A counting process approach to stochastic interest

The aim of the present paper is to propose a stochastic approach for describing the return of an investment, and study its applications in insurance. The process governing the return of the investment is assumed to have bounded variation over finite intervals and possess a jump part. Attention is re...

Full description

Saved in:
Bibliographic Details
Published inInsurance, mathematics & economics Vol. 17; no. 2; pp. 181 - 192
Main Author Moller, Christian Max
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.10.1995
Elsevier
Elsevier Sequoia S.A
SeriesInsurance: Mathematics and Economics
Subjects
Online AccessGet full text
ISSN0167-6687
1873-5959
DOI10.1016/0167-6687(95)00020-S

Cover

Abstract The aim of the present paper is to propose a stochastic approach for describing the return of an investment, and study its applications in insurance. The process governing the return of the investment is assumed to have bounded variation over finite intervals and possess a jump part. Attention is restricted to cases where the process has independent increments and is subject to fluctuations given by a Markovian environment. In the first case direct calculations are obtainable for evaluating moments of present and accumulated values. In the last case we establish differential equations akin to the celebrated Thiele's differential equation in life insurance.
AbstractList A stochastic approach is proposed for describing the return of an investment, and its applications in insurance are examined. The process governing the return of the investment is assumed to have bounded variation over finite intervals and to possess a jump part. Attention is restricted to cases where the process has independent increments and is subject to fluctuations given by a Markovian environment. In the first case, direct calculations are obtainable for evaluating moments of present and accumulated values. In the last case, differential equations are established akin to the celebrated Thiele's differential equation in life insurance.
The aim of the present paper is to propose a stochastic approach for describing the return of an investment, and study its applications in insurance. The process governing the return of the investment is assumed to have bounded variation over finite intervals and possess a jump part. Attention is restricted to cases where the process has independent increments and is subject to fluctuations given by a Markovian environment. In the first case direct calculations are obtainable for evaluating moments of present and accumulated values. In the last case we establish differential equations akin to the celebrated Thiele's differential equation in life insurance.
Author Møller, Christian Max
Author_xml – fullname: Moller, Christian Max
BackLink http://econpapers.repec.org/article/eeeinsuma/v_3a17_3ay_3a1995_3ai_3a2_3ap_3a181-192.htm$$DView record in RePEc
BookMark eNqFkcFqGzEQhkVxoHaaN-hh6aEkh22lXWlXyqEQQpq0GHJIehba8WysYEsbSWvI21dbBx98aA6jGcT_fzPMLMjMeYeEfGb0G6Os-Z6jLZtGtudKXFBKK1o-fCBzJtu6FEqoGZkfJB_JIsbnLGKqaeekuirAjy5Z91QMwQPGWJghVwbWRfJFTB7WJiYLhXUJA8b0iZz0ZhPx7C2fkj8_bx6v78rl_e2v66tlCbyhqTRV08meMzQ1h76FDmRP-5VoODWKtlJRLoAKwXnNa-R9B9iwVacAsGMMVX1Kvu65eZqXMTfWWxsBNxvj0I9R11LWGTYJvxwJn_0YXJ5NV1Qy0XIms-j3XhRwQNBDsFsTXjUiWhfHrdE7XRvW5ud1KpQSOdkcVY5h-pJMM1XpddpmGN_DIPgYA_YHHqN6Oome9q2nfesM-ncS_ZBtl0c2sMkk610Kxm7eM__YmzHvfGcx6AgWHeDKBoSkV97-H_AXCc2l3g
CODEN IMECDX
CitedBy_id crossref_primary_10_1016_S0167_6687_97_00020_6
Cites_doi 10.1080/03461238.1991.10413890
10.2307/3214922
10.1016/0304-4149(88)90096-8
10.1016/0167-6687(92)90048-G
10.1016/0167-6687(92)90019-8
10.1080/03461238.1990.10413872
10.1080/03461238.1993.10413910
10.1016/0304-4149(93)90010-2
ContentType Journal Article
Copyright 1995
Copyright Elsevier Sequoia S.A. Oct 1995
Copyright_xml – notice: 1995
– notice: Copyright Elsevier Sequoia S.A. Oct 1995
DBID AAYXX
CITATION
DKI
X2L
8BJ
FQK
JBE
JQ2
DOI 10.1016/0167-6687(95)00020-S
DatabaseName CrossRef
RePEc IDEAS
RePEc
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Computer Science Collection
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
Business
EISSN 1873-5959
EndPage 192
ExternalDocumentID 8946427
eeeinsuma_v_3a17_3ay_3a1995_3ai_3a2_3ap_3a181_192_htm
10_1016_0167_6687_95_00020_S
016766879500020S
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29J
3R3
4.4
457
4G.
5GY
5VS
63O
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFFL
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACHQT
ACIWK
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADGUI
ADMUD
AEBSH
AEKER
AENEX
AEYQN
AFKWA
AFODL
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BEZPJ
BGSCR
BKOJK
BKOMP
BLXMC
BNTGB
BPUDD
BULVW
BZJEE
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMB
HMJ
HVGLF
HZ~
IHE
IXIXF
J1W
KOM
LPU
LY5
M26
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
ROL
RPZ
SDF
SDG
SEB
SEE
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SSF
SSW
SSZ
T5K
WUQ
YK3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
0R
1
8P
ADALY
DKI
G-
HZ
K
M
MS
PQEST
X
X2L
8BJ
EFKBS
FQK
JBE
JQ2
ID FETCH-LOGICAL-c460t-a26b8f41ea34cf7cbc8f0fd5640a90789045c05544343e4fbce61db9cceb11e93
IEDL.DBID .~1
ISSN 0167-6687
IngestDate Thu Sep 04 18:37:56 EDT 2025
Wed Aug 13 06:31:28 EDT 2025
Wed Aug 18 03:09:43 EDT 2021
Tue Jul 01 02:45:26 EDT 2025
Thu Apr 24 22:59:20 EDT 2025
Fri Feb 23 02:14:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Doléans equation
Payment functions
Marked point process
Markovian environment
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-a26b8f41ea34cf7cbc8f0fd5640a90789045c05544343e4fbce61db9cceb11e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 208157418
PQPubID 46295
PageCount 12
ParticipantIDs proquest_miscellaneous_38836409
proquest_journals_208157418
repec_primary_eeeinsuma_v_3a17_3ay_3a1995_3ai_3a2_3ap_3a181_192_htm
crossref_primary_10_1016_0167_6687_95_00020_S
crossref_citationtrail_10_1016_0167_6687_95_00020_S
elsevier_sciencedirect_doi_10_1016_0167_6687_95_00020_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1995-10-01
PublicationDateYYYYMMDD 1995-10-01
PublicationDate_xml – month: 10
  year: 1995
  text: 1995-10-01
  day: 01
PublicationDecade 1990
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle Insurance: Mathematics and Economics
PublicationTitle Insurance, mathematics & economics
PublicationYear 1995
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Brémaud (BIB2) 1981
Liptser, Shiryayev (BIB7) 1989
Møller (BIB10) 1995; 32
Dufresne (BIB6) 1990
Møller (BIB9) 1993; 1
Paulsen (BIB11) 1993; 46
Aase (BIB1) 1988; 28
Daykin, Pentikäinen, Pesonen (BIB4) 1994
Bühlmann (BIB3) 1992; 11
Dietz (BIB5) 1992; 11
Møller (BIB8) 1991; 2
Møller (10.1016/0167-6687(95)00020-S_BIB8) 1991; 2
Dietz (10.1016/0167-6687(95)00020-S_BIB5) 1992; 11
Møller (10.1016/0167-6687(95)00020-S_BIB9) 1993; 1
Paulsen (10.1016/0167-6687(95)00020-S_BIB11) 1993; 46
Liptser (10.1016/0167-6687(95)00020-S_BIB7) 1989
Daykin (10.1016/0167-6687(95)00020-S_BIB4) 1994
Bühlmann (10.1016/0167-6687(95)00020-S_BIB3) 1992; 11
Aase (10.1016/0167-6687(95)00020-S_BIB1) 1988; 28
Brémaud (10.1016/0167-6687(95)00020-S_BIB2) 1981
Dufresne (10.1016/0167-6687(95)00020-S_BIB6) 1990
Møller (10.1016/0167-6687(95)00020-S_BIB10) 1995; 32
References_xml – year: 1989
  ident: BIB7
  article-title: Theory of Martingales
– volume: 1
  start-page: 1
  year: 1993
  end-page: 16
  ident: BIB9
  article-title: A stochastic version of Thiele's differential equations
  publication-title: Scandinavian Actuarial Journal
– volume: 11
  start-page: 113
  year: 1992
  end-page: 127
  ident: BIB3
  article-title: Stochastic discounting
  publication-title: Insurance: Mathematics and Economics
– volume: 2
  start-page: 169
  year: 1991
  end-page: 184
  ident: BIB8
  article-title: Asymptotic results for the risk process based on marked point processes
  publication-title: Scandinavian Actuarial Journal
– volume: 11
  start-page: 301
  year: 1992
  end-page: 310
  ident: BIB5
  article-title: A stochastic interest model with an application to insurance
  publication-title: Insurance: Mathematics and Economics
– volume: 28
  start-page: 185
  year: 1988
  end-page: 220
  ident: BIB1
  article-title: Contingent claims valuation when the security price is a combination of an Ito process and a random variable
  publication-title: Stochastic Processes and their Applications
– year: 1994
  ident: BIB4
  article-title: Practical Risk Theory for Actuaries
– volume: 32
  start-page: 74
  year: 1995
  end-page: 89
  ident: BIB10
  article-title: Stochastic differential equations for ruin probabilities
  publication-title: Journal of Applied Probabilities
– volume: 46
  start-page: 327
  year: 1993
  end-page: 361
  ident: BIB11
  article-title: Risk theory in a stochastic environment
  publication-title: Stochastic Processes and their Applications
– year: 1981
  ident: BIB2
  article-title: Point Processes and Queues
– start-page: 39
  year: 1990
  end-page: 79
  ident: BIB6
  article-title: The distribution of perpetuity, with applications to risk theory and pension funding
  publication-title: Scandinavian Actuarial Journal 1990
– volume: 2
  start-page: 169
  year: 1991
  ident: 10.1016/0167-6687(95)00020-S_BIB8
  article-title: Asymptotic results for the risk process based on marked point processes
  publication-title: Scandinavian Actuarial Journal
  doi: 10.1080/03461238.1991.10413890
– year: 1989
  ident: 10.1016/0167-6687(95)00020-S_BIB7
– volume: 32
  start-page: 74
  year: 1995
  ident: 10.1016/0167-6687(95)00020-S_BIB10
  article-title: Stochastic differential equations for ruin probabilities
  publication-title: Journal of Applied Probabilities
  doi: 10.2307/3214922
– volume: 28
  start-page: 185
  year: 1988
  ident: 10.1016/0167-6687(95)00020-S_BIB1
  article-title: Contingent claims valuation when the security price is a combination of an Ito process and a random variable
  publication-title: Stochastic Processes and their Applications
  doi: 10.1016/0304-4149(88)90096-8
– year: 1981
  ident: 10.1016/0167-6687(95)00020-S_BIB2
– volume: 11
  start-page: 113
  year: 1992
  ident: 10.1016/0167-6687(95)00020-S_BIB3
  article-title: Stochastic discounting
  publication-title: Insurance: Mathematics and Economics
  doi: 10.1016/0167-6687(92)90048-G
– volume: 11
  start-page: 301
  year: 1992
  ident: 10.1016/0167-6687(95)00020-S_BIB5
  article-title: A stochastic interest model with an application to insurance
  publication-title: Insurance: Mathematics and Economics
  doi: 10.1016/0167-6687(92)90019-8
– start-page: 39
  year: 1990
  ident: 10.1016/0167-6687(95)00020-S_BIB6
  article-title: The distribution of perpetuity, with applications to risk theory and pension funding
  publication-title: Scandinavian Actuarial Journal 1990
  doi: 10.1080/03461238.1990.10413872
– volume: 1
  start-page: 1
  year: 1993
  ident: 10.1016/0167-6687(95)00020-S_BIB9
  article-title: A stochastic version of Thiele's differential equations
  publication-title: Scandinavian Actuarial Journal
  doi: 10.1080/03461238.1993.10413910
– volume: 46
  start-page: 327
  year: 1993
  ident: 10.1016/0167-6687(95)00020-S_BIB11
  article-title: Risk theory in a stochastic environment
  publication-title: Stochastic Processes and their Applications
  doi: 10.1016/0304-4149(93)90010-2
– year: 1994
  ident: 10.1016/0167-6687(95)00020-S_BIB4
SSID ssj0001967
Score 1.4393305
Snippet The aim of the present paper is to propose a stochastic approach for describing the return of an investment, and study its applications in insurance. The...
A stochastic approach is proposed for describing the return of an investment, and its applications in insurance are examined. The process governing the return...
SourceID proquest
repec
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 181
SubjectTerms Doléans equation
Insurance coverage
Interest
Interest rates
Marked point process
Markov analysis
Markovian environment
Payment functions
Pricing policies
Return on investment
Stochastic models
Stochastic processes
Studies
Title A counting process approach to stochastic interest
URI https://dx.doi.org/10.1016/0167-6687(95)00020-S
http://econpapers.repec.org/article/eeeinsuma/v_3a17_3ay_3a1995_3ai_3a2_3ap_3a181-192.htm
https://www.proquest.com/docview/208157418
https://www.proquest.com/docview/38836409
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5VIPVxqCht1QVKc-ihPaSbxI84xxUFLUVw2SJxsxzHFivBbsSGSr3w2zvjjcP2UCH14Mhx7MQaj8cTe-YbgM8y8xwlIyezcvxBafImNVZlqWeShf1kl5Nz8vmFnF7yH1fiasMXhswqe9m_lulBWvcl456a43Y-H5P9vJQUKzscp83IgZ2XxOrfHh6tPJDBygjvTbWj91wux0PZl0p8De9IZ_9anTa0z-071zq7sQid7MDrXntMJusOvoFnbrELz6Px-i68iH7GmH91PiCyrt5CMUliWIikXTsHJBFPPOmWCeqA9toQaHNCCBIUseMdXJ4c_zyapn28hNRymXWpKWStPM-dYdz60tZW-cw3QvLMVAQrj-qbzQQh3nHmuK-tk3lTV9aiwM5dxd7D1mK5cB8gEaaopBVelKXiBU5yg5qcV41ytPPZsBGwSCdtezBximlxo6PVGFFXE3V1JXSgrp6NIB1atWswjSfql3EI9F9MoVHeP9FyP46Y7iflSheo_ghC6xnBp-EpziY6IjELt7xfaaYUQ3JVIzgKwzx00zlHzgG3Rv_SzOQlXn5TpsJvMjPHVGBqqUjlGtVmfd3d7v13__fhZfCdD1aDB7DV3d27j6j9dPVh4O9D2J6cnk0v8O772ekfgCn8ZQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFH5sCazdYWzdRrN2qw87bAcT2_ph-RhKS7o2uaSF3oQsSzSwJqZxC_3v955jmewwCjvYCNmyxZP09El673sA32XiOWpGTmbluECp0io2ViWxZ5K1-8kuJefk2VxOb_ivW3G74wtDZpWd7t_q9FZbdznjTprjerkck_28lBQruz1OW7yGIRe42BvAcHJxOZ33-hj7WB4YvqlAcKBL5bjP-1GIn-1n4sW_JqgdADp8cLWzO_PQ-Xt41wHIaLKt4wd45VYH8CbYrx_AXnA1xvTbWU_KuvkI2SQKkSGieusfEAVK8ahZRwgD7Z0h3uaISCQoaMcnuDk_uz6dxl3IhNhymTSxyWSpPE-dYdz63JZW-cRXQvLEFMQsjwjOJoJI7zhz3JfWybQqC2tRZ6euYJ9hsFqv3CFEwmSFtMKLPFc8w3FuEMx5VSlHm58VGwELctK24xOnsBa_dTAcI-lqkq4uhG6lqxcjiPtS9ZZP44X389AE-q9-oVHlv1DyKLSY7sblRmeIgAQR9ozgpH-KA4pOSczKrR83minFUFzFCE7bZu6r6Zwj_4B7o580M2mOt2dKFPhPZpZ4ZXjVlKVSjchZ3zX3X_67_iewN72eXemri_nlEey3rvStEeExDJqHR_cVwVBTfut6-x9Wav4j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+counting+process+approach+to+stochastic+interest&rft.jtitle=Insurance%2C+mathematics+%26+economics&rft.au=M%C3%B8ller%2C+Christian+Max&rft.date=1995-10-01&rft.issn=0167-6687&rft.volume=17&rft.issue=2&rft.spage=181&rft.epage=192&rft_id=info:doi/10.1016%2F0167-6687%2895%2900020-S&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_0167_6687_95_00020_S
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6687&client=summon