Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements
Vegetation phenology is the study of the timing of seasonal events that are considered to be the result of adaptive responses to climate variations on short and long time scales. In the field of remote sensing of vegetation phenology, phenological metrics are derived from time series of optical data...
Saved in:
Published in | Remote sensing of environment Vol. 132; pp. 145 - 158 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Elsevier Inc
15.05.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vegetation phenology is the study of the timing of seasonal events that are considered to be the result of adaptive responses to climate variations on short and long time scales. In the field of remote sensing of vegetation phenology, phenological metrics are derived from time series of optical data. For that purpose, considerable effort has been specifically focused on developing noise reduction and cloud-contaminated data removal techniques to improve the quality of remotely-sensed time series. Comparative studies between time series composed of satellite data acquired under clear and cloudy conditions and from radiometric data obtained with high accuracy from ground-based measurements constitute a direct and effective way to assess the operational use and limitations of remote sensing for predicting the main plant phenological events. In the present paper, we sought to explicitly evaluate the potential use of MODerate resolution Imaging Spectroradiometer (MODIS) remote sensing data for monitoring the seasonal dynamics of different types of vegetation cover that are representative of the major terrestrial biomes, including temperate deciduous forests, evergreen forests, African savannah, and crops. After cloud screening and filtering, we compared the temporal patterns and phenological metrics derived from in situ NDVI time series and from MODIS daily and 16-composite products. We also evaluated the effects of residual noise and the influence of data gaps in MODIS NDVI time series on the identification of the most relevant metrics for vegetation phenology monitoring. The results show that the inflexion points of a model fitted to a MODIS NDVI time series allow accurate estimates of the onset of greenness in the spring and the onset of yellowing in the autumn in deciduous forests (RMSE≤one week). Phenological metrics identical to those provided with the MODIS Global Vegetation Phenology product (MDC12Q2) are less robust to data gaps, and they can be subject to large biases of approximately two weeks or more during the autumn phenological transitions. In the evergreen forests, in situ NDVI time series describe the phenology with high fidelity despite small temporal changes in the canopy foliage. However, MODIS is unable to provide consistent phenological patterns. In crops and savannah, MODIS NDVI time series reproduce the general temporal patterns of phenology, but significant discrepancies appear between MODIS and ground-based NDVI time series during very localized periods of time depending on the weather conditions and spatial heterogeneity within the MODIS pixel. In the rainforest, the temporal pattern exhibited by a MODIS 16-day composite NDVI time series is more likely due to a pattern of noise in the NDVI data structure according to both rainy and dry seasons rather than to phenological changes. More investigations are needed, but in all cases, this result leads us to conclude that MODIS time series in tropical rainforests should be interpreted with great caution.
► We compare ground- and MODIS-based NDVI time-series in different terrestrial biomes. ► We identify the most relevant NDVI based vegetation phenological metrics. ► We develop a new method to quantify the uncertainty of the phenological metrics. ► In tropical rainforests, MODIS-derived phenology should be interpreted with caution. |
---|---|
AbstractList | Vegetation phenology is the study of the timing of seasonal events that are considered to be the result of adaptive responses to climate variations on short and long time scales. In the field of remote sensing of vegetation phenology, phenological metrics are derived from time series of optical data. For that purpose, considerable effort has been specifically focused on developing noise reduction and cloud-contaminated data removal techniques to improve the quality of remotely-sensed time series. Comparative studies between time series composed of satellite data acquired under clear and cloudy conditions and from radiometric data obtained with high accuracy from ground-based measurements constitute a direct and effective way to assess the operational use and limitations of remote sensing for predicting the main plant phenological events. In the present paper, we sought to explicitly evaluate the potential use of MODerate resolution Imaging Spectroradiometer (MODIS) remote sensing data for monitoring the seasonal dynamics of different types of vegetation cover that are representative of the major terrestrial biomes, including temperate deciduous forests, evergreen forests, African savannah, and crops. After cloud screening and filtering, we compared the temporal patterns and phenological metrics derived from in situ NDVI time series and from MODIS daily and 16-composite products. We also evaluated the effects of residual noise and the influence of data gaps in MODIS NDVI time series on the identification of the most relevant metrics for vegetation phenology monitoring. The results show that the inflexion points of a model fitted to a MODIS NDVI time series allow accurate estimates of the onset of greenness in the spring and the onset of yellowing in the autumn in deciduous forests (RMSE≤one week). Phenological metrics identical to those provided with the MODIS Global Vegetation Phenology product (MDC12Q2) are less robust to data gaps, and they can be subject to large biases of approximately two weeks or more during the autumn phenological transitions. In the evergreen forests, in situ NDVI time series describe the phenology with high fidelity despite small temporal changes in the canopy foliage. However, MODIS is unable to provide consistent phenological patterns. In crops and savannah, MODIS NDVI time series reproduce the general temporal patterns of phenology, but significant discrepancies appear between MODIS and ground-based NDVI time series during very localized periods of time depending on the weather conditions and spatial heterogeneity within the MODIS pixel. In the rainforest, the temporal pattern exhibited by a MODIS 16-day composite NDVI time series is more likely due to a pattern of noise in the NDVI data structure according to both rainy and dry seasons rather than to phenological changes. More investigations are needed, but in all cases, this result leads us to conclude that MODIS time series in tropical rainforests should be interpreted with great caution. Vegetation phenology is the study of the timing of seasonal events that are considered to be the result of adaptive responses to climate variations on short and long time scales. In the field of remote sensing of vegetation phenology, phenological metrics are derived from time series of optical data. For that purpose, considerable effort has been specifically focused on developing noise reduction and cloud-contaminated data removal techniques to improve the quality of remotely-sensed time series. Comparative studies between time series composed of satellite data acquired under clear and cloudy conditions and from radiometric data obtained with high accuracy from ground-based measurements constitute a direct and effective way to assess the operational use and limitations of remote sensing for predicting the main plant phenological events. In the present paper, we sought to explicitly evaluate the potential use of MODerate resolution Imaging Spectroradiometer (MODIS) remote sensing data for monitoring the seasonal dynamics of different types of vegetation cover that are representative of the major terrestrial biomes, including temperate deciduous forests, evergreen forests, African savannah, and crops. After cloud screening and filtering, we compared the temporal patterns and phenological metrics derived from in situ NDVI time series and from MODIS daily and 16-composite products. We also evaluated the effects of residual noise and the influence of data gaps in MODIS NDVI time series on the identification of the most relevant metrics for vegetation phenology monitoring. The results show that the inflexion points of a model fitted to a MODIS NDVI time series allow accurate estimates of the onset of greenness in the spring and the onset of yellowing in the autumn in deciduous forests (RMSE <= one week). Phenological metrics identical to those provided with the MODIS Global Vegetation Phenology product (MDC12Q2) are less robust to data gaps, and they can be subject to large biases of approximately two weeks or more during the autumn phenological transitions. In the evergreen forests, in situ NDVI time series describe the phenology with high fidelity despite small temporal changes in the canopy foliage. However, MODIS is unable to provide consistent phenological patterns. In crops and savannah, MODIS NDVI time series reproduce the general temporal patterns of phenology, but significant discrepancies appear between MODIS and ground-based NDVI time series during very localized periods of time depending on the weather conditions and spatial heterogeneity within the MODIS pixel. In the rainforest, the temporal pattern exhibited by a MODIS 16-day composite NDVI time series is more likely due to a pattern of noise in the NDVI data structure according to both rainy and dry seasons rather than to phenological changes. More investigations are needed, but in all cases, this result leads us to conclude that MODIS time series in tropical rainforests should be interpreted with great caution. (C) 2013 Elsevier Inc. All rights reserved. Vegetation phenology is the study of the timing of seasonal events that are considered to be the result of adaptive responses to climate variations on short and long time scales. In the field of remote sensing of vegetation phenology, phenological metrics are derived from time series of optical data. For that purpose, considerable effort has been specifically focused on developing noise reduction and cloud-contaminated data removal techniques to improve the quality of remotely-sensed time series. Comparative studies between time series composed of satellite data acquired under clear and cloudy conditions and from radiometric data obtained with high accuracy from ground-based measurements constitute a direct and effective way to assess the operational use and limitations of remote sensing for predicting the main plant phenological events. In the present paper, we sought to explicitly evaluate the potential use of MODerate resolution Imaging Spectroradiometer (MODIS) remote sensing data for monitoring the seasonal dynamics of different types of vegetation cover that are representative of the major terrestrial biomes, including temperate deciduous forests, evergreen forests, African savannah, and crops. After cloud screening and filtering, we compared the temporal patterns and phenological metrics derived from in situ NDVI time series and from MODIS daily and 16-composite products. We also evaluated the effects of residual noise and the influence of data gaps in MODIS NDVI time series on the identification of the most relevant metrics for vegetation phenology monitoring. The results show that the inflexion points of a model fitted to a MODIS NDVI time series allow accurate estimates of the onset of greenness in the spring and the onset of yellowing in the autumn in deciduous forests (RMSE≤one week). Phenological metrics identical to those provided with the MODIS Global Vegetation Phenology product (MDC12Q2) are less robust to data gaps, and they can be subject to large biases of approximately two weeks or more during the autumn phenological transitions. In the evergreen forests, in situ NDVI time series describe the phenology with high fidelity despite small temporal changes in the canopy foliage. However, MODIS is unable to provide consistent phenological patterns. In crops and savannah, MODIS NDVI time series reproduce the general temporal patterns of phenology, but significant discrepancies appear between MODIS and ground-based NDVI time series during very localized periods of time depending on the weather conditions and spatial heterogeneity within the MODIS pixel. In the rainforest, the temporal pattern exhibited by a MODIS 16-day composite NDVI time series is more likely due to a pattern of noise in the NDVI data structure according to both rainy and dry seasons rather than to phenological changes. More investigations are needed, but in all cases, this result leads us to conclude that MODIS time series in tropical rainforests should be interpreted with great caution. ► We compare ground- and MODIS-based NDVI time-series in different terrestrial biomes. ► We identify the most relevant NDVI based vegetation phenological metrics. ► We develop a new method to quantify the uncertainty of the phenological metrics. ► In tropical rainforests, MODIS-derived phenology should be interpreted with caution. |
Author | Pontailler, J.-Y. Delpierre, N. Dufrêne, E. Caquet, B. Saint André, L. Granier, A. Gross, P. Heinesch, B. Ourcival, J.-M. Soudani, K. Longdoz, B. Moureaux, C. Burban, B. de Grandcourt, A. Hmimina, G. Aubinet, M. Flechard, C. Rambal, S. |
Author_xml | – sequence: 1 givenname: G. surname: Hmimina fullname: Hmimina, G. organization: University of Paris-Sud, CNRS, AgroParisTech, Laboratoire Ecologie Systematique et Evolution, Faculty of Sciences of Orsay, France – sequence: 2 givenname: E. surname: Dufrêne fullname: Dufrêne, E. organization: University of Paris-Sud, CNRS, AgroParisTech, Laboratoire Ecologie Systematique et Evolution, Faculty of Sciences of Orsay, France – sequence: 3 givenname: J.-Y. surname: Pontailler fullname: Pontailler, J.-Y. organization: University of Paris-Sud, CNRS, AgroParisTech, Laboratoire Ecologie Systematique et Evolution, Faculty of Sciences of Orsay, France – sequence: 4 givenname: N. surname: Delpierre fullname: Delpierre, N. organization: University of Paris-Sud, CNRS, AgroParisTech, Laboratoire Ecologie Systematique et Evolution, Faculty of Sciences of Orsay, France – sequence: 5 givenname: M. surname: Aubinet fullname: Aubinet, M. organization: University of Liège — Gembloux Agro-Bio Tech (GxABT), Passage des Déportés 2, Gembloux, Belgium – sequence: 6 givenname: B. surname: Caquet fullname: Caquet, B. organization: CIRAD/CRDPI, France – sequence: 7 givenname: A. surname: de Grandcourt fullname: de Grandcourt, A. organization: CIRAD/CRDPI, France – sequence: 8 givenname: B. surname: Burban fullname: Burban, B. organization: INRA, UMR Ecofog, Kourou, Guyane Française, French Guiana – sequence: 9 givenname: C. surname: Flechard fullname: Flechard, C. organization: INRA, Agrocampus Ouest, UMR 1069 SAS, Rennes, France – sequence: 10 givenname: A. surname: Granier fullname: Granier, A. organization: INRA, UMR EEF 1137, INRA/University of Nancy, Champenoux, France – sequence: 11 givenname: P. surname: Gross fullname: Gross, P. organization: INRA, UMR EEF 1137, INRA/University of Nancy, Champenoux, France – sequence: 12 givenname: B. surname: Heinesch fullname: Heinesch, B. organization: University of Liège — Gembloux Agro-Bio Tech (GxABT), Passage des Déportés 2, Gembloux, Belgium – sequence: 13 givenname: B. surname: Longdoz fullname: Longdoz, B. organization: INRA, UMR EEF 1137, INRA/University of Nancy, Champenoux, France – sequence: 14 givenname: C. surname: Moureaux fullname: Moureaux, C. organization: University of Liège — Gembloux Agro-Bio Tech (GxABT), Passage des Déportés 2, Gembloux, Belgium – sequence: 15 givenname: J.-M. surname: Ourcival fullname: Ourcival, J.-M. organization: CNRS, Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier, France – sequence: 16 givenname: S. surname: Rambal fullname: Rambal, S. organization: CNRS, Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier, France – sequence: 17 givenname: L. surname: Saint André fullname: Saint André, L. organization: INRA, Unité Biogéochimie des Ecosystèmes Forestiers, Champenoux, France – sequence: 18 givenname: K. surname: Soudani fullname: Soudani, K. email: kamel.soudani@u-psud.fr organization: University of Paris-Sud, CNRS, AgroParisTech, Laboratoire Ecologie Systematique et Evolution, Faculty of Sciences of Orsay, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27174710$$DView record in Pascal Francis https://hal.science/hal-01032407$$DView record in HAL |
BookMark | eNp9kc1u3CAUhVGVSp1M-wDdsanULjwFjIdxuxolaTPStFn0Z4swvngYecAFbCkvk2ctU0dZdBEJCenoO3DvOZfownkHCL2lZEUJXX88rkKEFSO0XBGaD3mBFnQj6oIIwi_QgpCSF5xV4hW6jPFICK02gi7Qw82k-lEl6x32BqcD4MEncMmq_ix8u7ve_cBRJeh7mwC3KimcPB4CtFYnPEEHabYPB3C-9909tg631hgI-R3cWH-C-AlvXdYniMl2Mz9G6zrcBT-6tmhUhBZ_v_69wydQcQxwyub4Gr00qo_w5vFeol9fbn5e3Rb7u6-7q-2-0HxNUlHXepMXXTeC8QZarlhTNrzmWScqq6YBsykbUzFYV2XDoFRVzVpu6rYqmYZyiT7M7x5UL4dgTyrcS6-svN3u5VnLiZaMEzHRzL6f2SH4P2NeSJ5s1Dkf5cCPUVJBCWM5ap7Rd4-oilr1JiinbXz6gAkqeKYzR2dOBx9jAPOEUCLP_cqjzP3Kc795lH_TLJH4z6Pt3EQKyvbPOj_PTsiJThaCjNqC07nRADrJ1ttn3H8BVxLDuw |
CODEN | RSEEA7 |
CitedBy_id | crossref_primary_10_3390_rs70201937 crossref_primary_10_1016_j_agrformet_2019_107859 crossref_primary_10_3390_rs16030595 crossref_primary_10_3390_su13168956 crossref_primary_10_1016_j_uclim_2023_101795 crossref_primary_10_1016_j_agrformet_2016_12_006 crossref_primary_10_3390_rs11202439 crossref_primary_10_1007_s11629_018_4982_6 crossref_primary_10_3389_feart_2021_797928 crossref_primary_10_1080_07038992_2017_1252906 crossref_primary_10_54033_cadpedv20n10_018 crossref_primary_10_1016_j_csda_2020_107113 crossref_primary_10_3390_rs13204126 crossref_primary_10_3390_rs8110955 crossref_primary_10_1016_j_jag_2021_102428 crossref_primary_10_3390_environments8060048 crossref_primary_10_1080_15481603_2015_1073036 crossref_primary_10_1007_s10661_019_7680_0 crossref_primary_10_3389_fenvs_2019_00014 crossref_primary_10_1016_j_foreco_2023_121593 crossref_primary_10_1016_j_rse_2020_112013 crossref_primary_10_5194_bg_18_3391_2021 crossref_primary_10_1016_j_ecolind_2024_112663 crossref_primary_10_1080_01431161_2018_1506185 crossref_primary_10_1016_j_agrformet_2019_06_002 crossref_primary_10_1007_s13595_014_0404_2 crossref_primary_10_1016_j_ecoinf_2024_102786 crossref_primary_10_3390_rs14153681 crossref_primary_10_1016_j_gsd_2024_101160 crossref_primary_10_3390_ijgi11080426 crossref_primary_10_5721_EuJRS20144718 crossref_primary_10_1007_s40333_016_0121_9 crossref_primary_10_3390_rs12213539 crossref_primary_10_3390_rs9121271 crossref_primary_10_3390_f13121973 crossref_primary_10_1016_j_forpol_2021_102420 crossref_primary_10_1080_10549811_2020_1738947 crossref_primary_10_1088_1755_1315_932_1_012003 crossref_primary_10_3390_s18030880 crossref_primary_10_3390_f15040718 crossref_primary_10_1007_s00484_021_02173_2 crossref_primary_10_3390_app122412554 crossref_primary_10_1038_s41598_018_33968_w crossref_primary_10_1109_TGRS_2017_2655365 crossref_primary_10_34133_remotesensing_0005 crossref_primary_10_1016_j_catena_2022_106311 crossref_primary_10_1051_e3sconf_202016903007 crossref_primary_10_1177_0309133315582005 crossref_primary_10_1109_ACCESS_2019_2922003 crossref_primary_10_3390_rs6021367 crossref_primary_10_3390_rs11141650 crossref_primary_10_3390_su15076012 crossref_primary_10_1029_2017JD027973 crossref_primary_10_2478_forj_2019_0020 crossref_primary_10_3390_w13182550 crossref_primary_10_1016_j_isprsjprs_2019_01_017 crossref_primary_10_1016_j_compag_2020_105595 crossref_primary_10_3390_rs11232745 crossref_primary_10_3390_rs13142806 crossref_primary_10_3390_rs14102322 crossref_primary_10_3390_rs9080855 crossref_primary_10_1080_02626667_2017_1337274 crossref_primary_10_1093_icb_icx040 crossref_primary_10_3390_rs11141656 crossref_primary_10_1016_j_heliyon_2021_e07436 crossref_primary_10_1016_j_proeng_2014_07_055 crossref_primary_10_1088_1748_9326_abb32f crossref_primary_10_3390_rs9030271 crossref_primary_10_1109_JSTARS_2019_2921437 crossref_primary_10_1515_geochr_2015_0091 crossref_primary_10_1007_s10661_024_13526_w crossref_primary_10_5194_bg_11_4305_2014 crossref_primary_10_1371_journal_pone_0167302 crossref_primary_10_1111_nph_16479 crossref_primary_10_1016_j_rse_2016_02_010 crossref_primary_10_1080_01431161_2019_1697004 crossref_primary_10_3390_rs14236180 crossref_primary_10_3390_f10010060 crossref_primary_10_3390_f13091417 crossref_primary_10_1016_j_rse_2022_112921 crossref_primary_10_1016_j_ecolind_2019_105755 crossref_primary_10_2478_forj_2022_0014 crossref_primary_10_3390_rs15010187 crossref_primary_10_1016_j_jag_2018_10_015 crossref_primary_10_1016_j_rse_2014_03_017 crossref_primary_10_1109_LGRS_2017_2684195 crossref_primary_10_3390_s25020529 crossref_primary_10_3390_agronomy12081972 crossref_primary_10_3390_rs70607597 crossref_primary_10_3390_rs14020273 crossref_primary_10_5194_bg_18_1971_2021 crossref_primary_10_1016_j_scitotenv_2019_134913 crossref_primary_10_1016_j_agrformet_2021_108481 crossref_primary_10_1016_j_jag_2022_102814 crossref_primary_10_1080_01431161_2014_951099 crossref_primary_10_1111_gcb_13200 crossref_primary_10_1016_j_ecolind_2017_02_024 crossref_primary_10_1016_j_rse_2015_10_020 crossref_primary_10_6090_jarq_54_101 crossref_primary_10_3390_rs10040641 crossref_primary_10_4000_belgeo_47995 crossref_primary_10_4236_ars_2020_93006 crossref_primary_10_3390_rs71215833 crossref_primary_10_1016_j_rse_2016_09_014 crossref_primary_10_3390_rs10060932 crossref_primary_10_1002_joc_5547 crossref_primary_10_1016_j_jenvman_2024_120527 crossref_primary_10_1016_j_scitotenv_2020_138380 crossref_primary_10_3390_rs14246331 crossref_primary_10_1016_j_jag_2021_102505 crossref_primary_10_1016_j_compag_2024_109212 crossref_primary_10_1016_j_ecolind_2023_111405 crossref_primary_10_1016_j_rse_2023_113785 crossref_primary_10_1007_s00484_022_02367_2 crossref_primary_10_3390_rs13245018 crossref_primary_10_1080_01431161_2019_1620375 crossref_primary_10_1007_s42106_018_0030_2 crossref_primary_10_1080_15481603_2015_1134140 crossref_primary_10_1016_j_isprsjprs_2023_07_005 crossref_primary_10_1016_j_jag_2015_04_021 crossref_primary_10_1016_j_rsase_2020_100409 crossref_primary_10_1016_j_agrformet_2019_107829 crossref_primary_10_1016_j_agee_2014_03_042 crossref_primary_10_1002_rse2_296 crossref_primary_10_1109_TGRS_2014_2375381 crossref_primary_10_1088_1748_9326_abcfe3 crossref_primary_10_3390_rs17050876 crossref_primary_10_3741_JKWRA_2014_47_10_935 crossref_primary_10_1007_s11069_015_2014_1 crossref_primary_10_3832_ifor1800_009 crossref_primary_10_1016_j_jag_2013_12_008 crossref_primary_10_3390_rs13112060 crossref_primary_10_1016_j_atech_2025_100892 crossref_primary_10_1016_j_ecolind_2024_111818 crossref_primary_10_1016_j_rse_2015_04_014 crossref_primary_10_1016_j_agwat_2025_109303 crossref_primary_10_1016_j_rse_2021_112320 crossref_primary_10_1111_geb_13340 crossref_primary_10_1016_j_advengsoft_2024_103856 crossref_primary_10_1016_j_agrformet_2016_11_011 crossref_primary_10_1109_LGRS_2024_3379255 crossref_primary_10_1080_17538947_2022_2044397 crossref_primary_10_1080_00207233_2021_1875303 crossref_primary_10_3173_air_25_130 crossref_primary_10_3390_atmos14010117 crossref_primary_10_3390_land13040443 crossref_primary_10_1080_01431161_2019_1584689 crossref_primary_10_1016_j_apgeog_2016_12_019 crossref_primary_10_3390_rs14051179 crossref_primary_10_1016_j_rse_2018_09_027 crossref_primary_10_1007_s41207_016_0006_5 crossref_primary_10_1016_j_rse_2020_112004 crossref_primary_10_1016_j_rse_2019_01_010 crossref_primary_10_3390_d15101064 crossref_primary_10_1371_journal_pone_0109544 crossref_primary_10_1080_2150704X_2016_1168945 crossref_primary_10_1016_j_agrformet_2023_109600 crossref_primary_10_1080_01431161_2023_2216846 crossref_primary_10_3390_rs16061083 crossref_primary_10_3390_rs12040639 crossref_primary_10_1111_gcb_16916 crossref_primary_10_1080_10106049_2016_1222633 crossref_primary_10_3390_f12020147 crossref_primary_10_1029_2019GL082716 crossref_primary_10_1016_j_isprsjprs_2018_11_024 crossref_primary_10_1080_22797254_2017_1377051 crossref_primary_10_1016_j_ufug_2018_01_021 crossref_primary_10_3390_d12080313 crossref_primary_10_1515_geo_2020_0235 crossref_primary_10_1080_01431161_2018_1500731 crossref_primary_10_34133_remotesensing_0425 crossref_primary_10_4000_vertigo_35589 crossref_primary_10_1016_j_rsase_2021_100610 crossref_primary_10_3390_rs12060912 crossref_primary_10_1007_s11707_018_0713_0 crossref_primary_10_1016_j_rse_2016_01_021 crossref_primary_10_1016_j_jhydrol_2019_02_028 crossref_primary_10_1016_j_isprsjprs_2024_03_018 crossref_primary_10_4236_ars_2016_51001 crossref_primary_10_1016_j_jag_2017_05_010 crossref_primary_10_3390_rs11242976 crossref_primary_10_1016_j_agsy_2022_103459 crossref_primary_10_53759_7669_jmc202404043 crossref_primary_10_3390_ijgi7080290 crossref_primary_10_1016_j_isprsjprs_2017_07_012 crossref_primary_10_5194_bg_11_6277_2014 crossref_primary_10_1016_j_rse_2021_112368 crossref_primary_10_5194_bg_12_3885_2015 crossref_primary_10_1016_j_rse_2013_07_030 crossref_primary_10_3390_rs9060630 crossref_primary_10_1016_j_ejrs_2023_06_010 crossref_primary_10_1016_j_rse_2015_03_018 crossref_primary_10_1002_ldr_4659 crossref_primary_10_1109_JSTARS_2013_2294956 crossref_primary_10_1016_j_agrformet_2025_110497 crossref_primary_10_3390_rs14164088 crossref_primary_10_1016_j_agrformet_2022_109095 crossref_primary_10_3390_rs70810973 crossref_primary_10_1080_23754931_2022_2081815 crossref_primary_10_1109_JSTARS_2015_2388698 crossref_primary_10_1016_j_jag_2017_08_006 crossref_primary_10_1016_j_rse_2014_08_016 crossref_primary_10_1016_j_compag_2023_107763 crossref_primary_10_2139_ssrn_4095159 crossref_primary_10_2139_ssrn_4095158 crossref_primary_10_3390_ijgi9110665 crossref_primary_10_1111_gfs_12223 crossref_primary_10_3390_rs14051169 crossref_primary_10_1016_j_agrformet_2017_04_009 crossref_primary_10_1080_10106049_2020_1723716 crossref_primary_10_1029_2023EF004127 crossref_primary_10_1016_j_jag_2024_103668 crossref_primary_10_1038_s41598_017_14918_4 crossref_primary_10_3390_su10124363 crossref_primary_10_1016_j_ecolind_2021_107640 crossref_primary_10_3390_rs9050485 crossref_primary_10_1016_j_ecolind_2022_108579 crossref_primary_10_22144_ctujos_2024_366 crossref_primary_10_1007_s10531_015_0947_z crossref_primary_10_3390_rs10050708 crossref_primary_10_3389_fenvs_2024_1489267 crossref_primary_10_1007_s13595_015_0477_6 crossref_primary_10_1007_s11356_020_10769_1 crossref_primary_10_5194_hess_21_2449_2017 crossref_primary_10_1007_s10668_018_0240_x crossref_primary_10_1016_j_gsd_2023_100998 crossref_primary_10_3390_rs13245080 crossref_primary_10_1016_j_ecolind_2015_01_004 crossref_primary_10_1080_10095020_2024_2311858 crossref_primary_10_3390_geosciences12100352 crossref_primary_10_5194_se_6_1185_2015 crossref_primary_10_1016_j_ecolmodel_2019_108870 crossref_primary_10_1007_s00484_019_01855_2 crossref_primary_10_3390_rs70202089 crossref_primary_10_1016_j_ecolind_2021_108042 crossref_primary_10_1111_nph_14320 crossref_primary_10_3389_fdata_2020_00029 crossref_primary_10_1016_j_agrformet_2015_07_005 crossref_primary_10_1016_j_agrformet_2018_03_010 crossref_primary_10_1016_j_isprsjprs_2018_08_013 crossref_primary_10_1111_ecog_05629 crossref_primary_10_1093_forestry_cpad039 crossref_primary_10_3390_rs16132309 crossref_primary_10_1016_j_indcrop_2025_120753 crossref_primary_10_1016_j_isprsjprs_2021_01_018 crossref_primary_10_1007_s00468_018_1765_1 crossref_primary_10_1016_j_isprsjprs_2020_10_005 crossref_primary_10_1016_j_jag_2021_102487 crossref_primary_10_1016_j_patrec_2015_11_028 crossref_primary_10_1016_j_agrformet_2023_109372 crossref_primary_10_3390_ijgi8010043 crossref_primary_10_1016_j_agrformet_2016_02_013 crossref_primary_10_1080_07038992_2022_2154598 crossref_primary_10_1007_s11769_021_1217_5 crossref_primary_10_3390_rs9010049 crossref_primary_10_1002_rse2_223 crossref_primary_10_3390_rs13051015 crossref_primary_10_1016_j_ecolind_2021_108351 crossref_primary_10_1016_j_rse_2014_09_012 crossref_primary_10_1109_LGRS_2014_2314134 crossref_primary_10_1134_S0006350917040030 crossref_primary_10_3390_rs14133000 crossref_primary_10_3390_rs15030737 crossref_primary_10_1016_j_jenvman_2025_124326 crossref_primary_10_1007_s11676_020_01145_3 crossref_primary_10_2478_jlecol_2019_0008 crossref_primary_10_1007_s00484_022_02359_2 crossref_primary_10_1016_j_foreco_2020_118663 crossref_primary_10_1016_j_foreco_2020_118785 crossref_primary_10_1080_15481603_2021_2022426 crossref_primary_10_3390_rs13091788 crossref_primary_10_1007_s11769_021_1204_x crossref_primary_10_1007_s10980_024_01856_6 crossref_primary_10_1016_j_agrformet_2020_108237 crossref_primary_10_1016_S2095_3119_16_61464_8 crossref_primary_10_3390_rs15092413 crossref_primary_10_1016_j_ufug_2017_05_001 crossref_primary_10_3390_cli6030059 crossref_primary_10_1016_j_ecolind_2023_110262 crossref_primary_10_3390_agriengineering2020017 crossref_primary_10_1111_1365_2745_13656 crossref_primary_10_1002_ece3_4600 crossref_primary_10_1007_s11676_022_01525_x crossref_primary_10_1016_j_measurement_2021_110327 crossref_primary_10_1016_j_rse_2014_03_001 crossref_primary_10_5194_bg_12_6985_2015 crossref_primary_10_1016_j_scitotenv_2020_140297 crossref_primary_10_1016_j_ejrh_2021_100946 crossref_primary_10_3390_f14020413 crossref_primary_10_1016_j_catena_2024_107846 crossref_primary_10_3390_rs12233927 crossref_primary_10_1002_ecs2_2362 crossref_primary_10_3390_rs14153639 crossref_primary_10_1007_s11442_023_2094_x crossref_primary_10_1109_TGRS_2017_2785240 crossref_primary_10_1007_s11629_015_3600_0 crossref_primary_10_1080_10106049_2022_2104390 crossref_primary_10_3390_plants13020182 crossref_primary_10_3390_geosciences9100411 crossref_primary_10_3390_rs9010065 crossref_primary_10_1016_j_ecolind_2021_107968 crossref_primary_10_3390_agriengineering1030027 crossref_primary_10_3390_rs70506026 crossref_primary_10_3832_ifor2062_010 crossref_primary_10_1016_j_agrformet_2019_107644 crossref_primary_10_3390_rs9070695 crossref_primary_10_5194_gmd_17_2509_2024 crossref_primary_10_1016_j_agrformet_2023_109440 crossref_primary_10_1016_j_agrformet_2024_110182 crossref_primary_10_1093_jee_tov250 crossref_primary_10_3390_f11091000 crossref_primary_10_1016_j_ecolind_2018_01_042 crossref_primary_10_3390_rs12213642 crossref_primary_10_3390_s17091982 crossref_primary_10_1016_j_rse_2021_112394 crossref_primary_10_3390_rs11192316 crossref_primary_10_1109_JSTARS_2022_3196494 crossref_primary_10_1016_j_rsci_2024_04_007 crossref_primary_10_1016_j_agrformet_2016_11_193 crossref_primary_10_1016_j_scitotenv_2021_152595 crossref_primary_10_1016_j_agrformet_2020_107969 crossref_primary_10_1016_j_rse_2015_01_011 crossref_primary_10_1109_JSTARS_2020_2971098 crossref_primary_10_3390_rs12182980 crossref_primary_10_1016_j_compag_2016_03_008 crossref_primary_10_1029_2022JG007369 crossref_primary_10_1186_s13595_022_01130_2 crossref_primary_10_1016_j_rse_2015_12_017 crossref_primary_10_3390_rs14112542 crossref_primary_10_3390_rs9070689 crossref_primary_10_1016_j_ecolind_2015_09_012 crossref_primary_10_1007_s10333_020_00829_0 crossref_primary_10_1080_01431161_2017_1295482 |
Cites_doi | 10.1016/j.rse.2004.03.014 10.1175/JCLI3738.1 10.1016/j.agrformet.2008.09.003 10.5589/m03-009 10.1016/j.rse.2005.10.021 10.1016/j.asr.2005.08.037 10.3406/ecmed.2003.1525 10.1002/joc.819 10.1016/j.rse.2011.06.018 10.3354/cr006001 10.1126/science.1146663 10.1016/0034-4257(95)00198-0 10.1109/TGRS.2002.802519 10.1111/j.1365-2486.2009.01910.x 10.1016/j.rse.2010.09.009 10.1080/01431169208904212 10.1016/S0034-4257(99)00082-6 10.1016/j.rse.2010.04.005 10.1111/j.1365-2486.2008.01610.x 10.1111/j.1365-2486.2008.01835.x 10.1016/S0034-4257(02)00085-8 10.1111/j.1365-2486.2010.02189.x 10.1016/j.rse.2005.11.012 10.1029/2005GL025583 10.1016/S0034-4257(02)00135-9 10.1016/j.rse.2008.09.003 10.1029/97GB00330 10.1016/j.rse.2007.12.004 10.1016/j.rse.2012.03.012 10.2307/3235884 10.1016/j.rse.2009.02.001 10.1175/1520-0442(1997)010<1154:GSAOVP>2.0.CO;2 10.1007/s00484-003-0164-4 10.1016/j.agee.2011.02.023 10.1016/j.rse.2006.06.008 10.1016/j.rse.2006.02.004 10.5194/amt-5-1699-2012 10.1007/s10021-001-0070-8 10.1007/s10546-008-9339-1 10.1051/forest:2008052 10.1016/S0034-4257(02)00096-2 10.2307/2389947 10.1080/01431160903401387 10.1109/36.701075 10.1175/1520-0426(2002)019<0586:UMTECC>2.0.CO;2 10.1016/j.rse.2006.04.014 10.1007/s00484-006-0080-5 10.1016/j.rse.2005.10.022 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. 2014 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: 2014 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION IQODW 7S9 L.6 1XC |
DOI | 10.1016/j.rse.2013.01.010 |
DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Environmental Sciences |
EISSN | 1879-0704 |
EndPage | 158 |
ExternalDocumentID | oai_HAL_hal_01032407v1 27174710 10_1016_j_rse_2013_01_010 S0034425713000229 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VOH WUQ XOL EFKBS IQODW 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c460t-99c80706b724bed4a2b3b49499c0a6b7fbef83bf52e653b2e3a592d4f9d532ce3 |
IEDL.DBID | .~1 |
ISSN | 0034-4257 |
IngestDate | Thu Aug 14 06:51:49 EDT 2025 Tue Aug 05 10:28:26 EDT 2025 Mon Jul 21 09:15:23 EDT 2025 Tue Jul 01 01:34:26 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 Fri Feb 23 02:30:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Evergreen forests Phenology Ground-based NDVI Crops MODIS Deciduous forests time series analysis Vegetation index Noise reduction vegetation evaluation Field Biome climate variations Ground based measurement Space remote sensing Prediction Adaptive response satellite measurements contamination quality techniques Timing seasonal variations Comparative study |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-99c80706b724bed4a2b3b49499c0a6b7fbef83bf52e653b2e3a592d4f9d532ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5869-8382 0000-0003-0906-9402 0009-0007-2037-2396 0000-0001-7594-6341 0000-0002-8779-1559 0000-0002-3089-416X 0000-0002-5954-9925 0000-0002-3557-3496 0000-0002-3468-5648 |
PQID | 1710222574 |
PQPubID | 24069 |
PageCount | 14 |
ParticipantIDs | hal_primary_oai_HAL_hal_01032407v1 proquest_miscellaneous_1710222574 pascalfrancis_primary_27174710 crossref_primary_10_1016_j_rse_2013_01_010 crossref_citationtrail_10_1016_j_rse_2013_01_010 elsevier_sciencedirect_doi_10_1016_j_rse_2013_01_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-15 |
PublicationDateYYYYMMDD | 2013-05-15 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | Remote sensing of environment |
PublicationYear | 2013 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Pontailler, Hymus, Drake (bb0155) 2003; 29 Soudani, le Maire, Dufrêne, François, Delpierre, Ulrich (bb0190) 2008; 112 Zhang, Goldberg (bb0250) 2011; 115 Jönsson, Eklundh (bb0110) 2002; 40 Metzger, Junkermann, Mauder, Beyrich, Butterbach-Bahl, Schmid (bb0135) 2012; 5 Hird, McDermid (bb0090) 2009; 113 Granier, Bréda, Longdoz, Gross, Nao (bb0080) 2008; 65 Moulin, Kergoat, Viovy, Dedieu (bb0140) 1997; 10 Studer, Stöckli, Appenzeller, Vidale (bb0200) 2007; 51 Ganguly, Friedl, Tan, Zhang, Verma (bb0070) 2010; 114 Dufranne, Moureaux, Vancutsem, Bodson, Aubinet (bb0055) 2011; 141 Castaldi, de Grandcourt, Rasile, Skiba, Valentini (bb0030) 2010; 7 Chen, Black, Coops, Hilker, Trofymow, Morgenstern (bb0040) 2009; 130 Bonal, Bosc, Goret, Burban, Gross, Bonnefond (bb0020) 2008; 14 Viovy, Arino, Belward (bb0220) 1992; 13 Aubinet, Moureaux, Bodson, Dufranne, Heinesch, Suleau (bb0005) 2009; 149 Fensholt, Sandholt, Proud, Stisen, Rasmussen (bb0060) 2010; 31 La Mantia, Cullotta, Garfi (bb0120) 2003; 29 White, Nemani, Thornton, Running (bb0230) 2002; 5 Delpierre, Soudani, François, Köstner, Pontailler, Aubinet (bb0050) 2009; 15 Reed, Brown, VanderZee, Loveland, Merchant, Ohlen (bb0160) 1994; 5 Delbart, Le Toan, Kergoat, Fedotova (bb0045) 2006; 101 Soudani, François, le Maire, Le Dantec, Dufrêne (bb0185) 2006; 102 Saleska, Didan, Huete, da Rocha (bb0165) 2007 Sims, Rahman, Vermote, Jiang (bb0175) 2011; 115 Chen, Jönsson, Tamura, Gu, Matsushita, Eklundh (bb0035) 2004; 91 Soudani, Hmimina, Delpierre, Pontailler, Aubinet, Bonal (bb0195) 2012; 123 Justice, Vermote, Townshend, Defries, Roy, Hall (bb0105) 1998; 36 Schwartz, Reed, White (bb0170) 2002; 22 Huete, Didan, Shimabukuro, Ratana, Saleska, Hutyra (bb0100) 2006; 33 Huete, Didan, Miura, Rodriguez, Gao, Ferreira (bb0095) 2002; 83 Van Leeuwen, Huete (bb0215) 1996; 55 Kaduk, Heimann (bb0115) 1996; 6 Box, Bromwich, Veenhuis, Bai, Stroeve, Rogers (bb0025) 2006; 19 Fisher, Mustard, Vadeboncoeur (bb0065) 2006; 100 Nagler, Daughtry, Goward (bb0145) 2000; 71 McLachlan, Peel (bb0130) 2000 Goerner, Reichstein, Rambal (bb0075) 2009; 113 Sokal, Michener (bb0180) 1958; 28 Wolfe, Nishihama, Fleig, Kuyper, Roy, Storey (bb0245) 2002; 83 Pontailler, Genty (bb0150) 1996; 10 Beck, Atzberger, Høgda, Johansen, Skidmore (bb0015) 2006; 100 Busetto, Colombo, Migliavacca, Cremonese, Meroni, Galvagno (bb0010) 2010; 16 Zhang, Friedl, Schaaf, Strahler, Hodges, Gao (bb0255) 2003; 84 Heidinger, Anne, Dean (bb0085) 2001; 19 Ma, Veroustraete (bb0125) 2006; 37 Suzuki, Nomaki, Yasunari (bb0205) 2003; 47 White, De Beurs, Didan, Inouye, Richardson, Jensen (bb0240) 2009; 15 Tan, Woodcock, Hu, Zhang, Ozdogan, Huang (bb0210) 2006; 105 White, Thorntorn, Running (bb0225) 1997; 11 White, Nemani (bb0235) 2006; 104 Jönsson (10.1016/j.rse.2013.01.010_bb0110) 2002; 40 Van Leeuwen (10.1016/j.rse.2013.01.010_bb0215) 1996; 55 Viovy (10.1016/j.rse.2013.01.010_bb0220) 1992; 13 White (10.1016/j.rse.2013.01.010_bb0225) 1997; 11 Busetto (10.1016/j.rse.2013.01.010_bb0010) 2010; 16 Moulin (10.1016/j.rse.2013.01.010_bb0140) 1997; 10 Bonal (10.1016/j.rse.2013.01.010_bb0020) 2008; 14 Justice (10.1016/j.rse.2013.01.010_bb0105) 1998; 36 Pontailler (10.1016/j.rse.2013.01.010_bb0150) 1996; 10 Soudani (10.1016/j.rse.2013.01.010_bb0190) 2008; 112 Hird (10.1016/j.rse.2013.01.010_bb0090) 2009; 113 La Mantia (10.1016/j.rse.2013.01.010_bb0120) 2003; 29 Heidinger (10.1016/j.rse.2013.01.010_bb0085) 2001; 19 Delbart (10.1016/j.rse.2013.01.010_bb0045) 2006; 101 White (10.1016/j.rse.2013.01.010_bb0240) 2009; 15 McLachlan (10.1016/j.rse.2013.01.010_bb0130) 2000 Fisher (10.1016/j.rse.2013.01.010_bb0065) 2006; 100 Studer (10.1016/j.rse.2013.01.010_bb0200) 2007; 51 Dufranne (10.1016/j.rse.2013.01.010_bb0055) 2011; 141 White (10.1016/j.rse.2013.01.010_bb0235) 2006; 104 Goerner (10.1016/j.rse.2013.01.010_bb0075) 2009; 113 Pontailler (10.1016/j.rse.2013.01.010_bb0155) 2003; 29 Castaldi (10.1016/j.rse.2013.01.010_bb0030) 2010; 7 Chen (10.1016/j.rse.2013.01.010_bb0040) 2009; 130 Tan (10.1016/j.rse.2013.01.010_bb0210) 2006; 105 Kaduk (10.1016/j.rse.2013.01.010_bb0115) 1996; 6 Metzger (10.1016/j.rse.2013.01.010_bb0135) 2012; 5 White (10.1016/j.rse.2013.01.010_bb0230) 2002; 5 Granier (10.1016/j.rse.2013.01.010_bb0080) 2008; 65 Huete (10.1016/j.rse.2013.01.010_bb0095) 2002; 83 Suzuki (10.1016/j.rse.2013.01.010_bb0205) 2003; 47 Wolfe (10.1016/j.rse.2013.01.010_bb0245) 2002; 83 Aubinet (10.1016/j.rse.2013.01.010_bb0005) 2009; 149 Sokal (10.1016/j.rse.2013.01.010_bb0180) 1958; 28 Soudani (10.1016/j.rse.2013.01.010_bb0185) 2006; 102 Huete (10.1016/j.rse.2013.01.010_bb0100) 2006; 33 Box (10.1016/j.rse.2013.01.010_bb0025) 2006; 19 Beck (10.1016/j.rse.2013.01.010_bb0015) 2006; 100 Zhang (10.1016/j.rse.2013.01.010_bb0255) 2003; 84 Chen (10.1016/j.rse.2013.01.010_bb0035) 2004; 91 Saleska (10.1016/j.rse.2013.01.010_bb0165) 2007 Reed (10.1016/j.rse.2013.01.010_bb0160) 1994; 5 Ganguly (10.1016/j.rse.2013.01.010_bb0070) 2010; 114 Ma (10.1016/j.rse.2013.01.010_bb0125) 2006; 37 Zhang (10.1016/j.rse.2013.01.010_bb0250) 2011; 115 Sims (10.1016/j.rse.2013.01.010_bb0175) 2011; 115 Fensholt (10.1016/j.rse.2013.01.010_bb0060) 2010; 31 Schwartz (10.1016/j.rse.2013.01.010_bb0170) 2002; 22 Delpierre (10.1016/j.rse.2013.01.010_bb0050) 2009; 15 Soudani (10.1016/j.rse.2013.01.010_bb0195) 2012; 123 Nagler (10.1016/j.rse.2013.01.010_bb0145) 2000; 71 |
References_xml | – volume: 10 start-page: 1154 year: 1997 end-page: 1170 ident: bb0140 article-title: Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements publication-title: Journal of Climate – year: 2000 ident: bb0130 article-title: Finite mixture models – volume: 123 start-page: 234 year: 2012 end-page: 245 ident: bb0195 article-title: Ground-based Network of NDVI measurements for tracking temporal dynamics of canopy structure and vegetation phenology in different biomes publication-title: Remote Sensing of Environment – volume: 15 start-page: 2335 year: 2009 end-page: 2359 ident: bb0240 article-title: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006 publication-title: Global Change Biology – volume: 47 start-page: 126 year: 2003 end-page: 138 ident: bb0205 article-title: West–east contrast of phenology and climate in northern Asia revealed using a remotely sensed vegetation index publication-title: International Journal of Biometeorology – volume: 149 start-page: 407 year: 2009 end-page: 418 ident: bb0005 article-title: Carbon sequestration by a crop over a 4-year sugar beet/winter wheat/seed potato/winter wheat rotation cycle publication-title: Agricultural and Forest Meteorology – volume: 113 start-page: 1101 year: 2009 end-page: 1111 ident: bb0075 article-title: Tracking seasonal drought effects on ecosystem light use efficiency with satellite-based PRI in a Mediterranean forest publication-title: Remote Sensing of Environment – volume: 7 start-page: 4089 year: 2010 end-page: 4126 ident: bb0030 article-title: Fluxes of CO publication-title: Biogeosciences Discussions – volume: 19 start-page: 586 year: 2001 end-page: 601 ident: bb0085 article-title: Using MODIS to estimate cloud contamination of the AVHRR data record publication-title: Journal of Atmospheric and Oceanic Technology – volume: 100 start-page: 265 year: 2006 end-page: 279 ident: bb0065 article-title: Green leaf phenology at Landsat resolution: Scaling from the field to the satellite publication-title: Remote Sensing of Environment – volume: 104 start-page: 43 year: 2006 end-page: 49 ident: bb0235 article-title: Real-time monitoring and short-term forecasting of land surface phenology publication-title: Remote Sensing of Environment – volume: 29 start-page: 381 year: 2003 end-page: 387 ident: bb0155 article-title: Estimation of leaf area index using ground-based remote sensed NDVI measurements: Validation and comparison with two indirect techniques publication-title: Canadian Journal of Remote Sensing – volume: 29 start-page: 15 year: 2003 end-page: 25 ident: bb0120 article-title: Phenology and growth of publication-title: Ecologia Mediterranea – volume: 19 start-page: 2783 year: 2006 end-page: 2800 ident: bb0025 article-title: Green land Ice Sheet Surface Mass Balance Variability (1988–2004) from calibrated Polar MM5 Output publication-title: Journal of Climate – volume: 16 start-page: 2504 year: 2010 end-page: 2517 ident: bb0010 article-title: Remote sensing of larch phenological cycle and analysis of relationships with climate in the Alpine region publication-title: Global Change Biology – volume: 130 start-page: 137 year: 2009 end-page: 167 ident: bb0040 article-title: Assessing tower flux footprint climatology and scaling between remotely sensed and Eddy covariance measurements publication-title: Boundary-Layer Meteorology – volume: 112 start-page: 2643 year: 2008 end-page: 2655 ident: bb0190 article-title: Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data publication-title: Remote Sensing of Environment – volume: 22 start-page: 1793 year: 2002 end-page: 1805 ident: bb0170 article-title: Assessing satellite-derived start-of-season measures in the conterminous USA publication-title: International Journal of Climatology – volume: 113 start-page: 248 year: 2009 end-page: 258 ident: bb0090 article-title: Noise reduction of NDVI time-series: An empirical comparison of selected techniques publication-title: Remote Sensing of Environment – volume: 13 start-page: 1585 year: 1992 end-page: 1590 ident: bb0220 article-title: The Best Index Slope Extraction (BISE): A method for reducing noise in NDVI time-series publication-title: International Journal of Remote Sensing – volume: 83 start-page: 95 year: 2002 end-page: 213 ident: bb0095 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sensing of Environment – volume: 11 start-page: 217 year: 1997 end-page: 234 ident: bb0225 article-title: A continental phenology model for monitoring vegetation responses to interannual climatic variability publication-title: Global Biogeochemical Cycles – volume: 5 start-page: 2591 year: 2012 end-page: 2643 ident: bb0135 article-title: Eddy Covariance flux measurements with a weight-shift microlight aircraft, Atmos publication-title: Atmospheric Measurement Techniques – volume: 101 start-page: 52 year: 2006 end-page: 62 ident: bb0045 article-title: Remote sensing of spring phenology in boreal regions: A free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982–2004) publication-title: Remote Sensing of Environment – volume: 10 start-page: 535 year: 1996 end-page: 540 ident: bb0150 article-title: A simple red:far-red sensor using gallium arsenide phosphide detectors publication-title: Functional Ecology – volume: 37 start-page: 835 year: 2006 end-page: 840 ident: bb0125 article-title: Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China publication-title: Advances in Space Research – volume: 65 start-page: 704 year: 2008 ident: bb0080 article-title: Ten years of fluxes and stand growth in a young beech forest at Hesse, North-eastern France publication-title: Annals of Forest Science – volume: 141 start-page: 133 year: 2011 end-page: 142 ident: bb0055 article-title: Comparison of carbon fluxes, growth and productivity of a winter wheat crop in three contrasting growing seasons publication-title: Agriculture, Ecosystems & Environment – volume: 5 start-page: 260 year: 2002 end-page: 273 ident: bb0230 article-title: Satellite evidence of phenological differences between urbanized and rural areas of the Eastern United States deciduous broadleaf forest publication-title: Ecosystems – volume: 6 start-page: 1 year: 1996 end-page: 19 ident: bb0115 article-title: A prognostic phenology scheme for global terrestrial carbon cycle models publication-title: Climate Research – volume: 55 start-page: 123 year: 1996 end-page: 138 ident: bb0215 article-title: Effects of standing litter on the biophysical interpretation of plant canopies with spectral indices publication-title: Remote Sensing of Environment – volume: 40 start-page: 1824 year: 2002 end-page: 1832 ident: bb0110 article-title: Seasonality extraction by function fitting to time-series of satellite sensor data publication-title: IEEE Transactions on Geoscience and Remote Sensing – year: 2007 ident: bb0165 article-title: Amazon forests green-up during 2005 drought publication-title: Science – volume: 83 start-page: 31 year: 2002 end-page: 49 ident: bb0245 article-title: Achieving sub-pixel geolocation accuracy in support of MODIS land science publication-title: Remote Sensing of Environment – volume: 28 start-page: 1409 year: 1958 end-page: 1438 ident: bb0180 article-title: A statistical method for evaluating systematic relationships publication-title: University of Kansas Scientific Bulletin – volume: 15 start-page: 1455 year: 2009 end-page: 1474 ident: bb0050 article-title: Exceptional carbon uptake in European forests during the warm spring of 2007: A data-model analysis publication-title: Global Change Biology – volume: 100 start-page: 321 year: 2006 end-page: 334 ident: bb0015 article-title: Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI publication-title: Remote Sensing of Environment – volume: 14 start-page: 1917 year: 2008 end-page: 1933 ident: bb0020 article-title: The impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana publication-title: Global Change Biology – volume: 5 start-page: 703 year: 1994 end-page: 714 ident: bb0160 article-title: Measuring phenological variability from satellite imagery publication-title: Journal of Vegetation Science – volume: 115 start-page: 3112 year: 2011 end-page: 3120 ident: bb0175 article-title: Seasonal and inter-annual variation in view angle effects on MODIS vegetation indices at three forest sites publication-title: Remote Sensing of Environment – volume: 114 start-page: 1805 year: 2010 end-page: 1816 ident: bb0070 article-title: Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product publication-title: Remote Sensing of Environment – volume: 91 start-page: 332 year: 2004 end-page: 344 ident: bb0035 article-title: A simple method for reconstructing a high-quality NDVI time series data set based on the Savitzky–Golay filter publication-title: Remote Sensing of Environment – volume: 84 start-page: 471 year: 2003 end-page: 475 ident: bb0255 article-title: Monitoring vegetation phenology using MODIS publication-title: Remote Sensing of Environment – volume: 115 start-page: 382 year: 2011 end-page: 391 ident: bb0250 article-title: Monitoring fall foliage coloration dynamics using time-series satellite data publication-title: Remote Sensing of Environment – volume: 102 start-page: 161 year: 2006 end-page: 175 ident: bb0185 article-title: Comparative analysis of IKONOS, SPOT, and ETM publication-title: Remote Sensing of Environment – volume: 36 start-page: 1228 year: 1998 end-page: 1249 ident: bb0105 article-title: The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 71 start-page: 207 year: 2000 end-page: 215 ident: bb0145 article-title: Plant litter and soil reflectance publication-title: Remote Sensing of Environment – volume: 31 start-page: 6163 year: 2010 end-page: 6187 ident: bb0060 article-title: Assessment of MODIS sun-sensor geometry variations effect on observed NDVI using MSG SEVIRI geostationary data publication-title: International Journal of Remote Sensing – volume: 33 start-page: L06405 year: 2006 ident: bb0100 article-title: Amazon rain forests green-up with sunlight in dry season publication-title: Geophysical Research Letters – volume: 51 start-page: 405 year: 2007 end-page: 414 ident: bb0200 article-title: A comparative study of satellite and ground-based phenology publication-title: International Journal of Biometeorology – volume: 105 start-page: 98 year: 2006 end-page: 114 ident: bb0210 article-title: The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration across resolutions publication-title: Remote Sensing of Environment – volume: 91 start-page: 332 year: 2004 ident: 10.1016/j.rse.2013.01.010_bb0035 article-title: A simple method for reconstructing a high-quality NDVI time series data set based on the Savitzky–Golay filter publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2004.03.014 – volume: 19 start-page: 2783 year: 2006 ident: 10.1016/j.rse.2013.01.010_bb0025 article-title: Green land Ice Sheet Surface Mass Balance Variability (1988–2004) from calibrated Polar MM5 Output publication-title: Journal of Climate doi: 10.1175/JCLI3738.1 – volume: 149 start-page: 407 year: 2009 ident: 10.1016/j.rse.2013.01.010_bb0005 article-title: Carbon sequestration by a crop over a 4-year sugar beet/winter wheat/seed potato/winter wheat rotation cycle publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2008.09.003 – volume: 29 start-page: 381 year: 2003 ident: 10.1016/j.rse.2013.01.010_bb0155 article-title: Estimation of leaf area index using ground-based remote sensed NDVI measurements: Validation and comparison with two indirect techniques publication-title: Canadian Journal of Remote Sensing doi: 10.5589/m03-009 – volume: 100 start-page: 321 year: 2006 ident: 10.1016/j.rse.2013.01.010_bb0015 article-title: Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2005.10.021 – volume: 37 start-page: 835 year: 2006 ident: 10.1016/j.rse.2013.01.010_bb0125 article-title: Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China publication-title: Advances in Space Research doi: 10.1016/j.asr.2005.08.037 – volume: 29 start-page: 15 year: 2003 ident: 10.1016/j.rse.2013.01.010_bb0120 article-title: Phenology and growth of Quercus ilex (L.) in different environmental conditions in Sicily (Italy) publication-title: Ecologia Mediterranea doi: 10.3406/ecmed.2003.1525 – volume: 22 start-page: 1793 year: 2002 ident: 10.1016/j.rse.2013.01.010_bb0170 article-title: Assessing satellite-derived start-of-season measures in the conterminous USA publication-title: International Journal of Climatology doi: 10.1002/joc.819 – volume: 115 start-page: 3112 year: 2011 ident: 10.1016/j.rse.2013.01.010_bb0175 article-title: Seasonal and inter-annual variation in view angle effects on MODIS vegetation indices at three forest sites publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.06.018 – volume: 6 start-page: 1 year: 1996 ident: 10.1016/j.rse.2013.01.010_bb0115 article-title: A prognostic phenology scheme for global terrestrial carbon cycle models publication-title: Climate Research doi: 10.3354/cr006001 – volume: 28 start-page: 1409 year: 1958 ident: 10.1016/j.rse.2013.01.010_bb0180 article-title: A statistical method for evaluating systematic relationships publication-title: University of Kansas Scientific Bulletin – year: 2007 ident: 10.1016/j.rse.2013.01.010_bb0165 article-title: Amazon forests green-up during 2005 drought publication-title: Science doi: 10.1126/science.1146663 – volume: 7 start-page: 4089 year: 2010 ident: 10.1016/j.rse.2013.01.010_bb0030 article-title: Fluxes of CO2, CH4 and N2O from soil of burned grassland savannah of central Africa publication-title: Biogeosciences Discussions – volume: 55 start-page: 123 year: 1996 ident: 10.1016/j.rse.2013.01.010_bb0215 article-title: Effects of standing litter on the biophysical interpretation of plant canopies with spectral indices publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(95)00198-0 – volume: 40 start-page: 1824 year: 2002 ident: 10.1016/j.rse.2013.01.010_bb0110 article-title: Seasonality extraction by function fitting to time-series of satellite sensor data publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2002.802519 – volume: 15 start-page: 2335 year: 2009 ident: 10.1016/j.rse.2013.01.010_bb0240 article-title: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006 publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2009.01910.x – volume: 115 start-page: 382 year: 2011 ident: 10.1016/j.rse.2013.01.010_bb0250 article-title: Monitoring fall foliage coloration dynamics using time-series satellite data publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2010.09.009 – volume: 13 start-page: 1585 year: 1992 ident: 10.1016/j.rse.2013.01.010_bb0220 article-title: The Best Index Slope Extraction (BISE): A method for reducing noise in NDVI time-series publication-title: International Journal of Remote Sensing doi: 10.1080/01431169208904212 – volume: 71 start-page: 207 year: 2000 ident: 10.1016/j.rse.2013.01.010_bb0145 article-title: Plant litter and soil reflectance publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(99)00082-6 – volume: 114 start-page: 1805 year: 2010 ident: 10.1016/j.rse.2013.01.010_bb0070 article-title: Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2010.04.005 – volume: 14 start-page: 1917 year: 2008 ident: 10.1016/j.rse.2013.01.010_bb0020 article-title: The impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2008.01610.x – volume: 15 start-page: 1455 year: 2009 ident: 10.1016/j.rse.2013.01.010_bb0050 article-title: Exceptional carbon uptake in European forests during the warm spring of 2007: A data-model analysis publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2008.01835.x – volume: 83 start-page: 31 year: 2002 ident: 10.1016/j.rse.2013.01.010_bb0245 article-title: Achieving sub-pixel geolocation accuracy in support of MODIS land science publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(02)00085-8 – volume: 16 start-page: 2504 year: 2010 ident: 10.1016/j.rse.2013.01.010_bb0010 article-title: Remote sensing of larch phenological cycle and analysis of relationships with climate in the Alpine region publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2010.02189.x – volume: 101 start-page: 52 year: 2006 ident: 10.1016/j.rse.2013.01.010_bb0045 article-title: Remote sensing of spring phenology in boreal regions: A free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982–2004) publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2005.11.012 – volume: 33 start-page: L06405 year: 2006 ident: 10.1016/j.rse.2013.01.010_bb0100 article-title: Amazon rain forests green-up with sunlight in dry season publication-title: Geophysical Research Letters doi: 10.1029/2005GL025583 – volume: 84 start-page: 471 year: 2003 ident: 10.1016/j.rse.2013.01.010_bb0255 article-title: Monitoring vegetation phenology using MODIS publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(02)00135-9 – volume: 113 start-page: 248 year: 2009 ident: 10.1016/j.rse.2013.01.010_bb0090 article-title: Noise reduction of NDVI time-series: An empirical comparison of selected techniques publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2008.09.003 – volume: 11 start-page: 217 year: 1997 ident: 10.1016/j.rse.2013.01.010_bb0225 article-title: A continental phenology model for monitoring vegetation responses to interannual climatic variability publication-title: Global Biogeochemical Cycles doi: 10.1029/97GB00330 – volume: 112 start-page: 2643 year: 2008 ident: 10.1016/j.rse.2013.01.010_bb0190 article-title: Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2007.12.004 – volume: 123 start-page: 234 year: 2012 ident: 10.1016/j.rse.2013.01.010_bb0195 article-title: Ground-based Network of NDVI measurements for tracking temporal dynamics of canopy structure and vegetation phenology in different biomes publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2012.03.012 – volume: 5 start-page: 703 year: 1994 ident: 10.1016/j.rse.2013.01.010_bb0160 article-title: Measuring phenological variability from satellite imagery publication-title: Journal of Vegetation Science doi: 10.2307/3235884 – volume: 113 start-page: 1101 year: 2009 ident: 10.1016/j.rse.2013.01.010_bb0075 article-title: Tracking seasonal drought effects on ecosystem light use efficiency with satellite-based PRI in a Mediterranean forest publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2009.02.001 – year: 2000 ident: 10.1016/j.rse.2013.01.010_bb0130 – volume: 10 start-page: 1154 year: 1997 ident: 10.1016/j.rse.2013.01.010_bb0140 article-title: Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements publication-title: Journal of Climate doi: 10.1175/1520-0442(1997)010<1154:GSAOVP>2.0.CO;2 – volume: 47 start-page: 126 year: 2003 ident: 10.1016/j.rse.2013.01.010_bb0205 article-title: West–east contrast of phenology and climate in northern Asia revealed using a remotely sensed vegetation index publication-title: International Journal of Biometeorology doi: 10.1007/s00484-003-0164-4 – volume: 141 start-page: 133 year: 2011 ident: 10.1016/j.rse.2013.01.010_bb0055 article-title: Comparison of carbon fluxes, growth and productivity of a winter wheat crop in three contrasting growing seasons publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2011.02.023 – volume: 105 start-page: 98 year: 2006 ident: 10.1016/j.rse.2013.01.010_bb0210 article-title: The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration across resolutions publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2006.06.008 – volume: 102 start-page: 161 year: 2006 ident: 10.1016/j.rse.2013.01.010_bb0185 article-title: Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2006.02.004 – volume: 5 start-page: 2591 year: 2012 ident: 10.1016/j.rse.2013.01.010_bb0135 article-title: Eddy Covariance flux measurements with a weight-shift microlight aircraft, Atmos publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-5-1699-2012 – volume: 5 start-page: 260 year: 2002 ident: 10.1016/j.rse.2013.01.010_bb0230 article-title: Satellite evidence of phenological differences between urbanized and rural areas of the Eastern United States deciduous broadleaf forest publication-title: Ecosystems doi: 10.1007/s10021-001-0070-8 – volume: 130 start-page: 137 year: 2009 ident: 10.1016/j.rse.2013.01.010_bb0040 article-title: Assessing tower flux footprint climatology and scaling between remotely sensed and Eddy covariance measurements publication-title: Boundary-Layer Meteorology doi: 10.1007/s10546-008-9339-1 – volume: 65 start-page: 704 issue: 7 year: 2008 ident: 10.1016/j.rse.2013.01.010_bb0080 article-title: Ten years of fluxes and stand growth in a young beech forest at Hesse, North-eastern France publication-title: Annals of Forest Science doi: 10.1051/forest:2008052 – volume: 83 start-page: 95 year: 2002 ident: 10.1016/j.rse.2013.01.010_bb0095 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(02)00096-2 – volume: 10 start-page: 535 year: 1996 ident: 10.1016/j.rse.2013.01.010_bb0150 article-title: A simple red:far-red sensor using gallium arsenide phosphide detectors publication-title: Functional Ecology doi: 10.2307/2389947 – volume: 31 start-page: 6163 year: 2010 ident: 10.1016/j.rse.2013.01.010_bb0060 article-title: Assessment of MODIS sun-sensor geometry variations effect on observed NDVI using MSG SEVIRI geostationary data publication-title: International Journal of Remote Sensing doi: 10.1080/01431160903401387 – volume: 36 start-page: 1228 year: 1998 ident: 10.1016/j.rse.2013.01.010_bb0105 article-title: The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.701075 – volume: 19 start-page: 586 year: 2001 ident: 10.1016/j.rse.2013.01.010_bb0085 article-title: Using MODIS to estimate cloud contamination of the AVHRR data record publication-title: Journal of Atmospheric and Oceanic Technology doi: 10.1175/1520-0426(2002)019<0586:UMTECC>2.0.CO;2 – volume: 104 start-page: 43 year: 2006 ident: 10.1016/j.rse.2013.01.010_bb0235 article-title: Real-time monitoring and short-term forecasting of land surface phenology publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2006.04.014 – volume: 51 start-page: 405 year: 2007 ident: 10.1016/j.rse.2013.01.010_bb0200 article-title: A comparative study of satellite and ground-based phenology publication-title: International Journal of Biometeorology doi: 10.1007/s00484-006-0080-5 – volume: 100 start-page: 265 year: 2006 ident: 10.1016/j.rse.2013.01.010_bb0065 article-title: Green leaf phenology at Landsat resolution: Scaling from the field to the satellite publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2005.10.022 |
SSID | ssj0015871 |
Score | 2.57615 |
Snippet | Vegetation phenology is the study of the timing of seasonal events that are considered to be the result of adaptive responses to climate variations on short... |
SourceID | hal proquest pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 145 |
SubjectTerms | Agricultural sciences Animal, plant and microbial ecology Applied geophysics autumn Biological and medical sciences canopy climate Crops Deciduous forests Earth sciences Earth, ocean, space ecosystems Evergreen forests Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects. Techniques Ground-based NDVI Internal geophysics leaves Life Sciences moderate resolution imaging spectroradiometer MODIS monitoring Phenology prediction radiometry remote sensing residual effects savannas screening spring Teledetection and vegetation maps temporal variation time series analysis tropical rain forests vegetation cover weather |
Title | Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements |
URI | https://dx.doi.org/10.1016/j.rse.2013.01.010 https://www.proquest.com/docview/1710222574 https://hal.science/hal-01032407 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEQIJIVioujxWBnFCMk38yIPbqt2yC3Q5QFFvVpzY7SLIRpu0Ui_8FH4rM86jqkA9IOU0sa3IHs_YmW--IeQ1rGkIXseyJDKCyTwSzISyYJHJXRGohBsfMT1aRvNj-eFEnWyR_T4XBmGVne1vbbq31p1kr5vNvWq1whxfIVHjMCADngiT-KSMUcvf_hpgHqFK4rZqnpAMW_eRTY_x2tTIlBkKz9yJSbT_9k23zhAkeb_Kapg31xa8-Mt2e4d0-JA86E6SdNp-7COyZcsR2ZldJa7By27n1iNyt6t2fnY5Infe-3K-l4_J79lA9k3XjsJhkFbrBgFE0BkER58PFl9onXnazsZSxJPSZk2rDcZ3GnphTzu4IkWsmB-Vrkral11pqE_vr9_RaQnygdID2iPg_pRiUklZMPSlBV0efFvQn1c_Lesn5Phw9nV_zrqKDSyXUdCwNM0TsCGRibk0tpAZN8J4_ps8yEDqjHWJME5xGylhuBWZSnkhXVoowXMrdsh2uS7tLqFZhmSGqWeYkzaJEhtaF8sgyR1PjHJjEvRrpfOOzhyravzQPW7tu4bl1bi8OgjhCcbkzdClark8bmosewXQ1xRSg6-5qdsrUJZheCTvnk8_aZRhRQ28P1-EYzK5pktDcw6XazgtwCgve-XSsN0xhpOVdn1e6zBur-ixfPp_H_iM3OO-oodioXpOtpvNuX0B56rGTPzGmZDb08XH-fIPXwoi0g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbarVCREIKFiuVRDOKEFDWJ7Ty4rdotWbq7HGhRb1acOO0iSKJNWql_ht_KjOOkqkA9IOU0sa3IHs_YmZnvI-QDrKkHXkc7UaCYw7OAOcrjuROorMhdEfnKREyXqyA541_OxfkWOexrYTCt0tr-zqYba20lB3Y2D-r1Gmt8GUeNw4AMeKJ4m-wgOpUYkZ3p_CRZDcEEEYUdcR7jDnbog5smzWvTIFimxwx4J9bR_ts9bV9inuSjOm1g6oqO8-Iv82180vET8tgeJum0-96nZEuXY7I3u61dg5d28zZjsmsJzy9vxuTBZ8Poe_OM_J4NeN-0KiicB2ldtZhDBJ1BsPx6NP9Gm9Qgd7aaYkopbStabzDE09JrfWEzFimmi5lR6bqkPfNKS02Ff_OJTkuQD6ge0B5z7i8o1pWUuYPuNKero-9z-uv2v2XznJwdz04PE8eSNjgZD9zWieMsAjMSqNDnSuc89RVTBgInc1OQFkoXEVOF8HUgmPI1S0Xs57yIc8H8TLM9MiqrUr8gNE0RzzA2IHNcR0GkPV2E3I2ywo-UKCbE7ddKZhbRHIk1fso-de2HhOWVuLzS9eBxJ-Tj0KXu4Dzua8x7BZB3dFKCu7mv23tQlmF4xO9OpguJMiTVwCv0tTch-3d0aWjuw_0aDgwwyrteuSTseAzjpKWurhrphd0tPeQv_-8D35Ld5HS5kIv56uQVeegbgg_heOI1GbWbK_0Gjlmt2rfb6A89uiWD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+potential+of+MODIS+satellite+data+to+predict+vegetation+phenology+in+different+biomes%3A+An+investigation+using+ground-based+NDVI+measurements&rft.jtitle=Remote+sensing+of+environment&rft.au=Hmimina%2C+G.&rft.au=Dufr%C3%AAne%2C+E.&rft.au=Pontailler%2C+J.-Y.&rft.au=Delpierre%2C+N.&rft.date=2013-05-15&rft.pub=Elsevier+Inc&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=132&rft.spage=145&rft.epage=158&rft_id=info:doi/10.1016%2Fj.rse.2013.01.010&rft.externalDocID=S0034425713000229 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |