Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements

Vegetation phenology is the study of the timing of seasonal events that are considered to be the result of adaptive responses to climate variations on short and long time scales. In the field of remote sensing of vegetation phenology, phenological metrics are derived from time series of optical data...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 132; pp. 145 - 158
Main Authors Hmimina, G., Dufrêne, E., Pontailler, J.-Y., Delpierre, N., Aubinet, M., Caquet, B., de Grandcourt, A., Burban, B., Flechard, C., Granier, A., Gross, P., Heinesch, B., Longdoz, B., Moureaux, C., Ourcival, J.-M., Rambal, S., Saint André, L., Soudani, K.
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 15.05.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vegetation phenology is the study of the timing of seasonal events that are considered to be the result of adaptive responses to climate variations on short and long time scales. In the field of remote sensing of vegetation phenology, phenological metrics are derived from time series of optical data. For that purpose, considerable effort has been specifically focused on developing noise reduction and cloud-contaminated data removal techniques to improve the quality of remotely-sensed time series. Comparative studies between time series composed of satellite data acquired under clear and cloudy conditions and from radiometric data obtained with high accuracy from ground-based measurements constitute a direct and effective way to assess the operational use and limitations of remote sensing for predicting the main plant phenological events. In the present paper, we sought to explicitly evaluate the potential use of MODerate resolution Imaging Spectroradiometer (MODIS) remote sensing data for monitoring the seasonal dynamics of different types of vegetation cover that are representative of the major terrestrial biomes, including temperate deciduous forests, evergreen forests, African savannah, and crops. After cloud screening and filtering, we compared the temporal patterns and phenological metrics derived from in situ NDVI time series and from MODIS daily and 16-composite products. We also evaluated the effects of residual noise and the influence of data gaps in MODIS NDVI time series on the identification of the most relevant metrics for vegetation phenology monitoring. The results show that the inflexion points of a model fitted to a MODIS NDVI time series allow accurate estimates of the onset of greenness in the spring and the onset of yellowing in the autumn in deciduous forests (RMSE≤one week). Phenological metrics identical to those provided with the MODIS Global Vegetation Phenology product (MDC12Q2) are less robust to data gaps, and they can be subject to large biases of approximately two weeks or more during the autumn phenological transitions. In the evergreen forests, in situ NDVI time series describe the phenology with high fidelity despite small temporal changes in the canopy foliage. However, MODIS is unable to provide consistent phenological patterns. In crops and savannah, MODIS NDVI time series reproduce the general temporal patterns of phenology, but significant discrepancies appear between MODIS and ground-based NDVI time series during very localized periods of time depending on the weather conditions and spatial heterogeneity within the MODIS pixel. In the rainforest, the temporal pattern exhibited by a MODIS 16-day composite NDVI time series is more likely due to a pattern of noise in the NDVI data structure according to both rainy and dry seasons rather than to phenological changes. More investigations are needed, but in all cases, this result leads us to conclude that MODIS time series in tropical rainforests should be interpreted with great caution. ► We compare ground- and MODIS-based NDVI time-series in different terrestrial biomes. ► We identify the most relevant NDVI based vegetation phenological metrics. ► We develop a new method to quantify the uncertainty of the phenological metrics. ► In tropical rainforests, MODIS-derived phenology should be interpreted with caution.
AbstractList Vegetation phenology is the study of the timing of seasonal events that are considered to be the result of adaptive responses to climate variations on short and long time scales. In the field of remote sensing of vegetation phenology, phenological metrics are derived from time series of optical data. For that purpose, considerable effort has been specifically focused on developing noise reduction and cloud-contaminated data removal techniques to improve the quality of remotely-sensed time series. Comparative studies between time series composed of satellite data acquired under clear and cloudy conditions and from radiometric data obtained with high accuracy from ground-based measurements constitute a direct and effective way to assess the operational use and limitations of remote sensing for predicting the main plant phenological events. In the present paper, we sought to explicitly evaluate the potential use of MODerate resolution Imaging Spectroradiometer (MODIS) remote sensing data for monitoring the seasonal dynamics of different types of vegetation cover that are representative of the major terrestrial biomes, including temperate deciduous forests, evergreen forests, African savannah, and crops. After cloud screening and filtering, we compared the temporal patterns and phenological metrics derived from in situ NDVI time series and from MODIS daily and 16-composite products. We also evaluated the effects of residual noise and the influence of data gaps in MODIS NDVI time series on the identification of the most relevant metrics for vegetation phenology monitoring. The results show that the inflexion points of a model fitted to a MODIS NDVI time series allow accurate estimates of the onset of greenness in the spring and the onset of yellowing in the autumn in deciduous forests (RMSE≤one week). Phenological metrics identical to those provided with the MODIS Global Vegetation Phenology product (MDC12Q2) are less robust to data gaps, and they can be subject to large biases of approximately two weeks or more during the autumn phenological transitions. In the evergreen forests, in situ NDVI time series describe the phenology with high fidelity despite small temporal changes in the canopy foliage. However, MODIS is unable to provide consistent phenological patterns. In crops and savannah, MODIS NDVI time series reproduce the general temporal patterns of phenology, but significant discrepancies appear between MODIS and ground-based NDVI time series during very localized periods of time depending on the weather conditions and spatial heterogeneity within the MODIS pixel. In the rainforest, the temporal pattern exhibited by a MODIS 16-day composite NDVI time series is more likely due to a pattern of noise in the NDVI data structure according to both rainy and dry seasons rather than to phenological changes. More investigations are needed, but in all cases, this result leads us to conclude that MODIS time series in tropical rainforests should be interpreted with great caution.
Vegetation phenology is the study of the timing of seasonal events that are considered to be the result of adaptive responses to climate variations on short and long time scales. In the field of remote sensing of vegetation phenology, phenological metrics are derived from time series of optical data. For that purpose, considerable effort has been specifically focused on developing noise reduction and cloud-contaminated data removal techniques to improve the quality of remotely-sensed time series. Comparative studies between time series composed of satellite data acquired under clear and cloudy conditions and from radiometric data obtained with high accuracy from ground-based measurements constitute a direct and effective way to assess the operational use and limitations of remote sensing for predicting the main plant phenological events. In the present paper, we sought to explicitly evaluate the potential use of MODerate resolution Imaging Spectroradiometer (MODIS) remote sensing data for monitoring the seasonal dynamics of different types of vegetation cover that are representative of the major terrestrial biomes, including temperate deciduous forests, evergreen forests, African savannah, and crops. After cloud screening and filtering, we compared the temporal patterns and phenological metrics derived from in situ NDVI time series and from MODIS daily and 16-composite products. We also evaluated the effects of residual noise and the influence of data gaps in MODIS NDVI time series on the identification of the most relevant metrics for vegetation phenology monitoring. The results show that the inflexion points of a model fitted to a MODIS NDVI time series allow accurate estimates of the onset of greenness in the spring and the onset of yellowing in the autumn in deciduous forests (RMSE <= one week). Phenological metrics identical to those provided with the MODIS Global Vegetation Phenology product (MDC12Q2) are less robust to data gaps, and they can be subject to large biases of approximately two weeks or more during the autumn phenological transitions. In the evergreen forests, in situ NDVI time series describe the phenology with high fidelity despite small temporal changes in the canopy foliage. However, MODIS is unable to provide consistent phenological patterns. In crops and savannah, MODIS NDVI time series reproduce the general temporal patterns of phenology, but significant discrepancies appear between MODIS and ground-based NDVI time series during very localized periods of time depending on the weather conditions and spatial heterogeneity within the MODIS pixel. In the rainforest, the temporal pattern exhibited by a MODIS 16-day composite NDVI time series is more likely due to a pattern of noise in the NDVI data structure according to both rainy and dry seasons rather than to phenological changes. More investigations are needed, but in all cases, this result leads us to conclude that MODIS time series in tropical rainforests should be interpreted with great caution. (C) 2013 Elsevier Inc. All rights reserved.
Vegetation phenology is the study of the timing of seasonal events that are considered to be the result of adaptive responses to climate variations on short and long time scales. In the field of remote sensing of vegetation phenology, phenological metrics are derived from time series of optical data. For that purpose, considerable effort has been specifically focused on developing noise reduction and cloud-contaminated data removal techniques to improve the quality of remotely-sensed time series. Comparative studies between time series composed of satellite data acquired under clear and cloudy conditions and from radiometric data obtained with high accuracy from ground-based measurements constitute a direct and effective way to assess the operational use and limitations of remote sensing for predicting the main plant phenological events. In the present paper, we sought to explicitly evaluate the potential use of MODerate resolution Imaging Spectroradiometer (MODIS) remote sensing data for monitoring the seasonal dynamics of different types of vegetation cover that are representative of the major terrestrial biomes, including temperate deciduous forests, evergreen forests, African savannah, and crops. After cloud screening and filtering, we compared the temporal patterns and phenological metrics derived from in situ NDVI time series and from MODIS daily and 16-composite products. We also evaluated the effects of residual noise and the influence of data gaps in MODIS NDVI time series on the identification of the most relevant metrics for vegetation phenology monitoring. The results show that the inflexion points of a model fitted to a MODIS NDVI time series allow accurate estimates of the onset of greenness in the spring and the onset of yellowing in the autumn in deciduous forests (RMSE≤one week). Phenological metrics identical to those provided with the MODIS Global Vegetation Phenology product (MDC12Q2) are less robust to data gaps, and they can be subject to large biases of approximately two weeks or more during the autumn phenological transitions. In the evergreen forests, in situ NDVI time series describe the phenology with high fidelity despite small temporal changes in the canopy foliage. However, MODIS is unable to provide consistent phenological patterns. In crops and savannah, MODIS NDVI time series reproduce the general temporal patterns of phenology, but significant discrepancies appear between MODIS and ground-based NDVI time series during very localized periods of time depending on the weather conditions and spatial heterogeneity within the MODIS pixel. In the rainforest, the temporal pattern exhibited by a MODIS 16-day composite NDVI time series is more likely due to a pattern of noise in the NDVI data structure according to both rainy and dry seasons rather than to phenological changes. More investigations are needed, but in all cases, this result leads us to conclude that MODIS time series in tropical rainforests should be interpreted with great caution. ► We compare ground- and MODIS-based NDVI time-series in different terrestrial biomes. ► We identify the most relevant NDVI based vegetation phenological metrics. ► We develop a new method to quantify the uncertainty of the phenological metrics. ► In tropical rainforests, MODIS-derived phenology should be interpreted with caution.
Author Pontailler, J.-Y.
Delpierre, N.
Dufrêne, E.
Caquet, B.
Saint André, L.
Granier, A.
Gross, P.
Heinesch, B.
Ourcival, J.-M.
Soudani, K.
Longdoz, B.
Moureaux, C.
Burban, B.
de Grandcourt, A.
Hmimina, G.
Aubinet, M.
Flechard, C.
Rambal, S.
Author_xml – sequence: 1
  givenname: G.
  surname: Hmimina
  fullname: Hmimina, G.
  organization: University of Paris-Sud, CNRS, AgroParisTech, Laboratoire Ecologie Systematique et Evolution, Faculty of Sciences of Orsay, France
– sequence: 2
  givenname: E.
  surname: Dufrêne
  fullname: Dufrêne, E.
  organization: University of Paris-Sud, CNRS, AgroParisTech, Laboratoire Ecologie Systematique et Evolution, Faculty of Sciences of Orsay, France
– sequence: 3
  givenname: J.-Y.
  surname: Pontailler
  fullname: Pontailler, J.-Y.
  organization: University of Paris-Sud, CNRS, AgroParisTech, Laboratoire Ecologie Systematique et Evolution, Faculty of Sciences of Orsay, France
– sequence: 4
  givenname: N.
  surname: Delpierre
  fullname: Delpierre, N.
  organization: University of Paris-Sud, CNRS, AgroParisTech, Laboratoire Ecologie Systematique et Evolution, Faculty of Sciences of Orsay, France
– sequence: 5
  givenname: M.
  surname: Aubinet
  fullname: Aubinet, M.
  organization: University of Liège — Gembloux Agro-Bio Tech (GxABT), Passage des Déportés 2, Gembloux, Belgium
– sequence: 6
  givenname: B.
  surname: Caquet
  fullname: Caquet, B.
  organization: CIRAD/CRDPI, France
– sequence: 7
  givenname: A.
  surname: de Grandcourt
  fullname: de Grandcourt, A.
  organization: CIRAD/CRDPI, France
– sequence: 8
  givenname: B.
  surname: Burban
  fullname: Burban, B.
  organization: INRA, UMR Ecofog, Kourou, Guyane Française, French Guiana
– sequence: 9
  givenname: C.
  surname: Flechard
  fullname: Flechard, C.
  organization: INRA, Agrocampus Ouest, UMR 1069 SAS, Rennes, France
– sequence: 10
  givenname: A.
  surname: Granier
  fullname: Granier, A.
  organization: INRA, UMR EEF 1137, INRA/University of Nancy, Champenoux, France
– sequence: 11
  givenname: P.
  surname: Gross
  fullname: Gross, P.
  organization: INRA, UMR EEF 1137, INRA/University of Nancy, Champenoux, France
– sequence: 12
  givenname: B.
  surname: Heinesch
  fullname: Heinesch, B.
  organization: University of Liège — Gembloux Agro-Bio Tech (GxABT), Passage des Déportés 2, Gembloux, Belgium
– sequence: 13
  givenname: B.
  surname: Longdoz
  fullname: Longdoz, B.
  organization: INRA, UMR EEF 1137, INRA/University of Nancy, Champenoux, France
– sequence: 14
  givenname: C.
  surname: Moureaux
  fullname: Moureaux, C.
  organization: University of Liège — Gembloux Agro-Bio Tech (GxABT), Passage des Déportés 2, Gembloux, Belgium
– sequence: 15
  givenname: J.-M.
  surname: Ourcival
  fullname: Ourcival, J.-M.
  organization: CNRS, Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier, France
– sequence: 16
  givenname: S.
  surname: Rambal
  fullname: Rambal, S.
  organization: CNRS, Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier, France
– sequence: 17
  givenname: L.
  surname: Saint André
  fullname: Saint André, L.
  organization: INRA, Unité Biogéochimie des Ecosystèmes Forestiers, Champenoux, France
– sequence: 18
  givenname: K.
  surname: Soudani
  fullname: Soudani, K.
  email: kamel.soudani@u-psud.fr
  organization: University of Paris-Sud, CNRS, AgroParisTech, Laboratoire Ecologie Systematique et Evolution, Faculty of Sciences of Orsay, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27174710$$DView record in Pascal Francis
https://hal.science/hal-01032407$$DView record in HAL
BookMark eNp9kc1u3CAUhVGVSp1M-wDdsanULjwFjIdxuxolaTPStFn0Z4swvngYecAFbCkvk2ctU0dZdBEJCenoO3DvOZfownkHCL2lZEUJXX88rkKEFSO0XBGaD3mBFnQj6oIIwi_QgpCSF5xV4hW6jPFICK02gi7Qw82k-lEl6x32BqcD4MEncMmq_ix8u7ve_cBRJeh7mwC3KimcPB4CtFYnPEEHabYPB3C-9909tg631hgI-R3cWH-C-AlvXdYniMl2Mz9G6zrcBT-6tmhUhBZ_v_69wydQcQxwyub4Gr00qo_w5vFeol9fbn5e3Rb7u6-7q-2-0HxNUlHXepMXXTeC8QZarlhTNrzmWScqq6YBsykbUzFYV2XDoFRVzVpu6rYqmYZyiT7M7x5UL4dgTyrcS6-svN3u5VnLiZaMEzHRzL6f2SH4P2NeSJ5s1Dkf5cCPUVJBCWM5ap7Rd4-oilr1JiinbXz6gAkqeKYzR2dOBx9jAPOEUCLP_cqjzP3Kc795lH_TLJH4z6Pt3EQKyvbPOj_PTsiJThaCjNqC07nRADrJ1ttn3H8BVxLDuw
CODEN RSEEA7
CitedBy_id crossref_primary_10_3390_rs70201937
crossref_primary_10_1016_j_agrformet_2019_107859
crossref_primary_10_3390_rs16030595
crossref_primary_10_3390_su13168956
crossref_primary_10_1016_j_uclim_2023_101795
crossref_primary_10_1016_j_agrformet_2016_12_006
crossref_primary_10_3390_rs11202439
crossref_primary_10_1007_s11629_018_4982_6
crossref_primary_10_3389_feart_2021_797928
crossref_primary_10_1080_07038992_2017_1252906
crossref_primary_10_54033_cadpedv20n10_018
crossref_primary_10_1016_j_csda_2020_107113
crossref_primary_10_3390_rs13204126
crossref_primary_10_3390_rs8110955
crossref_primary_10_1016_j_jag_2021_102428
crossref_primary_10_3390_environments8060048
crossref_primary_10_1080_15481603_2015_1073036
crossref_primary_10_1007_s10661_019_7680_0
crossref_primary_10_3389_fenvs_2019_00014
crossref_primary_10_1016_j_foreco_2023_121593
crossref_primary_10_1016_j_rse_2020_112013
crossref_primary_10_5194_bg_18_3391_2021
crossref_primary_10_1016_j_ecolind_2024_112663
crossref_primary_10_1080_01431161_2018_1506185
crossref_primary_10_1016_j_agrformet_2019_06_002
crossref_primary_10_1007_s13595_014_0404_2
crossref_primary_10_1016_j_ecoinf_2024_102786
crossref_primary_10_3390_rs14153681
crossref_primary_10_1016_j_gsd_2024_101160
crossref_primary_10_3390_ijgi11080426
crossref_primary_10_5721_EuJRS20144718
crossref_primary_10_1007_s40333_016_0121_9
crossref_primary_10_3390_rs12213539
crossref_primary_10_3390_rs9121271
crossref_primary_10_3390_f13121973
crossref_primary_10_1016_j_forpol_2021_102420
crossref_primary_10_1080_10549811_2020_1738947
crossref_primary_10_1088_1755_1315_932_1_012003
crossref_primary_10_3390_s18030880
crossref_primary_10_3390_f15040718
crossref_primary_10_1007_s00484_021_02173_2
crossref_primary_10_3390_app122412554
crossref_primary_10_1038_s41598_018_33968_w
crossref_primary_10_1109_TGRS_2017_2655365
crossref_primary_10_34133_remotesensing_0005
crossref_primary_10_1016_j_catena_2022_106311
crossref_primary_10_1051_e3sconf_202016903007
crossref_primary_10_1177_0309133315582005
crossref_primary_10_1109_ACCESS_2019_2922003
crossref_primary_10_3390_rs6021367
crossref_primary_10_3390_rs11141650
crossref_primary_10_3390_su15076012
crossref_primary_10_1029_2017JD027973
crossref_primary_10_2478_forj_2019_0020
crossref_primary_10_3390_w13182550
crossref_primary_10_1016_j_isprsjprs_2019_01_017
crossref_primary_10_1016_j_compag_2020_105595
crossref_primary_10_3390_rs11232745
crossref_primary_10_3390_rs13142806
crossref_primary_10_3390_rs14102322
crossref_primary_10_3390_rs9080855
crossref_primary_10_1080_02626667_2017_1337274
crossref_primary_10_1093_icb_icx040
crossref_primary_10_3390_rs11141656
crossref_primary_10_1016_j_heliyon_2021_e07436
crossref_primary_10_1016_j_proeng_2014_07_055
crossref_primary_10_1088_1748_9326_abb32f
crossref_primary_10_3390_rs9030271
crossref_primary_10_1109_JSTARS_2019_2921437
crossref_primary_10_1515_geochr_2015_0091
crossref_primary_10_1007_s10661_024_13526_w
crossref_primary_10_5194_bg_11_4305_2014
crossref_primary_10_1371_journal_pone_0167302
crossref_primary_10_1111_nph_16479
crossref_primary_10_1016_j_rse_2016_02_010
crossref_primary_10_1080_01431161_2019_1697004
crossref_primary_10_3390_rs14236180
crossref_primary_10_3390_f10010060
crossref_primary_10_3390_f13091417
crossref_primary_10_1016_j_rse_2022_112921
crossref_primary_10_1016_j_ecolind_2019_105755
crossref_primary_10_2478_forj_2022_0014
crossref_primary_10_3390_rs15010187
crossref_primary_10_1016_j_jag_2018_10_015
crossref_primary_10_1016_j_rse_2014_03_017
crossref_primary_10_1109_LGRS_2017_2684195
crossref_primary_10_3390_s25020529
crossref_primary_10_3390_agronomy12081972
crossref_primary_10_3390_rs70607597
crossref_primary_10_3390_rs14020273
crossref_primary_10_5194_bg_18_1971_2021
crossref_primary_10_1016_j_scitotenv_2019_134913
crossref_primary_10_1016_j_agrformet_2021_108481
crossref_primary_10_1016_j_jag_2022_102814
crossref_primary_10_1080_01431161_2014_951099
crossref_primary_10_1111_gcb_13200
crossref_primary_10_1016_j_ecolind_2017_02_024
crossref_primary_10_1016_j_rse_2015_10_020
crossref_primary_10_6090_jarq_54_101
crossref_primary_10_3390_rs10040641
crossref_primary_10_4000_belgeo_47995
crossref_primary_10_4236_ars_2020_93006
crossref_primary_10_3390_rs71215833
crossref_primary_10_1016_j_rse_2016_09_014
crossref_primary_10_3390_rs10060932
crossref_primary_10_1002_joc_5547
crossref_primary_10_1016_j_jenvman_2024_120527
crossref_primary_10_1016_j_scitotenv_2020_138380
crossref_primary_10_3390_rs14246331
crossref_primary_10_1016_j_jag_2021_102505
crossref_primary_10_1016_j_compag_2024_109212
crossref_primary_10_1016_j_ecolind_2023_111405
crossref_primary_10_1016_j_rse_2023_113785
crossref_primary_10_1007_s00484_022_02367_2
crossref_primary_10_3390_rs13245018
crossref_primary_10_1080_01431161_2019_1620375
crossref_primary_10_1007_s42106_018_0030_2
crossref_primary_10_1080_15481603_2015_1134140
crossref_primary_10_1016_j_isprsjprs_2023_07_005
crossref_primary_10_1016_j_jag_2015_04_021
crossref_primary_10_1016_j_rsase_2020_100409
crossref_primary_10_1016_j_agrformet_2019_107829
crossref_primary_10_1016_j_agee_2014_03_042
crossref_primary_10_1002_rse2_296
crossref_primary_10_1109_TGRS_2014_2375381
crossref_primary_10_1088_1748_9326_abcfe3
crossref_primary_10_3390_rs17050876
crossref_primary_10_3741_JKWRA_2014_47_10_935
crossref_primary_10_1007_s11069_015_2014_1
crossref_primary_10_3832_ifor1800_009
crossref_primary_10_1016_j_jag_2013_12_008
crossref_primary_10_3390_rs13112060
crossref_primary_10_1016_j_atech_2025_100892
crossref_primary_10_1016_j_ecolind_2024_111818
crossref_primary_10_1016_j_rse_2015_04_014
crossref_primary_10_1016_j_agwat_2025_109303
crossref_primary_10_1016_j_rse_2021_112320
crossref_primary_10_1111_geb_13340
crossref_primary_10_1016_j_advengsoft_2024_103856
crossref_primary_10_1016_j_agrformet_2016_11_011
crossref_primary_10_1109_LGRS_2024_3379255
crossref_primary_10_1080_17538947_2022_2044397
crossref_primary_10_1080_00207233_2021_1875303
crossref_primary_10_3173_air_25_130
crossref_primary_10_3390_atmos14010117
crossref_primary_10_3390_land13040443
crossref_primary_10_1080_01431161_2019_1584689
crossref_primary_10_1016_j_apgeog_2016_12_019
crossref_primary_10_3390_rs14051179
crossref_primary_10_1016_j_rse_2018_09_027
crossref_primary_10_1007_s41207_016_0006_5
crossref_primary_10_1016_j_rse_2020_112004
crossref_primary_10_1016_j_rse_2019_01_010
crossref_primary_10_3390_d15101064
crossref_primary_10_1371_journal_pone_0109544
crossref_primary_10_1080_2150704X_2016_1168945
crossref_primary_10_1016_j_agrformet_2023_109600
crossref_primary_10_1080_01431161_2023_2216846
crossref_primary_10_3390_rs16061083
crossref_primary_10_3390_rs12040639
crossref_primary_10_1111_gcb_16916
crossref_primary_10_1080_10106049_2016_1222633
crossref_primary_10_3390_f12020147
crossref_primary_10_1029_2019GL082716
crossref_primary_10_1016_j_isprsjprs_2018_11_024
crossref_primary_10_1080_22797254_2017_1377051
crossref_primary_10_1016_j_ufug_2018_01_021
crossref_primary_10_3390_d12080313
crossref_primary_10_1515_geo_2020_0235
crossref_primary_10_1080_01431161_2018_1500731
crossref_primary_10_34133_remotesensing_0425
crossref_primary_10_4000_vertigo_35589
crossref_primary_10_1016_j_rsase_2021_100610
crossref_primary_10_3390_rs12060912
crossref_primary_10_1007_s11707_018_0713_0
crossref_primary_10_1016_j_rse_2016_01_021
crossref_primary_10_1016_j_jhydrol_2019_02_028
crossref_primary_10_1016_j_isprsjprs_2024_03_018
crossref_primary_10_4236_ars_2016_51001
crossref_primary_10_1016_j_jag_2017_05_010
crossref_primary_10_3390_rs11242976
crossref_primary_10_1016_j_agsy_2022_103459
crossref_primary_10_53759_7669_jmc202404043
crossref_primary_10_3390_ijgi7080290
crossref_primary_10_1016_j_isprsjprs_2017_07_012
crossref_primary_10_5194_bg_11_6277_2014
crossref_primary_10_1016_j_rse_2021_112368
crossref_primary_10_5194_bg_12_3885_2015
crossref_primary_10_1016_j_rse_2013_07_030
crossref_primary_10_3390_rs9060630
crossref_primary_10_1016_j_ejrs_2023_06_010
crossref_primary_10_1016_j_rse_2015_03_018
crossref_primary_10_1002_ldr_4659
crossref_primary_10_1109_JSTARS_2013_2294956
crossref_primary_10_1016_j_agrformet_2025_110497
crossref_primary_10_3390_rs14164088
crossref_primary_10_1016_j_agrformet_2022_109095
crossref_primary_10_3390_rs70810973
crossref_primary_10_1080_23754931_2022_2081815
crossref_primary_10_1109_JSTARS_2015_2388698
crossref_primary_10_1016_j_jag_2017_08_006
crossref_primary_10_1016_j_rse_2014_08_016
crossref_primary_10_1016_j_compag_2023_107763
crossref_primary_10_2139_ssrn_4095159
crossref_primary_10_2139_ssrn_4095158
crossref_primary_10_3390_ijgi9110665
crossref_primary_10_1111_gfs_12223
crossref_primary_10_3390_rs14051169
crossref_primary_10_1016_j_agrformet_2017_04_009
crossref_primary_10_1080_10106049_2020_1723716
crossref_primary_10_1029_2023EF004127
crossref_primary_10_1016_j_jag_2024_103668
crossref_primary_10_1038_s41598_017_14918_4
crossref_primary_10_3390_su10124363
crossref_primary_10_1016_j_ecolind_2021_107640
crossref_primary_10_3390_rs9050485
crossref_primary_10_1016_j_ecolind_2022_108579
crossref_primary_10_22144_ctujos_2024_366
crossref_primary_10_1007_s10531_015_0947_z
crossref_primary_10_3390_rs10050708
crossref_primary_10_3389_fenvs_2024_1489267
crossref_primary_10_1007_s13595_015_0477_6
crossref_primary_10_1007_s11356_020_10769_1
crossref_primary_10_5194_hess_21_2449_2017
crossref_primary_10_1007_s10668_018_0240_x
crossref_primary_10_1016_j_gsd_2023_100998
crossref_primary_10_3390_rs13245080
crossref_primary_10_1016_j_ecolind_2015_01_004
crossref_primary_10_1080_10095020_2024_2311858
crossref_primary_10_3390_geosciences12100352
crossref_primary_10_5194_se_6_1185_2015
crossref_primary_10_1016_j_ecolmodel_2019_108870
crossref_primary_10_1007_s00484_019_01855_2
crossref_primary_10_3390_rs70202089
crossref_primary_10_1016_j_ecolind_2021_108042
crossref_primary_10_1111_nph_14320
crossref_primary_10_3389_fdata_2020_00029
crossref_primary_10_1016_j_agrformet_2015_07_005
crossref_primary_10_1016_j_agrformet_2018_03_010
crossref_primary_10_1016_j_isprsjprs_2018_08_013
crossref_primary_10_1111_ecog_05629
crossref_primary_10_1093_forestry_cpad039
crossref_primary_10_3390_rs16132309
crossref_primary_10_1016_j_indcrop_2025_120753
crossref_primary_10_1016_j_isprsjprs_2021_01_018
crossref_primary_10_1007_s00468_018_1765_1
crossref_primary_10_1016_j_isprsjprs_2020_10_005
crossref_primary_10_1016_j_jag_2021_102487
crossref_primary_10_1016_j_patrec_2015_11_028
crossref_primary_10_1016_j_agrformet_2023_109372
crossref_primary_10_3390_ijgi8010043
crossref_primary_10_1016_j_agrformet_2016_02_013
crossref_primary_10_1080_07038992_2022_2154598
crossref_primary_10_1007_s11769_021_1217_5
crossref_primary_10_3390_rs9010049
crossref_primary_10_1002_rse2_223
crossref_primary_10_3390_rs13051015
crossref_primary_10_1016_j_ecolind_2021_108351
crossref_primary_10_1016_j_rse_2014_09_012
crossref_primary_10_1109_LGRS_2014_2314134
crossref_primary_10_1134_S0006350917040030
crossref_primary_10_3390_rs14133000
crossref_primary_10_3390_rs15030737
crossref_primary_10_1016_j_jenvman_2025_124326
crossref_primary_10_1007_s11676_020_01145_3
crossref_primary_10_2478_jlecol_2019_0008
crossref_primary_10_1007_s00484_022_02359_2
crossref_primary_10_1016_j_foreco_2020_118663
crossref_primary_10_1016_j_foreco_2020_118785
crossref_primary_10_1080_15481603_2021_2022426
crossref_primary_10_3390_rs13091788
crossref_primary_10_1007_s11769_021_1204_x
crossref_primary_10_1007_s10980_024_01856_6
crossref_primary_10_1016_j_agrformet_2020_108237
crossref_primary_10_1016_S2095_3119_16_61464_8
crossref_primary_10_3390_rs15092413
crossref_primary_10_1016_j_ufug_2017_05_001
crossref_primary_10_3390_cli6030059
crossref_primary_10_1016_j_ecolind_2023_110262
crossref_primary_10_3390_agriengineering2020017
crossref_primary_10_1111_1365_2745_13656
crossref_primary_10_1002_ece3_4600
crossref_primary_10_1007_s11676_022_01525_x
crossref_primary_10_1016_j_measurement_2021_110327
crossref_primary_10_1016_j_rse_2014_03_001
crossref_primary_10_5194_bg_12_6985_2015
crossref_primary_10_1016_j_scitotenv_2020_140297
crossref_primary_10_1016_j_ejrh_2021_100946
crossref_primary_10_3390_f14020413
crossref_primary_10_1016_j_catena_2024_107846
crossref_primary_10_3390_rs12233927
crossref_primary_10_1002_ecs2_2362
crossref_primary_10_3390_rs14153639
crossref_primary_10_1007_s11442_023_2094_x
crossref_primary_10_1109_TGRS_2017_2785240
crossref_primary_10_1007_s11629_015_3600_0
crossref_primary_10_1080_10106049_2022_2104390
crossref_primary_10_3390_plants13020182
crossref_primary_10_3390_geosciences9100411
crossref_primary_10_3390_rs9010065
crossref_primary_10_1016_j_ecolind_2021_107968
crossref_primary_10_3390_agriengineering1030027
crossref_primary_10_3390_rs70506026
crossref_primary_10_3832_ifor2062_010
crossref_primary_10_1016_j_agrformet_2019_107644
crossref_primary_10_3390_rs9070695
crossref_primary_10_5194_gmd_17_2509_2024
crossref_primary_10_1016_j_agrformet_2023_109440
crossref_primary_10_1016_j_agrformet_2024_110182
crossref_primary_10_1093_jee_tov250
crossref_primary_10_3390_f11091000
crossref_primary_10_1016_j_ecolind_2018_01_042
crossref_primary_10_3390_rs12213642
crossref_primary_10_3390_s17091982
crossref_primary_10_1016_j_rse_2021_112394
crossref_primary_10_3390_rs11192316
crossref_primary_10_1109_JSTARS_2022_3196494
crossref_primary_10_1016_j_rsci_2024_04_007
crossref_primary_10_1016_j_agrformet_2016_11_193
crossref_primary_10_1016_j_scitotenv_2021_152595
crossref_primary_10_1016_j_agrformet_2020_107969
crossref_primary_10_1016_j_rse_2015_01_011
crossref_primary_10_1109_JSTARS_2020_2971098
crossref_primary_10_3390_rs12182980
crossref_primary_10_1016_j_compag_2016_03_008
crossref_primary_10_1029_2022JG007369
crossref_primary_10_1186_s13595_022_01130_2
crossref_primary_10_1016_j_rse_2015_12_017
crossref_primary_10_3390_rs14112542
crossref_primary_10_3390_rs9070689
crossref_primary_10_1016_j_ecolind_2015_09_012
crossref_primary_10_1007_s10333_020_00829_0
crossref_primary_10_1080_01431161_2017_1295482
Cites_doi 10.1016/j.rse.2004.03.014
10.1175/JCLI3738.1
10.1016/j.agrformet.2008.09.003
10.5589/m03-009
10.1016/j.rse.2005.10.021
10.1016/j.asr.2005.08.037
10.3406/ecmed.2003.1525
10.1002/joc.819
10.1016/j.rse.2011.06.018
10.3354/cr006001
10.1126/science.1146663
10.1016/0034-4257(95)00198-0
10.1109/TGRS.2002.802519
10.1111/j.1365-2486.2009.01910.x
10.1016/j.rse.2010.09.009
10.1080/01431169208904212
10.1016/S0034-4257(99)00082-6
10.1016/j.rse.2010.04.005
10.1111/j.1365-2486.2008.01610.x
10.1111/j.1365-2486.2008.01835.x
10.1016/S0034-4257(02)00085-8
10.1111/j.1365-2486.2010.02189.x
10.1016/j.rse.2005.11.012
10.1029/2005GL025583
10.1016/S0034-4257(02)00135-9
10.1016/j.rse.2008.09.003
10.1029/97GB00330
10.1016/j.rse.2007.12.004
10.1016/j.rse.2012.03.012
10.2307/3235884
10.1016/j.rse.2009.02.001
10.1175/1520-0442(1997)010<1154:GSAOVP>2.0.CO;2
10.1007/s00484-003-0164-4
10.1016/j.agee.2011.02.023
10.1016/j.rse.2006.06.008
10.1016/j.rse.2006.02.004
10.5194/amt-5-1699-2012
10.1007/s10021-001-0070-8
10.1007/s10546-008-9339-1
10.1051/forest:2008052
10.1016/S0034-4257(02)00096-2
10.2307/2389947
10.1080/01431160903401387
10.1109/36.701075
10.1175/1520-0426(2002)019<0586:UMTECC>2.0.CO;2
10.1016/j.rse.2006.04.014
10.1007/s00484-006-0080-5
10.1016/j.rse.2005.10.022
ContentType Journal Article
Copyright 2013 Elsevier Inc.
2014 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: 2014 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
IQODW
7S9
L.6
1XC
DOI 10.1016/j.rse.2013.01.010
DatabaseName CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
EndPage 158
ExternalDocumentID oai_HAL_hal_01032407v1
27174710
10_1016_j_rse_2013_01_010
S0034425713000229
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FA8
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
SSH
VOH
WUQ
XOL
EFKBS
IQODW
7S9
L.6
1XC
ID FETCH-LOGICAL-c460t-99c80706b724bed4a2b3b49499c0a6b7fbef83bf52e653b2e3a592d4f9d532ce3
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Thu Aug 14 06:51:49 EDT 2025
Tue Aug 05 10:28:26 EDT 2025
Mon Jul 21 09:15:23 EDT 2025
Tue Jul 01 01:34:26 EDT 2025
Thu Apr 24 23:07:50 EDT 2025
Fri Feb 23 02:30:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Evergreen forests
Phenology
Ground-based NDVI
Crops
MODIS
Deciduous forests
time series analysis
Vegetation index
Noise reduction
vegetation
evaluation
Field
Biome
climate variations
Ground based measurement
Space remote sensing
Prediction
Adaptive response
satellite measurements
contamination
quality
techniques
Timing
seasonal variations
Comparative study
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-99c80706b724bed4a2b3b49499c0a6b7fbef83bf52e653b2e3a592d4f9d532ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5869-8382
0000-0003-0906-9402
0009-0007-2037-2396
0000-0001-7594-6341
0000-0002-8779-1559
0000-0002-3089-416X
0000-0002-5954-9925
0000-0002-3557-3496
0000-0002-3468-5648
PQID 1710222574
PQPubID 24069
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_01032407v1
proquest_miscellaneous_1710222574
pascalfrancis_primary_27174710
crossref_primary_10_1016_j_rse_2013_01_010
crossref_citationtrail_10_1016_j_rse_2013_01_010
elsevier_sciencedirect_doi_10_1016_j_rse_2013_01_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-15
PublicationDateYYYYMMDD 2013-05-15
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-15
  day: 15
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Remote sensing of environment
PublicationYear 2013
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Pontailler, Hymus, Drake (bb0155) 2003; 29
Soudani, le Maire, Dufrêne, François, Delpierre, Ulrich (bb0190) 2008; 112
Zhang, Goldberg (bb0250) 2011; 115
Jönsson, Eklundh (bb0110) 2002; 40
Metzger, Junkermann, Mauder, Beyrich, Butterbach-Bahl, Schmid (bb0135) 2012; 5
Hird, McDermid (bb0090) 2009; 113
Granier, Bréda, Longdoz, Gross, Nao (bb0080) 2008; 65
Moulin, Kergoat, Viovy, Dedieu (bb0140) 1997; 10
Studer, Stöckli, Appenzeller, Vidale (bb0200) 2007; 51
Ganguly, Friedl, Tan, Zhang, Verma (bb0070) 2010; 114
Dufranne, Moureaux, Vancutsem, Bodson, Aubinet (bb0055) 2011; 141
Castaldi, de Grandcourt, Rasile, Skiba, Valentini (bb0030) 2010; 7
Chen, Black, Coops, Hilker, Trofymow, Morgenstern (bb0040) 2009; 130
Bonal, Bosc, Goret, Burban, Gross, Bonnefond (bb0020) 2008; 14
Viovy, Arino, Belward (bb0220) 1992; 13
Aubinet, Moureaux, Bodson, Dufranne, Heinesch, Suleau (bb0005) 2009; 149
Fensholt, Sandholt, Proud, Stisen, Rasmussen (bb0060) 2010; 31
La Mantia, Cullotta, Garfi (bb0120) 2003; 29
White, Nemani, Thornton, Running (bb0230) 2002; 5
Delpierre, Soudani, François, Köstner, Pontailler, Aubinet (bb0050) 2009; 15
Reed, Brown, VanderZee, Loveland, Merchant, Ohlen (bb0160) 1994; 5
Delbart, Le Toan, Kergoat, Fedotova (bb0045) 2006; 101
Soudani, François, le Maire, Le Dantec, Dufrêne (bb0185) 2006; 102
Saleska, Didan, Huete, da Rocha (bb0165) 2007
Sims, Rahman, Vermote, Jiang (bb0175) 2011; 115
Chen, Jönsson, Tamura, Gu, Matsushita, Eklundh (bb0035) 2004; 91
Soudani, Hmimina, Delpierre, Pontailler, Aubinet, Bonal (bb0195) 2012; 123
Justice, Vermote, Townshend, Defries, Roy, Hall (bb0105) 1998; 36
Schwartz, Reed, White (bb0170) 2002; 22
Huete, Didan, Shimabukuro, Ratana, Saleska, Hutyra (bb0100) 2006; 33
Huete, Didan, Miura, Rodriguez, Gao, Ferreira (bb0095) 2002; 83
Van Leeuwen, Huete (bb0215) 1996; 55
Kaduk, Heimann (bb0115) 1996; 6
Box, Bromwich, Veenhuis, Bai, Stroeve, Rogers (bb0025) 2006; 19
Fisher, Mustard, Vadeboncoeur (bb0065) 2006; 100
Nagler, Daughtry, Goward (bb0145) 2000; 71
McLachlan, Peel (bb0130) 2000
Goerner, Reichstein, Rambal (bb0075) 2009; 113
Sokal, Michener (bb0180) 1958; 28
Wolfe, Nishihama, Fleig, Kuyper, Roy, Storey (bb0245) 2002; 83
Pontailler, Genty (bb0150) 1996; 10
Beck, Atzberger, Høgda, Johansen, Skidmore (bb0015) 2006; 100
Busetto, Colombo, Migliavacca, Cremonese, Meroni, Galvagno (bb0010) 2010; 16
Zhang, Friedl, Schaaf, Strahler, Hodges, Gao (bb0255) 2003; 84
Heidinger, Anne, Dean (bb0085) 2001; 19
Ma, Veroustraete (bb0125) 2006; 37
Suzuki, Nomaki, Yasunari (bb0205) 2003; 47
White, De Beurs, Didan, Inouye, Richardson, Jensen (bb0240) 2009; 15
Tan, Woodcock, Hu, Zhang, Ozdogan, Huang (bb0210) 2006; 105
White, Thorntorn, Running (bb0225) 1997; 11
White, Nemani (bb0235) 2006; 104
Jönsson (10.1016/j.rse.2013.01.010_bb0110) 2002; 40
Van Leeuwen (10.1016/j.rse.2013.01.010_bb0215) 1996; 55
Viovy (10.1016/j.rse.2013.01.010_bb0220) 1992; 13
White (10.1016/j.rse.2013.01.010_bb0225) 1997; 11
Busetto (10.1016/j.rse.2013.01.010_bb0010) 2010; 16
Moulin (10.1016/j.rse.2013.01.010_bb0140) 1997; 10
Bonal (10.1016/j.rse.2013.01.010_bb0020) 2008; 14
Justice (10.1016/j.rse.2013.01.010_bb0105) 1998; 36
Pontailler (10.1016/j.rse.2013.01.010_bb0150) 1996; 10
Soudani (10.1016/j.rse.2013.01.010_bb0190) 2008; 112
Hird (10.1016/j.rse.2013.01.010_bb0090) 2009; 113
La Mantia (10.1016/j.rse.2013.01.010_bb0120) 2003; 29
Heidinger (10.1016/j.rse.2013.01.010_bb0085) 2001; 19
Delbart (10.1016/j.rse.2013.01.010_bb0045) 2006; 101
White (10.1016/j.rse.2013.01.010_bb0240) 2009; 15
McLachlan (10.1016/j.rse.2013.01.010_bb0130) 2000
Fisher (10.1016/j.rse.2013.01.010_bb0065) 2006; 100
Studer (10.1016/j.rse.2013.01.010_bb0200) 2007; 51
Dufranne (10.1016/j.rse.2013.01.010_bb0055) 2011; 141
White (10.1016/j.rse.2013.01.010_bb0235) 2006; 104
Goerner (10.1016/j.rse.2013.01.010_bb0075) 2009; 113
Pontailler (10.1016/j.rse.2013.01.010_bb0155) 2003; 29
Castaldi (10.1016/j.rse.2013.01.010_bb0030) 2010; 7
Chen (10.1016/j.rse.2013.01.010_bb0040) 2009; 130
Tan (10.1016/j.rse.2013.01.010_bb0210) 2006; 105
Kaduk (10.1016/j.rse.2013.01.010_bb0115) 1996; 6
Metzger (10.1016/j.rse.2013.01.010_bb0135) 2012; 5
White (10.1016/j.rse.2013.01.010_bb0230) 2002; 5
Granier (10.1016/j.rse.2013.01.010_bb0080) 2008; 65
Huete (10.1016/j.rse.2013.01.010_bb0095) 2002; 83
Suzuki (10.1016/j.rse.2013.01.010_bb0205) 2003; 47
Wolfe (10.1016/j.rse.2013.01.010_bb0245) 2002; 83
Aubinet (10.1016/j.rse.2013.01.010_bb0005) 2009; 149
Sokal (10.1016/j.rse.2013.01.010_bb0180) 1958; 28
Soudani (10.1016/j.rse.2013.01.010_bb0185) 2006; 102
Huete (10.1016/j.rse.2013.01.010_bb0100) 2006; 33
Box (10.1016/j.rse.2013.01.010_bb0025) 2006; 19
Beck (10.1016/j.rse.2013.01.010_bb0015) 2006; 100
Zhang (10.1016/j.rse.2013.01.010_bb0255) 2003; 84
Chen (10.1016/j.rse.2013.01.010_bb0035) 2004; 91
Saleska (10.1016/j.rse.2013.01.010_bb0165) 2007
Reed (10.1016/j.rse.2013.01.010_bb0160) 1994; 5
Ganguly (10.1016/j.rse.2013.01.010_bb0070) 2010; 114
Ma (10.1016/j.rse.2013.01.010_bb0125) 2006; 37
Zhang (10.1016/j.rse.2013.01.010_bb0250) 2011; 115
Sims (10.1016/j.rse.2013.01.010_bb0175) 2011; 115
Fensholt (10.1016/j.rse.2013.01.010_bb0060) 2010; 31
Schwartz (10.1016/j.rse.2013.01.010_bb0170) 2002; 22
Delpierre (10.1016/j.rse.2013.01.010_bb0050) 2009; 15
Soudani (10.1016/j.rse.2013.01.010_bb0195) 2012; 123
Nagler (10.1016/j.rse.2013.01.010_bb0145) 2000; 71
References_xml – volume: 10
  start-page: 1154
  year: 1997
  end-page: 1170
  ident: bb0140
  article-title: Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements
  publication-title: Journal of Climate
– year: 2000
  ident: bb0130
  article-title: Finite mixture models
– volume: 123
  start-page: 234
  year: 2012
  end-page: 245
  ident: bb0195
  article-title: Ground-based Network of NDVI measurements for tracking temporal dynamics of canopy structure and vegetation phenology in different biomes
  publication-title: Remote Sensing of Environment
– volume: 15
  start-page: 2335
  year: 2009
  end-page: 2359
  ident: bb0240
  article-title: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006
  publication-title: Global Change Biology
– volume: 47
  start-page: 126
  year: 2003
  end-page: 138
  ident: bb0205
  article-title: West–east contrast of phenology and climate in northern Asia revealed using a remotely sensed vegetation index
  publication-title: International Journal of Biometeorology
– volume: 149
  start-page: 407
  year: 2009
  end-page: 418
  ident: bb0005
  article-title: Carbon sequestration by a crop over a 4-year sugar beet/winter wheat/seed potato/winter wheat rotation cycle
  publication-title: Agricultural and Forest Meteorology
– volume: 113
  start-page: 1101
  year: 2009
  end-page: 1111
  ident: bb0075
  article-title: Tracking seasonal drought effects on ecosystem light use efficiency with satellite-based PRI in a Mediterranean forest
  publication-title: Remote Sensing of Environment
– volume: 7
  start-page: 4089
  year: 2010
  end-page: 4126
  ident: bb0030
  article-title: Fluxes of CO
  publication-title: Biogeosciences Discussions
– volume: 19
  start-page: 586
  year: 2001
  end-page: 601
  ident: bb0085
  article-title: Using MODIS to estimate cloud contamination of the AVHRR data record
  publication-title: Journal of Atmospheric and Oceanic Technology
– volume: 100
  start-page: 265
  year: 2006
  end-page: 279
  ident: bb0065
  article-title: Green leaf phenology at Landsat resolution: Scaling from the field to the satellite
  publication-title: Remote Sensing of Environment
– volume: 104
  start-page: 43
  year: 2006
  end-page: 49
  ident: bb0235
  article-title: Real-time monitoring and short-term forecasting of land surface phenology
  publication-title: Remote Sensing of Environment
– volume: 29
  start-page: 381
  year: 2003
  end-page: 387
  ident: bb0155
  article-title: Estimation of leaf area index using ground-based remote sensed NDVI measurements: Validation and comparison with two indirect techniques
  publication-title: Canadian Journal of Remote Sensing
– volume: 29
  start-page: 15
  year: 2003
  end-page: 25
  ident: bb0120
  article-title: Phenology and growth of
  publication-title: Ecologia Mediterranea
– volume: 19
  start-page: 2783
  year: 2006
  end-page: 2800
  ident: bb0025
  article-title: Green land Ice Sheet Surface Mass Balance Variability (1988–2004) from calibrated Polar MM5 Output
  publication-title: Journal of Climate
– volume: 16
  start-page: 2504
  year: 2010
  end-page: 2517
  ident: bb0010
  article-title: Remote sensing of larch phenological cycle and analysis of relationships with climate in the Alpine region
  publication-title: Global Change Biology
– volume: 130
  start-page: 137
  year: 2009
  end-page: 167
  ident: bb0040
  article-title: Assessing tower flux footprint climatology and scaling between remotely sensed and Eddy covariance measurements
  publication-title: Boundary-Layer Meteorology
– volume: 112
  start-page: 2643
  year: 2008
  end-page: 2655
  ident: bb0190
  article-title: Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data
  publication-title: Remote Sensing of Environment
– volume: 22
  start-page: 1793
  year: 2002
  end-page: 1805
  ident: bb0170
  article-title: Assessing satellite-derived start-of-season measures in the conterminous USA
  publication-title: International Journal of Climatology
– volume: 113
  start-page: 248
  year: 2009
  end-page: 258
  ident: bb0090
  article-title: Noise reduction of NDVI time-series: An empirical comparison of selected techniques
  publication-title: Remote Sensing of Environment
– volume: 13
  start-page: 1585
  year: 1992
  end-page: 1590
  ident: bb0220
  article-title: The Best Index Slope Extraction (BISE): A method for reducing noise in NDVI time-series
  publication-title: International Journal of Remote Sensing
– volume: 83
  start-page: 95
  year: 2002
  end-page: 213
  ident: bb0095
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sensing of Environment
– volume: 11
  start-page: 217
  year: 1997
  end-page: 234
  ident: bb0225
  article-title: A continental phenology model for monitoring vegetation responses to interannual climatic variability
  publication-title: Global Biogeochemical Cycles
– volume: 5
  start-page: 2591
  year: 2012
  end-page: 2643
  ident: bb0135
  article-title: Eddy Covariance flux measurements with a weight-shift microlight aircraft, Atmos
  publication-title: Atmospheric Measurement Techniques
– volume: 101
  start-page: 52
  year: 2006
  end-page: 62
  ident: bb0045
  article-title: Remote sensing of spring phenology in boreal regions: A free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982–2004)
  publication-title: Remote Sensing of Environment
– volume: 10
  start-page: 535
  year: 1996
  end-page: 540
  ident: bb0150
  article-title: A simple red:far-red sensor using gallium arsenide phosphide detectors
  publication-title: Functional Ecology
– volume: 37
  start-page: 835
  year: 2006
  end-page: 840
  ident: bb0125
  article-title: Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China
  publication-title: Advances in Space Research
– volume: 65
  start-page: 704
  year: 2008
  ident: bb0080
  article-title: Ten years of fluxes and stand growth in a young beech forest at Hesse, North-eastern France
  publication-title: Annals of Forest Science
– volume: 141
  start-page: 133
  year: 2011
  end-page: 142
  ident: bb0055
  article-title: Comparison of carbon fluxes, growth and productivity of a winter wheat crop in three contrasting growing seasons
  publication-title: Agriculture, Ecosystems & Environment
– volume: 5
  start-page: 260
  year: 2002
  end-page: 273
  ident: bb0230
  article-title: Satellite evidence of phenological differences between urbanized and rural areas of the Eastern United States deciduous broadleaf forest
  publication-title: Ecosystems
– volume: 6
  start-page: 1
  year: 1996
  end-page: 19
  ident: bb0115
  article-title: A prognostic phenology scheme for global terrestrial carbon cycle models
  publication-title: Climate Research
– volume: 55
  start-page: 123
  year: 1996
  end-page: 138
  ident: bb0215
  article-title: Effects of standing litter on the biophysical interpretation of plant canopies with spectral indices
  publication-title: Remote Sensing of Environment
– volume: 40
  start-page: 1824
  year: 2002
  end-page: 1832
  ident: bb0110
  article-title: Seasonality extraction by function fitting to time-series of satellite sensor data
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– year: 2007
  ident: bb0165
  article-title: Amazon forests green-up during 2005 drought
  publication-title: Science
– volume: 83
  start-page: 31
  year: 2002
  end-page: 49
  ident: bb0245
  article-title: Achieving sub-pixel geolocation accuracy in support of MODIS land science
  publication-title: Remote Sensing of Environment
– volume: 28
  start-page: 1409
  year: 1958
  end-page: 1438
  ident: bb0180
  article-title: A statistical method for evaluating systematic relationships
  publication-title: University of Kansas Scientific Bulletin
– volume: 15
  start-page: 1455
  year: 2009
  end-page: 1474
  ident: bb0050
  article-title: Exceptional carbon uptake in European forests during the warm spring of 2007: A data-model analysis
  publication-title: Global Change Biology
– volume: 100
  start-page: 321
  year: 2006
  end-page: 334
  ident: bb0015
  article-title: Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI
  publication-title: Remote Sensing of Environment
– volume: 14
  start-page: 1917
  year: 2008
  end-page: 1933
  ident: bb0020
  article-title: The impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana
  publication-title: Global Change Biology
– volume: 5
  start-page: 703
  year: 1994
  end-page: 714
  ident: bb0160
  article-title: Measuring phenological variability from satellite imagery
  publication-title: Journal of Vegetation Science
– volume: 115
  start-page: 3112
  year: 2011
  end-page: 3120
  ident: bb0175
  article-title: Seasonal and inter-annual variation in view angle effects on MODIS vegetation indices at three forest sites
  publication-title: Remote Sensing of Environment
– volume: 114
  start-page: 1805
  year: 2010
  end-page: 1816
  ident: bb0070
  article-title: Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product
  publication-title: Remote Sensing of Environment
– volume: 91
  start-page: 332
  year: 2004
  end-page: 344
  ident: bb0035
  article-title: A simple method for reconstructing a high-quality NDVI time series data set based on the Savitzky–Golay filter
  publication-title: Remote Sensing of Environment
– volume: 84
  start-page: 471
  year: 2003
  end-page: 475
  ident: bb0255
  article-title: Monitoring vegetation phenology using MODIS
  publication-title: Remote Sensing of Environment
– volume: 115
  start-page: 382
  year: 2011
  end-page: 391
  ident: bb0250
  article-title: Monitoring fall foliage coloration dynamics using time-series satellite data
  publication-title: Remote Sensing of Environment
– volume: 102
  start-page: 161
  year: 2006
  end-page: 175
  ident: bb0185
  article-title: Comparative analysis of IKONOS, SPOT, and ETM
  publication-title: Remote Sensing of Environment
– volume: 36
  start-page: 1228
  year: 1998
  end-page: 1249
  ident: bb0105
  article-title: The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 71
  start-page: 207
  year: 2000
  end-page: 215
  ident: bb0145
  article-title: Plant litter and soil reflectance
  publication-title: Remote Sensing of Environment
– volume: 31
  start-page: 6163
  year: 2010
  end-page: 6187
  ident: bb0060
  article-title: Assessment of MODIS sun-sensor geometry variations effect on observed NDVI using MSG SEVIRI geostationary data
  publication-title: International Journal of Remote Sensing
– volume: 33
  start-page: L06405
  year: 2006
  ident: bb0100
  article-title: Amazon rain forests green-up with sunlight in dry season
  publication-title: Geophysical Research Letters
– volume: 51
  start-page: 405
  year: 2007
  end-page: 414
  ident: bb0200
  article-title: A comparative study of satellite and ground-based phenology
  publication-title: International Journal of Biometeorology
– volume: 105
  start-page: 98
  year: 2006
  end-page: 114
  ident: bb0210
  article-title: The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration across resolutions
  publication-title: Remote Sensing of Environment
– volume: 91
  start-page: 332
  year: 2004
  ident: 10.1016/j.rse.2013.01.010_bb0035
  article-title: A simple method for reconstructing a high-quality NDVI time series data set based on the Savitzky–Golay filter
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2004.03.014
– volume: 19
  start-page: 2783
  year: 2006
  ident: 10.1016/j.rse.2013.01.010_bb0025
  article-title: Green land Ice Sheet Surface Mass Balance Variability (1988–2004) from calibrated Polar MM5 Output
  publication-title: Journal of Climate
  doi: 10.1175/JCLI3738.1
– volume: 149
  start-page: 407
  year: 2009
  ident: 10.1016/j.rse.2013.01.010_bb0005
  article-title: Carbon sequestration by a crop over a 4-year sugar beet/winter wheat/seed potato/winter wheat rotation cycle
  publication-title: Agricultural and Forest Meteorology
  doi: 10.1016/j.agrformet.2008.09.003
– volume: 29
  start-page: 381
  year: 2003
  ident: 10.1016/j.rse.2013.01.010_bb0155
  article-title: Estimation of leaf area index using ground-based remote sensed NDVI measurements: Validation and comparison with two indirect techniques
  publication-title: Canadian Journal of Remote Sensing
  doi: 10.5589/m03-009
– volume: 100
  start-page: 321
  year: 2006
  ident: 10.1016/j.rse.2013.01.010_bb0015
  article-title: Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2005.10.021
– volume: 37
  start-page: 835
  year: 2006
  ident: 10.1016/j.rse.2013.01.010_bb0125
  article-title: Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China
  publication-title: Advances in Space Research
  doi: 10.1016/j.asr.2005.08.037
– volume: 29
  start-page: 15
  year: 2003
  ident: 10.1016/j.rse.2013.01.010_bb0120
  article-title: Phenology and growth of Quercus ilex (L.) in different environmental conditions in Sicily (Italy)
  publication-title: Ecologia Mediterranea
  doi: 10.3406/ecmed.2003.1525
– volume: 22
  start-page: 1793
  year: 2002
  ident: 10.1016/j.rse.2013.01.010_bb0170
  article-title: Assessing satellite-derived start-of-season measures in the conterminous USA
  publication-title: International Journal of Climatology
  doi: 10.1002/joc.819
– volume: 115
  start-page: 3112
  year: 2011
  ident: 10.1016/j.rse.2013.01.010_bb0175
  article-title: Seasonal and inter-annual variation in view angle effects on MODIS vegetation indices at three forest sites
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.06.018
– volume: 6
  start-page: 1
  year: 1996
  ident: 10.1016/j.rse.2013.01.010_bb0115
  article-title: A prognostic phenology scheme for global terrestrial carbon cycle models
  publication-title: Climate Research
  doi: 10.3354/cr006001
– volume: 28
  start-page: 1409
  year: 1958
  ident: 10.1016/j.rse.2013.01.010_bb0180
  article-title: A statistical method for evaluating systematic relationships
  publication-title: University of Kansas Scientific Bulletin
– year: 2007
  ident: 10.1016/j.rse.2013.01.010_bb0165
  article-title: Amazon forests green-up during 2005 drought
  publication-title: Science
  doi: 10.1126/science.1146663
– volume: 7
  start-page: 4089
  year: 2010
  ident: 10.1016/j.rse.2013.01.010_bb0030
  article-title: Fluxes of CO2, CH4 and N2O from soil of burned grassland savannah of central Africa
  publication-title: Biogeosciences Discussions
– volume: 55
  start-page: 123
  year: 1996
  ident: 10.1016/j.rse.2013.01.010_bb0215
  article-title: Effects of standing litter on the biophysical interpretation of plant canopies with spectral indices
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(95)00198-0
– volume: 40
  start-page: 1824
  year: 2002
  ident: 10.1016/j.rse.2013.01.010_bb0110
  article-title: Seasonality extraction by function fitting to time-series of satellite sensor data
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2002.802519
– volume: 15
  start-page: 2335
  year: 2009
  ident: 10.1016/j.rse.2013.01.010_bb0240
  article-title: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2009.01910.x
– volume: 115
  start-page: 382
  year: 2011
  ident: 10.1016/j.rse.2013.01.010_bb0250
  article-title: Monitoring fall foliage coloration dynamics using time-series satellite data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2010.09.009
– volume: 13
  start-page: 1585
  year: 1992
  ident: 10.1016/j.rse.2013.01.010_bb0220
  article-title: The Best Index Slope Extraction (BISE): A method for reducing noise in NDVI time-series
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431169208904212
– volume: 71
  start-page: 207
  year: 2000
  ident: 10.1016/j.rse.2013.01.010_bb0145
  article-title: Plant litter and soil reflectance
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(99)00082-6
– volume: 114
  start-page: 1805
  year: 2010
  ident: 10.1016/j.rse.2013.01.010_bb0070
  article-title: Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2010.04.005
– volume: 14
  start-page: 1917
  year: 2008
  ident: 10.1016/j.rse.2013.01.010_bb0020
  article-title: The impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2008.01610.x
– volume: 15
  start-page: 1455
  year: 2009
  ident: 10.1016/j.rse.2013.01.010_bb0050
  article-title: Exceptional carbon uptake in European forests during the warm spring of 2007: A data-model analysis
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2008.01835.x
– volume: 83
  start-page: 31
  year: 2002
  ident: 10.1016/j.rse.2013.01.010_bb0245
  article-title: Achieving sub-pixel geolocation accuracy in support of MODIS land science
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(02)00085-8
– volume: 16
  start-page: 2504
  year: 2010
  ident: 10.1016/j.rse.2013.01.010_bb0010
  article-title: Remote sensing of larch phenological cycle and analysis of relationships with climate in the Alpine region
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2010.02189.x
– volume: 101
  start-page: 52
  year: 2006
  ident: 10.1016/j.rse.2013.01.010_bb0045
  article-title: Remote sensing of spring phenology in boreal regions: A free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982–2004)
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2005.11.012
– volume: 33
  start-page: L06405
  year: 2006
  ident: 10.1016/j.rse.2013.01.010_bb0100
  article-title: Amazon rain forests green-up with sunlight in dry season
  publication-title: Geophysical Research Letters
  doi: 10.1029/2005GL025583
– volume: 84
  start-page: 471
  year: 2003
  ident: 10.1016/j.rse.2013.01.010_bb0255
  article-title: Monitoring vegetation phenology using MODIS
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(02)00135-9
– volume: 113
  start-page: 248
  year: 2009
  ident: 10.1016/j.rse.2013.01.010_bb0090
  article-title: Noise reduction of NDVI time-series: An empirical comparison of selected techniques
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2008.09.003
– volume: 11
  start-page: 217
  year: 1997
  ident: 10.1016/j.rse.2013.01.010_bb0225
  article-title: A continental phenology model for monitoring vegetation responses to interannual climatic variability
  publication-title: Global Biogeochemical Cycles
  doi: 10.1029/97GB00330
– volume: 112
  start-page: 2643
  year: 2008
  ident: 10.1016/j.rse.2013.01.010_bb0190
  article-title: Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2007.12.004
– volume: 123
  start-page: 234
  year: 2012
  ident: 10.1016/j.rse.2013.01.010_bb0195
  article-title: Ground-based Network of NDVI measurements for tracking temporal dynamics of canopy structure and vegetation phenology in different biomes
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2012.03.012
– volume: 5
  start-page: 703
  year: 1994
  ident: 10.1016/j.rse.2013.01.010_bb0160
  article-title: Measuring phenological variability from satellite imagery
  publication-title: Journal of Vegetation Science
  doi: 10.2307/3235884
– volume: 113
  start-page: 1101
  year: 2009
  ident: 10.1016/j.rse.2013.01.010_bb0075
  article-title: Tracking seasonal drought effects on ecosystem light use efficiency with satellite-based PRI in a Mediterranean forest
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2009.02.001
– year: 2000
  ident: 10.1016/j.rse.2013.01.010_bb0130
– volume: 10
  start-page: 1154
  year: 1997
  ident: 10.1016/j.rse.2013.01.010_bb0140
  article-title: Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements
  publication-title: Journal of Climate
  doi: 10.1175/1520-0442(1997)010<1154:GSAOVP>2.0.CO;2
– volume: 47
  start-page: 126
  year: 2003
  ident: 10.1016/j.rse.2013.01.010_bb0205
  article-title: West–east contrast of phenology and climate in northern Asia revealed using a remotely sensed vegetation index
  publication-title: International Journal of Biometeorology
  doi: 10.1007/s00484-003-0164-4
– volume: 141
  start-page: 133
  year: 2011
  ident: 10.1016/j.rse.2013.01.010_bb0055
  article-title: Comparison of carbon fluxes, growth and productivity of a winter wheat crop in three contrasting growing seasons
  publication-title: Agriculture, Ecosystems & Environment
  doi: 10.1016/j.agee.2011.02.023
– volume: 105
  start-page: 98
  year: 2006
  ident: 10.1016/j.rse.2013.01.010_bb0210
  article-title: The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration across resolutions
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.06.008
– volume: 102
  start-page: 161
  year: 2006
  ident: 10.1016/j.rse.2013.01.010_bb0185
  article-title: Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.02.004
– volume: 5
  start-page: 2591
  year: 2012
  ident: 10.1016/j.rse.2013.01.010_bb0135
  article-title: Eddy Covariance flux measurements with a weight-shift microlight aircraft, Atmos
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-5-1699-2012
– volume: 5
  start-page: 260
  year: 2002
  ident: 10.1016/j.rse.2013.01.010_bb0230
  article-title: Satellite evidence of phenological differences between urbanized and rural areas of the Eastern United States deciduous broadleaf forest
  publication-title: Ecosystems
  doi: 10.1007/s10021-001-0070-8
– volume: 130
  start-page: 137
  year: 2009
  ident: 10.1016/j.rse.2013.01.010_bb0040
  article-title: Assessing tower flux footprint climatology and scaling between remotely sensed and Eddy covariance measurements
  publication-title: Boundary-Layer Meteorology
  doi: 10.1007/s10546-008-9339-1
– volume: 65
  start-page: 704
  issue: 7
  year: 2008
  ident: 10.1016/j.rse.2013.01.010_bb0080
  article-title: Ten years of fluxes and stand growth in a young beech forest at Hesse, North-eastern France
  publication-title: Annals of Forest Science
  doi: 10.1051/forest:2008052
– volume: 83
  start-page: 95
  year: 2002
  ident: 10.1016/j.rse.2013.01.010_bb0095
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(02)00096-2
– volume: 10
  start-page: 535
  year: 1996
  ident: 10.1016/j.rse.2013.01.010_bb0150
  article-title: A simple red:far-red sensor using gallium arsenide phosphide detectors
  publication-title: Functional Ecology
  doi: 10.2307/2389947
– volume: 31
  start-page: 6163
  year: 2010
  ident: 10.1016/j.rse.2013.01.010_bb0060
  article-title: Assessment of MODIS sun-sensor geometry variations effect on observed NDVI using MSG SEVIRI geostationary data
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160903401387
– volume: 36
  start-page: 1228
  year: 1998
  ident: 10.1016/j.rse.2013.01.010_bb0105
  article-title: The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/36.701075
– volume: 19
  start-page: 586
  year: 2001
  ident: 10.1016/j.rse.2013.01.010_bb0085
  article-title: Using MODIS to estimate cloud contamination of the AVHRR data record
  publication-title: Journal of Atmospheric and Oceanic Technology
  doi: 10.1175/1520-0426(2002)019<0586:UMTECC>2.0.CO;2
– volume: 104
  start-page: 43
  year: 2006
  ident: 10.1016/j.rse.2013.01.010_bb0235
  article-title: Real-time monitoring and short-term forecasting of land surface phenology
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.04.014
– volume: 51
  start-page: 405
  year: 2007
  ident: 10.1016/j.rse.2013.01.010_bb0200
  article-title: A comparative study of satellite and ground-based phenology
  publication-title: International Journal of Biometeorology
  doi: 10.1007/s00484-006-0080-5
– volume: 100
  start-page: 265
  year: 2006
  ident: 10.1016/j.rse.2013.01.010_bb0065
  article-title: Green leaf phenology at Landsat resolution: Scaling from the field to the satellite
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2005.10.022
SSID ssj0015871
Score 2.57615
Snippet Vegetation phenology is the study of the timing of seasonal events that are considered to be the result of adaptive responses to climate variations on short...
SourceID hal
proquest
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 145
SubjectTerms Agricultural sciences
Animal, plant and microbial ecology
Applied geophysics
autumn
Biological and medical sciences
canopy
climate
Crops
Deciduous forests
Earth sciences
Earth, ocean, space
ecosystems
Evergreen forests
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Ground-based NDVI
Internal geophysics
leaves
Life Sciences
moderate resolution imaging spectroradiometer
MODIS
monitoring
Phenology
prediction
radiometry
remote sensing
residual effects
savannas
screening
spring
Teledetection and vegetation maps
temporal variation
time series analysis
tropical rain forests
vegetation cover
weather
Title Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements
URI https://dx.doi.org/10.1016/j.rse.2013.01.010
https://www.proquest.com/docview/1710222574
https://hal.science/hal-01032407
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEQIJIVioujxWBnFCMk38yIPbqt2yC3Q5QFFvVpzY7SLIRpu0Ui_8FH4rM86jqkA9IOU0sa3IHs_YmW--IeQ1rGkIXseyJDKCyTwSzISyYJHJXRGohBsfMT1aRvNj-eFEnWyR_T4XBmGVne1vbbq31p1kr5vNvWq1whxfIVHjMCADngiT-KSMUcvf_hpgHqFK4rZqnpAMW_eRTY_x2tTIlBkKz9yJSbT_9k23zhAkeb_Kapg31xa8-Mt2e4d0-JA86E6SdNp-7COyZcsR2ZldJa7By27n1iNyt6t2fnY5Infe-3K-l4_J79lA9k3XjsJhkFbrBgFE0BkER58PFl9onXnazsZSxJPSZk2rDcZ3GnphTzu4IkWsmB-Vrkral11pqE_vr9_RaQnygdID2iPg_pRiUklZMPSlBV0efFvQn1c_Lesn5Phw9nV_zrqKDSyXUdCwNM0TsCGRibk0tpAZN8J4_ps8yEDqjHWJME5xGylhuBWZSnkhXVoowXMrdsh2uS7tLqFZhmSGqWeYkzaJEhtaF8sgyR1PjHJjEvRrpfOOzhyravzQPW7tu4bl1bi8OgjhCcbkzdClark8bmosewXQ1xRSg6-5qdsrUJZheCTvnk8_aZRhRQ28P1-EYzK5pktDcw6XazgtwCgve-XSsN0xhpOVdn1e6zBur-ixfPp_H_iM3OO-oodioXpOtpvNuX0B56rGTPzGmZDb08XH-fIPXwoi0g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbarVCREIKFiuVRDOKEFDWJ7Ty4rdotWbq7HGhRb1acOO0iSKJNWql_ht_KjOOkqkA9IOU0sa3IHs_YmZnvI-QDrKkHXkc7UaCYw7OAOcrjuROorMhdEfnKREyXqyA541_OxfkWOexrYTCt0tr-zqYba20lB3Y2D-r1Gmt8GUeNw4AMeKJ4m-wgOpUYkZ3p_CRZDcEEEYUdcR7jDnbog5smzWvTIFimxwx4J9bR_ts9bV9inuSjOm1g6oqO8-Iv82180vET8tgeJum0-96nZEuXY7I3u61dg5d28zZjsmsJzy9vxuTBZ8Poe_OM_J4NeN-0KiicB2ldtZhDBJ1BsPx6NP9Gm9Qgd7aaYkopbStabzDE09JrfWEzFimmi5lR6bqkPfNKS02Ff_OJTkuQD6ge0B5z7i8o1pWUuYPuNKero-9z-uv2v2XznJwdz04PE8eSNjgZD9zWieMsAjMSqNDnSuc89RVTBgInc1OQFkoXEVOF8HUgmPI1S0Xs57yIc8H8TLM9MiqrUr8gNE0RzzA2IHNcR0GkPV2E3I2ywo-UKCbE7ddKZhbRHIk1fso-de2HhOWVuLzS9eBxJ-Tj0KXu4Dzua8x7BZB3dFKCu7mv23tQlmF4xO9OpguJMiTVwCv0tTch-3d0aWjuw_0aDgwwyrteuSTseAzjpKWurhrphd0tPeQv_-8D35Ld5HS5kIv56uQVeegbgg_heOI1GbWbK_0Gjlmt2rfb6A89uiWD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+potential+of+MODIS+satellite+data+to+predict+vegetation+phenology+in+different+biomes%3A+An+investigation+using+ground-based+NDVI+measurements&rft.jtitle=Remote+sensing+of+environment&rft.au=Hmimina%2C+G.&rft.au=Dufr%C3%AAne%2C+E.&rft.au=Pontailler%2C+J.-Y.&rft.au=Delpierre%2C+N.&rft.date=2013-05-15&rft.pub=Elsevier+Inc&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=132&rft.spage=145&rft.epage=158&rft_id=info:doi/10.1016%2Fj.rse.2013.01.010&rft.externalDocID=S0034425713000229
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon