A counting process approach to stochastic interest
The aim of the present paper is to propose a stochastic approach for describing the return of an investment, and study its applications in insurance. The process governing the return of the investment is assumed to have bounded variation over finite intervals and possess a jump part. Attention is re...
Saved in:
Published in | Insurance, mathematics & economics Vol. 17; no. 2; pp. 181 - 192 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.10.1995
Elsevier Elsevier Sequoia S.A |
Series | Insurance: Mathematics and Economics |
Subjects | |
Online Access | Get full text |
ISSN | 0167-6687 1873-5959 |
DOI | 10.1016/0167-6687(95)00020-S |
Cover
Abstract | The aim of the present paper is to propose a stochastic approach for describing the return of an investment, and study its applications in insurance. The process governing the return of the investment is assumed to have bounded variation over finite intervals and possess a jump part. Attention is restricted to cases where the process has independent increments and is subject to fluctuations given by a Markovian environment. In the first case direct calculations are obtainable for evaluating moments of present and accumulated values. In the last case we establish differential equations akin to the celebrated Thiele's differential equation in life insurance. |
---|---|
AbstractList | A stochastic approach is proposed for describing the return of an investment, and its applications in insurance are examined. The process governing the return of the investment is assumed to have bounded variation over finite intervals and to possess a jump part. Attention is restricted to cases where the process has independent increments and is subject to fluctuations given by a Markovian environment. In the first case, direct calculations are obtainable for evaluating moments of present and accumulated values. In the last case, differential equations are established akin to the celebrated Thiele's differential equation in life insurance. The aim of the present paper is to propose a stochastic approach for describing the return of an investment, and study its applications in insurance. The process governing the return of the investment is assumed to have bounded variation over finite intervals and possess a jump part. Attention is restricted to cases where the process has independent increments and is subject to fluctuations given by a Markovian environment. In the first case direct calculations are obtainable for evaluating moments of present and accumulated values. In the last case we establish differential equations akin to the celebrated Thiele's differential equation in life insurance. |
Author | Møller, Christian Max |
Author_xml | – fullname: Moller, Christian Max |
BackLink | http://econpapers.repec.org/article/eeeinsuma/v_3a17_3ay_3a1995_3ai_3a2_3ap_3a181-192.htm$$DView record in RePEc |
BookMark | eNqFkcFqGzEQhkVxoHaaN-hh6aEkh22lXWlXyqEQQpq0GHJIehba8WysYEsbSWvI21dbBx98aA6jGcT_fzPMLMjMeYeEfGb0G6Os-Z6jLZtGtudKXFBKK1o-fCBzJtu6FEqoGZkfJB_JIsbnLGKqaeekuirAjy5Z91QMwQPGWJghVwbWRfJFTB7WJiYLhXUJA8b0iZz0ZhPx7C2fkj8_bx6v78rl_e2v66tlCbyhqTRV08meMzQ1h76FDmRP-5VoODWKtlJRLoAKwXnNa-R9B9iwVacAsGMMVX1Kvu65eZqXMTfWWxsBNxvj0I9R11LWGTYJvxwJn_0YXJ5NV1Qy0XIms-j3XhRwQNBDsFsTXjUiWhfHrdE7XRvW5ud1KpQSOdkcVY5h-pJMM1XpddpmGN_DIPgYA_YHHqN6Oome9q2nfesM-ncS_ZBtl0c2sMkk610Kxm7eM__YmzHvfGcx6AgWHeDKBoSkV97-H_AXCc2l3g |
CODEN | IMECDX |
CitedBy_id | crossref_primary_10_1016_S0167_6687_97_00020_6 |
Cites_doi | 10.1080/03461238.1991.10413890 10.2307/3214922 10.1016/0304-4149(88)90096-8 10.1016/0167-6687(92)90048-G 10.1016/0167-6687(92)90019-8 10.1080/03461238.1990.10413872 10.1080/03461238.1993.10413910 10.1016/0304-4149(93)90010-2 |
ContentType | Journal Article |
Copyright | 1995 Copyright Elsevier Sequoia S.A. Oct 1995 |
Copyright_xml | – notice: 1995 – notice: Copyright Elsevier Sequoia S.A. Oct 1995 |
DBID | AAYXX CITATION DKI X2L 8BJ FQK JBE JQ2 |
DOI | 10.1016/0167-6687(95)00020-S |
DatabaseName | CrossRef RePEc IDEAS RePEc International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Computer Science Collection |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Mathematics Business |
EISSN | 1873-5959 |
EndPage | 192 |
ExternalDocumentID | 8946427 eeeinsuma_v_3a17_3ay_3a1995_3ai_3a2_3ap_3a181_192_htm 10_1016_0167_6687_95_00020_S 016766879500020S |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29J 3R3 4.4 457 4G. 5GY 5VS 63O 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFFL AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAQXK AARIN AAXUO ABAOU ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACHQT ACIWK ACRLP ACROA ADBBV ADEZE ADFHU ADGUI ADMUD AEBSH AEKER AENEX AEYQN AFKWA AFODL AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AJBFU AJOXV AJWLA ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AXLSJ AZFZN BEHZQ BEZPJ BGSCR BKOJK BKOMP BLXMC BNTGB BPUDD BULVW BZJEE CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HMB HMJ HVGLF HZ~ IHE IXIXF J1W KOM LPU LY5 M26 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- ROL RPZ SDF SDG SEB SEE SES SEW SME SPC SPCBC SSB SSD SSF SSW SSZ T5K WUQ YK3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 0R 1 8P ADALY DKI G- HZ K M MS PQEST X X2L 8BJ EFKBS FQK JBE JQ2 |
ID | FETCH-LOGICAL-c460t-a26b8f41ea34cf7cbc8f0fd5640a90789045c05544343e4fbce61db9cceb11e93 |
IEDL.DBID | .~1 |
ISSN | 0167-6687 |
IngestDate | Thu Sep 04 18:37:56 EDT 2025 Wed Aug 13 06:31:28 EDT 2025 Wed Aug 18 03:09:43 EDT 2021 Tue Jul 01 02:45:26 EDT 2025 Thu Apr 24 22:59:20 EDT 2025 Fri Feb 23 02:14:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Doléans equation Payment functions Marked point process Markovian environment |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-a26b8f41ea34cf7cbc8f0fd5640a90789045c05544343e4fbce61db9cceb11e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 208157418 |
PQPubID | 46295 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_38836409 proquest_journals_208157418 repec_primary_eeeinsuma_v_3a17_3ay_3a1995_3ai_3a2_3ap_3a181_192_htm crossref_primary_10_1016_0167_6687_95_00020_S crossref_citationtrail_10_1016_0167_6687_95_00020_S elsevier_sciencedirect_doi_10_1016_0167_6687_95_00020_S |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1995-10-01 |
PublicationDateYYYYMMDD | 1995-10-01 |
PublicationDate_xml | – month: 10 year: 1995 text: 1995-10-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationSeriesTitle | Insurance: Mathematics and Economics |
PublicationTitle | Insurance, mathematics & economics |
PublicationYear | 1995 |
Publisher | Elsevier B.V Elsevier Elsevier Sequoia S.A |
Publisher_xml | – name: Elsevier B.V – name: Elsevier – name: Elsevier Sequoia S.A |
References | Brémaud (BIB2) 1981 Liptser, Shiryayev (BIB7) 1989 Møller (BIB10) 1995; 32 Dufresne (BIB6) 1990 Møller (BIB9) 1993; 1 Paulsen (BIB11) 1993; 46 Aase (BIB1) 1988; 28 Daykin, Pentikäinen, Pesonen (BIB4) 1994 Bühlmann (BIB3) 1992; 11 Dietz (BIB5) 1992; 11 Møller (BIB8) 1991; 2 Møller (10.1016/0167-6687(95)00020-S_BIB8) 1991; 2 Dietz (10.1016/0167-6687(95)00020-S_BIB5) 1992; 11 Møller (10.1016/0167-6687(95)00020-S_BIB9) 1993; 1 Paulsen (10.1016/0167-6687(95)00020-S_BIB11) 1993; 46 Liptser (10.1016/0167-6687(95)00020-S_BIB7) 1989 Daykin (10.1016/0167-6687(95)00020-S_BIB4) 1994 Bühlmann (10.1016/0167-6687(95)00020-S_BIB3) 1992; 11 Aase (10.1016/0167-6687(95)00020-S_BIB1) 1988; 28 Brémaud (10.1016/0167-6687(95)00020-S_BIB2) 1981 Dufresne (10.1016/0167-6687(95)00020-S_BIB6) 1990 Møller (10.1016/0167-6687(95)00020-S_BIB10) 1995; 32 |
References_xml | – year: 1989 ident: BIB7 article-title: Theory of Martingales – volume: 1 start-page: 1 year: 1993 end-page: 16 ident: BIB9 article-title: A stochastic version of Thiele's differential equations publication-title: Scandinavian Actuarial Journal – volume: 11 start-page: 113 year: 1992 end-page: 127 ident: BIB3 article-title: Stochastic discounting publication-title: Insurance: Mathematics and Economics – volume: 2 start-page: 169 year: 1991 end-page: 184 ident: BIB8 article-title: Asymptotic results for the risk process based on marked point processes publication-title: Scandinavian Actuarial Journal – volume: 11 start-page: 301 year: 1992 end-page: 310 ident: BIB5 article-title: A stochastic interest model with an application to insurance publication-title: Insurance: Mathematics and Economics – volume: 28 start-page: 185 year: 1988 end-page: 220 ident: BIB1 article-title: Contingent claims valuation when the security price is a combination of an Ito process and a random variable publication-title: Stochastic Processes and their Applications – year: 1994 ident: BIB4 article-title: Practical Risk Theory for Actuaries – volume: 32 start-page: 74 year: 1995 end-page: 89 ident: BIB10 article-title: Stochastic differential equations for ruin probabilities publication-title: Journal of Applied Probabilities – volume: 46 start-page: 327 year: 1993 end-page: 361 ident: BIB11 article-title: Risk theory in a stochastic environment publication-title: Stochastic Processes and their Applications – year: 1981 ident: BIB2 article-title: Point Processes and Queues – start-page: 39 year: 1990 end-page: 79 ident: BIB6 article-title: The distribution of perpetuity, with applications to risk theory and pension funding publication-title: Scandinavian Actuarial Journal 1990 – volume: 2 start-page: 169 year: 1991 ident: 10.1016/0167-6687(95)00020-S_BIB8 article-title: Asymptotic results for the risk process based on marked point processes publication-title: Scandinavian Actuarial Journal doi: 10.1080/03461238.1991.10413890 – year: 1989 ident: 10.1016/0167-6687(95)00020-S_BIB7 – volume: 32 start-page: 74 year: 1995 ident: 10.1016/0167-6687(95)00020-S_BIB10 article-title: Stochastic differential equations for ruin probabilities publication-title: Journal of Applied Probabilities doi: 10.2307/3214922 – volume: 28 start-page: 185 year: 1988 ident: 10.1016/0167-6687(95)00020-S_BIB1 article-title: Contingent claims valuation when the security price is a combination of an Ito process and a random variable publication-title: Stochastic Processes and their Applications doi: 10.1016/0304-4149(88)90096-8 – year: 1981 ident: 10.1016/0167-6687(95)00020-S_BIB2 – volume: 11 start-page: 113 year: 1992 ident: 10.1016/0167-6687(95)00020-S_BIB3 article-title: Stochastic discounting publication-title: Insurance: Mathematics and Economics doi: 10.1016/0167-6687(92)90048-G – volume: 11 start-page: 301 year: 1992 ident: 10.1016/0167-6687(95)00020-S_BIB5 article-title: A stochastic interest model with an application to insurance publication-title: Insurance: Mathematics and Economics doi: 10.1016/0167-6687(92)90019-8 – start-page: 39 year: 1990 ident: 10.1016/0167-6687(95)00020-S_BIB6 article-title: The distribution of perpetuity, with applications to risk theory and pension funding publication-title: Scandinavian Actuarial Journal 1990 doi: 10.1080/03461238.1990.10413872 – volume: 1 start-page: 1 year: 1993 ident: 10.1016/0167-6687(95)00020-S_BIB9 article-title: A stochastic version of Thiele's differential equations publication-title: Scandinavian Actuarial Journal doi: 10.1080/03461238.1993.10413910 – volume: 46 start-page: 327 year: 1993 ident: 10.1016/0167-6687(95)00020-S_BIB11 article-title: Risk theory in a stochastic environment publication-title: Stochastic Processes and their Applications doi: 10.1016/0304-4149(93)90010-2 – year: 1994 ident: 10.1016/0167-6687(95)00020-S_BIB4 |
SSID | ssj0001967 |
Score | 1.4393305 |
Snippet | The aim of the present paper is to propose a stochastic approach for describing the return of an investment, and study its applications in insurance. The... A stochastic approach is proposed for describing the return of an investment, and its applications in insurance are examined. The process governing the return... |
SourceID | proquest repec crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 181 |
SubjectTerms | Doléans equation Insurance coverage Interest Interest rates Marked point process Markov analysis Markovian environment Payment functions Pricing policies Return on investment Stochastic models Stochastic processes Studies |
Title | A counting process approach to stochastic interest |
URI | https://dx.doi.org/10.1016/0167-6687(95)00020-S http://econpapers.repec.org/article/eeeinsuma/v_3a17_3ay_3a1995_3ai_3a2_3ap_3a181-192.htm https://www.proquest.com/docview/208157418 https://www.proquest.com/docview/38836409 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5VIPVxqCht1QVKc-ihPaSbxI84xxUFLUVw2SJxsxzHFivBbsSGSr3w2zvjjcP2UCH14Mhx7MQaj8cTe-YbgM8y8xwlIyezcvxBafImNVZlqWeShf1kl5Nz8vmFnF7yH1fiasMXhswqe9m_lulBWvcl456a43Y-H5P9vJQUKzscp83IgZ2XxOrfHh6tPJDBygjvTbWj91wux0PZl0p8De9IZ_9anTa0z-071zq7sQid7MDrXntMJusOvoFnbrELz6Px-i68iH7GmH91PiCyrt5CMUliWIikXTsHJBFPPOmWCeqA9toQaHNCCBIUseMdXJ4c_zyapn28hNRymXWpKWStPM-dYdz60tZW-cw3QvLMVAQrj-qbzQQh3nHmuK-tk3lTV9aiwM5dxd7D1mK5cB8gEaaopBVelKXiBU5yg5qcV41ytPPZsBGwSCdtezBximlxo6PVGFFXE3V1JXSgrp6NIB1atWswjSfql3EI9F9MoVHeP9FyP46Y7iflSheo_ghC6xnBp-EpziY6IjELt7xfaaYUQ3JVIzgKwzx00zlHzgG3Rv_SzOQlXn5TpsJvMjPHVGBqqUjlGtVmfd3d7v13__fhZfCdD1aDB7DV3d27j6j9dPVh4O9D2J6cnk0v8O772ekfgCn8ZQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFH5sCazdYWzdRrN2qw87bAcT2_ph-RhKS7o2uaSF3oQsSzSwJqZxC_3v955jmewwCjvYCNmyxZP09El673sA32XiOWpGTmbluECp0io2ViWxZ5K1-8kuJefk2VxOb_ivW3G74wtDZpWd7t_q9FZbdznjTprjerkck_28lBQruz1OW7yGIRe42BvAcHJxOZ33-hj7WB4YvqlAcKBL5bjP-1GIn-1n4sW_JqgdADp8cLWzO_PQ-Xt41wHIaLKt4wd45VYH8CbYrx_AXnA1xvTbWU_KuvkI2SQKkSGieusfEAVK8ahZRwgD7Z0h3uaISCQoaMcnuDk_uz6dxl3IhNhymTSxyWSpPE-dYdz63JZW-cRXQvLEFMQsjwjOJoJI7zhz3JfWybQqC2tRZ6euYJ9hsFqv3CFEwmSFtMKLPFc8w3FuEMx5VSlHm58VGwELctK24xOnsBa_dTAcI-lqkq4uhG6lqxcjiPtS9ZZP44X389AE-q9-oVHlv1DyKLSY7sblRmeIgAQR9ozgpH-KA4pOSczKrR83minFUFzFCE7bZu6r6Zwj_4B7o580M2mOt2dKFPhPZpZ4ZXjVlKVSjchZ3zX3X_67_iewN72eXemri_nlEey3rvStEeExDJqHR_cVwVBTfut6-x9Wav4j |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+counting+process+approach+to+stochastic+interest&rft.jtitle=Insurance%2C+mathematics+%26+economics&rft.au=M%C3%B8ller%2C+Christian+Max&rft.date=1995-10-01&rft.issn=0167-6687&rft.volume=17&rft.issue=2&rft.spage=181&rft.epage=192&rft_id=info:doi/10.1016%2F0167-6687%2895%2900020-S&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_0167_6687_95_00020_S |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6687&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6687&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6687&client=summon |