An arbitrary Lagrangian Eulerian smoothed particle hydrodynamics (ALE-SPH) method with a boundary volume fraction formulation for fluid-structure interaction

We present a new weakly-compressible smoothed particle hydrodynamics (SPH) method capable of modeling non-slip fixed and moving wall boundary conditions. The formulation combines a boundary volume fraction (BVF) wall approach with the transport-velocity SPH method. The resulting method, named SPH-BV...

Full description

Saved in:
Bibliographic Details
Published inEngineering analysis with boundary elements Vol. 128; pp. 274 - 289
Main Authors Jacob, Bruno, Drawert, Brian, Yi, Tau-Mu, Petzold, Linda
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a new weakly-compressible smoothed particle hydrodynamics (SPH) method capable of modeling non-slip fixed and moving wall boundary conditions. The formulation combines a boundary volume fraction (BVF) wall approach with the transport-velocity SPH method. The resulting method, named SPH-BVF, offers detection of arbitrarily shaped solid walls on-the-fly, with small computational overhead due to its local formulation. This simple framework is capable of solving problems that are difficult or infeasible for standard SPH, namely flows subject to large shear stresses or at moderate Reynolds numbers, and mass transfer in deformable boundaries. In addition, the method extends the transport-velocity formulation to reaction-diffusion transport of mass in Newtonian fluids and linear elastic solids, which is common in biological structures. Taken together, the SPH-BVF method provides a good balance of simplicity and versatility, while avoiding some of the standard obstacles associated with SPH: particle penetration at the boundaries, tension instabilities and anisotropic particle alignments, that hamper SPH from being applied to complex problems such as fluid-structure interaction in a biological system.
AbstractList We present a new weakly-compressible smoothed particle hydrodynamics (SPH) method capable of modeling non-slip fixed and moving wall boundary conditions. The formulation combines a boundary volume fraction (BVF) wall approach with the transport-velocity SPH method. The resulting method, named SPH-BVF, offers detection of arbitrarily shaped solid walls on-the-fly, with small computational overhead due to its local formulation. This simple framework is capable of solving problems that are difficult or infeasible for standard SPH, namely flows subject to large shear stresses or at moderate Reynolds numbers, and mass transfer in deformable boundaries. In addition, the method extends the transport-velocity formulation to reaction-diffusion transport of mass in Newtonian fluids and linear elastic solids, which is common in biological structures. Taken together, the SPH-BVF method provides a good balance of simplicity and versatility, while avoiding some of the standard obstacles associated with SPH: particle penetration at the boundaries, tension instabilities and anisotropic particle alignments, that hamper SPH from being applied to complex problems such as fluid-structure interaction in a biological system.
We present a new weakly-compressible smoothed particle hydrodynamics (SPH) method capable of modeling non-slip fixed and moving wall boundary conditions. The formulation combines a boundary volume fraction (BVF) wall approach with the transport-velocity SPH method. The resulting method, named SPH-BVF, offers detection of arbitrarily shaped solid walls on-the-fly, with small computational overhead due to its local formulation. This simple framework is capable of solving problems that are difficult or infeasible for standard SPH, namely flows subject to large shear stresses or at moderate Reynolds numbers, and mass transfer in deformable boundaries. In addition, the method extends the transport-velocity formulation to reaction-diffusion transport of mass in Newtonian fluids and linear elastic solids, which is common in biological structures. Taken together, the SPH-BVF method provides a good balance of simplicity and versatility, while avoiding some of the standard obstacles associated with SPH: particle penetration at the boundaries, tension instabilities and anisotropic particle alignments, that hamper SPH from being applied to complex problems such as fluid-structure interaction in a biological system.We present a new weakly-compressible smoothed particle hydrodynamics (SPH) method capable of modeling non-slip fixed and moving wall boundary conditions. The formulation combines a boundary volume fraction (BVF) wall approach with the transport-velocity SPH method. The resulting method, named SPH-BVF, offers detection of arbitrarily shaped solid walls on-the-fly, with small computational overhead due to its local formulation. This simple framework is capable of solving problems that are difficult or infeasible for standard SPH, namely flows subject to large shear stresses or at moderate Reynolds numbers, and mass transfer in deformable boundaries. In addition, the method extends the transport-velocity formulation to reaction-diffusion transport of mass in Newtonian fluids and linear elastic solids, which is common in biological structures. Taken together, the SPH-BVF method provides a good balance of simplicity and versatility, while avoiding some of the standard obstacles associated with SPH: particle penetration at the boundaries, tension instabilities and anisotropic particle alignments, that hamper SPH from being applied to complex problems such as fluid-structure interaction in a biological system.
Author Petzold, Linda
Yi, Tau-Mu
Drawert, Brian
Jacob, Bruno
AuthorAffiliation d Department of Computer Science, University of California-Santa Barbara, Santa Barbara, California, 93106, USA
a Department of Mechanical Engineering, University of California-Santa Barbara, Santa Barbara, California, 93106, USA
b Department of Computer Science, University of North Carolina at Asheville, Asheville, North Carolina, 28804, USA
c Department of Molecular, Cellular, and Developmental Biology, University of California-Santa Barbara, Santa Barbara, California 93106, USA
AuthorAffiliation_xml – name: c Department of Molecular, Cellular, and Developmental Biology, University of California-Santa Barbara, Santa Barbara, California 93106, USA
– name: a Department of Mechanical Engineering, University of California-Santa Barbara, Santa Barbara, California, 93106, USA
– name: d Department of Computer Science, University of California-Santa Barbara, Santa Barbara, California, 93106, USA
– name: b Department of Computer Science, University of North Carolina at Asheville, Asheville, North Carolina, 28804, USA
Author_xml – sequence: 1
  givenname: Bruno
  surname: Jacob
  fullname: Jacob, Bruno
  email: bruno@engineering.ucsb.edu
  organization: Department of Mechanical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106, USA
– sequence: 2
  givenname: Brian
  surname: Drawert
  fullname: Drawert, Brian
  email: bdrawert@unca.edu
  organization: Department of Computer Science, University of North Carolina at Asheville, Asheville, North Carolina 28804, USA
– sequence: 3
  givenname: Tau-Mu
  surname: Yi
  fullname: Yi, Tau-Mu
  organization: Department of Molecular, Cellular, and Developmental Biology, University of California-Santa Barbara, Santa Barbara, California 93106, USA
– sequence: 4
  givenname: Linda
  surname: Petzold
  fullname: Petzold, Linda
  organization: Department of Mechanical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106, USA
BookMark eNqNkcuOEzEQRS00iMkM_IPZDYtu_OjnBhRFgUGKBBIgsbPcdnXaUbcd_AjKx_CvdCYBAatZuSTfOlV17w26ss4CQi8pySmh1etdDnYrrexcsjpnhNGcFDkh1RO0oE3NM9rW367QgrRlmdVtW1-jmxB2hFA-i56ha16QgrCmWqCfS4ul70z00h_xRm69tFsjLV6nEfypCJNzcQCN99JHo0bAw1F7p49WTkYFfLfcrLPPn-5f4Qni4DT-YeKAJX5Y7gQ9uDFNgHsvVTTO4t75KY3yd437MRmdheiTiskDNjbCRfscPe3lGODF5b1FX9-tv6zus83H9x9Wy02miorErG1l1fBOA2OgaijLTpcVaRjroCn6iuuq1azUuulbVVHKNKNVJ1nXKCqp0pLfojdn7j51E2gFdvZjFHtvpvkC4aQR__5YM4itO4iGFpzwYgbcXQDefU8QophMUDCO0oJLQbCSc05LUpeztD1LlXcheOj_jKFEnOIVO_FXvOIUryCFmJObe9_-16tMfHBy3sqMjyKszgSY7TwY8CIoA1aBNh5UFNqZR1B-Abkd0CY
CitedBy_id crossref_primary_10_1038_s41598_023_31656_y
crossref_primary_10_1080_19942060_2023_2229394
crossref_primary_10_3390_fluids8050137
crossref_primary_10_1016_j_cma_2022_115356
crossref_primary_10_1016_j_apor_2021_102822
crossref_primary_10_1016_j_heliyon_2022_e11818
crossref_primary_10_3390_app13010348
crossref_primary_10_1016_j_euromechflu_2023_04_005
crossref_primary_10_1016_j_csite_2024_104019
crossref_primary_10_1016_j_jcp_2022_111762
crossref_primary_10_1007_s40571_023_00673_z
crossref_primary_10_3390_pr10081569
crossref_primary_10_1016_j_compgeo_2024_106700
crossref_primary_10_3390_biology12071026
Cites_doi 10.1016/j.cma.2015.11.021
10.1002/fld.226
10.1006/jcph.1995.1039
10.2514/3.820
10.1091/mbc.e15-03-0176
10.1006/jcph.1997.5776
10.1091/mbc.e12-10-0739
10.1086/112164
10.1016/j.jcp.2017.02.016
10.1016/j.dib.2018.11.103
10.1371/journal.pcbi.1005940
10.3390/fluids1010007
10.1016/S0021-9991(03)00324-3
10.1371/journal.pcbi.1006181
10.1002/nme.4514
10.1002/fld.3666
10.1007/BF02123482
10.1534/genetics.111.128264
10.1143/PTP.125.1091
10.1002/nme.3267
10.1016/j.jfluidstructs.2019.02.002
10.1103/PhysRevE.67.026701
10.1088/1478-3975/7/2/026006
10.1016/j.jcp.2013.01.043
10.1016/j.cma.2012.12.014
10.1016/j.jcp.2017.11.014
10.1073/pnas.1702488114
10.1016/j.cpc.2008.12.004
10.1016/j.euromechflu.2012.02.002
10.1016/j.jcp.2012.05.005
10.1016/S0045-7825(01)00254-7
10.1073/pnas.1417257112
10.1016/j.cma.2009.06.014
10.1016/j.jcp.2014.05.040
10.1016/0017-9310(76)90168-X
10.1103/PhysRevE.94.023304
10.1007/s40571-015-0072-5
10.1016/j.devcel.2015.10.024
10.1016/j.jfluidstructs.2018.11.005
10.1016/j.cpc.2018.08.002
10.1016/j.cpc.2009.05.008
10.1016/S0017-9310(98)00266-X
10.1016/j.procs.2013.05.442
10.1016/j.jcp.2015.08.041
10.1016/j.expthermflusci.2012.06.009
10.1371/journal.pcbi.1006241
10.1016/j.jcp.2008.06.017
10.1016/j.cpc.2015.12.016
10.1016/j.cpc.2018.05.012
10.1063/1.3676244
10.1111/j.1365-2966.2011.19021.x
10.1016/j.cma.2018.09.043
10.1146/annurev.aa.30.090192.002551
10.1371/journal.pcbi.1003139
10.1006/jcph.2000.6439
10.1103/PhysRevE.81.061906
10.1017/S0962492902000077
10.1093/mnras/181.3.375
10.1016/j.jcp.2011.10.027
10.1016/S0309-1708(03)00030-7
10.1016/j.jcp.2016.12.005
10.1016/0021-9991(82)90058-4
10.1016/j.cpc.2012.02.032
10.1016/j.jcp.2007.06.019
10.1007/s11831-010-9040-7
10.1103/PhysRevE.95.063314
10.1103/PhysRevE.84.026705
10.1006/jcph.2002.7053
10.1091/mbc.e09-04-0324
10.1016/j.compfluid.2018.11.024
10.1016/j.jcp.2014.03.055
10.1074/jbc.R116.714980
10.1016/j.jcp.2015.07.033
10.1063/1.4921222
10.1063/1.3050100
10.1016/j.ijheatmasstransfer.2007.05.007
10.1016/j.cpc.2017.11.016
10.1016/0021-9991(81)90082-6
10.1002/nme.2010
10.1016/j.jcp.2016.02.039
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.enganabound.2021.04.006
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-197X
EndPage 289
ExternalDocumentID PMC8143034
10_1016_j_enganabound_2021_04_006
S0955799721000916
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
XPP
ZMT
~G-
29G
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SET
SEW
UHS
VH1
WUQ
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c460t-99a683bde22ec7e55bd560822be84f63d69d25dd8f9c6112d216ba2b8c1a1cda3
IEDL.DBID .~1
ISSN 0955-7997
IngestDate Thu Aug 21 13:53:58 EDT 2025
Fri Jul 11 01:04:56 EDT 2025
Tue Jul 01 02:31:52 EDT 2025
Thu Apr 24 22:53:26 EDT 2025
Fri Feb 23 02:46:27 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Solid wall model
Deforming boundaries
Smoothed particle hydrodynamics
Boundary condition
Transport-velocity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-99a683bde22ec7e55bd560822be84f63d69d25dd8f9c6112d216ba2b8c1a1cda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8143034
PMID 34040286
PQID 2533315075
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8143034
proquest_miscellaneous_2533315075
crossref_primary_10_1016_j_enganabound_2021_04_006
crossref_citationtrail_10_1016_j_enganabound_2021_04_006
elsevier_sciencedirect_doi_10_1016_j_enganabound_2021_04_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering analysis with boundary elements
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Federico, Marrone, Colagrossi, Aristodemo, Antuono (bib0033) 2012; 34
Morris, Fox, Zhu (bib0047) 1997; 136
Lind, Xu, Stansby, Rogers (bib0041) 2012; 231
Amicarelli, Agate, Guandalini (bib0029) 2013; 95
Lawson, Drawert, Khammash, Petzold, Yi (bib0087) 2013; 9
Zhan, Peng, Zhang, Wu (bib0036) 2019; 86
Macia, Antuono, González, Colagrossi (bib0024) 2011; 125
Angeli, Levoni, Barozzi (bib0071) 2008; 51
Gray, Monaghan, Swift (bib0056) 2001; 190
Zhang, Rezavand, Hu (bib0019) 2020
McClure, Minakova, Dyer, Zyla, Elston, Lew (bib0083) 2015; 35
Colagrossi, Bouscasse, Antuono, Marrone (bib0026) 2012; 183
Hieber, Koumoutsakos (bib0014) 2008; 227
Ferrand, Laurence, Rogers, Violeau, Kassiotis (bib0027) 2013; 71
Liu, Liu (bib0001) 2010; 17
Lei, Mundy, Schenter, Voulgarakis (bib0006) 2015; 142
Barnhart, Lee, Allen, Theriot, Mogilner (bib0088) 2015; 112
Monaghan (bib0044) 2000; 159
Plimpton (bib0062) 1995; 117
Ghia, Ghia, Shin (bib0066) 1982; 48
Alvaro, Thorner (bib0079) 2016; 291
Colagrossi, Antuono, Souto-Iglesias, Le Touzé (bib0030) 2011; 84
Errede, Vered, Ford, Pena, Elston (bib0084) 2015; 26
Colagrossi, Landrini (bib0057) 2003; 191
Litvinov, Xie, Hu, Adams, Ellero (bib0010) 2016; 1
Lei, Baker, Wu, Schenter, Mundy, Tartakovsky (bib0009) 2016; 94
Fu, Ji (bib0091) 2019; 234
Peskin (bib0034) 2002; 11
Monaghan (bib0049) 1992; 30
Nasar, Rogers, Revell, Stansby, Lind (bib0093) 2019; 84
Moukalled, Acharya (bib0068) 1996; 10
.
Shao, Lo (bib0053) 2003; 26
Sun, Colagrossi, Marrone, Antuono, Zhang (bib0058) 2018; 224
Khayyer, Gotoh, Falahaty, Shimizu (bib0035) 2018; 232
Butler, Newport, Geron (bib0073) 2013; 44
Khayyer, Gotoh, Shimizu (bib0042) 2017; 332
Wendland (bib0064) 1995; 4
Shadloo, Zainali, Yildiz, Suleman (bib0040) 2012; 89
Colagrossi, Landrini (bib0020) 2003; 191
Shu, Zhu (bib0069) 2002; 38
Shepard (bib0059) 1968
Vázquez-Quesada, Ellero, Español (bib0055) 2009; 130
Vázquez-Quesada, Bian, Ellero (bib0005) 2016; 3
Barcarolo, Le Touzé, Oger, De Vuyst (bib0016) 2014; 273
Müller, Fedosov, Gompper (bib0008) 2014; 4
Vacondio, Rogers, Stansby, Mignosa, Feldman (bib0015) 2013; 256
Monaghan, Kajtar (bib0023) 2009; 180
Lucy (bib0003) 1977; 82
Feldman, Bonet (bib0021) 2007; 72
De, Dalal (bib0072) 2006; 49
Adami, Hu, Adams (bib0022) 2012; 231
Renardy, Yi, Xiu, Chou (bib0085) 2018; 14
Irgens (bib0038) 2008
Monaghan, Lattanzio (bib0048) 1985; 149
Xu, Deng (bib0013) 2016; 201
Gingold, Monaghan (bib0002) 1977; 181
Moore, Tanaka, Kim, Jeon, Yi (bib0082) 2013; 24
Nasar, Rogers, Revell, Stansby (bib0092) 2019; 179
Lifshitz, Pitaevskii, Berestetskii (bib0061) 1980; 5
Molteni, Colagrossi (bib0060) 2009; 180
Valizadeh, Monaghan (bib0032) 2015; 300
Van Liedekerke, Tijskens, Ramon, Ghysels, Samaey, Roose (bib0078) 2010; 81
Adami, Hu, Adams (bib0012) 2013; 241
Gray, Giorgini (bib0067) 1976; 19
Oger, Marrone, Touzé, de Leffe (bib0043) 2016; 313
Levin (bib0080) 2011; 189
Banavar, Gomez, Trogdon, Petzold, Yi, Campàs (bib0081) 2018; 14
Ferrand, Laurence, Rogers, Violeau, Kassiotis (bib0063) 2013; 71
Van Liedekerke, Ghysels, Tijskens, Samaey, Smeedts, Roose, Ramon (bib0077) 2010; 7
Hu, Jafari, Han, Grodzinsky, Cai, Guo (bib0089) 2017; 114
Moreno, Vignal, Li, Calo (bib0007) 2013; 18
Zhang, Hu, Adams (bib0045) 2017; 337
Ji, Fu, Hu, Adams (bib0018) 2019; 346
Spheric-SPH grand challenges. 2020.
Vacondio, Rogers, Stansby, Mignosa (bib0017) 2016; 300
Litvinov, Hu, Adams (bib0046) 2015; 301
Inutsuka (bib0050) 2002; 179
Li, Bian, Tang, Karniadakis (bib0037) 2018; 355
Ferziger, Perić (bib0065) 2002; vol. 3
Ellero, Serrano, Español (bib0054) 2007; 226
Bian, Litvinov, Qian, Ellero, Adams (bib0004) 2012; 24
Nestor, Basa, Quinlan (bib0039) 2008
Puri, Ramachandran (bib0052) 2014; 270
Ferrand, Laurence, Rogers, Violeau, Kassiotis (bib0025) 2012; 71
Bierbrauer, Bollada, Phillips (bib0028) 2009; 198
Murante, Borgani, Brunino, Cha (bib0051) 2011; 417
Cesini, Paroncini, Cortella, Manzan (bib0074) 1999; 42
Israeli, Orszag (bib0075) 1981; 41
Drawert, Jacob, Li, Yi, Petzold (bib0076) 2019; 22
Ye, Phan-Thien, Lim, Peng, Shi (bib0011) 2017; 95
Barfield, Fromme, Schekman (bib0090) 2009; 20
Peng, Chew, Shu (bib0070) 2003; 67
Trogdon, Drawert, Gomez, Banavar, Yi, Campàs, Petzold (bib0086) 2018; 14
Nestor (10.1016/j.enganabound.2021.04.006_bib0039) 2008
Hieber (10.1016/j.enganabound.2021.04.006_sbref0014) 2008; 227
Lucy (10.1016/j.enganabound.2021.04.006_bib0003) 1977; 82
Monaghan (10.1016/j.enganabound.2021.04.006_sbref0023) 2009; 180
Oger (10.1016/j.enganabound.2021.04.006_sbref0043) 2016; 313
Monaghan (10.1016/j.enganabound.2021.04.006_bib0048) 1985; 149
Lawson (10.1016/j.enganabound.2021.04.006_sbref0087) 2013; 9
Morris (10.1016/j.enganabound.2021.04.006_sbref0047) 1997; 136
Lifshitz (10.1016/j.enganabound.2021.04.006_bib0061) 1980; 5
Adami (10.1016/j.enganabound.2021.04.006_sbref0022) 2012; 231
Barcarolo (10.1016/j.enganabound.2021.04.006_bib0016) 2014; 273
Ji (10.1016/j.enganabound.2021.04.006_bib0018) 2019; 346
Adami (10.1016/j.enganabound.2021.04.006_sbref0012) 2013; 241
Banavar (10.1016/j.enganabound.2021.04.006_bib0081) 2018; 14
Renardy (10.1016/j.enganabound.2021.04.006_bib0085) 2018; 14
Amicarelli (10.1016/j.enganabound.2021.04.006_bib0029) 2013; 95
Vázquez-Quesada (10.1016/j.enganabound.2021.04.006_bib0055) 2009; 130
Errede (10.1016/j.enganabound.2021.04.006_bib0084) 2015; 26
Colagrossi (10.1016/j.enganabound.2021.04.006_bib0026) 2012; 183
Gray (10.1016/j.enganabound.2021.04.006_sbref0067) 1976; 19
Barnhart (10.1016/j.enganabound.2021.04.006_sbref0088) 2015; 112
Bian (10.1016/j.enganabound.2021.04.006_bib0004) 2012; 24
Monaghan (10.1016/j.enganabound.2021.04.006_bib0049) 1992; 30
Trogdon (10.1016/j.enganabound.2021.04.006_sbref0086) 2018; 14
Sun (10.1016/j.enganabound.2021.04.006_sbref0058) 2018; 224
Angeli (10.1016/j.enganabound.2021.04.006_sbref0071) 2008; 51
Ferrand (10.1016/j.enganabound.2021.04.006_bib0063) 2013; 71
Khayyer (10.1016/j.enganabound.2021.04.006_sbref0035) 2018; 232
Shadloo (10.1016/j.enganabound.2021.04.006_bib0040) 2012; 89
Alvaro (10.1016/j.enganabound.2021.04.006_sbref0079) 2016; 291
Gray (10.1016/j.enganabound.2021.04.006_sbref0056) 2001; 190
Peng (10.1016/j.enganabound.2021.04.006_sbref0070) 2003; 67
Lei (10.1016/j.enganabound.2021.04.006_bib0006) 2015; 142
Shao (10.1016/j.enganabound.2021.04.006_sbref0053) 2003; 26
Murante (10.1016/j.enganabound.2021.04.006_bib0051) 2011; 417
Ferrand (10.1016/j.enganabound.2021.04.006_sbref0025) 2012; 71
Colagrossi (10.1016/j.enganabound.2021.04.006_bib0030) 2011; 84
Butler (10.1016/j.enganabound.2021.04.006_sbref0073) 2013; 44
Ye (10.1016/j.enganabound.2021.04.006_bib0011) 2017; 95
Vázquez-Quesada (10.1016/j.enganabound.2021.04.006_bib0005) 2016; 3
Moore (10.1016/j.enganabound.2021.04.006_sbref0082) 2013; 24
Nasar (10.1016/j.enganabound.2021.04.006_bib0092) 2019; 179
10.1016/j.enganabound.2021.04.006_bib0031
Van Liedekerke (10.1016/j.enganabound.2021.04.006_bib0078) 2010; 81
Cesini (10.1016/j.enganabound.2021.04.006_sbref0074) 1999; 42
Vacondio (10.1016/j.enganabound.2021.04.006_bib0017) 2016; 300
Zhang (10.1016/j.enganabound.2021.04.006_bib0019) 2020
Li (10.1016/j.enganabound.2021.04.006_sbref0037) 2018; 355
Shu (10.1016/j.enganabound.2021.04.006_bib0069) 2002; 38
Israeli (10.1016/j.enganabound.2021.04.006_sbref0075) 1981; 41
Müller (10.1016/j.enganabound.2021.04.006_sbref0008) 2014; 4
Ferziger (10.1016/j.enganabound.2021.04.006_bib0065) 2002; vol. 3
Khayyer (10.1016/j.enganabound.2021.04.006_bib0042) 2017; 332
Litvinov (10.1016/j.enganabound.2021.04.006_sbref0010) 2016; 1
Feldman (10.1016/j.enganabound.2021.04.006_bib0021) 2007; 72
Fu (10.1016/j.enganabound.2021.04.006_bib0091) 2019; 234
Shepard (10.1016/j.enganabound.2021.04.006_bib0059) 1968
Barfield (10.1016/j.enganabound.2021.04.006_bib0090) 2009; 20
Lind (10.1016/j.enganabound.2021.04.006_sbref0041) 2012; 231
Liu (10.1016/j.enganabound.2021.04.006_bib0001) 2010; 17
Federico (10.1016/j.enganabound.2021.04.006_sbref0033) 2012; 34
Colagrossi (10.1016/j.enganabound.2021.04.006_sbref0057) 2003; 191
McClure (10.1016/j.enganabound.2021.04.006_bib0083) 2015; 35
Zhan (10.1016/j.enganabound.2021.04.006_sbref0036) 2019; 86
Ghia (10.1016/j.enganabound.2021.04.006_sbref0066) 1982; 48
Plimpton (10.1016/j.enganabound.2021.04.006_sbref0062) 1995; 117
Wendland (10.1016/j.enganabound.2021.04.006_bib0064) 1995; 4
Moreno (10.1016/j.enganabound.2021.04.006_sbref0007) 2013; 18
Peskin (10.1016/j.enganabound.2021.04.006_bib0034) 2002; 11
Van Liedekerke (10.1016/j.enganabound.2021.04.006_bib0077) 2010; 7
Zhang (10.1016/j.enganabound.2021.04.006_sbref0045) 2017; 337
Molteni (10.1016/j.enganabound.2021.04.006_sbref0060) 2009; 180
Puri (10.1016/j.enganabound.2021.04.006_bib0052) 2014; 270
Bierbrauer (10.1016/j.enganabound.2021.04.006_bib0028) 2009; 198
Moukalled (10.1016/j.enganabound.2021.04.006_bib0068) 1996; 10
Macia (10.1016/j.enganabound.2021.04.006_bib0024) 2011; 125
Inutsuka (10.1016/j.enganabound.2021.04.006_bib0050) 2002; 179
Ferrand (10.1016/j.enganabound.2021.04.006_bib0027) 2013; 71
Gingold (10.1016/j.enganabound.2021.04.006_bib0002) 1977; 181
Hu (10.1016/j.enganabound.2021.04.006_sbref0089) 2017; 114
Lei (10.1016/j.enganabound.2021.04.006_bib0009) 2016; 94
Litvinov (10.1016/j.enganabound.2021.04.006_sbref0046) 2015; 301
Ellero (10.1016/j.enganabound.2021.04.006_sbref0054) 2007; 226
De (10.1016/j.enganabound.2021.04.006_sbref0072) 2006; 49
Nasar (10.1016/j.enganabound.2021.04.006_bib0093) 2019; 84
Colagrossi (10.1016/j.enganabound.2021.04.006_bib0020) 2003; 191
Vacondio (10.1016/j.enganabound.2021.04.006_bib0015) 2013; 256
Levin (10.1016/j.enganabound.2021.04.006_bib0080) 2011; 189
Irgens (10.1016/j.enganabound.2021.04.006_bib0038) 2008
Xu (10.1016/j.enganabound.2021.04.006_sbref0013) 2016; 201
Monaghan (10.1016/j.enganabound.2021.04.006_sbref0044) 2000; 159
Drawert (10.1016/j.enganabound.2021.04.006_sbref0076) 2019; 22
Valizadeh (10.1016/j.enganabound.2021.04.006_sbref0032) 2015; 300
References_xml – volume: 67
  start-page: 026701
  year: 2003
  ident: bib0070
  article-title: Numerical simulation of natural convection in a concentric annulus between a square outer cylinder and a circular inner cylinder using the taylor-series-expansion and least-squares-based lattice boltzmann method
  publication-title: Phys Rev E
– volume: 142
  start-page: 194504
  year: 2015
  ident: bib0006
  article-title: Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics
  publication-title: J Chem Phys
– volume: 300
  start-page: 5
  year: 2015
  end-page: 19
  ident: bib0032
  article-title: A study of solid wall models for weakly compressible SPH
  publication-title: J Comput Phys
– volume: 270
  start-page: 432
  year: 2014
  end-page: 458
  ident: bib0052
  article-title: Approximate Riemann solvers for the Godunov SPH (GSPH)
  publication-title: J Comput Phys
– volume: 14
  start-page: e1006181
  year: 2018
  ident: bib0085
  article-title: Parameter uncertainty quantification using surrogate models applied to a spatial model of yeast mating polarization
  publication-title: PLoS Comput Biol
– start-page: 110028
  year: 2020
  ident: bib0019
  article-title: A multi-resolution SPH method for fluid-structure interactions
  publication-title: J Comput Phys
– volume: 3
  start-page: 167
  year: 2016
  end-page: 178
  ident: bib0005
  article-title: Three-dimensional simulations of dilute and concentrated suspensions using smoothed particle hydrodynamics
  publication-title: Comput Part Mech
– volume: 4
  start-page: 389
  year: 1995
  end-page: 396
  ident: bib0064
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Adv Comput Math
– volume: 14
  start-page: e1005940
  year: 2018
  ident: bib0081
  article-title: Mechanical feedback coordinates cell wall expansion and assembly in yeast mating morphogenesis
  publication-title: PLoS Comput Biol
– volume: 24
  start-page: 012002
  year: 2012
  ident: bib0004
  article-title: Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics
  publication-title: Phys Fluids
– volume: 273
  start-page: 640
  year: 2014
  end-page: 657
  ident: bib0016
  article-title: Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method
  publication-title: J Comput Phys
– volume: 190
  start-page: 6641
  year: 2001
  end-page: 6662
  ident: bib0056
  article-title: SPH elastic dynamics
  publication-title: Comput Methods Appl Mech Eng
– volume: 95
  start-page: 063314
  year: 2017
  ident: bib0011
  article-title: Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows
  publication-title: Phys Rev E
– volume: 71
  start-page: 446
  year: 2012
  end-page: 472
  ident: bib0025
  article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method
  publication-title: Int J Numer Methods Fluids
– volume: 18
  start-page: 2565
  year: 2013
  end-page: 2574
  ident: bib0007
  article-title: Multiscale modeling of blood flow: coupling finite elements with smoothed dissipative particle dynamics
  publication-title: Proced Comput Sci
– volume: 180
  start-page: 861
  year: 2009
  end-page: 872
  ident: bib0060
  article-title: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH
  publication-title: Comput Phys Commun
– volume: 346
  start-page: 1156
  year: 2019
  end-page: 1178
  ident: bib0018
  article-title: A new multi-resolution parallel framework for SPH
  publication-title: Comput Methods Appl Mech Eng
– volume: 313
  start-page: 76
  year: 2016
  end-page: 98
  ident: bib0043
  article-title: SPH Accuracy improvement through the combination of a quasi-lagrangian shifting transport velocity and consistent ale formalisms
  publication-title: J Comput Phys
– volume: 191
  start-page: 448
  year: 2003
  end-page: 475
  ident: bib0057
  article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics
  publication-title: J Comput Phys
– volume: 84
  start-page: 263
  year: 2019
  end-page: 282
  ident: bib0093
  article-title: Eulerian weakly compressible smoothed particle hydrodynamics (sph) with the immersed boundary method for thin slender bodies
  publication-title: J Fluids Struct
– volume: 5
  year: 1980
  ident: bib0061
  article-title: Landau and lifshitz course of theoretical physics
  publication-title: Statist Phys
– volume: 20
  start-page: 4985
  year: 2009
  end-page: 4996
  ident: bib0090
  article-title: The exomer coat complex transports fus1p to the plasma membrane via a novel plasma membrane sorting signal in yeast
  publication-title: Mol Biol Cell
– volume: 84
  start-page: 026705
  year: 2011
  ident: bib0030
  article-title: Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows
  publication-title: Phys Rev E
– volume: 180
  start-page: 1811
  year: 2009
  end-page: 1820
  ident: bib0023
  article-title: SPH Particle boundary forces for arbitrary boundaries
  publication-title: Comput Phys Commun
– volume: 159
  start-page: 290
  year: 2000
  end-page: 311
  ident: bib0044
  article-title: SPH Without a tensile instability
  publication-title: J Comput Phys
– volume: 227
  start-page: 8636
  year: 2008
  end-page: 8654
  ident: bib0014
  article-title: An immersed boundary method for smoothed particle hydrodynamics of self-propelled swimmers
  publication-title: J Comput Phys
– volume: 1
  year: 2016
  ident: bib0010
  article-title: Simulation of individual polymer chains and polymer solutions with smoothed dissipative particle dynamics
  publication-title: Fluids
– volume: vol. 3
  year: 2002
  ident: bib0065
  article-title: Computational Methods for Fluid Dynamics
– volume: 7
  start-page: 026006
  year: 2010
  ident: bib0077
  article-title: A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates
  publication-title: Phys Biol
– volume: 89
  start-page: 939
  year: 2012
  end-page: 956
  ident: bib0040
  article-title: A robust weakly compressible sph method and its comparison with an incompressible SPH
  publication-title: Int J Numer Methods Eng
– volume: 44
  start-page: 199
  year: 2013
  end-page: 208
  ident: bib0073
  article-title: Natural convection experiments on a heated horizontal cylinder in a differentially heated square cavity
  publication-title: Exp Therm Fluid Sci
– volume: 95
  start-page: 419
  year: 2013
  end-page: 450
  ident: bib0029
  article-title: A 3d fully lagrangian smoothed particle hydrodynamics model with both volume and surface discrete elements
  publication-title: Int J Numer Methods Eng
– volume: 49
  start-page: 4608
  year: 2006
  end-page: 4623
  ident: bib0072
  article-title: A numerical study of natural convection around a square, horizontal, heated cylinder placed in an enclosure
  publication-title: Int J Heat Mass Transf
– volume: 41
  start-page: 115
  year: 1981
  end-page: 135
  ident: bib0075
  article-title: Approximation of radiation boundary conditions
  publication-title: J Comput Phys
– volume: 130
  start-page: 034901
  year: 2009
  ident: bib0055
  article-title: Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics
  publication-title: J Chem Phys
– start-page: 517
  year: 1968
  end-page: 524
  ident: bib0059
  article-title: A two-dimensional interpolation function for irregularly-spaced data
  publication-title: Proceedings of the 23rd ACM national conference
– volume: 19
  start-page: 545
  year: 1976
  end-page: 551
  ident: bib0067
  article-title: The validity of the boussinesq approximation for liquids and gases
  publication-title: Int J Heat Mass Transf
– volume: 291
  start-page: 7788
  year: 2016
  end-page: 7795
  ident: bib0079
  article-title: Heterotrimeric G protein-coupled receptor signaling in yeast mating pheromone response
  publication-title: J Biol Chem
– volume: 232
  start-page: 139
  year: 2018
  end-page: 164
  ident: bib0035
  article-title: An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions
  publication-title: Comput Phys Commun
– volume: 136
  start-page: 214
  year: 1997
  end-page: 226
  ident: bib0047
  article-title: Modeling low reynolds number incompressible flows using SPH
  publication-title: J Comput Phys
– volume: 179
  start-page: 563
  year: 2019
  end-page: 578
  ident: bib0092
  article-title: Flexible slender body fluid interaction: vector-based discrete element method with Eulerian smoothed particle hydrodynamics
  publication-title: Comput Fluids
– volume: 24
  start-page: 521
  year: 2013
  end-page: 534
  ident: bib0082
  article-title: Yeast g-proteins mediate directional sensing and polarization behaviors in response to changes in pheromone gradient direction
  publication-title: Mol Biol Cell
– volume: 112
  start-page: 5045
  year: 2015
  end-page: 5050
  ident: bib0088
  article-title: Balance between cell-substrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes
  publication-title: Proc Natl Acad Sci
– volume: 231
  start-page: 7057
  year: 2012
  end-page: 7075
  ident: bib0022
  article-title: A generalized wall boundary condition for smoothed particle hydrodynamics
  publication-title: J Comput Phys
– volume: 81
  start-page: 061906
  year: 2010
  ident: bib0078
  article-title: Particle-based model to simulate the micromechanics of biological cells
  publication-title: Phys Rev E
– volume: 231
  start-page: 1499
  year: 2012
  end-page: 1523
  ident: bib0041
  article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves
  publication-title: J Comput Phys
– volume: 82
  start-page: 1013
  year: 1977
  end-page: 1024
  ident: bib0003
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: AJ
– volume: 241
  start-page: 292
  year: 2013
  end-page: 307
  ident: bib0012
  article-title: A transport-velocity formulation for smoothed particle hydrodynamics
  publication-title: J Comput Phys
– volume: 86
  start-page: 329
  year: 2019
  end-page: 353
  ident: bib0036
  article-title: A stabilized TL-WC SPH approach with GPU acceleration for three-dimensional fluid–structure interaction
  publication-title: J Fluids Struct
– year: 2008
  ident: bib0038
  article-title: Continuum Mechanics
– volume: 234
  start-page: 72
  year: 2019
  end-page: 92
  ident: bib0091
  article-title: An optimal particle setup method with Centroidal Voronoi Particle dynamics
  publication-title: Comput Phys Commun
– volume: 34
  start-page: 35
  year: 2012
  end-page: 46
  ident: bib0033
  article-title: Simulating 2d open-channel flows through an SPH model
  publication-title: Eur J Mech B Fluids
– volume: 189
  start-page: 1145
  year: 2011
  end-page: 1175
  ident: bib0080
  article-title: Regulation of cell wall biogenesis in saccharomyces cerevisiae: the cell wall integrity signaling pathway
  publication-title: Genetics
– volume: 201
  start-page: 43
  year: 2016
  end-page: 62
  ident: bib0013
  article-title: An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids
  publication-title: Comput Phys Commun
– volume: 181
  start-page: 375
  year: 1977
  end-page: 389
  ident: bib0002
  article-title: Smoothed particle hydrodynamics - Theory and application to non-spherical stars
  publication-title: MNRAS
– volume: 10
  start-page: 524
  year: 1996
  end-page: 531
  ident: bib0068
  article-title: Natural convection in the annulus between concentric horizontal circular and square cylinders
  publication-title: J Thermophys Heat Transfer
– volume: 38
  start-page: 429
  year: 2002
  end-page: 445
  ident: bib0069
  article-title: Efficient computation of natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder
  publication-title: Int J Numer Methods Fluids
– volume: 117
  start-page: 1
  year: 1995
  end-page: 19
  ident: bib0062
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J Comput Phys
– year: 2008
  ident: bib0039
  article-title: Moving boundary problems in the finite volume particle method
  publication-title: Proeedings of the 3rd ERCOFTAC SPHERIC Workshop on SPH Applications, Switzerland, Lausanne
– volume: 71
  start-page: 446
  year: 2013
  end-page: 472
  ident: bib0063
  article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method
  publication-title: Int J Numer Methods Fluids
– volume: 4
  year: 2014
  ident: bib0008
  article-title: Margination of micro- and nano-particles in blood flow and its effect on drug delivery
  publication-title: Nature Scient Rep
– volume: 26
  start-page: 787
  year: 2003
  end-page: 800
  ident: bib0053
  article-title: Incompressible SPH method for simulating newtonian and non-newtonian flows with a free surface
  publication-title: Adv Water Resour
– volume: 355
  start-page: 534
  year: 2018
  end-page: 547
  ident: bib0037
  article-title: A dissipative particle dynamics method for arbitrarily complex geometries
  publication-title: J Comput Phys
– volume: 22
  start-page: 11
  year: 2019
  end-page: 15
  ident: bib0076
  article-title: Validation data for a hybrid smoothed dissipative particle dynamics (SDPD) spatial stochastic simulation algorithm (sssa) method
  publication-title: Data Brief
– volume: 72
  start-page: 295
  year: 2007
  end-page: 324
  ident: bib0021
  article-title: Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems
  publication-title: Int J Numer Methods Eng
– volume: 17
  start-page: 25
  year: 2010
  end-page: 76
  ident: bib0001
  article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments
  publication-title: Arch Comput Methods Eng
– volume: 149
  start-page: 135
  year: 1985
  end-page: 143
  ident: bib0048
  article-title: A refined method for astrophysical problems
  publication-title: Astron Astrophys
– volume: 42
  start-page: 1801
  year: 1999
  end-page: 1811
  ident: bib0074
  article-title: Natural convection from a horizontal cylinder in a rectangular cavity
  publication-title: Int J Heat Mass Transf
– volume: 94
  start-page: 023304
  year: 2016
  ident: bib0009
  article-title: Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations
  publication-title: Phys Rev E
– volume: 256
  start-page: 132
  year: 2013
  end-page: 148
  ident: bib0015
  article-title: Variable resolution for sph: a dynamic particle coalescing and splitting scheme
  publication-title: Comput Methods Appl Mech Eng
– volume: 30
  start-page: 543
  year: 1992
  end-page: 574
  ident: bib0049
  article-title: Smoothed particle hydrodynamics
  publication-title: Annu Rev Astron Astrophys
– volume: 9
  year: 2013
  ident: bib0087
  article-title: Spatial stochastic dynamics enable robust cell polarization
  publication-title: PLoS Comput Biol
– volume: 14
  year: 2018
  ident: bib0086
  article-title: The effect of cell geometry on polarization in budding yeast
  publication-title: PLoS Comput Biol
– volume: 11
  start-page: 479
  year: 2002
  end-page: 517
  ident: bib0034
  article-title: The immersed boundary method
  publication-title: Acta Numerica
– volume: 35
  start-page: 471
  year: 2015
  end-page: 482
  ident: bib0083
  article-title: Role of Polarized G protein signaling in tracking pheromone gradients
  publication-title: Dev Cell
– volume: 183
  start-page: 1641
  year: 2012
  end-page: 1653
  ident: bib0026
  article-title: Particle packing algorithm for SPH schemes
  publication-title: Comput Phys Commun
– volume: 332
  start-page: 236
  year: 2017
  end-page: 256
  ident: bib0042
  article-title: Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context
  publication-title: J Comput Phys
– volume: 179
  start-page: 238
  year: 2002
  end-page: 267
  ident: bib0050
  article-title: Reformulation of smoothed particle hydrodynamics with Riemann solver
  publication-title: J Comput Phys
– volume: 26
  start-page: 3343
  year: 2015
  end-page: 3358
  ident: bib0084
  article-title: Pheromone-induced morphogenesis and gradient tracking are dependent on the MAPK Fus3 binding to G
  publication-title: Mol Biol Cell
– volume: 191
  start-page: 448
  year: 2003
  end-page: 475
  ident: bib0020
  article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics
  publication-title: J Comput Phys
– volume: 301
  start-page: 394
  year: 2015
  end-page: 401
  ident: bib0046
  article-title: Towards consistence and convergence of conservative SPH approximations
  publication-title: J Comput Phys
– volume: 125
  start-page: 1091
  year: 2011
  end-page: 1121
  ident: bib0024
  article-title: Theoretical analysis of the no-slip boundary condition enforcement in SPH methods
  publication-title: Progr Theoret Phys
– volume: 300
  start-page: 442
  year: 2016
  end-page: 460
  ident: bib0017
  article-title: Variable resolution for SPH in three dimensions: towards optimal splitting and coalescing for dynamic adaptivity
  publication-title: Comput Methods Appl Mech Eng
– volume: 71
  start-page: 446
  year: 2013
  end-page: 472
  ident: bib0027
  article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method
  publication-title: Int J Numer Methods Fluids
– reference: Spheric-SPH grand challenges. 2020.
– reference: .
– volume: 337
  start-page: 216
  year: 2017
  end-page: 232
  ident: bib0045
  article-title: A generalized transport-velocity formulation for smoothed particle hydrodynamics
  publication-title: J Comput Phys
– volume: 114
  start-page: 9529
  year: 2017
  end-page: 9534
  ident: bib0089
  article-title: Size- and speed-dependent mechanical behavior in living mammalian cytoplasm
  publication-title: Proc Natl Acad Sci
– volume: 224
  start-page: 63
  year: 2018
  end-page: 80
  ident: bib0058
  article-title: Multi-resolution delta-plus-SPH with tensile instability control: Towards high reynolds number flows
  publication-title: Comput Phys Commun
– volume: 198
  start-page: 3400
  year: 2009
  end-page: 3410
  ident: bib0028
  article-title: A consistent reflected image particle approach to the treatment of boundary conditions in smoothed particle hydrodynamics
  publication-title: Comput Methods Appl Mech Eng
– volume: 51
  start-page: 553
  year: 2008
  end-page: 565
  ident: bib0071
  article-title: Numerical predictions for stable buoyant regimes within a square cavity containing a heated horizontal cylinder
  publication-title: Int J Heat Mass Transf
– volume: 226
  start-page: 1731
  year: 2007
  end-page: 1752
  ident: bib0054
  article-title: Incompressible smoothed particle hydrodynamics
  publication-title: J Comput Phys
– volume: 417
  start-page: 136
  year: 2011
  end-page: 153
  ident: bib0051
  article-title: Hydrodynamic simulations with the godunov smoothed particle hydrodynamics
  publication-title: Mon Not R Astron Soc
– volume: 48
  start-page: 387
  year: 1982
  end-page: 411
  ident: bib0066
  article-title: High-re solutions for incompressible flow using the navier-stokes equations and a multigrid method
  publication-title: J Comput Phys
– volume: 300
  start-page: 442
  year: 2016
  ident: 10.1016/j.enganabound.2021.04.006_bib0017
  article-title: Variable resolution for SPH in three dimensions: towards optimal splitting and coalescing for dynamic adaptivity
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2015.11.021
– volume: 38
  start-page: 429
  issue: 5
  year: 2002
  ident: 10.1016/j.enganabound.2021.04.006_bib0069
  article-title: Efficient computation of natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.226
– volume: 117
  start-page: 1
  issue: 1
  year: 1995
  ident: 10.1016/j.enganabound.2021.04.006_sbref0062
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1995.1039
– ident: 10.1016/j.enganabound.2021.04.006_bib0031
– volume: 10
  start-page: 524
  issue: 3
  year: 1996
  ident: 10.1016/j.enganabound.2021.04.006_bib0068
  article-title: Natural convection in the annulus between concentric horizontal circular and square cylinders
  publication-title: J Thermophys Heat Transfer
  doi: 10.2514/3.820
– volume: vol. 3
  year: 2002
  ident: 10.1016/j.enganabound.2021.04.006_bib0065
– volume: 49
  start-page: 4608
  issue: 23
  year: 2006
  ident: 10.1016/j.enganabound.2021.04.006_sbref0072
  article-title: A numerical study of natural convection around a square, horizontal, heated cylinder placed in an enclosure
  publication-title: Int J Heat Mass Transf
– volume: 26
  start-page: 3343
  issue: 18
  year: 2015
  ident: 10.1016/j.enganabound.2021.04.006_bib0084
  article-title: Pheromone-induced morphogenesis and gradient tracking are dependent on the MAPK Fus3 binding to Gα
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e15-03-0176
– volume: 136
  start-page: 214
  issue: 1
  year: 1997
  ident: 10.1016/j.enganabound.2021.04.006_sbref0047
  article-title: Modeling low reynolds number incompressible flows using SPH
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1997.5776
– volume: 24
  start-page: 521
  issue: 4
  year: 2013
  ident: 10.1016/j.enganabound.2021.04.006_sbref0082
  article-title: Yeast g-proteins mediate directional sensing and polarization behaviors in response to changes in pheromone gradient direction
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e12-10-0739
– volume: 82
  start-page: 1013
  year: 1977
  ident: 10.1016/j.enganabound.2021.04.006_bib0003
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: AJ
  doi: 10.1086/112164
– volume: 337
  start-page: 216
  year: 2017
  ident: 10.1016/j.enganabound.2021.04.006_sbref0045
  article-title: A generalized transport-velocity formulation for smoothed particle hydrodynamics
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2017.02.016
– volume: 22
  start-page: 11
  year: 2019
  ident: 10.1016/j.enganabound.2021.04.006_sbref0076
  article-title: Validation data for a hybrid smoothed dissipative particle dynamics (SDPD) spatial stochastic simulation algorithm (sssa) method
  publication-title: Data Brief
  doi: 10.1016/j.dib.2018.11.103
– volume: 14
  start-page: e1005940
  issue: 1
  year: 2018
  ident: 10.1016/j.enganabound.2021.04.006_bib0081
  article-title: Mechanical feedback coordinates cell wall expansion and assembly in yeast mating morphogenesis
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005940
– volume: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.enganabound.2021.04.006_sbref0010
  article-title: Simulation of individual polymer chains and polymer solutions with smoothed dissipative particle dynamics
  publication-title: Fluids
  doi: 10.3390/fluids1010007
– volume: 191
  start-page: 448
  issue: 2
  year: 2003
  ident: 10.1016/j.enganabound.2021.04.006_bib0020
  article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics
  publication-title: J Comput Phys
  doi: 10.1016/S0021-9991(03)00324-3
– volume: 14
  start-page: e1006181
  issue: 5
  year: 2018
  ident: 10.1016/j.enganabound.2021.04.006_bib0085
  article-title: Parameter uncertainty quantification using surrogate models applied to a spatial model of yeast mating polarization
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006181
– volume: 95
  start-page: 419
  issue: 5
  year: 2013
  ident: 10.1016/j.enganabound.2021.04.006_bib0029
  article-title: A 3d fully lagrangian smoothed particle hydrodynamics model with both volume and surface discrete elements
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4514
– volume: 71
  start-page: 446
  issue: 4
  year: 2013
  ident: 10.1016/j.enganabound.2021.04.006_bib0027
  article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.3666
– volume: 4
  start-page: 389
  issue: 1
  year: 1995
  ident: 10.1016/j.enganabound.2021.04.006_bib0064
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Adv Comput Math
  doi: 10.1007/BF02123482
– volume: 71
  start-page: 446
  issue: 4
  year: 2013
  ident: 10.1016/j.enganabound.2021.04.006_bib0063
  article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.3666
– volume: 191
  start-page: 448
  issue: 2
  year: 2003
  ident: 10.1016/j.enganabound.2021.04.006_sbref0057
  article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics
  publication-title: J Comput Phys
  doi: 10.1016/S0021-9991(03)00324-3
– volume: 71
  start-page: 446
  issue: 4
  year: 2012
  ident: 10.1016/j.enganabound.2021.04.006_sbref0025
  article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.3666
– volume: 189
  start-page: 1145
  issue: 4
  year: 2011
  ident: 10.1016/j.enganabound.2021.04.006_bib0080
  article-title: Regulation of cell wall biogenesis in saccharomyces cerevisiae: the cell wall integrity signaling pathway
  publication-title: Genetics
  doi: 10.1534/genetics.111.128264
– volume: 125
  start-page: 1091
  issue: 6
  year: 2011
  ident: 10.1016/j.enganabound.2021.04.006_bib0024
  article-title: Theoretical analysis of the no-slip boundary condition enforcement in SPH methods
  publication-title: Progr Theoret Phys
  doi: 10.1143/PTP.125.1091
– volume: 4
  year: 2014
  ident: 10.1016/j.enganabound.2021.04.006_sbref0008
  article-title: Margination of micro- and nano-particles in blood flow and its effect on drug delivery
  publication-title: Nature Scient Rep
– volume: 89
  start-page: 939
  issue: 8
  year: 2012
  ident: 10.1016/j.enganabound.2021.04.006_bib0040
  article-title: A robust weakly compressible sph method and its comparison with an incompressible SPH
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.3267
– volume: 86
  start-page: 329
  year: 2019
  ident: 10.1016/j.enganabound.2021.04.006_sbref0036
  article-title: A stabilized TL-WC SPH approach with GPU acceleration for three-dimensional fluid–structure interaction
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2019.02.002
– volume: 67
  start-page: 026701
  year: 2003
  ident: 10.1016/j.enganabound.2021.04.006_sbref0070
  article-title: Numerical simulation of natural convection in a concentric annulus between a square outer cylinder and a circular inner cylinder using the taylor-series-expansion and least-squares-based lattice boltzmann method
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.67.026701
– volume: 7
  start-page: 026006
  issue: 2
  year: 2010
  ident: 10.1016/j.enganabound.2021.04.006_bib0077
  article-title: A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates
  publication-title: Phys Biol
  doi: 10.1088/1478-3975/7/2/026006
– volume: 241
  start-page: 292
  year: 2013
  ident: 10.1016/j.enganabound.2021.04.006_sbref0012
  article-title: A transport-velocity formulation for smoothed particle hydrodynamics
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2013.01.043
– volume: 256
  start-page: 132
  year: 2013
  ident: 10.1016/j.enganabound.2021.04.006_bib0015
  article-title: Variable resolution for sph: a dynamic particle coalescing and splitting scheme
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2012.12.014
– volume: 355
  start-page: 534
  year: 2018
  ident: 10.1016/j.enganabound.2021.04.006_sbref0037
  article-title: A dissipative particle dynamics method for arbitrarily complex geometries
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2017.11.014
– volume: 114
  start-page: 9529
  issue: 36
  year: 2017
  ident: 10.1016/j.enganabound.2021.04.006_sbref0089
  article-title: Size- and speed-dependent mechanical behavior in living mammalian cytoplasm
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1702488114
– volume: 180
  start-page: 861
  issue: 6
  year: 2009
  ident: 10.1016/j.enganabound.2021.04.006_sbref0060
  article-title: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2008.12.004
– volume: 34
  start-page: 35
  year: 2012
  ident: 10.1016/j.enganabound.2021.04.006_sbref0033
  article-title: Simulating 2d open-channel flows through an SPH model
  publication-title: Eur J Mech B Fluids
  doi: 10.1016/j.euromechflu.2012.02.002
– year: 2008
  ident: 10.1016/j.enganabound.2021.04.006_bib0038
– volume: 231
  start-page: 7057
  issue: 21
  year: 2012
  ident: 10.1016/j.enganabound.2021.04.006_sbref0022
  article-title: A generalized wall boundary condition for smoothed particle hydrodynamics
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2012.05.005
– volume: 190
  start-page: 6641
  issue: 49
  year: 2001
  ident: 10.1016/j.enganabound.2021.04.006_sbref0056
  article-title: SPH elastic dynamics
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(01)00254-7
– volume: 112
  start-page: 5045
  issue: 16
  year: 2015
  ident: 10.1016/j.enganabound.2021.04.006_sbref0088
  article-title: Balance between cell-substrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1417257112
– volume: 198
  start-page: 3400
  issue: 41–44
  year: 2009
  ident: 10.1016/j.enganabound.2021.04.006_bib0028
  article-title: A consistent reflected image particle approach to the treatment of boundary conditions in smoothed particle hydrodynamics
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2009.06.014
– volume: 273
  start-page: 640
  year: 2014
  ident: 10.1016/j.enganabound.2021.04.006_bib0016
  article-title: Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2014.05.040
– volume: 19
  start-page: 545
  issue: 5
  year: 1976
  ident: 10.1016/j.enganabound.2021.04.006_sbref0067
  article-title: The validity of the boussinesq approximation for liquids and gases
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(76)90168-X
– volume: 94
  start-page: 023304
  year: 2016
  ident: 10.1016/j.enganabound.2021.04.006_bib0009
  article-title: Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.94.023304
– volume: 3
  start-page: 167
  issue: 2
  year: 2016
  ident: 10.1016/j.enganabound.2021.04.006_bib0005
  article-title: Three-dimensional simulations of dilute and concentrated suspensions using smoothed particle hydrodynamics
  publication-title: Comput Part Mech
  doi: 10.1007/s40571-015-0072-5
– volume: 35
  start-page: 471
  issue: 4
  year: 2015
  ident: 10.1016/j.enganabound.2021.04.006_bib0083
  article-title: Role of Polarized G protein signaling in tracking pheromone gradients
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2015.10.024
– volume: 84
  start-page: 263
  year: 2019
  ident: 10.1016/j.enganabound.2021.04.006_bib0093
  article-title: Eulerian weakly compressible smoothed particle hydrodynamics (sph) with the immersed boundary method for thin slender bodies
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2018.11.005
– volume: 234
  start-page: 72
  year: 2019
  ident: 10.1016/j.enganabound.2021.04.006_bib0091
  article-title: An optimal particle setup method with Centroidal Voronoi Particle dynamics
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2018.08.002
– volume: 180
  start-page: 1811
  issue: 10
  year: 2009
  ident: 10.1016/j.enganabound.2021.04.006_sbref0023
  article-title: SPH Particle boundary forces for arbitrary boundaries
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2009.05.008
– volume: 42
  start-page: 1801
  issue: 10
  year: 1999
  ident: 10.1016/j.enganabound.2021.04.006_sbref0074
  article-title: Natural convection from a horizontal cylinder in a rectangular cavity
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/S0017-9310(98)00266-X
– volume: 18
  start-page: 2565
  year: 2013
  ident: 10.1016/j.enganabound.2021.04.006_sbref0007
  article-title: Multiscale modeling of blood flow: coupling finite elements with smoothed dissipative particle dynamics
  publication-title: Proced Comput Sci
  doi: 10.1016/j.procs.2013.05.442
– volume: 301
  start-page: 394
  year: 2015
  ident: 10.1016/j.enganabound.2021.04.006_sbref0046
  article-title: Towards consistence and convergence of conservative SPH approximations
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2015.08.041
– volume: 44
  start-page: 199
  year: 2013
  ident: 10.1016/j.enganabound.2021.04.006_sbref0073
  article-title: Natural convection experiments on a heated horizontal cylinder in a differentially heated square cavity
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2012.06.009
– volume: 14
  issue: 6
  year: 2018
  ident: 10.1016/j.enganabound.2021.04.006_sbref0086
  article-title: The effect of cell geometry on polarization in budding yeast
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006241
– volume: 227
  start-page: 8636
  issue: 19
  year: 2008
  ident: 10.1016/j.enganabound.2021.04.006_sbref0014
  article-title: An immersed boundary method for smoothed particle hydrodynamics of self-propelled swimmers
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2008.06.017
– volume: 201
  start-page: 43
  year: 2016
  ident: 10.1016/j.enganabound.2021.04.006_sbref0013
  article-title: An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2015.12.016
– volume: 232
  start-page: 139
  year: 2018
  ident: 10.1016/j.enganabound.2021.04.006_sbref0035
  article-title: An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2018.05.012
– volume: 24
  start-page: 012002
  issue: 1
  year: 2012
  ident: 10.1016/j.enganabound.2021.04.006_bib0004
  article-title: Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics
  publication-title: Phys Fluids
  doi: 10.1063/1.3676244
– volume: 417
  start-page: 136
  issue: 1
  year: 2011
  ident: 10.1016/j.enganabound.2021.04.006_bib0051
  article-title: Hydrodynamic simulations with the godunov smoothed particle hydrodynamics
  publication-title: Mon Not R Astron Soc
  doi: 10.1111/j.1365-2966.2011.19021.x
– volume: 346
  start-page: 1156
  year: 2019
  ident: 10.1016/j.enganabound.2021.04.006_bib0018
  article-title: A new multi-resolution parallel framework for SPH
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.09.043
– volume: 30
  start-page: 543
  issue: 1
  year: 1992
  ident: 10.1016/j.enganabound.2021.04.006_bib0049
  article-title: Smoothed particle hydrodynamics
  publication-title: Annu Rev Astron Astrophys
  doi: 10.1146/annurev.aa.30.090192.002551
– year: 2008
  ident: 10.1016/j.enganabound.2021.04.006_bib0039
  article-title: Moving boundary problems in the finite volume particle method
– volume: 9
  issue: 7
  year: 2013
  ident: 10.1016/j.enganabound.2021.04.006_sbref0087
  article-title: Spatial stochastic dynamics enable robust cell polarization
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003139
– volume: 159
  start-page: 290
  issue: 2
  year: 2000
  ident: 10.1016/j.enganabound.2021.04.006_sbref0044
  article-title: SPH Without a tensile instability
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2000.6439
– volume: 81
  start-page: 061906
  issue: 6
  year: 2010
  ident: 10.1016/j.enganabound.2021.04.006_bib0078
  article-title: Particle-based model to simulate the micromechanics of biological cells
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.81.061906
– volume: 11
  start-page: 479
  year: 2002
  ident: 10.1016/j.enganabound.2021.04.006_bib0034
  article-title: The immersed boundary method
  publication-title: Acta Numerica
  doi: 10.1017/S0962492902000077
– start-page: 517
  year: 1968
  ident: 10.1016/j.enganabound.2021.04.006_bib0059
  article-title: A two-dimensional interpolation function for irregularly-spaced data
– volume: 181
  start-page: 375
  year: 1977
  ident: 10.1016/j.enganabound.2021.04.006_bib0002
  article-title: Smoothed particle hydrodynamics - Theory and application to non-spherical stars
  publication-title: MNRAS
  doi: 10.1093/mnras/181.3.375
– volume: 231
  start-page: 1499
  issue: 4
  year: 2012
  ident: 10.1016/j.enganabound.2021.04.006_sbref0041
  article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2011.10.027
– volume: 26
  start-page: 787
  issue: 7
  year: 2003
  ident: 10.1016/j.enganabound.2021.04.006_sbref0053
  article-title: Incompressible SPH method for simulating newtonian and non-newtonian flows with a free surface
  publication-title: Adv Water Resour
  doi: 10.1016/S0309-1708(03)00030-7
– volume: 332
  start-page: 236
  year: 2017
  ident: 10.1016/j.enganabound.2021.04.006_bib0042
  article-title: Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2016.12.005
– volume: 48
  start-page: 387
  issue: 3
  year: 1982
  ident: 10.1016/j.enganabound.2021.04.006_sbref0066
  article-title: High-re solutions for incompressible flow using the navier-stokes equations and a multigrid method
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(82)90058-4
– volume: 183
  start-page: 1641
  issue: 8
  year: 2012
  ident: 10.1016/j.enganabound.2021.04.006_bib0026
  article-title: Particle packing algorithm for SPH schemes
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2012.02.032
– volume: 226
  start-page: 1731
  issue: 2
  year: 2007
  ident: 10.1016/j.enganabound.2021.04.006_sbref0054
  article-title: Incompressible smoothed particle hydrodynamics
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2007.06.019
– volume: 17
  start-page: 25
  issue: 1
  year: 2010
  ident: 10.1016/j.enganabound.2021.04.006_bib0001
  article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-010-9040-7
– start-page: 110028
  year: 2020
  ident: 10.1016/j.enganabound.2021.04.006_bib0019
  article-title: A multi-resolution SPH method for fluid-structure interactions
  publication-title: J Comput Phys
– volume: 95
  start-page: 063314
  year: 2017
  ident: 10.1016/j.enganabound.2021.04.006_bib0011
  article-title: Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.95.063314
– volume: 84
  start-page: 026705
  issue: 2
  year: 2011
  ident: 10.1016/j.enganabound.2021.04.006_bib0030
  article-title: Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.84.026705
– volume: 179
  start-page: 238
  issue: 1
  year: 2002
  ident: 10.1016/j.enganabound.2021.04.006_bib0050
  article-title: Reformulation of smoothed particle hydrodynamics with Riemann solver
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2002.7053
– volume: 20
  start-page: 4985
  issue: 23
  year: 2009
  ident: 10.1016/j.enganabound.2021.04.006_bib0090
  article-title: The exomer coat complex transports fus1p to the plasma membrane via a novel plasma membrane sorting signal in yeast
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e09-04-0324
– volume: 179
  start-page: 563
  year: 2019
  ident: 10.1016/j.enganabound.2021.04.006_bib0092
  article-title: Flexible slender body fluid interaction: vector-based discrete element method with Eulerian smoothed particle hydrodynamics
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2018.11.024
– volume: 149
  start-page: 135
  year: 1985
  ident: 10.1016/j.enganabound.2021.04.006_bib0048
  article-title: A refined method for astrophysical problems
  publication-title: Astron Astrophys
– volume: 270
  start-page: 432
  year: 2014
  ident: 10.1016/j.enganabound.2021.04.006_bib0052
  article-title: Approximate Riemann solvers for the Godunov SPH (GSPH)
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2014.03.055
– volume: 291
  start-page: 7788
  issue: 15
  year: 2016
  ident: 10.1016/j.enganabound.2021.04.006_sbref0079
  article-title: Heterotrimeric G protein-coupled receptor signaling in yeast mating pheromone response
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R116.714980
– volume: 5
  year: 1980
  ident: 10.1016/j.enganabound.2021.04.006_bib0061
  article-title: Landau and lifshitz course of theoretical physics
  publication-title: Statist Phys
– volume: 300
  start-page: 5
  year: 2015
  ident: 10.1016/j.enganabound.2021.04.006_sbref0032
  article-title: A study of solid wall models for weakly compressible SPH
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2015.07.033
– volume: 142
  start-page: 194504
  issue: 19
  year: 2015
  ident: 10.1016/j.enganabound.2021.04.006_bib0006
  article-title: Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics
  publication-title: J Chem Phys
  doi: 10.1063/1.4921222
– volume: 130
  start-page: 034901
  issue: 3
  year: 2009
  ident: 10.1016/j.enganabound.2021.04.006_bib0055
  article-title: Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics
  publication-title: J Chem Phys
  doi: 10.1063/1.3050100
– volume: 51
  start-page: 553
  issue: 3
  year: 2008
  ident: 10.1016/j.enganabound.2021.04.006_sbref0071
  article-title: Numerical predictions for stable buoyant regimes within a square cavity containing a heated horizontal cylinder
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2007.05.007
– volume: 224
  start-page: 63
  year: 2018
  ident: 10.1016/j.enganabound.2021.04.006_sbref0058
  article-title: Multi-resolution delta-plus-SPH with tensile instability control: Towards high reynolds number flows
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2017.11.016
– volume: 41
  start-page: 115
  issue: 1
  year: 1981
  ident: 10.1016/j.enganabound.2021.04.006_sbref0075
  article-title: Approximation of radiation boundary conditions
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(81)90082-6
– volume: 72
  start-page: 295
  issue: 3
  year: 2007
  ident: 10.1016/j.enganabound.2021.04.006_bib0021
  article-title: Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2010
– volume: 313
  start-page: 76
  year: 2016
  ident: 10.1016/j.enganabound.2021.04.006_sbref0043
  article-title: SPH Accuracy improvement through the combination of a quasi-lagrangian shifting transport velocity and consistent ale formalisms
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2016.02.039
SSID ssj0013006
Score 2.3721054
Snippet We present a new weakly-compressible smoothed particle hydrodynamics (SPH) method capable of modeling non-slip fixed and moving wall boundary conditions. The...
SourceID pubmedcentral
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 274
SubjectTerms Boundary condition
Deforming boundaries
Smoothed particle hydrodynamics
Solid wall model
Transport-velocity
Title An arbitrary Lagrangian Eulerian smoothed particle hydrodynamics (ALE-SPH) method with a boundary volume fraction formulation for fluid-structure interaction
URI https://dx.doi.org/10.1016/j.enganabound.2021.04.006
https://www.proquest.com/docview/2533315075
https://pubmed.ncbi.nlm.nih.gov/PMC8143034
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqIiE4IJ4iPCpX4gAHk13b692VuERVqkBKhSgVvVl-bbooOFHSHLjwT_iveNbeNpE4VOK0L3vl3RnPfLJnvkHoTVMKZ3MdJlKTC8IddUTnjSOqzpXOalUbA-sdn0_F5Jx_uigu9tBRnwsDYZXJ9keb3lnrdGeY_uZw2bbDMyBPKyHvE5aoA8qBDHZegpa__53f7CRkXX1NaEyg9V10eBPj5fxMeYgA9kAaSvOO9RSKH_3bR21h0N0Iyi2XdPwQPUhYEo_icB-hPecfo_tbDINP0J-Rx2ql2y65Hp-oWXBNs6AReLyZg-55vP65gCQsi5fps_HlLxusaqxUv8ZvRydjcvZl8g7HYtMYVm6xwt3nwEujfcPNKqZIYEDBqSYYnONmvmktiTy1m5XDQFCR2j5F58fjb0cTkioyEMNFdkXqWomKaesodaZ0RaFtQEwBY2hX8UYwK2pLC2urpjYiIDlLc6EV1ZXJVW6sYs_Qvl949xxhrVgBTD2ZcZSXplBMNYwB313GdaHUAFW9DKRJdOVQNWMu-7i0H3JLfBLEJzMug_gGiF53XUbOjtt0-tALWu4ooAy-5TbdD3vlkGGCwq6L8m6xWUsaADUD2F0MULmjNdeDA4rv3Se-veyovqsAZzPGX_zf4F6ie3AVo4xfof0gcfc6YKkrfdBNlgN0Z_RxOjmF4_Tr9-lfe9ApIw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgE9IJ4i5bWVQIKDib1evyQ4RJAqpWmF1FbqbdmXU6N0EyWNUC78E34Ff5AZe90mEodKqDfL9q7WO7Mzn3dnviHkTZml1kQKFlIZpQG3zAYqKm0gi0iqsJCF1rjfcXCYDk7419PkdIP8aXNhMKzS2_7GptfW2t_p-tnsTquqe4TkaRnmfeIWNaAcH1m5b5c_4b9t_mnvCwj5LWO7_ePPg8CXFgg0T8OLoChkmsfKWMaszmySKAOuH5ylsjkv09ikhWGJMXlZ6BQgiWFRqiRTuY5kpI2Mod9b5DYHc4FlEz78iq6OLsK6oCeOLsDh3SE7V0Fl1o2kw5BjhyylLKppVrHa0r-d4groXQ_ZXPGBuw_IfQ9eaa-Zn4dkw7pHZGuF0vAx-d1zVM5UVWfz06EcgS8cgQrS_mKMyu7o_HyCWV-GTv0807OlATO-dPK80nP6rjfsB0ffBu9pU92a4lYxlbT-HOy0Mai0nDU5GRRhty9Chte0HC8qEzTEuIuZpciI4d99Qk5uRE5PyaabOPuMUCXjBKmBQm0Zz3QiY1nGMRLshVwlUnZI3spAaM-PjmU6xqINhPshVsQnUHwi5ALE1yHssum0IQm5TqOPraDFmsYLcGbXab7TKocAi4DHPNLZyWIuGCD4GHF-0iHZmtZcDg45xdefuOqs5hbPAT-HMd_-v8G9JncHxwdDMdw73H9O7uGTJsT5BdkE6duXAOQu1Kt64VDy_aZX6l9wIWQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+arbitrary+Lagrangian+Eulerian+smoothed+particle+hydrodynamics+%28ALE-SPH%29+method+with+a+boundary+volume+fraction+formulation+for+fluid-structure+interaction&rft.jtitle=Engineering+analysis+with+boundary+elements&rft.au=Jacob%2C+Bruno&rft.au=Drawert%2C+Brian&rft.au=Yi%2C+Tau-Mu&rft.au=Petzold%2C+Linda&rft.date=2021-07-01&rft.issn=0955-7997&rft.volume=128&rft.spage=274&rft.epage=289&rft_id=info:doi/10.1016%2Fj.enganabound.2021.04.006&rft_id=info%3Apmid%2F34040286&rft.externalDocID=PMC8143034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-7997&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-7997&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-7997&client=summon