rft.au=Wang%2C+Yang&rft.au=Spielman%2C+Steven&rft.au=Hering%2C+Susanne&rft.date=2022-04-28&rft.pub=Copernicus+GmbH&rft.issn=1867-1381&rft.eissn=1867-8548&rft.volume=15&rft.issue=8&rft.spage=2579&rft_id=info:doi/10.5194%2Famt-15-2579-2022&rft.externalDocID=A701915386 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-8548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-8548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-8548&client=summon |