Dynamic Regulation of Sensorimotor Integration in Human Postural Control

1 Neurological Sciences Institute, Oregon Health & Science University, Portland, Oregon 97006; and 2 Departments of Electrical Engineering and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 Submitted 28 May 2003; accepted in final form 10 September 2003 Upright stance i...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 91; no. 1; pp. 410 - 423
Main Authors Peterka, Robert J, Loughlin, Patrick J
Format Journal Article
LanguageEnglish
Published United States Am Phys Soc 01.01.2004
Subjects
Online AccessGet full text
ISSN0022-3077
1522-1598
DOI10.1152/jn.00516.2003

Cover

Loading…
Abstract 1 Neurological Sciences Institute, Oregon Health & Science University, Portland, Oregon 97006; and 2 Departments of Electrical Engineering and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 Submitted 28 May 2003; accepted in final form 10 September 2003 Upright stance in humans is inherently unstable, requiring corrective action based on spatial-orientation information from sensory systems. One might logically predict that environments providing access to accurate orientation information from multiple sensory systems would facilitate postural stability. However, we show that, after a period in which access to accurate sensory information was reduced, the restoration of accurate information disrupted postural stability. In eyes-closed trials, proprioceptive information was altered by rotating the support surface in proportion to body sway (support surface "sway-referencing"). When the support surface returned to a level orientation, most subjects developed a transient 1-Hz body sway oscillation that differed significantly from the low-amplitude body sway typically observed during quiet stance. Additional experiments showed further enhancement of the 1-Hz oscillation when the surface transitioned from a sway-referenced to a reverse sway-referenced motion. Oscillatory behavior declined with repetition of trials, suggesting a learning effect. A simple negative feedback-control model of the postural control system predicted the occurrence of this 1-Hz oscillation in conditions where too much corrective torque is generated in proportion to body sway. Model simulations were used to distinguish between two alternative explanations for the excessive corrective torque generation. Simulation results favor an explanation based on the dynamic reweighting of sensory contributions to postural control rather than a load-compensation mechanism that scales torque in proportion to a fixed combination of sensory-orientation information. Address for reprint requests and other correspondence: R. J. Peterka, Neurological Sciences Institute, OHSU West Campus, Bldg. 1, 505 NW 185 th Ave., Beaverton, OR 97006 (E-mail: peterkar{at}ohsu.edu ).
AbstractList Upright stance in humans is inherently unstable, requiring corrective action based on spatial-orientation information from sensory systems. One might logically predict that environments providing access to accurate orientation information from multiple sensory systems would facilitate postural stability. However, we show that, after a period in which access to accurate sensory information was reduced, the restoration of accurate information disrupted postural stability. In eyes-closed trials, proprioceptive information was altered by rotating the support surface in proportion to body sway (support surface "sway-referencing"). When the support surface returned to a level orientation, most subjects developed a transient 1-Hz body sway oscillation that differed significantly from the low-amplitude body sway typically observed during quiet stance. Additional experiments showed further enhancement of the 1-Hz oscillation when the surface transitioned from a sway-referenced to a reverse sway-referenced motion. Oscillatory behavior declined with repetition of trials, suggesting a learning effect. A simple negative feedback-control model of the postural control system predicted the occurrence of this 1-Hz oscillation in conditions where too much corrective torque is generated in proportion to body sway. Model simulations were used to distinguish between two alternative explanations for the excessive corrective torque generation. Simulation results favor an explanation based on the dynamic reweighting of sensory contributions to postural control rather than a load-compensation mechanism that scales torque in proportion to a fixed combination of sensory-orientation information.Upright stance in humans is inherently unstable, requiring corrective action based on spatial-orientation information from sensory systems. One might logically predict that environments providing access to accurate orientation information from multiple sensory systems would facilitate postural stability. However, we show that, after a period in which access to accurate sensory information was reduced, the restoration of accurate information disrupted postural stability. In eyes-closed trials, proprioceptive information was altered by rotating the support surface in proportion to body sway (support surface "sway-referencing"). When the support surface returned to a level orientation, most subjects developed a transient 1-Hz body sway oscillation that differed significantly from the low-amplitude body sway typically observed during quiet stance. Additional experiments showed further enhancement of the 1-Hz oscillation when the surface transitioned from a sway-referenced to a reverse sway-referenced motion. Oscillatory behavior declined with repetition of trials, suggesting a learning effect. A simple negative feedback-control model of the postural control system predicted the occurrence of this 1-Hz oscillation in conditions where too much corrective torque is generated in proportion to body sway. Model simulations were used to distinguish between two alternative explanations for the excessive corrective torque generation. Simulation results favor an explanation based on the dynamic reweighting of sensory contributions to postural control rather than a load-compensation mechanism that scales torque in proportion to a fixed combination of sensory-orientation information.
Upright stance in humans is inherently unstable, requiring corrective action based on spatial-orientation information from sensory systems. One might logically predict that environments providing access to accurate orientation information from multiple sensory systems would facilitate postural stability. However, we show that, after a period in which access to accurate sensory information was reduced, the restoration of accurate information disrupted postural stability. In eyes-closed trials, proprioceptive information was altered by rotating the support surface in proportion to body sway (support surface "sway-referencing"). When the support surface returned to a level orientation, most subjects developed a transient 1-Hz body sway oscillation that differed significantly from the low-amplitude body sway typically observed during quiet stance. Additional experiments showed further enhancement of the 1-Hz oscillation when the surface transitioned from a sway-referenced to a reverse sway-referenced motion. Oscillatory behavior declined with repetition of trials, suggesting a learning effect. A simple negative feedback-control model of the postural control system predicted the occurrence of this 1-Hz oscillation in conditions where too much corrective torque is generated in proportion to body sway. Model simulations were used to distinguish between two alternative explanations for the excessive corrective torque generation. Simulation results favor an explanation based on the dynamic reweighting of sensory contributions to postural control rather than a load-compensation mechanism that scales torque in proportion to a fixed combination of sensory-orientation information.
1 Neurological Sciences Institute, Oregon Health & Science University, Portland, Oregon 97006; and 2 Departments of Electrical Engineering and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 Submitted 28 May 2003; accepted in final form 10 September 2003 Upright stance in humans is inherently unstable, requiring corrective action based on spatial-orientation information from sensory systems. One might logically predict that environments providing access to accurate orientation information from multiple sensory systems would facilitate postural stability. However, we show that, after a period in which access to accurate sensory information was reduced, the restoration of accurate information disrupted postural stability. In eyes-closed trials, proprioceptive information was altered by rotating the support surface in proportion to body sway (support surface "sway-referencing"). When the support surface returned to a level orientation, most subjects developed a transient 1-Hz body sway oscillation that differed significantly from the low-amplitude body sway typically observed during quiet stance. Additional experiments showed further enhancement of the 1-Hz oscillation when the surface transitioned from a sway-referenced to a reverse sway-referenced motion. Oscillatory behavior declined with repetition of trials, suggesting a learning effect. A simple negative feedback-control model of the postural control system predicted the occurrence of this 1-Hz oscillation in conditions where too much corrective torque is generated in proportion to body sway. Model simulations were used to distinguish between two alternative explanations for the excessive corrective torque generation. Simulation results favor an explanation based on the dynamic reweighting of sensory contributions to postural control rather than a load-compensation mechanism that scales torque in proportion to a fixed combination of sensory-orientation information. Address for reprint requests and other correspondence: R. J. Peterka, Neurological Sciences Institute, OHSU West Campus, Bldg. 1, 505 NW 185 th Ave., Beaverton, OR 97006 (E-mail: peterkar{at}ohsu.edu ).
Author Loughlin, Patrick J
Peterka, Robert J
Author_xml – sequence: 1
  fullname: Peterka, Robert J
– sequence: 2
  fullname: Loughlin, Patrick J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/13679407$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvEzEQhS1URNPCkSvaE7cN4117bR9RoKRSJRCUs-U4k8SR1w62V5B_j9u0AiEQJ1vj7z2N37sgZyEGJOQlhTmlvHuzD3MATod5B9A_IbM661rKlTwjM4B670GIc3KR8x4ABIfuGTmn_SAUAzEjy3fHYEZnm8-4nbwpLoYmbpovGHJMbowlpuY6FNym05sLzXIaTWg-xVymZHyziKGk6J-TpxvjM754OC_J16v3t4tle_Pxw_Xi7U1r2QClNULWtZFLPqwYAK1TaZhaWTUYKqCnglqUEq1BQbFnyq6lXa25As6sMZv-krw--R5S_DZhLnp02aL3JmCcspYAUsmO_RekqhsGxngFXz2A02rEtT7Uf5t01I8hVaA9ATbFnBNufiGg70rQ-6DvS9B3JVS-_4O3rtzHV5Jx_p-q7qTaue3uu0uoD7tjdtHH7VFfTd7f4o9SNYpqqln1OKx_S-Nvour_CPc_AfJYqYY
CitedBy_id crossref_primary_10_1152_jn_00103_2014
crossref_primary_10_1016_j_clinph_2013_11_011
crossref_primary_10_1016_j_neulet_2012_07_020
crossref_primary_10_29252_JRSM_8_16_47
crossref_primary_10_1016_j_humov_2017_09_015
crossref_primary_10_1152_jn_01145_2015
crossref_primary_10_1016_j_heliyon_2023_e18472
crossref_primary_10_1016_j_neuroscience_2009_09_053
crossref_primary_10_1016_j_humov_2024_103181
crossref_primary_10_1080_08990220701637224
crossref_primary_10_1016_j_orthtr_2016_10_008
crossref_primary_10_1515_sjpain_2019_0121
crossref_primary_10_1016_j_neurobiolaging_2007_08_021
crossref_primary_10_1016_j_neuroscience_2012_04_017
crossref_primary_10_1152_jn_00481_2018
crossref_primary_10_1523_JNEUROSCI_4205_10_2010
crossref_primary_10_5772_52249
crossref_primary_10_1016_j_cger_2006_06_009
crossref_primary_10_1016_j_gaitpost_2012_01_011
crossref_primary_10_1038_s41598_019_50793_x
crossref_primary_10_1016_j_clinbiomech_2007_11_014
crossref_primary_10_3389_fped_2021_622542
crossref_primary_10_1016_j_gaitpost_2021_12_001
crossref_primary_10_1016_j_neuroimage_2013_02_010
crossref_primary_10_1007_s13760_017_0853_0
crossref_primary_10_1007_s00221_015_4484_5
crossref_primary_10_3389_fnhum_2022_839799
crossref_primary_10_1016_j_jelekin_2014_07_003
crossref_primary_10_1016_j_jelekin_2012_11_003
crossref_primary_10_1007_s00221_011_2633_z
crossref_primary_10_1016_j_humov_2019_102525
crossref_primary_10_1016_j_neunet_2008_03_013
crossref_primary_10_1152_jn_00618_2015
crossref_primary_10_1152_jn_00083_2014
crossref_primary_10_3389_fnbot_2017_00037
crossref_primary_10_1159_000447124
crossref_primary_10_1186_s12995_016_0122_9
crossref_primary_10_1109_TBME_2010_2095500
crossref_primary_10_3390_ijerph19148809
crossref_primary_10_3389_fnhum_2024_1471132
crossref_primary_10_58962_HSTRPT_2021_2_1_33_38
crossref_primary_10_1371_journal_pone_0065510
crossref_primary_10_1080_10255842_2014_946915
crossref_primary_10_1097_HTR_0b013e3181dc82fa
crossref_primary_10_1016_j_gaitpost_2007_05_006
crossref_primary_10_1007_s00422_020_00843_9
crossref_primary_10_1038_srep37040
crossref_primary_10_1051_sm_2011118
crossref_primary_10_1016_j_bjorl_2020_11_009
crossref_primary_10_1007_s00337_014_1157_6
crossref_primary_10_1007_s00421_009_1097_3
crossref_primary_10_1088_1741_2552_ac63ed
crossref_primary_10_1177_2059700219889233
crossref_primary_10_1589_jpts_25_1565
crossref_primary_10_1016_j_exger_2023_112200
crossref_primary_10_1063_1_4871880
crossref_primary_10_1080_15438620500222588
crossref_primary_10_1016_j_humov_2023_103125
crossref_primary_10_3390_jcm13216366
crossref_primary_10_1016_j_apergo_2012_02_003
crossref_primary_10_1109_TMRB_2023_3336969
crossref_primary_10_1016_j_bbe_2020_12_008
crossref_primary_10_1016_j_neuroscience_2010_05_072
crossref_primary_10_1016_j_medengphy_2009_10_005
crossref_primary_10_1016_j_humov_2019_05_018
crossref_primary_10_1016_j_gaitpost_2005_08_007
crossref_primary_10_1007_s12311_024_01719_5
crossref_primary_10_1016_j_kine_2014_03_027
crossref_primary_10_1016_j_jelekin_2015_10_011
crossref_primary_10_1109_TBME_2009_2031874
crossref_primary_10_3390_life14091184
crossref_primary_10_3390_bios10090117
crossref_primary_10_1016_j_neuroscience_2009_04_005
crossref_primary_10_1007_s00221_006_0393_y
crossref_primary_10_1589_jpts_29_1318
crossref_primary_10_1007_s10803_015_2621_4
crossref_primary_10_1016_j_gaitpost_2011_10_361
crossref_primary_10_3109_08990220_2012_725680
crossref_primary_10_3109_08990220_2016_1171207
crossref_primary_10_1016_j_gaitpost_2008_04_015
crossref_primary_10_1371_journal_pcbi_1000629
crossref_primary_10_1016_j_foot_2024_102100
crossref_primary_10_1007_s00221_004_2030_y
crossref_primary_10_15406_mojgg_2020_05_00222
crossref_primary_10_3389_fnins_2022_1003996
crossref_primary_10_17241_smr_2022_01235
crossref_primary_10_3109_08990220_2014_969837
crossref_primary_10_1152_jn_00389_2018
crossref_primary_10_3390_ijerph19084830
crossref_primary_10_1007_s00221_006_0559_7
crossref_primary_10_1007_s12311_015_0758_5
crossref_primary_10_1016_j_jphysparis_2009_08_001
crossref_primary_10_1016_j_brainresbull_2007_06_020
crossref_primary_10_1016_j_jphysparis_2009_08_002
crossref_primary_10_1371_journal_pone_0285831
crossref_primary_10_2466_pms_104_1_56_66
crossref_primary_10_1038_s41598_024_54583_y
crossref_primary_10_1016_j_jsams_2017_04_008
crossref_primary_10_1152_jn_00606_2018
crossref_primary_10_3390_jpm12081319
crossref_primary_10_1007_s00221_016_4814_2
crossref_primary_10_1016_j_jneumeth_2017_01_009
crossref_primary_10_1103_PhysRevResearch_2_033106
crossref_primary_10_1371_journal_pone_0136335
crossref_primary_10_1016_j_apmr_2007_05_007
crossref_primary_10_1007_s00221_017_4893_8
crossref_primary_10_1007_s00421_019_04192_9
crossref_primary_10_1016_j_neulet_2014_11_048
crossref_primary_10_1109_JSEN_2018_2889970
crossref_primary_10_61186_jams_27_1_5
crossref_primary_10_1007_BF02345130
crossref_primary_10_3389_fphys_2022_803185
crossref_primary_10_1152_jn_00538_2004
crossref_primary_10_1002_wcs_125
crossref_primary_10_1016_j_ijdevneu_2017_06_010
crossref_primary_10_1088_1741_2552_ad7320
crossref_primary_10_1016_j_heliyon_2020_e04541
crossref_primary_10_1152_jn_00057_2016
crossref_primary_10_1007_s00221_017_5128_8
crossref_primary_10_4085_1062_6050_0246_22
crossref_primary_10_1177_193229681000400403
crossref_primary_10_3390_ijerph20064702
crossref_primary_10_1016_j_humov_2015_08_009
crossref_primary_10_1080_08990220500420640
crossref_primary_10_1152_japplphysiol_00517_2013
crossref_primary_10_1113_jphysiol_2004_076307
crossref_primary_10_3109_17483107_2014_908245
crossref_primary_10_1016_j_neuroscience_2012_12_053
crossref_primary_10_1016_j_gaitpost_2024_05_018
crossref_primary_10_1016_j_gaitpost_2018_10_012
crossref_primary_10_1080_00222895_2010_481693
crossref_primary_10_1007_s00421_007_0434_7
crossref_primary_10_1016_j_apmr_2013_05_030
crossref_primary_10_1111_ejn_13703
crossref_primary_10_3390_brainsci15020138
crossref_primary_10_1007_s00221_006_0620_6
crossref_primary_10_1007_s00586_006_0178_9
crossref_primary_10_1152_jn_00983_2003
crossref_primary_10_3389_fnhum_2023_1213385
crossref_primary_10_1016_j_jneumeth_2005_01_003
crossref_primary_10_1152_jn_00612_2019
crossref_primary_10_1152_jn_00330_2017
crossref_primary_10_1111_joor_12247
crossref_primary_10_1002_jbio_202300318
crossref_primary_10_3389_fnhum_2018_00108
crossref_primary_10_1016_j_humov_2007_11_005
crossref_primary_10_1080_00222895_2021_1887072
crossref_primary_10_1177_0309364612448805
crossref_primary_10_1007_s00221_021_06049_0
crossref_primary_10_1007_s10803_018_3634_6
crossref_primary_10_1016_j_concog_2016_08_019
crossref_primary_10_2522_ptj_20080071
crossref_primary_10_1152_jn_00042_2012
crossref_primary_10_3389_fnsys_2015_00117
crossref_primary_10_2522_ptj_20060263
crossref_primary_10_1016_j_gaitpost_2008_01_010
crossref_primary_10_1098_rsif_2017_0816
crossref_primary_10_1249_MSS_0000000000000859
crossref_primary_10_1016_j_gaitpost_2017_06_013
crossref_primary_10_1007_s00221_007_0990_4
crossref_primary_10_1123_mc_2018_0119
crossref_primary_10_1177_1747021818798824
crossref_primary_10_1007_s00221_011_2693_0
crossref_primary_10_1080_09291016_2020_1843254
crossref_primary_10_1097_NPT_0b013e318185558f
crossref_primary_10_1523_JNEUROSCI_0116_09_2009
crossref_primary_10_1016_j_gaitpost_2008_11_014
crossref_primary_10_1016_j_neulet_2012_12_022
crossref_primary_10_3390_s23063309
crossref_primary_10_1136_bmjopen_2016_013281
crossref_primary_10_1016_j_bbr_2015_08_017
crossref_primary_10_3109_09593985_2015_1037875
crossref_primary_10_1016_j_gaitpost_2025_01_012
crossref_primary_10_1002_cnm_3841
crossref_primary_10_1007_s00221_019_05631_x
crossref_primary_10_1007_s00221_008_1500_z
crossref_primary_10_1016_j_medntd_2021_100093
crossref_primary_10_1080_01691864_2016_1266095
crossref_primary_10_1016_j_humov_2015_04_009
crossref_primary_10_5005_jp_journals_10057_0012
crossref_primary_10_1016_j_gaitpost_2006_11_204
crossref_primary_10_1038_s41598_019_47613_7
crossref_primary_10_1007_s11357_011_9310_9
crossref_primary_10_1109_RBME_2021_3057673
crossref_primary_10_1177_147323000903700506
crossref_primary_10_3389_fnhum_2017_00011
crossref_primary_10_1016_j_gaitpost_2014_01_009
crossref_primary_10_1080_00222895_2019_1694486
crossref_primary_10_3389_fneur_2018_00899
crossref_primary_10_1371_journal_pone_0170331
crossref_primary_10_1186_s12883_017_0812_7
crossref_primary_10_1590_S1517_86922013000500016
crossref_primary_10_1098_rsif_2020_0951
crossref_primary_10_1007_s00221_017_5061_x
crossref_primary_10_1113_JP281183
crossref_primary_10_1016_j_pmrj_2015_05_010
crossref_primary_10_1007_s00221_016_4642_4
crossref_primary_10_1080_02643290801913712
crossref_primary_10_1152_jn_00801_2007
crossref_primary_10_1371_journal_pone_0113897
crossref_primary_10_3389_fnhum_2024_1329269
crossref_primary_10_1007_s00221_007_1249_9
crossref_primary_10_3389_fnhum_2016_00419
crossref_primary_10_1152_jn_00304_2023
crossref_primary_10_1186_s12891_017_1682_2
crossref_primary_10_3390_biomechanics2030030
crossref_primary_10_3390_biology10090869
crossref_primary_10_1016_j_gaitpost_2017_05_032
crossref_primary_10_1007_s00221_007_1189_4
crossref_primary_10_1186_1743_0003_7_58
crossref_primary_10_1016_j_brs_2017_10_007
crossref_primary_10_1007_s00221_005_0053_7
crossref_primary_10_1152_jn_00183_2021
crossref_primary_10_3389_fnhum_2021_615200
crossref_primary_10_1177_17479541211058581
crossref_primary_10_1080_17518423_2020_1825539
crossref_primary_10_1016_j_jneumeth_2018_10_012
crossref_primary_10_1016_j_gaitpost_2013_08_007
crossref_primary_10_1371_journal_pone_0088132
crossref_primary_10_3389_fnhum_2019_00126
crossref_primary_10_1371_journal_pone_0150158
crossref_primary_10_30621_jbachs_1429228
crossref_primary_10_1589_jpts_27_2257
crossref_primary_10_3389_fnagi_2022_1060734
crossref_primary_10_1016_j_humov_2021_102895
crossref_primary_10_1016_j_msksp_2018_02_001
crossref_primary_10_1111_sms_14098
crossref_primary_10_1016_j_clinbiomech_2020_105100
crossref_primary_10_1093_pm_pny015
crossref_primary_10_1123_mc_2017_0044
crossref_primary_10_1007_s00221_017_4985_5
crossref_primary_10_1007_s00221_005_0065_3
crossref_primary_10_1016_j_brat_2009_01_011
crossref_primary_10_1186_s12984_018_0395_6
crossref_primary_10_1016_j_neures_2015_12_002
crossref_primary_10_1111_j_1749_6632_2011_05965_x
crossref_primary_10_1038_s41598_019_42888_2
crossref_primary_10_14813_ibra_2017_28
crossref_primary_10_1016_j_gaitpost_2017_01_008
crossref_primary_10_1007_s00586_009_1082_x
crossref_primary_10_1016_j_neulet_2007_10_004
crossref_primary_10_1016_j_gaitpost_2015_08_012
crossref_primary_10_3389_fpubh_2023_1287223
crossref_primary_10_1152_jn_00166_2024
crossref_primary_10_3389_fnetp_2024_1393171
crossref_primary_10_1152_jn_00300_2017
crossref_primary_10_1016_j_csfx_2024_100125
crossref_primary_10_1007_s00221_006_0630_4
crossref_primary_10_1123_mc_2017_0074
crossref_primary_10_1371_journal_pone_0163212
crossref_primary_10_1016_j_neulet_2007_11_049
crossref_primary_10_1016_j_neuroscience_2012_11_025
crossref_primary_10_7224_1537_2073_2014_052
crossref_primary_10_1163_22134808_00002458
crossref_primary_10_1186_s12984_018_0407_6
crossref_primary_10_1016_j_jmpt_2014_10_014
crossref_primary_10_3389_fnhum_2017_00283
crossref_primary_10_1007_s00422_015_0655_5
crossref_primary_10_1038_s41598_024_83101_3
crossref_primary_10_1016_j_gaitpost_2024_01_019
crossref_primary_10_1098_rsif_2011_0212
crossref_primary_10_3390_s24041046
crossref_primary_10_1589_jpts_26_423
crossref_primary_10_1152_jn_00856_2004
crossref_primary_10_1098_rsif_2014_0751
crossref_primary_10_1016_j_neuroscience_2013_09_041
crossref_primary_10_1007_s00415_018_9045_y
crossref_primary_10_1186_1471_2474_8_44
crossref_primary_10_1016_j_gaitpost_2010_02_002
crossref_primary_10_1016_j_gaitpost_2005_12_013
crossref_primary_10_1016_j_humov_2023_103098
crossref_primary_10_3390_healthcare11172384
crossref_primary_10_1589_jpts_29_1154
crossref_primary_10_3390_s20143810
crossref_primary_10_1016_j_jbiomech_2008_04_031
crossref_primary_10_1016_j_optm_2009_01_014
crossref_primary_10_1152_jn_00030_2015
crossref_primary_10_1093_cercor_bhn162
crossref_primary_10_1016_j_humov_2023_103090
crossref_primary_10_9746_sicetr_49_1113
crossref_primary_10_1007_s13530_013_0174_5
crossref_primary_10_1016_j_neulet_2007_03_076
crossref_primary_10_3390_s22010368
crossref_primary_10_1152_jn_00670_2010
crossref_primary_10_3390_app10175969
crossref_primary_10_1016_j_neuroscience_2012_03_044
crossref_primary_10_1080_02640414_2023_2240174
crossref_primary_10_3389_fnins_2022_841901
crossref_primary_10_1007_s00221_017_4995_3
crossref_primary_10_1123_mc_2020_0075
crossref_primary_10_1152_jn_00345_2010
crossref_primary_10_1016_j_neuroscience_2008_05_018
crossref_primary_10_1093_geronb_gbp060
crossref_primary_10_1002_mds_29777
crossref_primary_10_1007_s00415_019_09255_7
crossref_primary_10_1007_s00221_020_05837_4
crossref_primary_10_1038_s41598_020_66057_y
crossref_primary_10_3389_fnins_2024_1467182
crossref_primary_10_1109_LCSYS_2018_2871126
crossref_primary_10_7600_jspfsm_55_469
crossref_primary_10_1089_neu_2015_4238
crossref_primary_10_3200_35_09_012_RA
crossref_primary_10_1589_jpts_24_1079
crossref_primary_10_3109_14038196_2011_640350
crossref_primary_10_2522_ptj_20150124
crossref_primary_10_1371_journal_pone_0100418
crossref_primary_10_1007_s00221_005_0256_y
crossref_primary_10_1152_jn_00109_2010
crossref_primary_10_1016_j_arcontrol_2010_08_001
crossref_primary_10_1162_pres_a_00039
crossref_primary_10_1152_jn_00669_2013
crossref_primary_10_1007_s00422_011_0466_2
crossref_primary_10_1007_s00221_007_1112_z
crossref_primary_10_1097_NPT_0000000000000497
crossref_primary_10_3389_fneur_2019_00157
crossref_primary_10_1007_s00221_007_1047_4
crossref_primary_10_1152_jn_00490_2013
crossref_primary_10_1007_s00221_006_0708_z
crossref_primary_10_3389_fneur_2020_609928
crossref_primary_10_3389_fnhum_2016_00325
crossref_primary_10_3390_ijerph18094940
crossref_primary_10_1111_jgs_15490
crossref_primary_10_1111_j_1365_2842_2011_02211_x
crossref_primary_10_1007_s11517_009_0477_5
crossref_primary_10_1016_j_gaitpost_2017_09_014
crossref_primary_10_1016_j_neuroscience_2016_02_036
crossref_primary_10_1016_j_humov_2010_06_002
crossref_primary_10_1016_j_jbiomech_2016_03_005
crossref_primary_10_1016_j_neucli_2009_09_002
crossref_primary_10_1109_TNSRE_2023_3330846
crossref_primary_10_3389_fspor_2024_1366448
crossref_primary_10_1016_j_jmpt_2016_06_001
crossref_primary_10_1111_jir_12671
crossref_primary_10_1115_1_4038747
crossref_primary_10_1186_ar3432
crossref_primary_10_3390_s23031132
crossref_primary_10_1177_2041669519886903
crossref_primary_10_1016_j_gaitpost_2018_05_009
crossref_primary_10_1044_hhd13_2_40
crossref_primary_10_3389_fnsys_2016_00022
crossref_primary_10_3390_brainsci12070912
crossref_primary_10_1152_jn_00221_2004
crossref_primary_10_1016_j_jbiomech_2014_09_006
crossref_primary_10_1589_rika_28_669
crossref_primary_10_1097_PXR_0000000000000261
crossref_primary_10_1142_S0219519424400402
crossref_primary_10_3389_fpsyg_2021_661312
crossref_primary_10_1111_psyp_14667
crossref_primary_10_1002_jor_25522
crossref_primary_10_1016_j_clinph_2012_09_019
crossref_primary_10_1016_j_jpsychires_2016_08_013
crossref_primary_10_1016_j_neuropsychologia_2019_01_023
crossref_primary_10_3389_fnhum_2017_00087
crossref_primary_10_1177_0309364615589466
crossref_primary_10_1371_journal_pone_0086650
crossref_primary_10_1186_s12984_021_00952_x
crossref_primary_10_1016_j_humov_2012_12_002
crossref_primary_10_1016_j_gaitpost_2010_06_016
crossref_primary_10_1007_s00421_022_05043_w
crossref_primary_10_1007_s12311_023_01625_2
crossref_primary_10_1088_1741_2552_acc54f
crossref_primary_10_3389_fnhum_2018_00098
crossref_primary_10_3233_NRE_230358
crossref_primary_10_1123_jab_2017_0181
crossref_primary_10_1152_jn_01008_2011
crossref_primary_10_1016_j_gaitpost_2005_02_008
crossref_primary_10_1103_PhysRevResearch_5_043157
crossref_primary_10_1098_rsif_2012_0077
crossref_primary_10_3389_fnhum_2024_1482752
crossref_primary_10_1016_j_gaitpost_2008_07_006
crossref_primary_10_3390_ijerph19042076
crossref_primary_10_1007_s00221_008_1526_2
crossref_primary_10_3389_fncom_2022_785099
crossref_primary_10_1016_j_ridd_2024_104730
crossref_primary_10_3389_fncir_2022_913480
crossref_primary_10_1371_journal_pone_0060293
crossref_primary_10_1016_j_jbiomech_2013_08_018
crossref_primary_10_3389_fnsys_2014_00190
crossref_primary_10_1038_s41598_024_64293_0
crossref_primary_10_3390_brainsci11081111
Cites_doi 10.1113/jphysiol.1997.sp022051
10.1152/physrev.2000.80.1.83
10.1007/BF00242186
10.1111/j.1532-5415.1999.tb04584.x
10.1007/BF02738408
10.1109/86.547944
10.1109/78.324735
10.1007/s004220000196
10.1016/S0893-6080(99)00058-1
10.1523/JNEUROSCI.02-05-00536.1982
10.1139/y94-076
10.1152/jn.2002.88.3.1097
10.1093/geronj/46.3.M69
10.1126/science.7569931
10.1016/S0304-3940(01)02147-4
10.1007/BF00231755
10.1016/0006-8993(78)90291-3
10.3233/VES-1999-9604
10.1007/s002210000615
10.1016/S0960-9822(02)00836-9
10.1523/JNEUROSCI.19-01-00316.1999
10.1016/S0021-9290(96)00165-0
10.1007/BF00229788
10.1152/jn.1989.62.4.841
10.1109/10.532130
10.1007/s00422-001-0290-1
10.1007/s002210050602
10.1007/BF00242910
10.1016/0006-8993(84)90515-8
10.1007/BF00237939
10.1007/BF00229416
10.1016/S0149-7634(97)00032-8
10.1109/7333.918273
10.1007/s004220050527
10.1007/s00221-001-0926-3
10.1016/0166-2236(82)90204-1
10.1007/s004220050587
10.1016/0013-4694(84)90172-X
10.1152/jn.1982.47.2.287
10.1113/jphysiol.1988.sp017214
10.1152/jn.00485.2001
10.1152/jn.1996.76.6.3994
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1152/jn.00516.2003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef

Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 423
ExternalDocumentID 13679407
10_1152_jn_00516_2003
jn_91_1_410
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
Comparative Study
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: DC-04435
– fundername: NIA NIH HHS
  grantid: AG-17960
GroupedDBID -
0VX
1Z7
2WC
39C
3O-
41
53G
55
5GY
5VS
AALRV
ABFLS
ABIVO
ABPTK
ABUFD
ABZEH
ACGFS
ACNCT
ADACO
ADBBV
ADBIT
ADKLL
AENEX
AETEA
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FH7
FRP
GJ
GX1
H~9
KQ8
L7B
MVM
NEJ
O0-
OHT
OK1
P2P
RAP
RHF
RHI
RPL
SJN
UHB
UPT
UQL
WH7
WOQ
WOW
X
X7M
ZA5
ZGI
ZXP
ZY4
---
-DZ
-~X
.55
.GJ
18M
1CY
29L
4.4
41~
8M5
AAYXX
ABCQX
ABHWK
ABJNI
ABKWE
ACGFO
ADFNX
ADHGD
ADIYS
AFOSN
AI.
AIZAD
BKKCC
BTFSW
CITATION
EMOBN
H13
ITBOX
RPRKH
TR2
VH1
W8F
XJT
XOL
XSW
YBH
YQT
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
ID FETCH-LOGICAL-c460t-a78115e5856b4001c468a49bc96a1703171ce88ecae71e349cd8cbd59054caaf3
ISSN 0022-3077
IngestDate Fri Sep 05 09:19:43 EDT 2025
Thu Sep 04 20:24:43 EDT 2025
Tue Aug 05 11:35:58 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Tue Jul 01 01:16:44 EDT 2025
Tue Jan 05 17:53:14 EST 2021
Mon May 06 12:25:01 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c460t-a78115e5856b4001c468a49bc96a1703171ce88ecae71e349cd8cbd59054caaf3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 13679407
PQID 19266445
PQPubID 23462
PageCount 14
ParticipantIDs proquest_miscellaneous_19266445
crossref_primary_10_1152_jn_00516_2003
highwire_physiology_jn_91_1_410
crossref_citationtrail_10_1152_jn_00516_2003
proquest_miscellaneous_80089824
pubmed_primary_13679407
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20040101
2004-01-00
2004-Jan
PublicationDateYYYYMMDD 2004-01-01
PublicationDate_xml – month: 01
  year: 2004
  text: 20040101
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2004
Publisher Am Phys Soc
Publisher_xml – name: Am Phys Soc
References REF9
REF7
REF8
REF5
REF6
REF3
REF4
REF40
REF44
REF43
REF42
REF41
REF48
REF47
REF46
REF45
REF49
REF33
REF32
REF31
REF30
REF37
REF36
REF35
REF34
REF1
REF2
REF39
REF38
REF22
REF21
REF20
REF26
REF25
REF24
REF23
REF29
REF28
REF27
REF51
REF50
REF11
REF10
REF15
REF14
REF13
REF12
REF19
REF18
REF17
REF16
References_xml – ident: REF10
  doi: 10.1113/jphysiol.1997.sp022051
– ident: REF5
– ident: REF13
  doi: 10.1152/physrev.2000.80.1.83
– ident: REF40
  doi: 10.1007/BF00242186
– ident: REF44
  doi: 10.1111/j.1532-5415.1999.tb04584.x
– ident: REF20
  doi: 10.1007/BF02738408
– ident: REF15
– ident: REF21
– ident: REF28
  doi: 10.1109/86.547944
– ident: REF26
  doi: 10.1109/78.324735
– ident: REF48
  doi: 10.1007/s004220000196
– ident: REF33
  doi: 10.1016/S0893-6080(99)00058-1
– ident: REF36
  doi: 10.1523/JNEUROSCI.02-05-00536.1982
– ident: REF9
– ident: REF3
  doi: 10.1139/y94-076
– ident: REF39
  doi: 10.1152/jn.2002.88.3.1097
– ident: REF25
  doi: 10.1093/geronj/46.3.M69
– ident: REF50
  doi: 10.1126/science.7569931
– ident: REF49
  doi: 10.1016/S0304-3940(01)02147-4
– ident: REF41
– ident: REF45
  doi: 10.1007/BF00231755
– ident: REF24
– ident: REF35
  doi: 10.1016/0006-8993(78)90291-3
– ident: REF23
  doi: 10.3233/VES-1999-9604
– ident: REF43
  doi: 10.1007/s002210000615
– ident: REF46
  doi: 10.1016/S0960-9822(02)00836-9
– ident: REF1
  doi: 10.1523/JNEUROSCI.19-01-00316.1999
– ident: REF37
  doi: 10.1016/S0021-9290(96)00165-0
– ident: REF6
  doi: 10.1007/BF00229788
– ident: REF17
  doi: 10.1152/jn.1989.62.4.841
– ident: REF42
  doi: 10.1109/10.532130
– ident: REF51
  doi: 10.1007/s00422-001-0290-1
– ident: REF7
– ident: REF22
  doi: 10.1007/s002210050602
– ident: REF16
  doi: 10.1007/BF00242910
– ident: REF12
  doi: 10.1016/0006-8993(84)90515-8
– ident: REF29
  doi: 10.1007/BF00237939
– ident: REF31
  doi: 10.1007/BF00229416
– ident: REF32
  doi: 10.1016/S0149-7634(97)00032-8
– ident: REF27
  doi: 10.1109/7333.918273
– ident: REF47
  doi: 10.1007/s004220050527
– ident: REF18
– ident: REF2
– ident: REF4
  doi: 10.1007/s00221-001-0926-3
– ident: REF34
  doi: 10.1016/0166-2236(82)90204-1
– ident: REF38
  doi: 10.1007/s004220050587
– ident: REF11
  doi: 10.1016/0013-4694(84)90172-X
– ident: REF8
  doi: 10.1152/jn.1982.47.2.287
– ident: REF19
  doi: 10.1113/jphysiol.1988.sp017214
– ident: REF30
  doi: 10.1152/jn.00485.2001
– ident: REF14
  doi: 10.1152/jn.1996.76.6.3994
SSID ssj0007502
Score 2.3371618
Snippet 1 Neurological Sciences Institute, Oregon Health & Science University, Portland, Oregon 97006; and 2 Departments of Electrical Engineering and Bioengineering,...
Upright stance in humans is inherently unstable, requiring corrective action based on spatial-orientation information from sensory systems. One might logically...
SourceID proquest
pubmed
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 410
SubjectTerms Adaptation, Physiological
Adult
Biofeedback, Psychology - physiology
Computer Simulation
Female
Habituation, Psychophysiologic
Humans
Male
Middle Aged
Models, Biological
Motor Activity - physiology
Postural Balance
Posture - physiology
Proprioception - physiology
Spectrum Analysis
Time Factors
Torque
Title Dynamic Regulation of Sensorimotor Integration in Human Postural Control
URI http://jn.physiology.org/cgi/content/abstract/91/1/410
https://www.ncbi.nlm.nih.gov/pubmed/13679407
https://www.proquest.com/docview/19266445
https://www.proquest.com/docview/80089824
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaG7rJL0a7rmj11GHrpnFq25McxyDYEHVa0QAr0JsiKUvRlF6l72H79qJflrAnQ9WIECmPH4meKpKmPCH0REBrPcplGuaAsoomIo6pMSJQxIsS8kClVOg_56zibnNGjc3YeuqKa3SVtNZR_Vu4reY5WYQz0qnfJ_odmu5PCAHwG_cIRNAzHJ-n4m20nD3N04bpwmT0oEJk2C62DZmEyfhdOy5rWyuTsdYdeQ7cxtoXqazxUw3VpUh9LuXdT0nstQl32wdGwq-vRTX9cD3jL_n_tv_WpBdpLLfRK_WPXZ0U5Cwlj4AMVfRNakkdQsfaQuppVu7RSu7X4sdVmmgX2qh5qE2HqRtKwPPlX8v-sWl0toYliWMKvam5-zi3768sE4gbdy-PnaaCPB_co0MfDfXnSVZYcLl192UnxxNHrgxDjjEy30KbTER5ZSGyjF6p-jXZGtWib2994H590SttBE4cSHFCCmznuowT3UIIva2xQgj1KsEPJG3T24_t0PIlc_4xI0ixuI6F3ETMFAWFWgakmMFoIWlayzATRfQtyIlVRKClUTlRKS80TUc1YCW68hCc13UUbdVOrPYRjNYNHWohcu4NVbjiH5sLEr2DEaT5AX_2EcenI5XWPkxu-Uj0DtN-J31lWlXWCB372ecA71-mZKcAAhEvCCQeY8bvZfIA-r5KGM3opkPAq5GBH9csxUavm4Z5DpJNBbMDWS0BoVZRFQgfordV9-OtpBstanL976m29R6_C8_YBbbSLB_URnNu2-mQA-xchmaOa
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Regulation+of+Sensorimotor+Integration+in+Human+Postural+Control&rft.jtitle=Journal+of+neurophysiology&rft.au=Peterka%2C+Robert+J.&rft.au=Loughlin%2C+Patrick+J.&rft.date=2004-01-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=91&rft.issue=1&rft.spage=410&rft.epage=423&rft_id=info:doi/10.1152%2Fjn.00516.2003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_00516_2003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon