Overcoming immiscibility toward bimetallic catalyst library

A general nonequilibrium synthesis strategy is reported to address the bimetallic immiscibility challenge for catalysis. Bimetallics are emerging as important materials that often exhibit distinct chemical properties from monometallics. However, there is limited access to homogeneously alloyed bimet...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 6; no. 17; p. eaaz6844
Main Authors Yang, Chunpeng, Ko, Byung Hee, Hwang, Sooyeon, Liu, Zhenyu, Yao, Yonggang, Luc, Wesley, Cui, Mingjin, Malkani, Arnav S., Li, Tangyuan, Wang, Xizheng, Dai, Jiaqi, Xu, Bingjun, Wang, Guofeng, Su, Dong, Jiao, Feng, Hu, Liangbing
Format Journal Article
LanguageEnglish
Published United States AAAS 24.04.2020
American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A general nonequilibrium synthesis strategy is reported to address the bimetallic immiscibility challenge for catalysis. Bimetallics are emerging as important materials that often exhibit distinct chemical properties from monometallics. However, there is limited access to homogeneously alloyed bimetallics because of the thermodynamic immiscibility of the constituent elements. Overcoming the inherent immiscibility in bimetallic systems would create a bimetallic library with unique properties. Here, we present a nonequilibrium synthesis strategy to address the immiscibility challenge in bimetallics. As a proof of concept, we synthesize a broad range of homogeneously alloyed Cu-based bimetallic nanoparticles regardless of the thermodynamic immiscibility. The nonequilibrated bimetallic nanoparticles are further investigated as electrocatalysts for carbon monoxide reduction at commercially relevant current densities (>100 mA cm −2 ), in which Cu 0.9 Ni 0.1 shows the highest multicarbon product Faradaic efficiency of ~76% with a current density of ~93 mA cm −2 . The ability to overcome thermodynamic immiscibility in multimetallic synthesis offers freedom to design and synthesize new functional nanomaterials with desired chemical compositions and catalytic properties.
AbstractList A general nonequilibrium synthesis strategy is reported to address the bimetallic immiscibility challenge for catalysis. Bimetallics are emerging as important materials that often exhibit distinct chemical properties from monometallics. However, there is limited access to homogeneously alloyed bimetallics because of the thermodynamic immiscibility of the constituent elements. Overcoming the inherent immiscibility in bimetallic systems would create a bimetallic library with unique properties. Here, we present a nonequilibrium synthesis strategy to address the immiscibility challenge in bimetallics. As a proof of concept, we synthesize a broad range of homogeneously alloyed Cu-based bimetallic nanoparticles regardless of the thermodynamic immiscibility. The nonequilibrated bimetallic nanoparticles are further investigated as electrocatalysts for carbon monoxide reduction at commercially relevant current densities (>100 mA cm −2 ), in which Cu 0.9 Ni 0.1 shows the highest multicarbon product Faradaic efficiency of ~76% with a current density of ~93 mA cm −2 . The ability to overcome thermodynamic immiscibility in multimetallic synthesis offers freedom to design and synthesize new functional nanomaterials with desired chemical compositions and catalytic properties.
Bimetallics are emerging as important materials that often exhibit distinct chemical properties from monometallics. However, there is limited access to homogeneously alloyed bimetallics because of the thermodynamic immiscibility of the constituent elements. Overcoming the inherent immiscibility in bimetallic systems would create a bimetallic library with unique properties. Here, we present a nonequilibrium synthesis strategy to address the immiscibility challenge in bimetallics. As a proof of concept, we synthesize a broad range of homogeneously alloyed Cu-based bimetallic nanoparticles regardless of the thermodynamic immiscibility. The nonequilibrated bimetallic nanoparticles are further investigated as electrocatalysts for carbon monoxide reduction at commercially relevant current densities (>100 mA cm-2), in which Cu0.9Ni0.1 shows the highest multicarbon product Faradaic efficiency of ~76% with a current density of ~93 mA cm-2. The ability to overcome thermodynamic immiscibility in multimetallic synthesis offers freedom to design and synthesize new functional nanomaterials with desired chemical compositions and catalytic properties.Bimetallics are emerging as important materials that often exhibit distinct chemical properties from monometallics. However, there is limited access to homogeneously alloyed bimetallics because of the thermodynamic immiscibility of the constituent elements. Overcoming the inherent immiscibility in bimetallic systems would create a bimetallic library with unique properties. Here, we present a nonequilibrium synthesis strategy to address the immiscibility challenge in bimetallics. As a proof of concept, we synthesize a broad range of homogeneously alloyed Cu-based bimetallic nanoparticles regardless of the thermodynamic immiscibility. The nonequilibrated bimetallic nanoparticles are further investigated as electrocatalysts for carbon monoxide reduction at commercially relevant current densities (>100 mA cm-2), in which Cu0.9Ni0.1 shows the highest multicarbon product Faradaic efficiency of ~76% with a current density of ~93 mA cm-2. The ability to overcome thermodynamic immiscibility in multimetallic synthesis offers freedom to design and synthesize new functional nanomaterials with desired chemical compositions and catalytic properties.
Bimetallics are emerging as important materials that often exhibit distinct chemical properties from monometallics. However, there is limited access to homogeneously alloyed bimetallics because of the thermodynamic immiscibility of the constituent elements. Overcoming the inherent immiscibility in bimetallic systems would create a bimetallic library with unique properties. Here, we present a nonequilibrium synthesis strategy to address the immiscibility challenge in bimetallics. As a proof of concept, we synthesize a broad range of homogeneously alloyed Cu-based bimetallic nanoparticles regardless of the thermodynamic immiscibility. The nonequilibrated bimetallic nanoparticles are further investigated as electrocatalysts for carbon monoxide reduction at commercially relevant current densities (>100 mA cm-2), in which Cu0.9Ni0.1shows the highest multicarbon product Faradaic efficiency of ~76% with a current density of ~93 mA cm-2. The ability to overcome thermodynamic immiscibility in multimetallic synthesis offers freedom to design and synthesize new functional nanomaterials with desired chemical compositions and catalytic properties.
Author Wang, Xizheng
Hu, Liangbing
Ko, Byung Hee
Yang, Chunpeng
Dai, Jiaqi
Hwang, Sooyeon
Su, Dong
Luc, Wesley
Malkani, Arnav S.
Xu, Bingjun
Li, Tangyuan
Jiao, Feng
Cui, Mingjin
Liu, Zhenyu
Wang, Guofeng
Yao, Yonggang
Author_xml – sequence: 1
  givenname: Chunpeng
  orcidid: 0000-0001-7075-3356
  surname: Yang
  fullname: Yang, Chunpeng
  organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
– sequence: 2
  givenname: Byung Hee
  orcidid: 0000-0002-0934-5182
  surname: Ko
  fullname: Ko, Byung Hee
  organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
– sequence: 3
  givenname: Sooyeon
  orcidid: 0000-0001-5606-6728
  surname: Hwang
  fullname: Hwang, Sooyeon
  organization: Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
– sequence: 4
  givenname: Zhenyu
  orcidid: 0000-0003-2893-5396
  surname: Liu
  fullname: Liu, Zhenyu
  organization: Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
– sequence: 5
  givenname: Yonggang
  orcidid: 0000-0002-9191-2982
  surname: Yao
  fullname: Yao, Yonggang
  organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
– sequence: 6
  givenname: Wesley
  surname: Luc
  fullname: Luc, Wesley
  organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
– sequence: 7
  givenname: Mingjin
  orcidid: 0000-0002-9254-0949
  surname: Cui
  fullname: Cui, Mingjin
  organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
– sequence: 8
  givenname: Arnav S.
  orcidid: 0000-0002-5984-3382
  surname: Malkani
  fullname: Malkani, Arnav S.
  organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
– sequence: 9
  givenname: Tangyuan
  surname: Li
  fullname: Li, Tangyuan
  organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
– sequence: 10
  givenname: Xizheng
  surname: Wang
  fullname: Wang, Xizheng
  organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
– sequence: 11
  givenname: Jiaqi
  surname: Dai
  fullname: Dai, Jiaqi
  organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
– sequence: 12
  givenname: Bingjun
  orcidid: 0000-0002-2303-257X
  surname: Xu
  fullname: Xu, Bingjun
  organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
– sequence: 13
  givenname: Guofeng
  orcidid: 0000-0001-8249-4101
  surname: Wang
  fullname: Wang, Guofeng
  organization: Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
– sequence: 14
  givenname: Dong
  orcidid: 0000-0002-1921-6683
  surname: Su
  fullname: Su, Dong
  organization: Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
– sequence: 15
  givenname: Feng
  orcidid: 0000-0002-3335-3203
  surname: Jiao
  fullname: Jiao, Feng
  organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
– sequence: 16
  givenname: Liangbing
  orcidid: 0000-0002-9456-9315
  surname: Hu
  fullname: Hu, Liangbing
  organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
BackLink https://www.osti.gov/servlets/purl/1619249$$D View this record in Osti.gov
BookMark eNp1UU1LAzEUDFKxWnv1vHjy0ppks8kGQZDiFwhe9BzeZqONZDc1SSv115vSIip4yoPMzJs3c4QGve8NQicETwmh_DxqC-1qCvDJa8b20CEtRTWhFasHP-YhGsf4hjEmjPOKyAM0LCmTjDNxiC4eVyZo39n-tbBdZ7NkY51N6yL5Dwht0djOJHDO6kJDHtYxFc42AcL6GO2_gItmvHtH6Pnm-ml2N3l4vL2fXT1MNOM4TUBoU0EtKRZaAqu5kGCA6ZY1ojZY4KbVvKpISXAG6Uq0kmcwFa0gpC5lOUKXW93FsulMq02fAji1CLbLLpQHq37_9HauXv1KCVJTRqsscLoV8DFZlU9MRs-173ujkyKcyBxHBp3ttgT_vjQxqU0axjnojV9GRRmWOT5c0wydbqE6-BiDefn2QrDaNKO2zahdM5nA_hCyB0jWb_xa9x_tCzVTlmQ
CitedBy_id crossref_primary_10_1021_acsenergylett_2c02502
crossref_primary_10_1038_s41467_024_54630_2
crossref_primary_10_1021_acs_chemmater_3c02334
crossref_primary_10_1038_s41467_025_57463_9
crossref_primary_10_1016_j_isci_2020_101776
crossref_primary_10_1021_acs_chemmater_4c02260
crossref_primary_10_1016_j_jre_2025_02_004
crossref_primary_10_1021_jacs_2c02538
crossref_primary_10_1039_D4NR01510J
crossref_primary_10_1002_cmt2_26
crossref_primary_10_1021_acs_nanolett_4c02638
crossref_primary_10_1016_j_cej_2024_156728
crossref_primary_10_1039_D2QI01222G
crossref_primary_10_1021_acsnano_1c04943
crossref_primary_10_1007_s12274_023_5484_6
crossref_primary_10_1016_j_scib_2020_08_037
crossref_primary_10_1039_D1TA03646G
crossref_primary_10_1016_j_xcrp_2020_100302
crossref_primary_10_1021_acs_nanolett_4c03218
crossref_primary_10_1007_s11426_023_1565_5
crossref_primary_10_1021_jacs_4c03652
crossref_primary_10_1039_D1CP04145B
crossref_primary_10_1021_acs_nanolett_3c01978
crossref_primary_10_1002_advs_202412545
crossref_primary_10_1016_j_xcrp_2022_100949
crossref_primary_10_1021_acsmaterialslett_4c01952
crossref_primary_10_1126_sciadv_abk2984
crossref_primary_10_1002_adma_202006034
crossref_primary_10_1021_acs_chemrev_2c00733
crossref_primary_10_1038_s44359_024_00002_4
crossref_primary_10_1007_s12274_021_3466_0
crossref_primary_10_1002_adma_202108900
crossref_primary_10_1016_j_ijhydene_2024_08_506
crossref_primary_10_1016_j_susc_2021_121892
crossref_primary_10_1021_acs_iecr_3c01261
crossref_primary_10_1021_jacs_3c00467
crossref_primary_10_1038_s41578_021_00402_z
crossref_primary_10_1039_D1CS00893E
crossref_primary_10_1002_adma_202202479
crossref_primary_10_1007_s12274_021_3524_7
crossref_primary_10_1021_acsanm_2c05528
crossref_primary_10_1002_smll_202300721
crossref_primary_10_1007_s41918_024_00217_w
crossref_primary_10_1021_acs_accounts_3c00098
crossref_primary_10_1021_acsenergylett_4c01412
crossref_primary_10_1039_D2CC04789F
crossref_primary_10_1002_anie_202218447
crossref_primary_10_1039_D3TA05355E
crossref_primary_10_1016_j_nanoso_2021_100727
crossref_primary_10_1126_science_abn3103
crossref_primary_10_1002_cssc_202400940
crossref_primary_10_1016_j_jiec_2022_09_009
crossref_primary_10_1016_j_apsusc_2024_160647
crossref_primary_10_1021_jacs_2c04540
crossref_primary_10_1007_s40843_024_3017_4
crossref_primary_10_1002_smsc_202300071
crossref_primary_10_1021_acs_jpca_3c02419
crossref_primary_10_1126_sciadv_abg1600
crossref_primary_10_1016_j_jmst_2020_08_049
crossref_primary_10_1002_adom_202001011
crossref_primary_10_1002_chem_202301456
crossref_primary_10_1039_D0EE03756G
crossref_primary_10_1021_acsami_1c19224
crossref_primary_10_1002_adfm_202412551
crossref_primary_10_1002_smll_202104441
crossref_primary_10_2139_ssrn_4108465
crossref_primary_10_1002_phmt_14
crossref_primary_10_1002_adfm_202307959
crossref_primary_10_1016_j_cej_2021_132769
crossref_primary_10_1002_adfm_202407494
crossref_primary_10_1016_j_apsusc_2022_155384
crossref_primary_10_1016_j_jmst_2023_05_040
crossref_primary_10_1021_acsenergylett_2c02666
crossref_primary_10_1038_s41467_023_36411_5
crossref_primary_10_1002_celc_202400405
crossref_primary_10_1021_jacs_3c06349
crossref_primary_10_1038_s41929_022_00757_8
crossref_primary_10_1016_j_matlet_2023_134918
crossref_primary_10_1039_D2CS00368F
crossref_primary_10_1038_s41929_023_00938_z
crossref_primary_10_1038_s44160_024_00690_7
crossref_primary_10_1002_aic_18357
crossref_primary_10_1021_acs_accounts_1c00674
crossref_primary_10_1007_s12540_024_01687_9
crossref_primary_10_1038_s41467_024_45413_w
crossref_primary_10_1021_acs_inorgchem_1c02233
crossref_primary_10_1021_acsnano_2c03500
crossref_primary_10_1016_j_nanoen_2023_108994
crossref_primary_10_1039_D1EE02518J
crossref_primary_10_1002_smll_202307283
crossref_primary_10_1039_D2NA00363E
crossref_primary_10_1016_j_apenergy_2022_119615
crossref_primary_10_1016_j_pnsc_2023_05_006
crossref_primary_10_1016_j_electacta_2024_144889
crossref_primary_10_1016_j_jechem_2023_02_042
crossref_primary_10_1039_D3MH01302B
crossref_primary_10_18686_cest_v2i2_132
crossref_primary_10_1016_j_combustflame_2024_113826
crossref_primary_10_1002_admi_202102478
crossref_primary_10_1002_ange_202218447
crossref_primary_10_1093_nsr_nwae033
crossref_primary_10_1021_acsami_1c02896
crossref_primary_10_1002_adma_202403217
crossref_primary_10_1021_acs_jpca_3c06646
crossref_primary_10_1021_acsaem_3c01150
crossref_primary_10_1039_D2RA06325E
crossref_primary_10_1016_j_ccr_2023_215602
crossref_primary_10_1002_adma_202205270
crossref_primary_10_1016_j_apmate_2022_100055
crossref_primary_10_1039_D4NH00509K
crossref_primary_10_3390_nano14211758
crossref_primary_10_3390_nano11041047
crossref_primary_10_1021_acs_jpclett_4c00810
crossref_primary_10_1021_acs_energyfuels_1c02450
crossref_primary_10_1360_SSC_2023_0069
crossref_primary_10_1016_j_cej_2022_140516
crossref_primary_10_1021_acscatal_3c05160
crossref_primary_10_1016_j_matt_2020_11_013
crossref_primary_10_1021_acs_energyfuels_3c04586
crossref_primary_10_1016_j_ccr_2022_214980
crossref_primary_10_1021_jacs_2c05792
crossref_primary_10_1038_s44160_023_00387_3
crossref_primary_10_1002_smll_202102879
crossref_primary_10_1021_acsaelm_3c00509
crossref_primary_10_1039_D2CP01461K
crossref_primary_10_1016_j_msea_2023_144578
crossref_primary_10_1016_j_xcrp_2023_101713
crossref_primary_10_1002_smll_202104761
crossref_primary_10_1002_aenm_202302382
crossref_primary_10_1002_aenm_202402636
crossref_primary_10_1002_aenm_202302384
crossref_primary_10_1002_aenm_202001331
crossref_primary_10_1039_D3EE01650A
Cites_doi 10.1002/adma.201003695
10.1103/PhysRevA.31.1695
10.1063/1.1898223
10.1016/j.electacta.2007.02.041
10.1021/acs.chemmater.6b03381
10.1021/jacs.6b13287
10.1021/jp8098413
10.1021/cr040090g
10.1021/ja102617r
10.1021/jacs.7b08607
10.1038/s41929-018-0168-4
10.1021/jacs.8b04558
10.1016/j.joule.2018.10.007
10.1016/j.scriptamat.2009.07.002
10.1039/C8TA10138H
10.1038/s41467-018-07032-0
10.1016/j.pnsc.2018.05.001
10.1038/ncomms4242
10.1021/jacs.8b01868
10.1021/ja409445p
10.1038/ncomms12332
10.1038/s41929-019-0269-8
10.1007/s11051-009-9603-4
10.1007/s11837-015-1508-3
10.1063/1.1828033
10.1103/PhysRevB.62.8564
10.1126/science.279.5358.1913
10.1021/acs.chemrev.6b00211
10.1039/c2cs35296f
10.1021/acscentsci.7b00377
10.1016/j.nanoen.2016.04.009
10.1002/chem.201505002
10.1103/PhysRevB.68.144112
10.1039/C4TA06567K
10.1246/cl.1987.1665
10.1002/cctc.201402965
10.1039/C5SC02971F
10.1103/PhysRevB.46.2727
10.1038/s41929-018-0133-2
10.1126/science.aao6538
10.1021/jacs.6b10740
10.1006/jcph.1995.1039
ContentType Journal Article
Copyright Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors
Copyright_xml – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
– notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors
CorporateAuthor Brookhaven National Lab. (BNL), Upton, NY (United States)
CorporateAuthor_xml – name: Brookhaven National Lab. (BNL), Upton, NY (United States)
DBID AAYXX
CITATION
7X8
OIOZB
OTOTI
5PM
DOI 10.1126/sciadv.aaz6844
DatabaseName CrossRef
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Chemistry
EISSN 2375-2548
ExternalDocumentID PMC7182425
1619249
10_1126_sciadv_aaz6844
GrantInformation_xml – fundername: ;
  grantid: ACI-1053575
– fundername: ;
  grantid: DE-SC0012704
– fundername: ;
  grantid: CBET?1803200
GroupedDBID 53G
5VS
AAFWJ
AAYXX
ACGFS
ADAXU
ADBBV
AENVI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BKF
CITATION
EBS
FRP
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
OVD
RHI
RPM
TEORI
7X8
BBORY
OIOZB
OTOTI
RHF
5PM
ID FETCH-LOGICAL-c460t-a7ce5a89207c9a48679aea4cd4b78e070bdc6551310892c57d9692027d7118393
IEDL.DBID M48
ISSN 2375-2548
IngestDate Thu Aug 21 14:02:36 EDT 2025
Fri May 19 00:44:03 EDT 2023
Fri Jul 11 15:14:49 EDT 2025
Thu Apr 24 22:59:57 EDT 2025
Tue Jul 01 03:52:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-a7ce5a89207c9a48679aea4cd4b78e070bdc6551310892c57d9692027d7118393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
SC0012704; CBET-1803200; ACI-1053575
BNL-215928-2020-JAAM
National Science Foundation (NSF)
USDOE Office of Science (SC), Basic Energy Sciences (BES)
These authors contributed equally to this work.
ORCID 0000-0002-0934-5182
0000-0002-5984-3382
0000-0002-2303-257X
0000-0001-8249-4101
0000-0002-1921-6683
0000-0002-9254-0949
0000-0001-7075-3356
0000-0003-2893-5396
0000-0002-3335-3203
0000-0002-9456-9315
0000-0001-5606-6728
0000-0002-9191-2982
0000000233353203
0000000209345182
0000000156066728
0000000294569315
0000000291912982
0000000259843382
0000000292540949
000000022303257X
0000000182494101
0000000170753356
0000000219216683
0000000328935396
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.aaz6844
PMID 32494647
PQID 2409651082
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7182425
osti_scitechconnect_1619249
proquest_miscellaneous_2409651082
crossref_primary_10_1126_sciadv_aaz6844
crossref_citationtrail_10_1126_sciadv_aaz6844
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200424
PublicationDateYYYYMMDD 2020-04-24
PublicationDate_xml – month: 4
  year: 2020
  text: 20200424
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science advances
PublicationYear 2020
Publisher AAAS
American Association for the Advancement of Science
Publisher_xml – name: AAAS
– name: American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_3_2
  doi: 10.1002/adma.201003695
– ident: e_1_3_2_39_2
  doi: 10.1103/PhysRevA.31.1695
– ident: e_1_3_2_21_2
  doi: 10.1063/1.1898223
– ident: e_1_3_2_33_2
  doi: 10.1016/j.electacta.2007.02.041
– ident: e_1_3_2_15_2
  doi: 10.1021/acs.chemmater.6b03381
– ident: e_1_3_2_36_2
  doi: 10.1021/jacs.6b13287
– ident: e_1_3_2_12_2
  doi: 10.1021/jp8098413
– ident: e_1_3_2_17_2
  doi: 10.1021/cr040090g
– ident: e_1_3_2_4_2
  doi: 10.1021/ja102617r
– ident: e_1_3_2_18_2
  doi: 10.1021/jacs.7b08607
– ident: e_1_3_2_29_2
  doi: 10.1038/s41929-018-0168-4
– ident: e_1_3_2_20_2
  doi: 10.1021/jacs.8b04558
– ident: e_1_3_2_28_2
  doi: 10.1016/j.joule.2018.10.007
– ident: e_1_3_2_44_2
  doi: 10.1016/j.scriptamat.2009.07.002
– ident: e_1_3_2_19_2
  doi: 10.1039/C8TA10138H
– ident: e_1_3_2_30_2
  doi: 10.1038/s41467-018-07032-0
– ident: e_1_3_2_14_2
  doi: 10.1016/j.pnsc.2018.05.001
– ident: e_1_3_2_25_2
  doi: 10.1038/ncomms4242
– ident: e_1_3_2_6_2
  doi: 10.1021/jacs.8b01868
– ident: e_1_3_2_24_2
  doi: 10.1021/ja409445p
– ident: e_1_3_2_35_2
  doi: 10.1038/ncomms12332
– ident: e_1_3_2_27_2
  doi: 10.1038/s41929-019-0269-8
– ident: e_1_3_2_13_2
  doi: 10.1007/s11051-009-9603-4
– ident: e_1_3_2_37_2
  doi: 10.1007/s11837-015-1508-3
– ident: e_1_3_2_38_2
  doi: 10.1063/1.1828033
– ident: e_1_3_2_42_2
  doi: 10.1103/PhysRevB.62.8564
– ident: e_1_3_2_5_2
  doi: 10.1126/science.279.5358.1913
– ident: e_1_3_2_2_2
  doi: 10.1021/acs.chemrev.6b00211
– ident: e_1_3_2_11_2
  doi: 10.1039/c2cs35296f
– ident: e_1_3_2_7_2
  doi: 10.1021/acscentsci.7b00377
– ident: e_1_3_2_23_2
  doi: 10.1016/j.nanoen.2016.04.009
– ident: e_1_3_2_10_2
  doi: 10.1002/chem.201505002
– ident: e_1_3_2_43_2
  doi: 10.1103/PhysRevB.68.144112
– ident: e_1_3_2_22_2
  doi: 10.1039/C4TA06567K
– ident: e_1_3_2_31_2
  doi: 10.1246/cl.1987.1665
– ident: e_1_3_2_8_2
  doi: 10.1002/cctc.201402965
– ident: e_1_3_2_32_2
  doi: 10.1039/C5SC02971F
– ident: e_1_3_2_41_2
  doi: 10.1103/PhysRevB.46.2727
– ident: e_1_3_2_26_2
  doi: 10.1038/s41929-018-0133-2
– ident: e_1_3_2_9_2
  doi: 10.1126/science.aao6538
– ident: e_1_3_2_34_2
  doi: 10.1021/jacs.6b10740
– ident: e_1_3_2_16_2
– ident: e_1_3_2_40_2
  doi: 10.1006/jcph.1995.1039
SSID ssj0001466519
Score 2.501627
Snippet A general nonequilibrium synthesis strategy is reported to address the bimetallic immiscibility challenge for catalysis. Bimetallics are emerging as important...
Bimetallics are emerging as important materials that often exhibit distinct chemical properties from monometallics. However, there is limited access to...
SourceID pubmedcentral
osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage eaaz6844
SubjectTerms Chemistry
ENERGY STORAGE
MATERIALS SCIENCE
SciAdv r-articles
Title Overcoming immiscibility toward bimetallic catalyst library
URI https://www.proquest.com/docview/2409651082
https://www.osti.gov/servlets/purl/1619249
https://pubmed.ncbi.nlm.nih.gov/PMC7182425
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60XryI9YGxWiII6mFLHpvdBBER8YGgXiz0FjabFQNtqjaK9dc7s1mrQQUvOSRLHjOzzPcNk28I2fXDCEI3v8caAKeIoKmUWUiFygKV6BwQM9Y7rm_4ZZ9dDaLBV_-TNeDkV2qH86T6z8Pe29P0GDb80bcfYGT-2pPynceMzZMFyEoCpxlcW6hv6i2M88jM-QhCEVHgRbHVcPx5i0aOao1hrzXwZ7N78ls6Ol8mSxZHuie149tkTpcrpG136sTdt3LSB6vk8BaiFeIKcpRbjEb4F65piJ26lWmZdbNipOHrh4VyTTFnOqlcW9xZI_3zs7vTS2pHJlDFuFdRKZSOZJwEnlCJNGp6UkumcpaJWMP2znLFcaaL78EiFYk84QnWP3LhI1YK10mrHJd6g7heJn3Pk_weOAzTAY-FiEQidJiAdYX2HEI_jZQqqyeOYy2GqeEVAU9ro6bWqA7Zm61_rJU0_lzZQZvjWRSyVdjxo6rUr8miQ3Y-XZGizbBJrNTjl0kK4CQBHwOocYho-Gj2QBTTbl4piwcjqg05GtnX5r_fskMWA-TeHqMB2yKt6vlFbwNAqbKuIfZwvBj4XROFHxlE6Vo
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overcoming+immiscibility+toward+bimetallic+catalyst+library&rft.jtitle=Science+advances&rft.au=Yang%2C+Chunpeng&rft.au=Ko%2C+Byung+Hee&rft.au=Hwang%2C+Sooyeon&rft.au=Liu%2C+Zhenyu&rft.date=2020-04-24&rft.issn=2375-2548&rft.eissn=2375-2548&rft.volume=6&rft.issue=17&rft_id=info:doi/10.1126%2Fsciadv.aaz6844&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_sciadv_aaz6844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon