Overcoming immiscibility toward bimetallic catalyst library
A general nonequilibrium synthesis strategy is reported to address the bimetallic immiscibility challenge for catalysis. Bimetallics are emerging as important materials that often exhibit distinct chemical properties from monometallics. However, there is limited access to homogeneously alloyed bimet...
Saved in:
Published in | Science advances Vol. 6; no. 17; p. eaaz6844 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
AAAS
24.04.2020
American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A general nonequilibrium synthesis strategy is reported to address the bimetallic immiscibility challenge for catalysis.
Bimetallics are emerging as important materials that often exhibit distinct chemical properties from monometallics. However, there is limited access to homogeneously alloyed bimetallics because of the thermodynamic immiscibility of the constituent elements. Overcoming the inherent immiscibility in bimetallic systems would create a bimetallic library with unique properties. Here, we present a nonequilibrium synthesis strategy to address the immiscibility challenge in bimetallics. As a proof of concept, we synthesize a broad range of homogeneously alloyed Cu-based bimetallic nanoparticles regardless of the thermodynamic immiscibility. The nonequilibrated bimetallic nanoparticles are further investigated as electrocatalysts for carbon monoxide reduction at commercially relevant current densities (>100 mA cm
−2
), in which Cu
0.9
Ni
0.1
shows the highest multicarbon product Faradaic efficiency of ~76% with a current density of ~93 mA cm
−2
. The ability to overcome thermodynamic immiscibility in multimetallic synthesis offers freedom to design and synthesize new functional nanomaterials with desired chemical compositions and catalytic properties. |
---|---|
AbstractList | A general nonequilibrium synthesis strategy is reported to address the bimetallic immiscibility challenge for catalysis.
Bimetallics are emerging as important materials that often exhibit distinct chemical properties from monometallics. However, there is limited access to homogeneously alloyed bimetallics because of the thermodynamic immiscibility of the constituent elements. Overcoming the inherent immiscibility in bimetallic systems would create a bimetallic library with unique properties. Here, we present a nonequilibrium synthesis strategy to address the immiscibility challenge in bimetallics. As a proof of concept, we synthesize a broad range of homogeneously alloyed Cu-based bimetallic nanoparticles regardless of the thermodynamic immiscibility. The nonequilibrated bimetallic nanoparticles are further investigated as electrocatalysts for carbon monoxide reduction at commercially relevant current densities (>100 mA cm
−2
), in which Cu
0.9
Ni
0.1
shows the highest multicarbon product Faradaic efficiency of ~76% with a current density of ~93 mA cm
−2
. The ability to overcome thermodynamic immiscibility in multimetallic synthesis offers freedom to design and synthesize new functional nanomaterials with desired chemical compositions and catalytic properties. Bimetallics are emerging as important materials that often exhibit distinct chemical properties from monometallics. However, there is limited access to homogeneously alloyed bimetallics because of the thermodynamic immiscibility of the constituent elements. Overcoming the inherent immiscibility in bimetallic systems would create a bimetallic library with unique properties. Here, we present a nonequilibrium synthesis strategy to address the immiscibility challenge in bimetallics. As a proof of concept, we synthesize a broad range of homogeneously alloyed Cu-based bimetallic nanoparticles regardless of the thermodynamic immiscibility. The nonequilibrated bimetallic nanoparticles are further investigated as electrocatalysts for carbon monoxide reduction at commercially relevant current densities (>100 mA cm-2), in which Cu0.9Ni0.1 shows the highest multicarbon product Faradaic efficiency of ~76% with a current density of ~93 mA cm-2. The ability to overcome thermodynamic immiscibility in multimetallic synthesis offers freedom to design and synthesize new functional nanomaterials with desired chemical compositions and catalytic properties.Bimetallics are emerging as important materials that often exhibit distinct chemical properties from monometallics. However, there is limited access to homogeneously alloyed bimetallics because of the thermodynamic immiscibility of the constituent elements. Overcoming the inherent immiscibility in bimetallic systems would create a bimetallic library with unique properties. Here, we present a nonequilibrium synthesis strategy to address the immiscibility challenge in bimetallics. As a proof of concept, we synthesize a broad range of homogeneously alloyed Cu-based bimetallic nanoparticles regardless of the thermodynamic immiscibility. The nonequilibrated bimetallic nanoparticles are further investigated as electrocatalysts for carbon monoxide reduction at commercially relevant current densities (>100 mA cm-2), in which Cu0.9Ni0.1 shows the highest multicarbon product Faradaic efficiency of ~76% with a current density of ~93 mA cm-2. The ability to overcome thermodynamic immiscibility in multimetallic synthesis offers freedom to design and synthesize new functional nanomaterials with desired chemical compositions and catalytic properties. Bimetallics are emerging as important materials that often exhibit distinct chemical properties from monometallics. However, there is limited access to homogeneously alloyed bimetallics because of the thermodynamic immiscibility of the constituent elements. Overcoming the inherent immiscibility in bimetallic systems would create a bimetallic library with unique properties. Here, we present a nonequilibrium synthesis strategy to address the immiscibility challenge in bimetallics. As a proof of concept, we synthesize a broad range of homogeneously alloyed Cu-based bimetallic nanoparticles regardless of the thermodynamic immiscibility. The nonequilibrated bimetallic nanoparticles are further investigated as electrocatalysts for carbon monoxide reduction at commercially relevant current densities (>100 mA cm-2), in which Cu0.9Ni0.1shows the highest multicarbon product Faradaic efficiency of ~76% with a current density of ~93 mA cm-2. The ability to overcome thermodynamic immiscibility in multimetallic synthesis offers freedom to design and synthesize new functional nanomaterials with desired chemical compositions and catalytic properties. |
Author | Wang, Xizheng Hu, Liangbing Ko, Byung Hee Yang, Chunpeng Dai, Jiaqi Hwang, Sooyeon Su, Dong Luc, Wesley Malkani, Arnav S. Xu, Bingjun Li, Tangyuan Jiao, Feng Cui, Mingjin Liu, Zhenyu Wang, Guofeng Yao, Yonggang |
Author_xml | – sequence: 1 givenname: Chunpeng orcidid: 0000-0001-7075-3356 surname: Yang fullname: Yang, Chunpeng organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA – sequence: 2 givenname: Byung Hee orcidid: 0000-0002-0934-5182 surname: Ko fullname: Ko, Byung Hee organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA – sequence: 3 givenname: Sooyeon orcidid: 0000-0001-5606-6728 surname: Hwang fullname: Hwang, Sooyeon organization: Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA – sequence: 4 givenname: Zhenyu orcidid: 0000-0003-2893-5396 surname: Liu fullname: Liu, Zhenyu organization: Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA – sequence: 5 givenname: Yonggang orcidid: 0000-0002-9191-2982 surname: Yao fullname: Yao, Yonggang organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA – sequence: 6 givenname: Wesley surname: Luc fullname: Luc, Wesley organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA – sequence: 7 givenname: Mingjin orcidid: 0000-0002-9254-0949 surname: Cui fullname: Cui, Mingjin organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA – sequence: 8 givenname: Arnav S. orcidid: 0000-0002-5984-3382 surname: Malkani fullname: Malkani, Arnav S. organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA – sequence: 9 givenname: Tangyuan surname: Li fullname: Li, Tangyuan organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA – sequence: 10 givenname: Xizheng surname: Wang fullname: Wang, Xizheng organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA – sequence: 11 givenname: Jiaqi surname: Dai fullname: Dai, Jiaqi organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA – sequence: 12 givenname: Bingjun orcidid: 0000-0002-2303-257X surname: Xu fullname: Xu, Bingjun organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA – sequence: 13 givenname: Guofeng orcidid: 0000-0001-8249-4101 surname: Wang fullname: Wang, Guofeng organization: Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA – sequence: 14 givenname: Dong orcidid: 0000-0002-1921-6683 surname: Su fullname: Su, Dong organization: Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA – sequence: 15 givenname: Feng orcidid: 0000-0002-3335-3203 surname: Jiao fullname: Jiao, Feng organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA – sequence: 16 givenname: Liangbing orcidid: 0000-0002-9456-9315 surname: Hu fullname: Hu, Liangbing organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA |
BackLink | https://www.osti.gov/servlets/purl/1619249$$D View this record in Osti.gov |
BookMark | eNp1UU1LAzEUDFKxWnv1vHjy0ppks8kGQZDiFwhe9BzeZqONZDc1SSv115vSIip4yoPMzJs3c4QGve8NQicETwmh_DxqC-1qCvDJa8b20CEtRTWhFasHP-YhGsf4hjEmjPOKyAM0LCmTjDNxiC4eVyZo39n-tbBdZ7NkY51N6yL5Dwht0djOJHDO6kJDHtYxFc42AcL6GO2_gItmvHtH6Pnm-ml2N3l4vL2fXT1MNOM4TUBoU0EtKRZaAqu5kGCA6ZY1ojZY4KbVvKpISXAG6Uq0kmcwFa0gpC5lOUKXW93FsulMq02fAji1CLbLLpQHq37_9HauXv1KCVJTRqsscLoV8DFZlU9MRs-173ujkyKcyBxHBp3ttgT_vjQxqU0axjnojV9GRRmWOT5c0wydbqE6-BiDefn2QrDaNKO2zahdM5nA_hCyB0jWb_xa9x_tCzVTlmQ |
CitedBy_id | crossref_primary_10_1021_acsenergylett_2c02502 crossref_primary_10_1038_s41467_024_54630_2 crossref_primary_10_1021_acs_chemmater_3c02334 crossref_primary_10_1038_s41467_025_57463_9 crossref_primary_10_1016_j_isci_2020_101776 crossref_primary_10_1021_acs_chemmater_4c02260 crossref_primary_10_1016_j_jre_2025_02_004 crossref_primary_10_1021_jacs_2c02538 crossref_primary_10_1039_D4NR01510J crossref_primary_10_1002_cmt2_26 crossref_primary_10_1021_acs_nanolett_4c02638 crossref_primary_10_1016_j_cej_2024_156728 crossref_primary_10_1039_D2QI01222G crossref_primary_10_1021_acsnano_1c04943 crossref_primary_10_1007_s12274_023_5484_6 crossref_primary_10_1016_j_scib_2020_08_037 crossref_primary_10_1039_D1TA03646G crossref_primary_10_1016_j_xcrp_2020_100302 crossref_primary_10_1021_acs_nanolett_4c03218 crossref_primary_10_1007_s11426_023_1565_5 crossref_primary_10_1021_jacs_4c03652 crossref_primary_10_1039_D1CP04145B crossref_primary_10_1021_acs_nanolett_3c01978 crossref_primary_10_1002_advs_202412545 crossref_primary_10_1016_j_xcrp_2022_100949 crossref_primary_10_1021_acsmaterialslett_4c01952 crossref_primary_10_1126_sciadv_abk2984 crossref_primary_10_1002_adma_202006034 crossref_primary_10_1021_acs_chemrev_2c00733 crossref_primary_10_1038_s44359_024_00002_4 crossref_primary_10_1007_s12274_021_3466_0 crossref_primary_10_1002_adma_202108900 crossref_primary_10_1016_j_ijhydene_2024_08_506 crossref_primary_10_1016_j_susc_2021_121892 crossref_primary_10_1021_acs_iecr_3c01261 crossref_primary_10_1021_jacs_3c00467 crossref_primary_10_1038_s41578_021_00402_z crossref_primary_10_1039_D1CS00893E crossref_primary_10_1002_adma_202202479 crossref_primary_10_1007_s12274_021_3524_7 crossref_primary_10_1021_acsanm_2c05528 crossref_primary_10_1002_smll_202300721 crossref_primary_10_1007_s41918_024_00217_w crossref_primary_10_1021_acs_accounts_3c00098 crossref_primary_10_1021_acsenergylett_4c01412 crossref_primary_10_1039_D2CC04789F crossref_primary_10_1002_anie_202218447 crossref_primary_10_1039_D3TA05355E crossref_primary_10_1016_j_nanoso_2021_100727 crossref_primary_10_1126_science_abn3103 crossref_primary_10_1002_cssc_202400940 crossref_primary_10_1016_j_jiec_2022_09_009 crossref_primary_10_1016_j_apsusc_2024_160647 crossref_primary_10_1021_jacs_2c04540 crossref_primary_10_1007_s40843_024_3017_4 crossref_primary_10_1002_smsc_202300071 crossref_primary_10_1021_acs_jpca_3c02419 crossref_primary_10_1126_sciadv_abg1600 crossref_primary_10_1016_j_jmst_2020_08_049 crossref_primary_10_1002_adom_202001011 crossref_primary_10_1002_chem_202301456 crossref_primary_10_1039_D0EE03756G crossref_primary_10_1021_acsami_1c19224 crossref_primary_10_1002_adfm_202412551 crossref_primary_10_1002_smll_202104441 crossref_primary_10_2139_ssrn_4108465 crossref_primary_10_1002_phmt_14 crossref_primary_10_1002_adfm_202307959 crossref_primary_10_1016_j_cej_2021_132769 crossref_primary_10_1002_adfm_202407494 crossref_primary_10_1016_j_apsusc_2022_155384 crossref_primary_10_1016_j_jmst_2023_05_040 crossref_primary_10_1021_acsenergylett_2c02666 crossref_primary_10_1038_s41467_023_36411_5 crossref_primary_10_1002_celc_202400405 crossref_primary_10_1021_jacs_3c06349 crossref_primary_10_1038_s41929_022_00757_8 crossref_primary_10_1016_j_matlet_2023_134918 crossref_primary_10_1039_D2CS00368F crossref_primary_10_1038_s41929_023_00938_z crossref_primary_10_1038_s44160_024_00690_7 crossref_primary_10_1002_aic_18357 crossref_primary_10_1021_acs_accounts_1c00674 crossref_primary_10_1007_s12540_024_01687_9 crossref_primary_10_1038_s41467_024_45413_w crossref_primary_10_1021_acs_inorgchem_1c02233 crossref_primary_10_1021_acsnano_2c03500 crossref_primary_10_1016_j_nanoen_2023_108994 crossref_primary_10_1039_D1EE02518J crossref_primary_10_1002_smll_202307283 crossref_primary_10_1039_D2NA00363E crossref_primary_10_1016_j_apenergy_2022_119615 crossref_primary_10_1016_j_pnsc_2023_05_006 crossref_primary_10_1016_j_electacta_2024_144889 crossref_primary_10_1016_j_jechem_2023_02_042 crossref_primary_10_1039_D3MH01302B crossref_primary_10_18686_cest_v2i2_132 crossref_primary_10_1016_j_combustflame_2024_113826 crossref_primary_10_1002_admi_202102478 crossref_primary_10_1002_ange_202218447 crossref_primary_10_1093_nsr_nwae033 crossref_primary_10_1021_acsami_1c02896 crossref_primary_10_1002_adma_202403217 crossref_primary_10_1021_acs_jpca_3c06646 crossref_primary_10_1021_acsaem_3c01150 crossref_primary_10_1039_D2RA06325E crossref_primary_10_1016_j_ccr_2023_215602 crossref_primary_10_1002_adma_202205270 crossref_primary_10_1016_j_apmate_2022_100055 crossref_primary_10_1039_D4NH00509K crossref_primary_10_3390_nano14211758 crossref_primary_10_3390_nano11041047 crossref_primary_10_1021_acs_jpclett_4c00810 crossref_primary_10_1021_acs_energyfuels_1c02450 crossref_primary_10_1360_SSC_2023_0069 crossref_primary_10_1016_j_cej_2022_140516 crossref_primary_10_1021_acscatal_3c05160 crossref_primary_10_1016_j_matt_2020_11_013 crossref_primary_10_1021_acs_energyfuels_3c04586 crossref_primary_10_1016_j_ccr_2022_214980 crossref_primary_10_1021_jacs_2c05792 crossref_primary_10_1038_s44160_023_00387_3 crossref_primary_10_1002_smll_202102879 crossref_primary_10_1021_acsaelm_3c00509 crossref_primary_10_1039_D2CP01461K crossref_primary_10_1016_j_msea_2023_144578 crossref_primary_10_1016_j_xcrp_2023_101713 crossref_primary_10_1002_smll_202104761 crossref_primary_10_1002_aenm_202302382 crossref_primary_10_1002_aenm_202402636 crossref_primary_10_1002_aenm_202302384 crossref_primary_10_1002_aenm_202001331 crossref_primary_10_1039_D3EE01650A |
Cites_doi | 10.1002/adma.201003695 10.1103/PhysRevA.31.1695 10.1063/1.1898223 10.1016/j.electacta.2007.02.041 10.1021/acs.chemmater.6b03381 10.1021/jacs.6b13287 10.1021/jp8098413 10.1021/cr040090g 10.1021/ja102617r 10.1021/jacs.7b08607 10.1038/s41929-018-0168-4 10.1021/jacs.8b04558 10.1016/j.joule.2018.10.007 10.1016/j.scriptamat.2009.07.002 10.1039/C8TA10138H 10.1038/s41467-018-07032-0 10.1016/j.pnsc.2018.05.001 10.1038/ncomms4242 10.1021/jacs.8b01868 10.1021/ja409445p 10.1038/ncomms12332 10.1038/s41929-019-0269-8 10.1007/s11051-009-9603-4 10.1007/s11837-015-1508-3 10.1063/1.1828033 10.1103/PhysRevB.62.8564 10.1126/science.279.5358.1913 10.1021/acs.chemrev.6b00211 10.1039/c2cs35296f 10.1021/acscentsci.7b00377 10.1016/j.nanoen.2016.04.009 10.1002/chem.201505002 10.1103/PhysRevB.68.144112 10.1039/C4TA06567K 10.1246/cl.1987.1665 10.1002/cctc.201402965 10.1039/C5SC02971F 10.1103/PhysRevB.46.2727 10.1038/s41929-018-0133-2 10.1126/science.aao6538 10.1021/jacs.6b10740 10.1006/jcph.1995.1039 |
ContentType | Journal Article |
Copyright | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors |
Copyright_xml | – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors |
CorporateAuthor | Brookhaven National Lab. (BNL), Upton, NY (United States) |
CorporateAuthor_xml | – name: Brookhaven National Lab. (BNL), Upton, NY (United States) |
DBID | AAYXX CITATION 7X8 OIOZB OTOTI 5PM |
DOI | 10.1126/sciadv.aaz6844 |
DatabaseName | CrossRef MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Chemistry |
EISSN | 2375-2548 |
ExternalDocumentID | PMC7182425 1619249 10_1126_sciadv_aaz6844 |
GrantInformation_xml | – fundername: ; grantid: ACI-1053575 – fundername: ; grantid: DE-SC0012704 – fundername: ; grantid: CBET?1803200 |
GroupedDBID | 53G 5VS AAFWJ AAYXX ACGFS ADAXU ADBBV AENVI AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BKF CITATION EBS FRP GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 OVD RHI RPM TEORI 7X8 BBORY OIOZB OTOTI RHF 5PM |
ID | FETCH-LOGICAL-c460t-a7ce5a89207c9a48679aea4cd4b78e070bdc6551310892c57d9692027d7118393 |
IEDL.DBID | M48 |
ISSN | 2375-2548 |
IngestDate | Thu Aug 21 14:02:36 EDT 2025 Fri May 19 00:44:03 EDT 2023 Fri Jul 11 15:14:49 EDT 2025 Thu Apr 24 22:59:57 EDT 2025 Tue Jul 01 03:52:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-a7ce5a89207c9a48679aea4cd4b78e070bdc6551310892c57d9692027d7118393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 SC0012704; CBET-1803200; ACI-1053575 BNL-215928-2020-JAAM National Science Foundation (NSF) USDOE Office of Science (SC), Basic Energy Sciences (BES) These authors contributed equally to this work. |
ORCID | 0000-0002-0934-5182 0000-0002-5984-3382 0000-0002-2303-257X 0000-0001-8249-4101 0000-0002-1921-6683 0000-0002-9254-0949 0000-0001-7075-3356 0000-0003-2893-5396 0000-0002-3335-3203 0000-0002-9456-9315 0000-0001-5606-6728 0000-0002-9191-2982 0000000233353203 0000000209345182 0000000156066728 0000000294569315 0000000291912982 0000000259843382 0000000292540949 000000022303257X 0000000182494101 0000000170753356 0000000219216683 0000000328935396 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.aaz6844 |
PMID | 32494647 |
PQID | 2409651082 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7182425 osti_scitechconnect_1619249 proquest_miscellaneous_2409651082 crossref_primary_10_1126_sciadv_aaz6844 crossref_citationtrail_10_1126_sciadv_aaz6844 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200424 |
PublicationDateYYYYMMDD | 2020-04-24 |
PublicationDate_xml | – month: 4 year: 2020 text: 20200424 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Science advances |
PublicationYear | 2020 |
Publisher | AAAS American Association for the Advancement of Science |
Publisher_xml | – name: AAAS – name: American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_3_2 doi: 10.1002/adma.201003695 – ident: e_1_3_2_39_2 doi: 10.1103/PhysRevA.31.1695 – ident: e_1_3_2_21_2 doi: 10.1063/1.1898223 – ident: e_1_3_2_33_2 doi: 10.1016/j.electacta.2007.02.041 – ident: e_1_3_2_15_2 doi: 10.1021/acs.chemmater.6b03381 – ident: e_1_3_2_36_2 doi: 10.1021/jacs.6b13287 – ident: e_1_3_2_12_2 doi: 10.1021/jp8098413 – ident: e_1_3_2_17_2 doi: 10.1021/cr040090g – ident: e_1_3_2_4_2 doi: 10.1021/ja102617r – ident: e_1_3_2_18_2 doi: 10.1021/jacs.7b08607 – ident: e_1_3_2_29_2 doi: 10.1038/s41929-018-0168-4 – ident: e_1_3_2_20_2 doi: 10.1021/jacs.8b04558 – ident: e_1_3_2_28_2 doi: 10.1016/j.joule.2018.10.007 – ident: e_1_3_2_44_2 doi: 10.1016/j.scriptamat.2009.07.002 – ident: e_1_3_2_19_2 doi: 10.1039/C8TA10138H – ident: e_1_3_2_30_2 doi: 10.1038/s41467-018-07032-0 – ident: e_1_3_2_14_2 doi: 10.1016/j.pnsc.2018.05.001 – ident: e_1_3_2_25_2 doi: 10.1038/ncomms4242 – ident: e_1_3_2_6_2 doi: 10.1021/jacs.8b01868 – ident: e_1_3_2_24_2 doi: 10.1021/ja409445p – ident: e_1_3_2_35_2 doi: 10.1038/ncomms12332 – ident: e_1_3_2_27_2 doi: 10.1038/s41929-019-0269-8 – ident: e_1_3_2_13_2 doi: 10.1007/s11051-009-9603-4 – ident: e_1_3_2_37_2 doi: 10.1007/s11837-015-1508-3 – ident: e_1_3_2_38_2 doi: 10.1063/1.1828033 – ident: e_1_3_2_42_2 doi: 10.1103/PhysRevB.62.8564 – ident: e_1_3_2_5_2 doi: 10.1126/science.279.5358.1913 – ident: e_1_3_2_2_2 doi: 10.1021/acs.chemrev.6b00211 – ident: e_1_3_2_11_2 doi: 10.1039/c2cs35296f – ident: e_1_3_2_7_2 doi: 10.1021/acscentsci.7b00377 – ident: e_1_3_2_23_2 doi: 10.1016/j.nanoen.2016.04.009 – ident: e_1_3_2_10_2 doi: 10.1002/chem.201505002 – ident: e_1_3_2_43_2 doi: 10.1103/PhysRevB.68.144112 – ident: e_1_3_2_22_2 doi: 10.1039/C4TA06567K – ident: e_1_3_2_31_2 doi: 10.1246/cl.1987.1665 – ident: e_1_3_2_8_2 doi: 10.1002/cctc.201402965 – ident: e_1_3_2_32_2 doi: 10.1039/C5SC02971F – ident: e_1_3_2_41_2 doi: 10.1103/PhysRevB.46.2727 – ident: e_1_3_2_26_2 doi: 10.1038/s41929-018-0133-2 – ident: e_1_3_2_9_2 doi: 10.1126/science.aao6538 – ident: e_1_3_2_34_2 doi: 10.1021/jacs.6b10740 – ident: e_1_3_2_16_2 – ident: e_1_3_2_40_2 doi: 10.1006/jcph.1995.1039 |
SSID | ssj0001466519 |
Score | 2.501627 |
Snippet | A general nonequilibrium synthesis strategy is reported to address the bimetallic immiscibility challenge for catalysis.
Bimetallics are emerging as important... Bimetallics are emerging as important materials that often exhibit distinct chemical properties from monometallics. However, there is limited access to... |
SourceID | pubmedcentral osti proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | eaaz6844 |
SubjectTerms | Chemistry ENERGY STORAGE MATERIALS SCIENCE SciAdv r-articles |
Title | Overcoming immiscibility toward bimetallic catalyst library |
URI | https://www.proquest.com/docview/2409651082 https://www.osti.gov/servlets/purl/1619249 https://pubmed.ncbi.nlm.nih.gov/PMC7182425 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60XryI9YGxWiII6mFLHpvdBBER8YGgXiz0FjabFQNtqjaK9dc7s1mrQQUvOSRLHjOzzPcNk28I2fXDCEI3v8caAKeIoKmUWUiFygKV6BwQM9Y7rm_4ZZ9dDaLBV_-TNeDkV2qH86T6z8Pe29P0GDb80bcfYGT-2pPynceMzZMFyEoCpxlcW6hv6i2M88jM-QhCEVHgRbHVcPx5i0aOao1hrzXwZ7N78ls6Ol8mSxZHuie149tkTpcrpG136sTdt3LSB6vk8BaiFeIKcpRbjEb4F65piJ26lWmZdbNipOHrh4VyTTFnOqlcW9xZI_3zs7vTS2pHJlDFuFdRKZSOZJwEnlCJNGp6UkumcpaJWMP2znLFcaaL78EiFYk84QnWP3LhI1YK10mrHJd6g7heJn3Pk_weOAzTAY-FiEQidJiAdYX2HEI_jZQqqyeOYy2GqeEVAU9ro6bWqA7Zm61_rJU0_lzZQZvjWRSyVdjxo6rUr8miQ3Y-XZGizbBJrNTjl0kK4CQBHwOocYho-Gj2QBTTbl4piwcjqg05GtnX5r_fskMWA-TeHqMB2yKt6vlFbwNAqbKuIfZwvBj4XROFHxlE6Vo |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overcoming+immiscibility+toward+bimetallic+catalyst+library&rft.jtitle=Science+advances&rft.au=Yang%2C+Chunpeng&rft.au=Ko%2C+Byung+Hee&rft.au=Hwang%2C+Sooyeon&rft.au=Liu%2C+Zhenyu&rft.date=2020-04-24&rft.issn=2375-2548&rft.eissn=2375-2548&rft.volume=6&rft.issue=17&rft_id=info:doi/10.1126%2Fsciadv.aaz6844&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_sciadv_aaz6844 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon |