Regularized inversion of aerosol hygroscopic growth factor probability density function: application to humidity-controlled fast integrated mobility spectrometer measurements

Aerosol hygroscopic growth plays an important role in atmospheric particle chemistry and the effects of aerosol on radiation and hence climate. The hygroscopic growth is often characterized by a growth factor probability density function (GF-PDF), where the growth factor is defined as the ratio of t...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric measurement techniques Vol. 15; no. 8; pp. 2579 - 2590
Main Authors Zhang, Jiaoshi, Wang, Yang, Spielman, Steven, Hering, Susanne, Wang, Jian
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 28.04.2022
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aerosol hygroscopic growth plays an important role in atmospheric particle chemistry and the effects of aerosol on radiation and hence climate. The hygroscopic growth is often characterized by a growth factor probability density function (GF-PDF), where the growth factor is defined as the ratio of the particle size at a specified relative humidity to its dry size. Parametric, least-squares methods are the most widely used algorithms for inverting the GF-PDF from measurements of the humidified tandem differential mobility analyzer (HTDMA) and have been recently applied to the GF-PDF inversion from measurements of the humidity-controlled fast integrated mobility spectrometer (HFIMS). However, these least-squares methods suffer from noise amplification due to the lack of regularization in solving the ill-posed problem, resulting in significant fluctuations in the retrieved GF-PDF and even occasional failures of convergence. In this study, we introduce nonparametric, regularized methods to invert the aerosol GF-PDF and apply them to HFIMS measurements. Based on the HFIMS kernel function, the forward convolution is transformed into a matrix-based form, which facilitates the application of the nonparametric inversion methods with regularizations, including Tikhonov regularization and Twomey's iterative regularization. Inversions of the GF-PDF using the nonparameteric methods with regularization are demonstrated using HFIMS measurements simulated from representative GF-PDFs of ambient aerosols. The characteristics of reconstructed GF-PDFs resulting from different inversion methods, including previously developed least-squares methods, are quantitatively compared. The result shows that Twomey's method generally outperforms other inversion methods. The capabilities of Twomey's method in reconstructing the pre-defined GF-PDFs and recovering the mode parameters are validated.
AbstractList Aerosol hygroscopic growth plays an important role in atmospheric particle chemistry and the effects of aerosol on radiation and hence climate. The hygroscopic growth is often characterized by a growth factor probability density function (GF-PDF), where the growth factor is defined as the ratio of the particle size at a specified relative humidity to its dry size. Parametric, least-squares methods are the most widely used algorithms for inverting the GF-PDF from measurements of the humidified tandem differential mobility analyzer (HTDMA) and have been recently applied to the GF-PDF inversion from measurements of the humidity-controlled fast integrated mobility spectrometer (HFIMS). However, these least-squares methods suffer from noise amplification due to the lack of regularization in solving the ill-posed problem, resulting in significant fluctuations in the retrieved GF-PDF and even occasional failures of convergence. In this study, we introduce nonparametric, regularized methods to invert the aerosol GF-PDF and apply them to HFIMS measurements. Based on the HFIMS kernel function, the forward convolution is transformed into a matrix-based form, which facilitates the application of the nonparametric inversion methods with regularizations, including Tikhonov regularization and Twomey's iterative regularization. Inversions of the GF-PDF using the nonparameteric methods with regularization are demonstrated using HFIMS measurements simulated from representative GF-PDFs of ambient aerosols. The characteristics of reconstructed GF-PDFs resulting from different inversion methods, including previously developed least-squares methods, are quantitatively compared. The result shows that Twomey's method generally outperforms other inversion methods. The capabilities of Twomey's method in reconstructing the pre-defined GF-PDFs and recovering the mode parameters are validated.
Aerosol hygroscopic growth plays an important role in atmospheric particle chemistry and the effects of aerosol on radiation and hence climate. The hygroscopic growth is often characterized by a growth factor probability density function (GF-PDF), where the growth factor is defined as the ratio of the particle size at a specified relative humidity to its dry size. Parametric, least-squares methods are the most widely used algorithms for inverting the GF-PDF from measurements of the humidified tandem differential mobility analyzer (HTDMA) and have been recently applied to the GF-PDF inversion from measurements of the humidity-controlled fast integrated mobility spectrometer (HFIMS). However, these least-squares methods suffer from noise amplification due to the lack of regularization in solving the ill-posed problem, resulting in significant fluctuations in the retrieved GF-PDF and even occasional failures of convergence. In this study, we introduce nonparametric, regularized methods to invert the aerosol GF-PDF and apply them to HFIMS measurements. Based on the HFIMS kernel function, the forward convolution is transformed into a matrix-based form, which facilitates the application of the nonparametric inversion methods with regularizations, including Tikhonov regularization and Twomey's iterative regularization. Inversions of the GF-PDF using the nonparameteric methods with regularization are demonstrated using HFIMS measurements simulated from representative GF-PDFs of ambient aerosols. The characteristics of reconstructed GF-PDFs resulting from different inversion methods, including previously developed least-squares methods, are quantitatively compared. The result shows that Twomey's method generally outperforms other inversion methods. The capabilities of Twomey's method in reconstructing the pre-defined GF-PDFs and recovering the mode parameters are validated.
The new Aerosol hygroscopic growth plays an important role in atmospheric particle chemistry and the effects of aerosol on radiation and hence climate. The hygroscopic growth is often characterized by a growth factor probability density function (GF-PDF), where the growth factor is defined as the ratio of the particle size at a specified relative humidity to its dry size. Parametric, least-squares methods are the most widely used algorithms for inverting the GF-PDF from measurements of the humidified tandem differential mobility analyzer (HTDMA) and have been recently applied to the GF-PDF inversion from measurements of the humidity-controlled fast integrated mobility spectrometer (HFIMS). However, these least-squares methods suffer from noise amplification due to the lack of regularization in solving the ill-posed problem, resulting in significant fluctuations in the retrieved GF-PDF and even occasional failures of convergence. In this study, we introduce nonparametric, regularized methods to invert the aerosol GF-PDF and apply them to HFIMS measurements. Based on the HFIMS kernel function, the forward convolution is transformed into a matrix-based form, which facilitates the application of the nonparametric inversion methods with regularizations, including Tikhonov regularization and Twomey's iterative regularization. Inversions of the GF-PDF using the nonparameteric methods with regularization are demonstrated using HFIMS measurements simulated from representative GF-PDFs of ambient aerosols. The characteristics of reconstructed GF-PDFs resulting from different inversion methods, including previously developed least-squares methods, are quantitatively compared. The result shows that Twomey's method generally outperforms other inversion methods. The capabilities of Twomey's method in reconstructing the pre-defined GF-PDFs and recovering the mode parameters are validated.
Audience Academic
Author Wang, Yang
Hering, Susanne
Wang, Jian
Spielman, Steven
Zhang, Jiaoshi
Author_xml – sequence: 1
  fullname: Zhang, Jiaoshi
– sequence: 2
  fullname: Wang, Yang
– sequence: 3
  fullname: Spielman, Steven
– sequence: 4
  fullname: Hering, Susanne
– sequence: 5
  fullname: Wang, Jian
BackLink https://www.osti.gov/biblio/1870734$$D View this record in Osti.gov
BookMark eNptkktv1DAUhSNUJNrCnqUFKxYpthM_wq6qeIxUCanA2nKc64xHiT3YTmH4UfxGHKYCRkJe-F7r8zny9bmoznzwUFXPCb5ipGtf6znXhNWUia6mmNJH1TmRXNSStfLsn_pJdZHSDmPeEkHPq593MC6Tju4HDMj5e4jJBY-CRRpiSGFC28NYChP2zqBSfctbZLXJIaJ9DL3u3eTyAQ3g07rbxZtcFN4gvd9Pzui1QTmg7TK7oRC1CT7HME3Fz-qUi2mGMepc-jk8qKU9mALNkCGiGXRaIszgc3paPbZ6SvDsYb-svrx7-_nmQ3378f3m5vq2Ni3HudadBE6ZNT0e2magQyOo4YJ3jbWWdcKAtlRiLiV0HdeYGcYMwaZhgrR93zeX1eaoOwS9U_voZh0PKminfh-EOCodszMTKJCEMdpaSUTXWmgkt3xo9KBtKzs7iKL14qgVUnYqGZfBbMsUfHmjIlJg0bQFenmEylC_LpCy2oUl-vJGRTnjWGLKm7_UqIuz8zbkqM3sklHXApOOsGJfqKv_UGUNMLtiDNaV85MLr04urF8E3_Ool5TU5tPdKYuPrCmpSBHsn-kQrNYkqpJERZhak6jWJDa_APQZ1vs
Cites_doi 10.1080/02786826.2017.1338664
10.1029/95JD02119
10.1137/0914086
10.1080/02786826.2020.1825615
10.1175/1520-0450(1994)033<0791:APTAGI>2.0.CO;2
10.1016/S0021-8502(98)00066-4
10.1080/02786820802157823
10.1016/0021-9991(75)90028-5
10.1016/0021-8502(86)90031-5
10.1016/j.jaerosci.2015.11.001
10.1080/02786828708959153
10.5194/amt-14-5625-2021
10.1016/j.jaerosci.2008.06.005
10.5194/acp-20-12515-2020
10.1137/1034115
10.1080/02786826.2019.1628917
10.5194/acp-7-6131-2007
10.1137/0917062
10.1080/02786820300952
10.1016/j.jaerosci.2021.105862
10.1016/B978-0-08-022932-4.50014-8
10.1016/j.jaerosci.2008.07.013
10.1111/j.1600-0889.2008.00350.x
10.5194/amt-14-7909-2021
10.1016/j.jaerosci.2019.105484
10.1080/027868202753339032
10.5194/amt-10-4915-2017
10.1016/j.jaerosci.2018.03.006
10.1007/BF02149761
10.1007/978-3-662-03537-5
ContentType Journal Article
Copyright COPYRIGHT 2022 Copernicus GmbH
2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 Copernicus GmbH
– notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center
CorporateAuthor_xml – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
OTOTI
DOA
DOI 10.5194/amt-15-2579-2022
DatabaseName CrossRef
Science in Context
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Environmental Sciences
EISSN 1867-8548
EndPage 2590
ExternalDocumentID oai_doaj_org_article_e815524f81794fe386f6d3adaf489fd7
1870734
A701915386
10_5194_amt_15_2579_2022
GroupedDBID 23N
3V.
5VS
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABUWG
ACGFO
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BBORY
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
ISR
ITC
K6-
KQ8
LK5
M7R
M~E
OK1
P2P
P62
PCBAR
PIMPY
PQQKQ
PROAC
Q2X
RIG
RKB
RNS
TR2
TUS
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
H8D
H96
KL.
L.G
L7M
PQEST
PQUKI
PRINS
ABPTK
N95
OTOTI
ID FETCH-LOGICAL-c460t-a98e625fcb0d43d2d372c67693fff597ceaf280688e996a05c55c10c35714bbb3
IEDL.DBID BENPR
ISSN 1867-8548
1867-1381
IngestDate Tue Oct 22 15:00:43 EDT 2024
Thu May 18 22:20:32 EDT 2023
Thu Oct 10 21:07:43 EDT 2024
Thu Feb 22 23:59:41 EST 2024
Fri Feb 02 04:01:23 EST 2024
Thu Aug 01 19:19:04 EDT 2024
Fri Aug 23 03:22:40 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-a98e625fcb0d43d2d372c67693fff597ceaf280688e996a05c55c10c35714bbb3
Notes USDOE Office of Science (SC), Biological and Environmental Research (BER)
SC0013103; DESC0006312; SC0021017; SC0006312
ORCID 0000-0001-8428-3527
0000-0002-0543-0443
0000-0001-6536-310X
0000-0002-2815-4170
000000016536310X
0000000205430443
0000000184283527
0000000228154170
OpenAccessLink https://www.proquest.com/docview/2656080263?pq-origsite=%requestingapplication%
PQID 2656080263
PQPubID 105742
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_e815524f81794fe386f6d3adaf489fd7
osti_scitechconnect_1870734
proquest_journals_2656080263
gale_infotracmisc_A701915386
gale_infotracacademiconefile_A701915386
gale_incontextgauss_ISR_A701915386
crossref_primary_10_5194_amt_15_2579_2022
PublicationCentury 2000
PublicationDate 2022-04-28
PublicationDateYYYYMMDD 2022-04-28
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-28
  day: 28
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
– name: Germany
PublicationTitle Atmospheric measurement techniques
PublicationYear 2022
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref16
  doi: 10.1080/02786826.2017.1338664
– ident: ref15
  doi: 10.1029/95JD02119
– ident: ref8
  doi: 10.1137/0914086
– ident: ref12
  doi: 10.1080/02786826.2020.1825615
– ident: ref26
  doi: 10.1175/1520-0450(1994)033<0791:APTAGI>2.0.CO;2
– ident: ref9
  doi: 10.1016/S0021-8502(98)00066-4
– ident: ref23
  doi: 10.1080/02786820802157823
– ident: ref22
– ident: ref27
  doi: 10.1016/0021-9991(75)90028-5
– ident: ref18
  doi: 10.1016/0021-8502(86)90031-5
– ident: ref19
  doi: 10.1016/j.jaerosci.2015.11.001
– ident: ref11
  doi: 10.1080/02786828708959153
– ident: ref31
  doi: 10.5194/amt-14-5625-2021
– ident: ref13
  doi: 10.1016/j.jaerosci.2008.06.005
– ident: ref32
  doi: 10.5194/acp-20-12515-2020
– ident: ref6
  doi: 10.1137/1034115
– ident: ref29
  doi: 10.1080/02786826.2019.1628917
– ident: ref30
– ident: ref3
  doi: 10.5194/acp-7-6131-2007
– ident: ref5
  doi: 10.1137/0917062
– ident: ref25
  doi: 10.1080/02786820300952
– ident: ref21
  doi: 10.1016/j.jaerosci.2021.105862
– ident: ref10
  doi: 10.1016/B978-0-08-022932-4.50014-8
– ident: ref4
  doi: 10.1016/j.jaerosci.2008.07.013
– ident: ref24
  doi: 10.1111/j.1600-0889.2008.00350.x
– ident: ref14
  doi: 10.5194/amt-14-7909-2021
– ident: ref20
  doi: 10.1016/j.jaerosci.2019.105484
– ident: ref1
  doi: 10.1080/027868202753339032
– ident: ref17
  doi: 10.5194/amt-10-4915-2017
– ident: ref28
  doi: 10.1016/j.jaerosci.2018.03.006
– ident: ref7
  doi: 10.1007/BF02149761
– ident: ref2
  doi: 10.1007/978-3-662-03537-5
SSID ssj0064172
Score 2.3410196
Snippet Aerosol hygroscopic growth plays an important role in atmospheric particle chemistry and the effects of aerosol on radiation and hence climate. The hygroscopic...
The new Aerosol hygroscopic growth plays an important role in atmospheric particle chemistry and the effects of aerosol on radiation and hence climate. The...
Aerosol hygroscopic growth plays an important role in atmospheric particle chemistry and the effects of aerosol on radiation and hence climate. The hygroscopic...
SourceID doaj
osti
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 2579
SubjectTerms Aerosols
Algorithms
Convolution
Distribution (Probability theory)
Efficiency
Environmental Sciences
Growth factors
Humidity
Hygroscopicity
Ill posed problems
Inversion
Inversions
Kernel functions
Least squares
Measurement
Methods
Mobility
Probability density function
Probability density functions
Probability theory
Radiation
Regularization
Regularization methods
Relative humidity
Specific gravity
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggniK0RRZCIA5W83ASh1upqApSORQq9WY5fnQj7cbVJkvV_ih-IzN2dumKAxdO-5rdjfON52GPvyHkbVMKU2snWO2UYrzKNGtKkzJVtBy8gwMfi-uQZ9-q0wv-9bK8vNfqC2vCIj1wvHGHViBJGHcCNcfZQlSuMoUyynHROBPPkafNJpmKNrjiWWjbhGxtyLKXxQ1KiFb4oVqOLCsZqGoDKpLnOw4p8PZvrfPMwzT7y0gHz3PymDyaQkZ6FC_1CXlg-6ckOYNo16_Cojh9R48XHYSe4dUz8us8NJhfdXfW0K7_GZfEqHdUWbgGv6Dz2ytksfTXnabw7Gac09h4h2KDmUjdfUsNFrfDI_o-xO8jvbfdTUdP5-tlZ0CCTQXvC_g_p4aRbkkoDF366dfCmU4kRwAk6fLP0uTwnFycfP5xfMqmvgxM8yodmWqEhbTJ6TY1vDC5Kepch6aKzjlIULRVDjdshbCQTam01GWps1QXZZ3xtm2LF2TW-96-JBSPT0EMpG1lOLdpIzIFTjs1YHYsREZ5Qj5swJHXkX5DQtqCQEoAUmalRCAlApmQT4jeVg6Js8MboE5yUif5L3VKyBvEXiI1Ro-1N1dqPQzyy_dzeYTM9eggqoS8n4ScH1dKq-koA4wJ2bR2JPd3JGHu6p2P91DFJEQ7SNmrsbZJw6jAiNYFhy9vNE9OlmWQObIlCcici1f_Y7x75CHeO9wfy8U-mY2rtT2AMGtsX4cZ9RulUChs
  priority: 102
  providerName: Directory of Open Access Journals
Title Regularized inversion of aerosol hygroscopic growth factor probability density function: application to humidity-controlled fast integrated mobility spectrometer measurements
URI https://www.proquest.com/docview/2656080263
https://www.osti.gov/biblio/1870734
https://doaj.org/article/e815524f81794fe386f6d3adaf489fd7
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF7R9MIF8RShJVohBOKwqh9re90LaquGgtQKBSr1tlrvI4mUZEPsUJUfxW9kxt6kREic4sQTx87svGe_IeRtmQlTaCdY4ZRiPI81KzMTMZVWHKyDAxuLecjLq_zimn-5yW5Cwq0ObZUbndgqauM15siPEkSJERAxpB-XPxhOjcLqahihsUf2E4gUoh7ZPz2_-jra6OKcx-34JkRtQ7S9uCtUgtfCj9S8YXHGYMmWsFSSZMcwtfj9Wy3d8yBu_yjr1gINH5NHwXWkJx2vn5AHdvGU9C_B6_WrNjlO39Gz2RRc0PbdM_J71A6aX01_WUOni59daox6R5WFe_AzOrkbI5qlX041haPbZkK7ATwUB810EN531GCTO7yiDUQ-HtO_yt608XSynk8NULDQ-D6D33OqbugWjMLQuQ9Xa_d2IkgCcJTO71OU9XNyPTz_fnbBwnwGpnkeNUyVwkL45HQVGZ6axKRFotvhis45CFS0VQ4Lt0JYiKpUlOks03Gk06yIeVVV6QvSW_iFfUkobqMCX0jb3HBuo1LECox3ZED9WPCQkj75sGGOXHYwHBLCF2SkBEbKOJPISImM7JNT5N6WDgG02w_8aiyDPEorEHuOO4EKydlU5C43qTLKcVE6U_TJG-S9RIiMBfbgjNW6ruXnbyN5ggj2aCjyPnkfiJxvVkqrsKUBnglRtXYoD3coQYb1zukDXGISvB6E7tXY46ThqUCZFimHL29Wngwappb38vDq_6cPyEP8V7AClohD0mtWa_saHKmmGpA9Mfw0CDIzaNMRfwDx8iK_
link.rule.ids 230,315,783,787,867,888,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BOMAF8RRpC6wQAnFY1Y-1veaCSkVIoemhtFJvq_U-kkhJNsQOqPwofiMzayclQuIUJ544dmbnPfsNIa_LTJhCO8EKpxTjeaxZmZmIqbTiYB0c2FjMQ47O8uEl_3KVXXUJt7prq9zoxKCojdeYIz9MECVGQMSQflh-Zzg1Cqur3QiN2-QOT8FW407xweeNJs55HIY3IWYbYu3FbZkSfBZ-qOYNizMGC7aEhZIkO2YpoPdvdXTPg7D9o6qD_Rk8IPc7x5EetZx-SG7ZxSPSH4HP61chNU7f0OPZFBzQ8O4x-X0exsyvpr-sodPFjzYxRr2jysI9-BmdXI8Ry9Ivp5rC0c9mQtvxOxTHzLQA3tfUYIs7vKIFRC6-p38VvWnj6WQ9nxqgYF3b-wx-z6m6oVsoCkPnvrta2NmJEAnATzq_SVDWT8jl4NPF8ZB10xmY5nnUMFUKC8GT01VkeGoSkxaJDqMVnXMQpmirHJZthbAQU6ko01mm40inWRHzqqrSp6S38Av7jFDcRAWekLa54dxGpYgVmO7IgPKx4B8lffJuwxy5bEE4JAQvyEgJjJRxJpGREhnZJx-Re1s6hM8OH_jVWHbSKK1A5DnuBKojZ1ORu9ykyijHRelM0SevkPcSATIW2IEzVuu6liffzuUR4tejmcj75G1H5HyzUlp1GxrgmRBTa4fyYIcSJFjvnN7HJSbB50HgXo0dThqeClRpkXL48mblyU6_1PJGGvb-f_oluTu8GJ3K05Ozr_vkHv5DWAtLxAHpNau1fQ4uVVO9CHLzB1FqIm8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BKiEuiKcwLbBCCMRhFT_W9poLakujFmhUBSr1tlrvI4mUxCF2QOVH8RuZsTcpERKnOPHEsTPvndlvCHldpMLk2gmWO6UYzyLNitSETCUlB-_gwMfiOuT5MDu95J-u0ivf_1T7tsqNTWwNtak0rpH3Y0SJEZAxJH3n2yIuPg4-LL8znCCFlVY_TuM22ct5loQ9snd0MrwYbexyxqN2lBMiuCHyXtQVLSGC4X01b1iUMhDfAsQmjnecVIvlv7XYvQpU7x_D3XqjwX1yz4eR9LDj-wNyyy4ekuAcIuBq1S6U0zf0eDaFcLR994j8HrVD51fTX9bQ6eJHt0xGK0eVhXuoZnRyPUZky2o51RSOfjYT2g3joTh0poPzvqYGG97hFf0h8vQ9_asETpuKTtbzqQEK5pvgZ_B7TtUN3QJTGDqv_NXafZ4ImADcpfOb5cr6MbkcnHw7PmV-VgPTPAsbpgphIZVyugwNT0xskjzW7aBF5xwkLdoqh0VcISxkWCpMdZrqKNRJmke8LMvkCektqoV9SihuqYK4SNvMcG7DQkQKHHlowBRZiJbigLzbMEcuO0gOCakMMlICI2WUSmSkREYG5Ai5t6VDMO32g2o1ll43pRWIQ8edQOPkbCIyl5lEGeW4KJzJA_IKeS8RLmOBgjdW67qWZ19H8hDR7NFpZAF564lc1ayUVn57AzwTImztUB7sUII-653T-yhiEiIghPHV2O-k4anAsOYJhy9vJE96a1PLG9149v_TL8kdUBr55Wz4eZ_cxT8IC2OxOCC9ZrW2zyG-asoXXnH-ALv_KAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularized+inversion+of+aerosol+hygroscopic+growth+factor+probability+density+function%3A+application+to+humidity-controlled+fast+integrated+mobility+spectrometer+measurements&rft.jtitle=Atmospheric+measurement+techniques&rft.au=Zhang%2C+Jiaoshi&rft.au=Wang%2C+Yang&rft.au=Spielman%2C+Steven&rft.au=Hering%2C+Susanne&rft.date=2022-04-28&rft.pub=Copernicus+GmbH&rft.issn=1867-1381&rft.eissn=1867-8548&rft.volume=15&rft.issue=8&rft.spage=2579&rft_id=info:doi/10.5194%2Famt-15-2579-2022&rft.externalDocID=A701915386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-8548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-8548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-8548&client=summon