An arbitrary Lagrangian Eulerian smoothed particle hydrodynamics (ALE-SPH) method with a boundary volume fraction formulation for fluid-structure interaction
We present a new weakly-compressible smoothed particle hydrodynamics (SPH) method capable of modeling non-slip fixed and moving wall boundary conditions. The formulation combines a boundary volume fraction (BVF) wall approach with the transport-velocity SPH method. The resulting method, named SPH-BV...
Saved in:
Published in | Engineering analysis with boundary elements Vol. 128; pp. 274 - 289 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a new weakly-compressible smoothed particle hydrodynamics (SPH) method capable of modeling non-slip fixed and moving wall boundary conditions. The formulation combines a boundary volume fraction (BVF) wall approach with the transport-velocity SPH method. The resulting method, named SPH-BVF, offers detection of arbitrarily shaped solid walls on-the-fly, with small computational overhead due to its local formulation. This simple framework is capable of solving problems that are difficult or infeasible for standard SPH, namely flows subject to large shear stresses or at moderate Reynolds numbers, and mass transfer in deformable boundaries. In addition, the method extends the transport-velocity formulation to reaction-diffusion transport of mass in Newtonian fluids and linear elastic solids, which is common in biological structures. Taken together, the SPH-BVF method provides a good balance of simplicity and versatility, while avoiding some of the standard obstacles associated with SPH: particle penetration at the boundaries, tension instabilities and anisotropic particle alignments, that hamper SPH from being applied to complex problems such as fluid-structure interaction in a biological system. |
---|---|
AbstractList | We present a new weakly-compressible smoothed particle hydrodynamics (SPH) method capable of modeling non-slip fixed and moving wall boundary conditions. The formulation combines a boundary volume fraction (BVF) wall approach with the transport-velocity SPH method. The resulting method, named SPH-BVF, offers detection of arbitrarily shaped solid walls on-the-fly, with small computational overhead due to its local formulation. This simple framework is capable of solving problems that are difficult or infeasible for standard SPH, namely flows subject to large shear stresses or at moderate Reynolds numbers, and mass transfer in deformable boundaries. In addition, the method extends the transport-velocity formulation to reaction-diffusion transport of mass in Newtonian fluids and linear elastic solids, which is common in biological structures. Taken together, the SPH-BVF method provides a good balance of simplicity and versatility, while avoiding some of the standard obstacles associated with SPH: particle penetration at the boundaries, tension instabilities and anisotropic particle alignments, that hamper SPH from being applied to complex problems such as fluid-structure interaction in a biological system. We present a new weakly-compressible smoothed particle hydrodynamics (SPH) method capable of modeling non-slip fixed and moving wall boundary conditions. The formulation combines a boundary volume fraction (BVF) wall approach with the transport-velocity SPH method. The resulting method, named SPH-BVF, offers detection of arbitrarily shaped solid walls on-the-fly, with small computational overhead due to its local formulation. This simple framework is capable of solving problems that are difficult or infeasible for standard SPH, namely flows subject to large shear stresses or at moderate Reynolds numbers, and mass transfer in deformable boundaries. In addition, the method extends the transport-velocity formulation to reaction-diffusion transport of mass in Newtonian fluids and linear elastic solids, which is common in biological structures. Taken together, the SPH-BVF method provides a good balance of simplicity and versatility, while avoiding some of the standard obstacles associated with SPH: particle penetration at the boundaries, tension instabilities and anisotropic particle alignments, that hamper SPH from being applied to complex problems such as fluid-structure interaction in a biological system.We present a new weakly-compressible smoothed particle hydrodynamics (SPH) method capable of modeling non-slip fixed and moving wall boundary conditions. The formulation combines a boundary volume fraction (BVF) wall approach with the transport-velocity SPH method. The resulting method, named SPH-BVF, offers detection of arbitrarily shaped solid walls on-the-fly, with small computational overhead due to its local formulation. This simple framework is capable of solving problems that are difficult or infeasible for standard SPH, namely flows subject to large shear stresses or at moderate Reynolds numbers, and mass transfer in deformable boundaries. In addition, the method extends the transport-velocity formulation to reaction-diffusion transport of mass in Newtonian fluids and linear elastic solids, which is common in biological structures. Taken together, the SPH-BVF method provides a good balance of simplicity and versatility, while avoiding some of the standard obstacles associated with SPH: particle penetration at the boundaries, tension instabilities and anisotropic particle alignments, that hamper SPH from being applied to complex problems such as fluid-structure interaction in a biological system. |
Author | Petzold, Linda Yi, Tau-Mu Drawert, Brian Jacob, Bruno |
AuthorAffiliation | d Department of Computer Science, University of California-Santa Barbara, Santa Barbara, California, 93106, USA a Department of Mechanical Engineering, University of California-Santa Barbara, Santa Barbara, California, 93106, USA b Department of Computer Science, University of North Carolina at Asheville, Asheville, North Carolina, 28804, USA c Department of Molecular, Cellular, and Developmental Biology, University of California-Santa Barbara, Santa Barbara, California 93106, USA |
AuthorAffiliation_xml | – name: c Department of Molecular, Cellular, and Developmental Biology, University of California-Santa Barbara, Santa Barbara, California 93106, USA – name: a Department of Mechanical Engineering, University of California-Santa Barbara, Santa Barbara, California, 93106, USA – name: d Department of Computer Science, University of California-Santa Barbara, Santa Barbara, California, 93106, USA – name: b Department of Computer Science, University of North Carolina at Asheville, Asheville, North Carolina, 28804, USA |
Author_xml | – sequence: 1 givenname: Bruno surname: Jacob fullname: Jacob, Bruno email: bruno@engineering.ucsb.edu organization: Department of Mechanical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106, USA – sequence: 2 givenname: Brian surname: Drawert fullname: Drawert, Brian email: bdrawert@unca.edu organization: Department of Computer Science, University of North Carolina at Asheville, Asheville, North Carolina 28804, USA – sequence: 3 givenname: Tau-Mu surname: Yi fullname: Yi, Tau-Mu organization: Department of Molecular, Cellular, and Developmental Biology, University of California-Santa Barbara, Santa Barbara, California 93106, USA – sequence: 4 givenname: Linda surname: Petzold fullname: Petzold, Linda organization: Department of Mechanical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106, USA |
BookMark | eNqNkcuOEzEQRS00iMkM_IPZDYtu_OjnBhRFgUGKBBIgsbPcdnXaUbcd_AjKx_CvdCYBAatZuSTfOlV17w26ss4CQi8pySmh1etdDnYrrexcsjpnhNGcFDkh1RO0oE3NM9rW367QgrRlmdVtW1-jmxB2hFA-i56ha16QgrCmWqCfS4ul70z00h_xRm69tFsjLV6nEfypCJNzcQCN99JHo0bAw1F7p49WTkYFfLfcrLPPn-5f4Qni4DT-YeKAJX5Y7gQ9uDFNgHsvVTTO4t75KY3yd437MRmdheiTiskDNjbCRfscPe3lGODF5b1FX9-tv6zus83H9x9Wy02miorErG1l1fBOA2OgaijLTpcVaRjroCn6iuuq1azUuulbVVHKNKNVJ1nXKCqp0pLfojdn7j51E2gFdvZjFHtvpvkC4aQR__5YM4itO4iGFpzwYgbcXQDefU8QophMUDCO0oJLQbCSc05LUpeztD1LlXcheOj_jKFEnOIVO_FXvOIUryCFmJObe9_-16tMfHBy3sqMjyKszgSY7TwY8CIoA1aBNh5UFNqZR1B-Abkd0CY |
CitedBy_id | crossref_primary_10_1038_s41598_023_31656_y crossref_primary_10_1080_19942060_2023_2229394 crossref_primary_10_3390_fluids8050137 crossref_primary_10_1016_j_cma_2022_115356 crossref_primary_10_1016_j_apor_2021_102822 crossref_primary_10_1016_j_heliyon_2022_e11818 crossref_primary_10_3390_app13010348 crossref_primary_10_1016_j_euromechflu_2023_04_005 crossref_primary_10_1016_j_csite_2024_104019 crossref_primary_10_1016_j_jcp_2022_111762 crossref_primary_10_1007_s40571_023_00673_z crossref_primary_10_3390_pr10081569 crossref_primary_10_1016_j_compgeo_2024_106700 crossref_primary_10_3390_biology12071026 |
Cites_doi | 10.1016/j.cma.2015.11.021 10.1002/fld.226 10.1006/jcph.1995.1039 10.2514/3.820 10.1091/mbc.e15-03-0176 10.1006/jcph.1997.5776 10.1091/mbc.e12-10-0739 10.1086/112164 10.1016/j.jcp.2017.02.016 10.1016/j.dib.2018.11.103 10.1371/journal.pcbi.1005940 10.3390/fluids1010007 10.1016/S0021-9991(03)00324-3 10.1371/journal.pcbi.1006181 10.1002/nme.4514 10.1002/fld.3666 10.1007/BF02123482 10.1534/genetics.111.128264 10.1143/PTP.125.1091 10.1002/nme.3267 10.1016/j.jfluidstructs.2019.02.002 10.1103/PhysRevE.67.026701 10.1088/1478-3975/7/2/026006 10.1016/j.jcp.2013.01.043 10.1016/j.cma.2012.12.014 10.1016/j.jcp.2017.11.014 10.1073/pnas.1702488114 10.1016/j.cpc.2008.12.004 10.1016/j.euromechflu.2012.02.002 10.1016/j.jcp.2012.05.005 10.1016/S0045-7825(01)00254-7 10.1073/pnas.1417257112 10.1016/j.cma.2009.06.014 10.1016/j.jcp.2014.05.040 10.1016/0017-9310(76)90168-X 10.1103/PhysRevE.94.023304 10.1007/s40571-015-0072-5 10.1016/j.devcel.2015.10.024 10.1016/j.jfluidstructs.2018.11.005 10.1016/j.cpc.2018.08.002 10.1016/j.cpc.2009.05.008 10.1016/S0017-9310(98)00266-X 10.1016/j.procs.2013.05.442 10.1016/j.jcp.2015.08.041 10.1016/j.expthermflusci.2012.06.009 10.1371/journal.pcbi.1006241 10.1016/j.jcp.2008.06.017 10.1016/j.cpc.2015.12.016 10.1016/j.cpc.2018.05.012 10.1063/1.3676244 10.1111/j.1365-2966.2011.19021.x 10.1016/j.cma.2018.09.043 10.1146/annurev.aa.30.090192.002551 10.1371/journal.pcbi.1003139 10.1006/jcph.2000.6439 10.1103/PhysRevE.81.061906 10.1017/S0962492902000077 10.1093/mnras/181.3.375 10.1016/j.jcp.2011.10.027 10.1016/S0309-1708(03)00030-7 10.1016/j.jcp.2016.12.005 10.1016/0021-9991(82)90058-4 10.1016/j.cpc.2012.02.032 10.1016/j.jcp.2007.06.019 10.1007/s11831-010-9040-7 10.1103/PhysRevE.95.063314 10.1103/PhysRevE.84.026705 10.1006/jcph.2002.7053 10.1091/mbc.e09-04-0324 10.1016/j.compfluid.2018.11.024 10.1016/j.jcp.2014.03.055 10.1074/jbc.R116.714980 10.1016/j.jcp.2015.07.033 10.1063/1.4921222 10.1063/1.3050100 10.1016/j.ijheatmasstransfer.2007.05.007 10.1016/j.cpc.2017.11.016 10.1016/0021-9991(81)90082-6 10.1002/nme.2010 10.1016/j.jcp.2016.02.039 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION 7X8 5PM |
DOI | 10.1016/j.enganabound.2021.04.006 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-197X |
EndPage | 289 |
ExternalDocumentID | PMC8143034 10_1016_j_enganabound_2021_04_006 S0955799721000916 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 XPP ZMT ~G- 29G AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SET SEW UHS VH1 WUQ 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c460t-99a683bde22ec7e55bd560822be84f63d69d25dd8f9c6112d216ba2b8c1a1cda3 |
IEDL.DBID | .~1 |
ISSN | 0955-7997 |
IngestDate | Thu Aug 21 13:53:58 EDT 2025 Fri Jul 11 01:04:56 EDT 2025 Tue Jul 01 02:31:52 EDT 2025 Thu Apr 24 22:53:26 EDT 2025 Fri Feb 23 02:46:27 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Solid wall model Deforming boundaries Smoothed particle hydrodynamics Boundary condition Transport-velocity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-99a683bde22ec7e55bd560822be84f63d69d25dd8f9c6112d216ba2b8c1a1cda3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8143034 |
PMID | 34040286 |
PQID | 2533315075 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8143034 proquest_miscellaneous_2533315075 crossref_primary_10_1016_j_enganabound_2021_04_006 crossref_citationtrail_10_1016_j_enganabound_2021_04_006 elsevier_sciencedirect_doi_10_1016_j_enganabound_2021_04_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Engineering analysis with boundary elements |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Federico, Marrone, Colagrossi, Aristodemo, Antuono (bib0033) 2012; 34 Morris, Fox, Zhu (bib0047) 1997; 136 Lind, Xu, Stansby, Rogers (bib0041) 2012; 231 Amicarelli, Agate, Guandalini (bib0029) 2013; 95 Lawson, Drawert, Khammash, Petzold, Yi (bib0087) 2013; 9 Zhan, Peng, Zhang, Wu (bib0036) 2019; 86 Macia, Antuono, González, Colagrossi (bib0024) 2011; 125 Angeli, Levoni, Barozzi (bib0071) 2008; 51 Gray, Monaghan, Swift (bib0056) 2001; 190 Zhang, Rezavand, Hu (bib0019) 2020 McClure, Minakova, Dyer, Zyla, Elston, Lew (bib0083) 2015; 35 Colagrossi, Bouscasse, Antuono, Marrone (bib0026) 2012; 183 Hieber, Koumoutsakos (bib0014) 2008; 227 Ferrand, Laurence, Rogers, Violeau, Kassiotis (bib0027) 2013; 71 Liu, Liu (bib0001) 2010; 17 Lei, Mundy, Schenter, Voulgarakis (bib0006) 2015; 142 Barnhart, Lee, Allen, Theriot, Mogilner (bib0088) 2015; 112 Monaghan (bib0044) 2000; 159 Plimpton (bib0062) 1995; 117 Ghia, Ghia, Shin (bib0066) 1982; 48 Alvaro, Thorner (bib0079) 2016; 291 Colagrossi, Antuono, Souto-Iglesias, Le Touzé (bib0030) 2011; 84 Errede, Vered, Ford, Pena, Elston (bib0084) 2015; 26 Colagrossi, Landrini (bib0057) 2003; 191 Litvinov, Xie, Hu, Adams, Ellero (bib0010) 2016; 1 Lei, Baker, Wu, Schenter, Mundy, Tartakovsky (bib0009) 2016; 94 Fu, Ji (bib0091) 2019; 234 Peskin (bib0034) 2002; 11 Monaghan (bib0049) 1992; 30 Nasar, Rogers, Revell, Stansby, Lind (bib0093) 2019; 84 Moukalled, Acharya (bib0068) 1996; 10 . Shao, Lo (bib0053) 2003; 26 Sun, Colagrossi, Marrone, Antuono, Zhang (bib0058) 2018; 224 Khayyer, Gotoh, Falahaty, Shimizu (bib0035) 2018; 232 Butler, Newport, Geron (bib0073) 2013; 44 Khayyer, Gotoh, Shimizu (bib0042) 2017; 332 Wendland (bib0064) 1995; 4 Shadloo, Zainali, Yildiz, Suleman (bib0040) 2012; 89 Colagrossi, Landrini (bib0020) 2003; 191 Shu, Zhu (bib0069) 2002; 38 Shepard (bib0059) 1968 Vázquez-Quesada, Ellero, Español (bib0055) 2009; 130 Vázquez-Quesada, Bian, Ellero (bib0005) 2016; 3 Barcarolo, Le Touzé, Oger, De Vuyst (bib0016) 2014; 273 Müller, Fedosov, Gompper (bib0008) 2014; 4 Vacondio, Rogers, Stansby, Mignosa, Feldman (bib0015) 2013; 256 Monaghan, Kajtar (bib0023) 2009; 180 Lucy (bib0003) 1977; 82 Feldman, Bonet (bib0021) 2007; 72 De, Dalal (bib0072) 2006; 49 Adami, Hu, Adams (bib0022) 2012; 231 Renardy, Yi, Xiu, Chou (bib0085) 2018; 14 Irgens (bib0038) 2008 Monaghan, Lattanzio (bib0048) 1985; 149 Xu, Deng (bib0013) 2016; 201 Gingold, Monaghan (bib0002) 1977; 181 Moore, Tanaka, Kim, Jeon, Yi (bib0082) 2013; 24 Nasar, Rogers, Revell, Stansby (bib0092) 2019; 179 Lifshitz, Pitaevskii, Berestetskii (bib0061) 1980; 5 Molteni, Colagrossi (bib0060) 2009; 180 Valizadeh, Monaghan (bib0032) 2015; 300 Van Liedekerke, Tijskens, Ramon, Ghysels, Samaey, Roose (bib0078) 2010; 81 Adami, Hu, Adams (bib0012) 2013; 241 Gray, Giorgini (bib0067) 1976; 19 Oger, Marrone, Touzé, de Leffe (bib0043) 2016; 313 Levin (bib0080) 2011; 189 Banavar, Gomez, Trogdon, Petzold, Yi, Campàs (bib0081) 2018; 14 Ferrand, Laurence, Rogers, Violeau, Kassiotis (bib0063) 2013; 71 Van Liedekerke, Ghysels, Tijskens, Samaey, Smeedts, Roose, Ramon (bib0077) 2010; 7 Hu, Jafari, Han, Grodzinsky, Cai, Guo (bib0089) 2017; 114 Moreno, Vignal, Li, Calo (bib0007) 2013; 18 Zhang, Hu, Adams (bib0045) 2017; 337 Ji, Fu, Hu, Adams (bib0018) 2019; 346 Spheric-SPH grand challenges. 2020. Vacondio, Rogers, Stansby, Mignosa (bib0017) 2016; 300 Litvinov, Hu, Adams (bib0046) 2015; 301 Inutsuka (bib0050) 2002; 179 Li, Bian, Tang, Karniadakis (bib0037) 2018; 355 Ferziger, Perić (bib0065) 2002; vol. 3 Ellero, Serrano, Español (bib0054) 2007; 226 Bian, Litvinov, Qian, Ellero, Adams (bib0004) 2012; 24 Nestor, Basa, Quinlan (bib0039) 2008 Puri, Ramachandran (bib0052) 2014; 270 Ferrand, Laurence, Rogers, Violeau, Kassiotis (bib0025) 2012; 71 Bierbrauer, Bollada, Phillips (bib0028) 2009; 198 Murante, Borgani, Brunino, Cha (bib0051) 2011; 417 Cesini, Paroncini, Cortella, Manzan (bib0074) 1999; 42 Israeli, Orszag (bib0075) 1981; 41 Drawert, Jacob, Li, Yi, Petzold (bib0076) 2019; 22 Ye, Phan-Thien, Lim, Peng, Shi (bib0011) 2017; 95 Barfield, Fromme, Schekman (bib0090) 2009; 20 Peng, Chew, Shu (bib0070) 2003; 67 Trogdon, Drawert, Gomez, Banavar, Yi, Campàs, Petzold (bib0086) 2018; 14 Nestor (10.1016/j.enganabound.2021.04.006_bib0039) 2008 Hieber (10.1016/j.enganabound.2021.04.006_sbref0014) 2008; 227 Lucy (10.1016/j.enganabound.2021.04.006_bib0003) 1977; 82 Monaghan (10.1016/j.enganabound.2021.04.006_sbref0023) 2009; 180 Oger (10.1016/j.enganabound.2021.04.006_sbref0043) 2016; 313 Monaghan (10.1016/j.enganabound.2021.04.006_bib0048) 1985; 149 Lawson (10.1016/j.enganabound.2021.04.006_sbref0087) 2013; 9 Morris (10.1016/j.enganabound.2021.04.006_sbref0047) 1997; 136 Lifshitz (10.1016/j.enganabound.2021.04.006_bib0061) 1980; 5 Adami (10.1016/j.enganabound.2021.04.006_sbref0022) 2012; 231 Barcarolo (10.1016/j.enganabound.2021.04.006_bib0016) 2014; 273 Ji (10.1016/j.enganabound.2021.04.006_bib0018) 2019; 346 Adami (10.1016/j.enganabound.2021.04.006_sbref0012) 2013; 241 Banavar (10.1016/j.enganabound.2021.04.006_bib0081) 2018; 14 Renardy (10.1016/j.enganabound.2021.04.006_bib0085) 2018; 14 Amicarelli (10.1016/j.enganabound.2021.04.006_bib0029) 2013; 95 Vázquez-Quesada (10.1016/j.enganabound.2021.04.006_bib0055) 2009; 130 Errede (10.1016/j.enganabound.2021.04.006_bib0084) 2015; 26 Colagrossi (10.1016/j.enganabound.2021.04.006_bib0026) 2012; 183 Gray (10.1016/j.enganabound.2021.04.006_sbref0067) 1976; 19 Barnhart (10.1016/j.enganabound.2021.04.006_sbref0088) 2015; 112 Bian (10.1016/j.enganabound.2021.04.006_bib0004) 2012; 24 Monaghan (10.1016/j.enganabound.2021.04.006_bib0049) 1992; 30 Trogdon (10.1016/j.enganabound.2021.04.006_sbref0086) 2018; 14 Sun (10.1016/j.enganabound.2021.04.006_sbref0058) 2018; 224 Angeli (10.1016/j.enganabound.2021.04.006_sbref0071) 2008; 51 Ferrand (10.1016/j.enganabound.2021.04.006_bib0063) 2013; 71 Khayyer (10.1016/j.enganabound.2021.04.006_sbref0035) 2018; 232 Shadloo (10.1016/j.enganabound.2021.04.006_bib0040) 2012; 89 Alvaro (10.1016/j.enganabound.2021.04.006_sbref0079) 2016; 291 Gray (10.1016/j.enganabound.2021.04.006_sbref0056) 2001; 190 Peng (10.1016/j.enganabound.2021.04.006_sbref0070) 2003; 67 Lei (10.1016/j.enganabound.2021.04.006_bib0006) 2015; 142 Shao (10.1016/j.enganabound.2021.04.006_sbref0053) 2003; 26 Murante (10.1016/j.enganabound.2021.04.006_bib0051) 2011; 417 Ferrand (10.1016/j.enganabound.2021.04.006_sbref0025) 2012; 71 Colagrossi (10.1016/j.enganabound.2021.04.006_bib0030) 2011; 84 Butler (10.1016/j.enganabound.2021.04.006_sbref0073) 2013; 44 Ye (10.1016/j.enganabound.2021.04.006_bib0011) 2017; 95 Vázquez-Quesada (10.1016/j.enganabound.2021.04.006_bib0005) 2016; 3 Moore (10.1016/j.enganabound.2021.04.006_sbref0082) 2013; 24 Nasar (10.1016/j.enganabound.2021.04.006_bib0092) 2019; 179 10.1016/j.enganabound.2021.04.006_bib0031 Van Liedekerke (10.1016/j.enganabound.2021.04.006_bib0078) 2010; 81 Cesini (10.1016/j.enganabound.2021.04.006_sbref0074) 1999; 42 Vacondio (10.1016/j.enganabound.2021.04.006_bib0017) 2016; 300 Zhang (10.1016/j.enganabound.2021.04.006_bib0019) 2020 Li (10.1016/j.enganabound.2021.04.006_sbref0037) 2018; 355 Shu (10.1016/j.enganabound.2021.04.006_bib0069) 2002; 38 Israeli (10.1016/j.enganabound.2021.04.006_sbref0075) 1981; 41 Müller (10.1016/j.enganabound.2021.04.006_sbref0008) 2014; 4 Ferziger (10.1016/j.enganabound.2021.04.006_bib0065) 2002; vol. 3 Khayyer (10.1016/j.enganabound.2021.04.006_bib0042) 2017; 332 Litvinov (10.1016/j.enganabound.2021.04.006_sbref0010) 2016; 1 Feldman (10.1016/j.enganabound.2021.04.006_bib0021) 2007; 72 Fu (10.1016/j.enganabound.2021.04.006_bib0091) 2019; 234 Shepard (10.1016/j.enganabound.2021.04.006_bib0059) 1968 Barfield (10.1016/j.enganabound.2021.04.006_bib0090) 2009; 20 Lind (10.1016/j.enganabound.2021.04.006_sbref0041) 2012; 231 Liu (10.1016/j.enganabound.2021.04.006_bib0001) 2010; 17 Federico (10.1016/j.enganabound.2021.04.006_sbref0033) 2012; 34 Colagrossi (10.1016/j.enganabound.2021.04.006_sbref0057) 2003; 191 McClure (10.1016/j.enganabound.2021.04.006_bib0083) 2015; 35 Zhan (10.1016/j.enganabound.2021.04.006_sbref0036) 2019; 86 Ghia (10.1016/j.enganabound.2021.04.006_sbref0066) 1982; 48 Plimpton (10.1016/j.enganabound.2021.04.006_sbref0062) 1995; 117 Wendland (10.1016/j.enganabound.2021.04.006_bib0064) 1995; 4 Moreno (10.1016/j.enganabound.2021.04.006_sbref0007) 2013; 18 Peskin (10.1016/j.enganabound.2021.04.006_bib0034) 2002; 11 Van Liedekerke (10.1016/j.enganabound.2021.04.006_bib0077) 2010; 7 Zhang (10.1016/j.enganabound.2021.04.006_sbref0045) 2017; 337 Molteni (10.1016/j.enganabound.2021.04.006_sbref0060) 2009; 180 Puri (10.1016/j.enganabound.2021.04.006_bib0052) 2014; 270 Bierbrauer (10.1016/j.enganabound.2021.04.006_bib0028) 2009; 198 Moukalled (10.1016/j.enganabound.2021.04.006_bib0068) 1996; 10 Macia (10.1016/j.enganabound.2021.04.006_bib0024) 2011; 125 Inutsuka (10.1016/j.enganabound.2021.04.006_bib0050) 2002; 179 Ferrand (10.1016/j.enganabound.2021.04.006_bib0027) 2013; 71 Gingold (10.1016/j.enganabound.2021.04.006_bib0002) 1977; 181 Hu (10.1016/j.enganabound.2021.04.006_sbref0089) 2017; 114 Lei (10.1016/j.enganabound.2021.04.006_bib0009) 2016; 94 Litvinov (10.1016/j.enganabound.2021.04.006_sbref0046) 2015; 301 Ellero (10.1016/j.enganabound.2021.04.006_sbref0054) 2007; 226 De (10.1016/j.enganabound.2021.04.006_sbref0072) 2006; 49 Nasar (10.1016/j.enganabound.2021.04.006_bib0093) 2019; 84 Colagrossi (10.1016/j.enganabound.2021.04.006_bib0020) 2003; 191 Vacondio (10.1016/j.enganabound.2021.04.006_bib0015) 2013; 256 Levin (10.1016/j.enganabound.2021.04.006_bib0080) 2011; 189 Irgens (10.1016/j.enganabound.2021.04.006_bib0038) 2008 Xu (10.1016/j.enganabound.2021.04.006_sbref0013) 2016; 201 Monaghan (10.1016/j.enganabound.2021.04.006_sbref0044) 2000; 159 Drawert (10.1016/j.enganabound.2021.04.006_sbref0076) 2019; 22 Valizadeh (10.1016/j.enganabound.2021.04.006_sbref0032) 2015; 300 |
References_xml | – volume: 67 start-page: 026701 year: 2003 ident: bib0070 article-title: Numerical simulation of natural convection in a concentric annulus between a square outer cylinder and a circular inner cylinder using the taylor-series-expansion and least-squares-based lattice boltzmann method publication-title: Phys Rev E – volume: 142 start-page: 194504 year: 2015 ident: bib0006 article-title: Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics publication-title: J Chem Phys – volume: 300 start-page: 5 year: 2015 end-page: 19 ident: bib0032 article-title: A study of solid wall models for weakly compressible SPH publication-title: J Comput Phys – volume: 270 start-page: 432 year: 2014 end-page: 458 ident: bib0052 article-title: Approximate Riemann solvers for the Godunov SPH (GSPH) publication-title: J Comput Phys – volume: 14 start-page: e1006181 year: 2018 ident: bib0085 article-title: Parameter uncertainty quantification using surrogate models applied to a spatial model of yeast mating polarization publication-title: PLoS Comput Biol – start-page: 110028 year: 2020 ident: bib0019 article-title: A multi-resolution SPH method for fluid-structure interactions publication-title: J Comput Phys – volume: 3 start-page: 167 year: 2016 end-page: 178 ident: bib0005 article-title: Three-dimensional simulations of dilute and concentrated suspensions using smoothed particle hydrodynamics publication-title: Comput Part Mech – volume: 4 start-page: 389 year: 1995 end-page: 396 ident: bib0064 article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree publication-title: Adv Comput Math – volume: 14 start-page: e1005940 year: 2018 ident: bib0081 article-title: Mechanical feedback coordinates cell wall expansion and assembly in yeast mating morphogenesis publication-title: PLoS Comput Biol – volume: 24 start-page: 012002 year: 2012 ident: bib0004 article-title: Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics publication-title: Phys Fluids – volume: 273 start-page: 640 year: 2014 end-page: 657 ident: bib0016 article-title: Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method publication-title: J Comput Phys – volume: 190 start-page: 6641 year: 2001 end-page: 6662 ident: bib0056 article-title: SPH elastic dynamics publication-title: Comput Methods Appl Mech Eng – volume: 95 start-page: 063314 year: 2017 ident: bib0011 article-title: Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows publication-title: Phys Rev E – volume: 71 start-page: 446 year: 2012 end-page: 472 ident: bib0025 article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method publication-title: Int J Numer Methods Fluids – volume: 18 start-page: 2565 year: 2013 end-page: 2574 ident: bib0007 article-title: Multiscale modeling of blood flow: coupling finite elements with smoothed dissipative particle dynamics publication-title: Proced Comput Sci – volume: 180 start-page: 861 year: 2009 end-page: 872 ident: bib0060 article-title: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH publication-title: Comput Phys Commun – volume: 346 start-page: 1156 year: 2019 end-page: 1178 ident: bib0018 article-title: A new multi-resolution parallel framework for SPH publication-title: Comput Methods Appl Mech Eng – volume: 313 start-page: 76 year: 2016 end-page: 98 ident: bib0043 article-title: SPH Accuracy improvement through the combination of a quasi-lagrangian shifting transport velocity and consistent ale formalisms publication-title: J Comput Phys – volume: 191 start-page: 448 year: 2003 end-page: 475 ident: bib0057 article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics publication-title: J Comput Phys – volume: 84 start-page: 263 year: 2019 end-page: 282 ident: bib0093 article-title: Eulerian weakly compressible smoothed particle hydrodynamics (sph) with the immersed boundary method for thin slender bodies publication-title: J Fluids Struct – volume: 5 year: 1980 ident: bib0061 article-title: Landau and lifshitz course of theoretical physics publication-title: Statist Phys – volume: 20 start-page: 4985 year: 2009 end-page: 4996 ident: bib0090 article-title: The exomer coat complex transports fus1p to the plasma membrane via a novel plasma membrane sorting signal in yeast publication-title: Mol Biol Cell – volume: 84 start-page: 026705 year: 2011 ident: bib0030 article-title: Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows publication-title: Phys Rev E – volume: 180 start-page: 1811 year: 2009 end-page: 1820 ident: bib0023 article-title: SPH Particle boundary forces for arbitrary boundaries publication-title: Comput Phys Commun – volume: 159 start-page: 290 year: 2000 end-page: 311 ident: bib0044 article-title: SPH Without a tensile instability publication-title: J Comput Phys – volume: 227 start-page: 8636 year: 2008 end-page: 8654 ident: bib0014 article-title: An immersed boundary method for smoothed particle hydrodynamics of self-propelled swimmers publication-title: J Comput Phys – volume: 1 year: 2016 ident: bib0010 article-title: Simulation of individual polymer chains and polymer solutions with smoothed dissipative particle dynamics publication-title: Fluids – volume: vol. 3 year: 2002 ident: bib0065 article-title: Computational Methods for Fluid Dynamics – volume: 7 start-page: 026006 year: 2010 ident: bib0077 article-title: A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates publication-title: Phys Biol – volume: 89 start-page: 939 year: 2012 end-page: 956 ident: bib0040 article-title: A robust weakly compressible sph method and its comparison with an incompressible SPH publication-title: Int J Numer Methods Eng – volume: 44 start-page: 199 year: 2013 end-page: 208 ident: bib0073 article-title: Natural convection experiments on a heated horizontal cylinder in a differentially heated square cavity publication-title: Exp Therm Fluid Sci – volume: 95 start-page: 419 year: 2013 end-page: 450 ident: bib0029 article-title: A 3d fully lagrangian smoothed particle hydrodynamics model with both volume and surface discrete elements publication-title: Int J Numer Methods Eng – volume: 49 start-page: 4608 year: 2006 end-page: 4623 ident: bib0072 article-title: A numerical study of natural convection around a square, horizontal, heated cylinder placed in an enclosure publication-title: Int J Heat Mass Transf – volume: 41 start-page: 115 year: 1981 end-page: 135 ident: bib0075 article-title: Approximation of radiation boundary conditions publication-title: J Comput Phys – volume: 130 start-page: 034901 year: 2009 ident: bib0055 article-title: Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics publication-title: J Chem Phys – start-page: 517 year: 1968 end-page: 524 ident: bib0059 article-title: A two-dimensional interpolation function for irregularly-spaced data publication-title: Proceedings of the 23rd ACM national conference – volume: 19 start-page: 545 year: 1976 end-page: 551 ident: bib0067 article-title: The validity of the boussinesq approximation for liquids and gases publication-title: Int J Heat Mass Transf – volume: 291 start-page: 7788 year: 2016 end-page: 7795 ident: bib0079 article-title: Heterotrimeric G protein-coupled receptor signaling in yeast mating pheromone response publication-title: J Biol Chem – volume: 232 start-page: 139 year: 2018 end-page: 164 ident: bib0035 article-title: An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions publication-title: Comput Phys Commun – volume: 136 start-page: 214 year: 1997 end-page: 226 ident: bib0047 article-title: Modeling low reynolds number incompressible flows using SPH publication-title: J Comput Phys – volume: 179 start-page: 563 year: 2019 end-page: 578 ident: bib0092 article-title: Flexible slender body fluid interaction: vector-based discrete element method with Eulerian smoothed particle hydrodynamics publication-title: Comput Fluids – volume: 24 start-page: 521 year: 2013 end-page: 534 ident: bib0082 article-title: Yeast g-proteins mediate directional sensing and polarization behaviors in response to changes in pheromone gradient direction publication-title: Mol Biol Cell – volume: 112 start-page: 5045 year: 2015 end-page: 5050 ident: bib0088 article-title: Balance between cell-substrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes publication-title: Proc Natl Acad Sci – volume: 231 start-page: 7057 year: 2012 end-page: 7075 ident: bib0022 article-title: A generalized wall boundary condition for smoothed particle hydrodynamics publication-title: J Comput Phys – volume: 81 start-page: 061906 year: 2010 ident: bib0078 article-title: Particle-based model to simulate the micromechanics of biological cells publication-title: Phys Rev E – volume: 231 start-page: 1499 year: 2012 end-page: 1523 ident: bib0041 article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves publication-title: J Comput Phys – volume: 82 start-page: 1013 year: 1977 end-page: 1024 ident: bib0003 article-title: A numerical approach to the testing of the fission hypothesis publication-title: AJ – volume: 241 start-page: 292 year: 2013 end-page: 307 ident: bib0012 article-title: A transport-velocity formulation for smoothed particle hydrodynamics publication-title: J Comput Phys – volume: 86 start-page: 329 year: 2019 end-page: 353 ident: bib0036 article-title: A stabilized TL-WC SPH approach with GPU acceleration for three-dimensional fluid–structure interaction publication-title: J Fluids Struct – year: 2008 ident: bib0038 article-title: Continuum Mechanics – volume: 234 start-page: 72 year: 2019 end-page: 92 ident: bib0091 article-title: An optimal particle setup method with Centroidal Voronoi Particle dynamics publication-title: Comput Phys Commun – volume: 34 start-page: 35 year: 2012 end-page: 46 ident: bib0033 article-title: Simulating 2d open-channel flows through an SPH model publication-title: Eur J Mech B Fluids – volume: 189 start-page: 1145 year: 2011 end-page: 1175 ident: bib0080 article-title: Regulation of cell wall biogenesis in saccharomyces cerevisiae: the cell wall integrity signaling pathway publication-title: Genetics – volume: 201 start-page: 43 year: 2016 end-page: 62 ident: bib0013 article-title: An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids publication-title: Comput Phys Commun – volume: 181 start-page: 375 year: 1977 end-page: 389 ident: bib0002 article-title: Smoothed particle hydrodynamics - Theory and application to non-spherical stars publication-title: MNRAS – volume: 10 start-page: 524 year: 1996 end-page: 531 ident: bib0068 article-title: Natural convection in the annulus between concentric horizontal circular and square cylinders publication-title: J Thermophys Heat Transfer – volume: 38 start-page: 429 year: 2002 end-page: 445 ident: bib0069 article-title: Efficient computation of natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder publication-title: Int J Numer Methods Fluids – volume: 117 start-page: 1 year: 1995 end-page: 19 ident: bib0062 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J Comput Phys – year: 2008 ident: bib0039 article-title: Moving boundary problems in the finite volume particle method publication-title: Proeedings of the 3rd ERCOFTAC SPHERIC Workshop on SPH Applications, Switzerland, Lausanne – volume: 71 start-page: 446 year: 2013 end-page: 472 ident: bib0063 article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method publication-title: Int J Numer Methods Fluids – volume: 4 year: 2014 ident: bib0008 article-title: Margination of micro- and nano-particles in blood flow and its effect on drug delivery publication-title: Nature Scient Rep – volume: 26 start-page: 787 year: 2003 end-page: 800 ident: bib0053 article-title: Incompressible SPH method for simulating newtonian and non-newtonian flows with a free surface publication-title: Adv Water Resour – volume: 355 start-page: 534 year: 2018 end-page: 547 ident: bib0037 article-title: A dissipative particle dynamics method for arbitrarily complex geometries publication-title: J Comput Phys – volume: 22 start-page: 11 year: 2019 end-page: 15 ident: bib0076 article-title: Validation data for a hybrid smoothed dissipative particle dynamics (SDPD) spatial stochastic simulation algorithm (sssa) method publication-title: Data Brief – volume: 72 start-page: 295 year: 2007 end-page: 324 ident: bib0021 article-title: Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems publication-title: Int J Numer Methods Eng – volume: 17 start-page: 25 year: 2010 end-page: 76 ident: bib0001 article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments publication-title: Arch Comput Methods Eng – volume: 149 start-page: 135 year: 1985 end-page: 143 ident: bib0048 article-title: A refined method for astrophysical problems publication-title: Astron Astrophys – volume: 42 start-page: 1801 year: 1999 end-page: 1811 ident: bib0074 article-title: Natural convection from a horizontal cylinder in a rectangular cavity publication-title: Int J Heat Mass Transf – volume: 94 start-page: 023304 year: 2016 ident: bib0009 article-title: Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations publication-title: Phys Rev E – volume: 256 start-page: 132 year: 2013 end-page: 148 ident: bib0015 article-title: Variable resolution for sph: a dynamic particle coalescing and splitting scheme publication-title: Comput Methods Appl Mech Eng – volume: 30 start-page: 543 year: 1992 end-page: 574 ident: bib0049 article-title: Smoothed particle hydrodynamics publication-title: Annu Rev Astron Astrophys – volume: 9 year: 2013 ident: bib0087 article-title: Spatial stochastic dynamics enable robust cell polarization publication-title: PLoS Comput Biol – volume: 14 year: 2018 ident: bib0086 article-title: The effect of cell geometry on polarization in budding yeast publication-title: PLoS Comput Biol – volume: 11 start-page: 479 year: 2002 end-page: 517 ident: bib0034 article-title: The immersed boundary method publication-title: Acta Numerica – volume: 35 start-page: 471 year: 2015 end-page: 482 ident: bib0083 article-title: Role of Polarized G protein signaling in tracking pheromone gradients publication-title: Dev Cell – volume: 183 start-page: 1641 year: 2012 end-page: 1653 ident: bib0026 article-title: Particle packing algorithm for SPH schemes publication-title: Comput Phys Commun – volume: 332 start-page: 236 year: 2017 end-page: 256 ident: bib0042 article-title: Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context publication-title: J Comput Phys – volume: 179 start-page: 238 year: 2002 end-page: 267 ident: bib0050 article-title: Reformulation of smoothed particle hydrodynamics with Riemann solver publication-title: J Comput Phys – volume: 26 start-page: 3343 year: 2015 end-page: 3358 ident: bib0084 article-title: Pheromone-induced morphogenesis and gradient tracking are dependent on the MAPK Fus3 binding to G publication-title: Mol Biol Cell – volume: 191 start-page: 448 year: 2003 end-page: 475 ident: bib0020 article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics publication-title: J Comput Phys – volume: 301 start-page: 394 year: 2015 end-page: 401 ident: bib0046 article-title: Towards consistence and convergence of conservative SPH approximations publication-title: J Comput Phys – volume: 125 start-page: 1091 year: 2011 end-page: 1121 ident: bib0024 article-title: Theoretical analysis of the no-slip boundary condition enforcement in SPH methods publication-title: Progr Theoret Phys – volume: 300 start-page: 442 year: 2016 end-page: 460 ident: bib0017 article-title: Variable resolution for SPH in three dimensions: towards optimal splitting and coalescing for dynamic adaptivity publication-title: Comput Methods Appl Mech Eng – volume: 71 start-page: 446 year: 2013 end-page: 472 ident: bib0027 article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method publication-title: Int J Numer Methods Fluids – reference: Spheric-SPH grand challenges. 2020. – reference: . – volume: 337 start-page: 216 year: 2017 end-page: 232 ident: bib0045 article-title: A generalized transport-velocity formulation for smoothed particle hydrodynamics publication-title: J Comput Phys – volume: 114 start-page: 9529 year: 2017 end-page: 9534 ident: bib0089 article-title: Size- and speed-dependent mechanical behavior in living mammalian cytoplasm publication-title: Proc Natl Acad Sci – volume: 224 start-page: 63 year: 2018 end-page: 80 ident: bib0058 article-title: Multi-resolution delta-plus-SPH with tensile instability control: Towards high reynolds number flows publication-title: Comput Phys Commun – volume: 198 start-page: 3400 year: 2009 end-page: 3410 ident: bib0028 article-title: A consistent reflected image particle approach to the treatment of boundary conditions in smoothed particle hydrodynamics publication-title: Comput Methods Appl Mech Eng – volume: 51 start-page: 553 year: 2008 end-page: 565 ident: bib0071 article-title: Numerical predictions for stable buoyant regimes within a square cavity containing a heated horizontal cylinder publication-title: Int J Heat Mass Transf – volume: 226 start-page: 1731 year: 2007 end-page: 1752 ident: bib0054 article-title: Incompressible smoothed particle hydrodynamics publication-title: J Comput Phys – volume: 417 start-page: 136 year: 2011 end-page: 153 ident: bib0051 article-title: Hydrodynamic simulations with the godunov smoothed particle hydrodynamics publication-title: Mon Not R Astron Soc – volume: 48 start-page: 387 year: 1982 end-page: 411 ident: bib0066 article-title: High-re solutions for incompressible flow using the navier-stokes equations and a multigrid method publication-title: J Comput Phys – volume: 300 start-page: 442 year: 2016 ident: 10.1016/j.enganabound.2021.04.006_bib0017 article-title: Variable resolution for SPH in three dimensions: towards optimal splitting and coalescing for dynamic adaptivity publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2015.11.021 – volume: 38 start-page: 429 issue: 5 year: 2002 ident: 10.1016/j.enganabound.2021.04.006_bib0069 article-title: Efficient computation of natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.226 – volume: 117 start-page: 1 issue: 1 year: 1995 ident: 10.1016/j.enganabound.2021.04.006_sbref0062 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J Comput Phys doi: 10.1006/jcph.1995.1039 – ident: 10.1016/j.enganabound.2021.04.006_bib0031 – volume: 10 start-page: 524 issue: 3 year: 1996 ident: 10.1016/j.enganabound.2021.04.006_bib0068 article-title: Natural convection in the annulus between concentric horizontal circular and square cylinders publication-title: J Thermophys Heat Transfer doi: 10.2514/3.820 – volume: vol. 3 year: 2002 ident: 10.1016/j.enganabound.2021.04.006_bib0065 – volume: 49 start-page: 4608 issue: 23 year: 2006 ident: 10.1016/j.enganabound.2021.04.006_sbref0072 article-title: A numerical study of natural convection around a square, horizontal, heated cylinder placed in an enclosure publication-title: Int J Heat Mass Transf – volume: 26 start-page: 3343 issue: 18 year: 2015 ident: 10.1016/j.enganabound.2021.04.006_bib0084 article-title: Pheromone-induced morphogenesis and gradient tracking are dependent on the MAPK Fus3 binding to Gα publication-title: Mol Biol Cell doi: 10.1091/mbc.e15-03-0176 – volume: 136 start-page: 214 issue: 1 year: 1997 ident: 10.1016/j.enganabound.2021.04.006_sbref0047 article-title: Modeling low reynolds number incompressible flows using SPH publication-title: J Comput Phys doi: 10.1006/jcph.1997.5776 – volume: 24 start-page: 521 issue: 4 year: 2013 ident: 10.1016/j.enganabound.2021.04.006_sbref0082 article-title: Yeast g-proteins mediate directional sensing and polarization behaviors in response to changes in pheromone gradient direction publication-title: Mol Biol Cell doi: 10.1091/mbc.e12-10-0739 – volume: 82 start-page: 1013 year: 1977 ident: 10.1016/j.enganabound.2021.04.006_bib0003 article-title: A numerical approach to the testing of the fission hypothesis publication-title: AJ doi: 10.1086/112164 – volume: 337 start-page: 216 year: 2017 ident: 10.1016/j.enganabound.2021.04.006_sbref0045 article-title: A generalized transport-velocity formulation for smoothed particle hydrodynamics publication-title: J Comput Phys doi: 10.1016/j.jcp.2017.02.016 – volume: 22 start-page: 11 year: 2019 ident: 10.1016/j.enganabound.2021.04.006_sbref0076 article-title: Validation data for a hybrid smoothed dissipative particle dynamics (SDPD) spatial stochastic simulation algorithm (sssa) method publication-title: Data Brief doi: 10.1016/j.dib.2018.11.103 – volume: 14 start-page: e1005940 issue: 1 year: 2018 ident: 10.1016/j.enganabound.2021.04.006_bib0081 article-title: Mechanical feedback coordinates cell wall expansion and assembly in yeast mating morphogenesis publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005940 – volume: 1 issue: 1 year: 2016 ident: 10.1016/j.enganabound.2021.04.006_sbref0010 article-title: Simulation of individual polymer chains and polymer solutions with smoothed dissipative particle dynamics publication-title: Fluids doi: 10.3390/fluids1010007 – volume: 191 start-page: 448 issue: 2 year: 2003 ident: 10.1016/j.enganabound.2021.04.006_bib0020 article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics publication-title: J Comput Phys doi: 10.1016/S0021-9991(03)00324-3 – volume: 14 start-page: e1006181 issue: 5 year: 2018 ident: 10.1016/j.enganabound.2021.04.006_bib0085 article-title: Parameter uncertainty quantification using surrogate models applied to a spatial model of yeast mating polarization publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006181 – volume: 95 start-page: 419 issue: 5 year: 2013 ident: 10.1016/j.enganabound.2021.04.006_bib0029 article-title: A 3d fully lagrangian smoothed particle hydrodynamics model with both volume and surface discrete elements publication-title: Int J Numer Methods Eng doi: 10.1002/nme.4514 – volume: 71 start-page: 446 issue: 4 year: 2013 ident: 10.1016/j.enganabound.2021.04.006_bib0027 article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.3666 – volume: 4 start-page: 389 issue: 1 year: 1995 ident: 10.1016/j.enganabound.2021.04.006_bib0064 article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree publication-title: Adv Comput Math doi: 10.1007/BF02123482 – volume: 71 start-page: 446 issue: 4 year: 2013 ident: 10.1016/j.enganabound.2021.04.006_bib0063 article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.3666 – volume: 191 start-page: 448 issue: 2 year: 2003 ident: 10.1016/j.enganabound.2021.04.006_sbref0057 article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics publication-title: J Comput Phys doi: 10.1016/S0021-9991(03)00324-3 – volume: 71 start-page: 446 issue: 4 year: 2012 ident: 10.1016/j.enganabound.2021.04.006_sbref0025 article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.3666 – volume: 189 start-page: 1145 issue: 4 year: 2011 ident: 10.1016/j.enganabound.2021.04.006_bib0080 article-title: Regulation of cell wall biogenesis in saccharomyces cerevisiae: the cell wall integrity signaling pathway publication-title: Genetics doi: 10.1534/genetics.111.128264 – volume: 125 start-page: 1091 issue: 6 year: 2011 ident: 10.1016/j.enganabound.2021.04.006_bib0024 article-title: Theoretical analysis of the no-slip boundary condition enforcement in SPH methods publication-title: Progr Theoret Phys doi: 10.1143/PTP.125.1091 – volume: 4 year: 2014 ident: 10.1016/j.enganabound.2021.04.006_sbref0008 article-title: Margination of micro- and nano-particles in blood flow and its effect on drug delivery publication-title: Nature Scient Rep – volume: 89 start-page: 939 issue: 8 year: 2012 ident: 10.1016/j.enganabound.2021.04.006_bib0040 article-title: A robust weakly compressible sph method and its comparison with an incompressible SPH publication-title: Int J Numer Methods Eng doi: 10.1002/nme.3267 – volume: 86 start-page: 329 year: 2019 ident: 10.1016/j.enganabound.2021.04.006_sbref0036 article-title: A stabilized TL-WC SPH approach with GPU acceleration for three-dimensional fluid–structure interaction publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2019.02.002 – volume: 67 start-page: 026701 year: 2003 ident: 10.1016/j.enganabound.2021.04.006_sbref0070 article-title: Numerical simulation of natural convection in a concentric annulus between a square outer cylinder and a circular inner cylinder using the taylor-series-expansion and least-squares-based lattice boltzmann method publication-title: Phys Rev E doi: 10.1103/PhysRevE.67.026701 – volume: 7 start-page: 026006 issue: 2 year: 2010 ident: 10.1016/j.enganabound.2021.04.006_bib0077 article-title: A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates publication-title: Phys Biol doi: 10.1088/1478-3975/7/2/026006 – volume: 241 start-page: 292 year: 2013 ident: 10.1016/j.enganabound.2021.04.006_sbref0012 article-title: A transport-velocity formulation for smoothed particle hydrodynamics publication-title: J Comput Phys doi: 10.1016/j.jcp.2013.01.043 – volume: 256 start-page: 132 year: 2013 ident: 10.1016/j.enganabound.2021.04.006_bib0015 article-title: Variable resolution for sph: a dynamic particle coalescing and splitting scheme publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2012.12.014 – volume: 355 start-page: 534 year: 2018 ident: 10.1016/j.enganabound.2021.04.006_sbref0037 article-title: A dissipative particle dynamics method for arbitrarily complex geometries publication-title: J Comput Phys doi: 10.1016/j.jcp.2017.11.014 – volume: 114 start-page: 9529 issue: 36 year: 2017 ident: 10.1016/j.enganabound.2021.04.006_sbref0089 article-title: Size- and speed-dependent mechanical behavior in living mammalian cytoplasm publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1702488114 – volume: 180 start-page: 861 issue: 6 year: 2009 ident: 10.1016/j.enganabound.2021.04.006_sbref0060 article-title: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2008.12.004 – volume: 34 start-page: 35 year: 2012 ident: 10.1016/j.enganabound.2021.04.006_sbref0033 article-title: Simulating 2d open-channel flows through an SPH model publication-title: Eur J Mech B Fluids doi: 10.1016/j.euromechflu.2012.02.002 – year: 2008 ident: 10.1016/j.enganabound.2021.04.006_bib0038 – volume: 231 start-page: 7057 issue: 21 year: 2012 ident: 10.1016/j.enganabound.2021.04.006_sbref0022 article-title: A generalized wall boundary condition for smoothed particle hydrodynamics publication-title: J Comput Phys doi: 10.1016/j.jcp.2012.05.005 – volume: 190 start-page: 6641 issue: 49 year: 2001 ident: 10.1016/j.enganabound.2021.04.006_sbref0056 article-title: SPH elastic dynamics publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(01)00254-7 – volume: 112 start-page: 5045 issue: 16 year: 2015 ident: 10.1016/j.enganabound.2021.04.006_sbref0088 article-title: Balance between cell-substrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1417257112 – volume: 198 start-page: 3400 issue: 41–44 year: 2009 ident: 10.1016/j.enganabound.2021.04.006_bib0028 article-title: A consistent reflected image particle approach to the treatment of boundary conditions in smoothed particle hydrodynamics publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2009.06.014 – volume: 273 start-page: 640 year: 2014 ident: 10.1016/j.enganabound.2021.04.006_bib0016 article-title: Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method publication-title: J Comput Phys doi: 10.1016/j.jcp.2014.05.040 – volume: 19 start-page: 545 issue: 5 year: 1976 ident: 10.1016/j.enganabound.2021.04.006_sbref0067 article-title: The validity of the boussinesq approximation for liquids and gases publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(76)90168-X – volume: 94 start-page: 023304 year: 2016 ident: 10.1016/j.enganabound.2021.04.006_bib0009 article-title: Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations publication-title: Phys Rev E doi: 10.1103/PhysRevE.94.023304 – volume: 3 start-page: 167 issue: 2 year: 2016 ident: 10.1016/j.enganabound.2021.04.006_bib0005 article-title: Three-dimensional simulations of dilute and concentrated suspensions using smoothed particle hydrodynamics publication-title: Comput Part Mech doi: 10.1007/s40571-015-0072-5 – volume: 35 start-page: 471 issue: 4 year: 2015 ident: 10.1016/j.enganabound.2021.04.006_bib0083 article-title: Role of Polarized G protein signaling in tracking pheromone gradients publication-title: Dev Cell doi: 10.1016/j.devcel.2015.10.024 – volume: 84 start-page: 263 year: 2019 ident: 10.1016/j.enganabound.2021.04.006_bib0093 article-title: Eulerian weakly compressible smoothed particle hydrodynamics (sph) with the immersed boundary method for thin slender bodies publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2018.11.005 – volume: 234 start-page: 72 year: 2019 ident: 10.1016/j.enganabound.2021.04.006_bib0091 article-title: An optimal particle setup method with Centroidal Voronoi Particle dynamics publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2018.08.002 – volume: 180 start-page: 1811 issue: 10 year: 2009 ident: 10.1016/j.enganabound.2021.04.006_sbref0023 article-title: SPH Particle boundary forces for arbitrary boundaries publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2009.05.008 – volume: 42 start-page: 1801 issue: 10 year: 1999 ident: 10.1016/j.enganabound.2021.04.006_sbref0074 article-title: Natural convection from a horizontal cylinder in a rectangular cavity publication-title: Int J Heat Mass Transf doi: 10.1016/S0017-9310(98)00266-X – volume: 18 start-page: 2565 year: 2013 ident: 10.1016/j.enganabound.2021.04.006_sbref0007 article-title: Multiscale modeling of blood flow: coupling finite elements with smoothed dissipative particle dynamics publication-title: Proced Comput Sci doi: 10.1016/j.procs.2013.05.442 – volume: 301 start-page: 394 year: 2015 ident: 10.1016/j.enganabound.2021.04.006_sbref0046 article-title: Towards consistence and convergence of conservative SPH approximations publication-title: J Comput Phys doi: 10.1016/j.jcp.2015.08.041 – volume: 44 start-page: 199 year: 2013 ident: 10.1016/j.enganabound.2021.04.006_sbref0073 article-title: Natural convection experiments on a heated horizontal cylinder in a differentially heated square cavity publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2012.06.009 – volume: 14 issue: 6 year: 2018 ident: 10.1016/j.enganabound.2021.04.006_sbref0086 article-title: The effect of cell geometry on polarization in budding yeast publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006241 – volume: 227 start-page: 8636 issue: 19 year: 2008 ident: 10.1016/j.enganabound.2021.04.006_sbref0014 article-title: An immersed boundary method for smoothed particle hydrodynamics of self-propelled swimmers publication-title: J Comput Phys doi: 10.1016/j.jcp.2008.06.017 – volume: 201 start-page: 43 year: 2016 ident: 10.1016/j.enganabound.2021.04.006_sbref0013 article-title: An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2015.12.016 – volume: 232 start-page: 139 year: 2018 ident: 10.1016/j.enganabound.2021.04.006_sbref0035 article-title: An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2018.05.012 – volume: 24 start-page: 012002 issue: 1 year: 2012 ident: 10.1016/j.enganabound.2021.04.006_bib0004 article-title: Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics publication-title: Phys Fluids doi: 10.1063/1.3676244 – volume: 417 start-page: 136 issue: 1 year: 2011 ident: 10.1016/j.enganabound.2021.04.006_bib0051 article-title: Hydrodynamic simulations with the godunov smoothed particle hydrodynamics publication-title: Mon Not R Astron Soc doi: 10.1111/j.1365-2966.2011.19021.x – volume: 346 start-page: 1156 year: 2019 ident: 10.1016/j.enganabound.2021.04.006_bib0018 article-title: A new multi-resolution parallel framework for SPH publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.09.043 – volume: 30 start-page: 543 issue: 1 year: 1992 ident: 10.1016/j.enganabound.2021.04.006_bib0049 article-title: Smoothed particle hydrodynamics publication-title: Annu Rev Astron Astrophys doi: 10.1146/annurev.aa.30.090192.002551 – year: 2008 ident: 10.1016/j.enganabound.2021.04.006_bib0039 article-title: Moving boundary problems in the finite volume particle method – volume: 9 issue: 7 year: 2013 ident: 10.1016/j.enganabound.2021.04.006_sbref0087 article-title: Spatial stochastic dynamics enable robust cell polarization publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003139 – volume: 159 start-page: 290 issue: 2 year: 2000 ident: 10.1016/j.enganabound.2021.04.006_sbref0044 article-title: SPH Without a tensile instability publication-title: J Comput Phys doi: 10.1006/jcph.2000.6439 – volume: 81 start-page: 061906 issue: 6 year: 2010 ident: 10.1016/j.enganabound.2021.04.006_bib0078 article-title: Particle-based model to simulate the micromechanics of biological cells publication-title: Phys Rev E doi: 10.1103/PhysRevE.81.061906 – volume: 11 start-page: 479 year: 2002 ident: 10.1016/j.enganabound.2021.04.006_bib0034 article-title: The immersed boundary method publication-title: Acta Numerica doi: 10.1017/S0962492902000077 – start-page: 517 year: 1968 ident: 10.1016/j.enganabound.2021.04.006_bib0059 article-title: A two-dimensional interpolation function for irregularly-spaced data – volume: 181 start-page: 375 year: 1977 ident: 10.1016/j.enganabound.2021.04.006_bib0002 article-title: Smoothed particle hydrodynamics - Theory and application to non-spherical stars publication-title: MNRAS doi: 10.1093/mnras/181.3.375 – volume: 231 start-page: 1499 issue: 4 year: 2012 ident: 10.1016/j.enganabound.2021.04.006_sbref0041 article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves publication-title: J Comput Phys doi: 10.1016/j.jcp.2011.10.027 – volume: 26 start-page: 787 issue: 7 year: 2003 ident: 10.1016/j.enganabound.2021.04.006_sbref0053 article-title: Incompressible SPH method for simulating newtonian and non-newtonian flows with a free surface publication-title: Adv Water Resour doi: 10.1016/S0309-1708(03)00030-7 – volume: 332 start-page: 236 year: 2017 ident: 10.1016/j.enganabound.2021.04.006_bib0042 article-title: Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context publication-title: J Comput Phys doi: 10.1016/j.jcp.2016.12.005 – volume: 48 start-page: 387 issue: 3 year: 1982 ident: 10.1016/j.enganabound.2021.04.006_sbref0066 article-title: High-re solutions for incompressible flow using the navier-stokes equations and a multigrid method publication-title: J Comput Phys doi: 10.1016/0021-9991(82)90058-4 – volume: 183 start-page: 1641 issue: 8 year: 2012 ident: 10.1016/j.enganabound.2021.04.006_bib0026 article-title: Particle packing algorithm for SPH schemes publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2012.02.032 – volume: 226 start-page: 1731 issue: 2 year: 2007 ident: 10.1016/j.enganabound.2021.04.006_sbref0054 article-title: Incompressible smoothed particle hydrodynamics publication-title: J Comput Phys doi: 10.1016/j.jcp.2007.06.019 – volume: 17 start-page: 25 issue: 1 year: 2010 ident: 10.1016/j.enganabound.2021.04.006_bib0001 article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-010-9040-7 – start-page: 110028 year: 2020 ident: 10.1016/j.enganabound.2021.04.006_bib0019 article-title: A multi-resolution SPH method for fluid-structure interactions publication-title: J Comput Phys – volume: 95 start-page: 063314 year: 2017 ident: 10.1016/j.enganabound.2021.04.006_bib0011 article-title: Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows publication-title: Phys Rev E doi: 10.1103/PhysRevE.95.063314 – volume: 84 start-page: 026705 issue: 2 year: 2011 ident: 10.1016/j.enganabound.2021.04.006_bib0030 article-title: Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows publication-title: Phys Rev E doi: 10.1103/PhysRevE.84.026705 – volume: 179 start-page: 238 issue: 1 year: 2002 ident: 10.1016/j.enganabound.2021.04.006_bib0050 article-title: Reformulation of smoothed particle hydrodynamics with Riemann solver publication-title: J Comput Phys doi: 10.1006/jcph.2002.7053 – volume: 20 start-page: 4985 issue: 23 year: 2009 ident: 10.1016/j.enganabound.2021.04.006_bib0090 article-title: The exomer coat complex transports fus1p to the plasma membrane via a novel plasma membrane sorting signal in yeast publication-title: Mol Biol Cell doi: 10.1091/mbc.e09-04-0324 – volume: 179 start-page: 563 year: 2019 ident: 10.1016/j.enganabound.2021.04.006_bib0092 article-title: Flexible slender body fluid interaction: vector-based discrete element method with Eulerian smoothed particle hydrodynamics publication-title: Comput Fluids doi: 10.1016/j.compfluid.2018.11.024 – volume: 149 start-page: 135 year: 1985 ident: 10.1016/j.enganabound.2021.04.006_bib0048 article-title: A refined method for astrophysical problems publication-title: Astron Astrophys – volume: 270 start-page: 432 year: 2014 ident: 10.1016/j.enganabound.2021.04.006_bib0052 article-title: Approximate Riemann solvers for the Godunov SPH (GSPH) publication-title: J Comput Phys doi: 10.1016/j.jcp.2014.03.055 – volume: 291 start-page: 7788 issue: 15 year: 2016 ident: 10.1016/j.enganabound.2021.04.006_sbref0079 article-title: Heterotrimeric G protein-coupled receptor signaling in yeast mating pheromone response publication-title: J Biol Chem doi: 10.1074/jbc.R116.714980 – volume: 5 year: 1980 ident: 10.1016/j.enganabound.2021.04.006_bib0061 article-title: Landau and lifshitz course of theoretical physics publication-title: Statist Phys – volume: 300 start-page: 5 year: 2015 ident: 10.1016/j.enganabound.2021.04.006_sbref0032 article-title: A study of solid wall models for weakly compressible SPH publication-title: J Comput Phys doi: 10.1016/j.jcp.2015.07.033 – volume: 142 start-page: 194504 issue: 19 year: 2015 ident: 10.1016/j.enganabound.2021.04.006_bib0006 article-title: Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics publication-title: J Chem Phys doi: 10.1063/1.4921222 – volume: 130 start-page: 034901 issue: 3 year: 2009 ident: 10.1016/j.enganabound.2021.04.006_bib0055 article-title: Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics publication-title: J Chem Phys doi: 10.1063/1.3050100 – volume: 51 start-page: 553 issue: 3 year: 2008 ident: 10.1016/j.enganabound.2021.04.006_sbref0071 article-title: Numerical predictions for stable buoyant regimes within a square cavity containing a heated horizontal cylinder publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2007.05.007 – volume: 224 start-page: 63 year: 2018 ident: 10.1016/j.enganabound.2021.04.006_sbref0058 article-title: Multi-resolution delta-plus-SPH with tensile instability control: Towards high reynolds number flows publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2017.11.016 – volume: 41 start-page: 115 issue: 1 year: 1981 ident: 10.1016/j.enganabound.2021.04.006_sbref0075 article-title: Approximation of radiation boundary conditions publication-title: J Comput Phys doi: 10.1016/0021-9991(81)90082-6 – volume: 72 start-page: 295 issue: 3 year: 2007 ident: 10.1016/j.enganabound.2021.04.006_bib0021 article-title: Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems publication-title: Int J Numer Methods Eng doi: 10.1002/nme.2010 – volume: 313 start-page: 76 year: 2016 ident: 10.1016/j.enganabound.2021.04.006_sbref0043 article-title: SPH Accuracy improvement through the combination of a quasi-lagrangian shifting transport velocity and consistent ale formalisms publication-title: J Comput Phys doi: 10.1016/j.jcp.2016.02.039 |
SSID | ssj0013006 |
Score | 2.3721054 |
Snippet | We present a new weakly-compressible smoothed particle hydrodynamics (SPH) method capable of modeling non-slip fixed and moving wall boundary conditions. The... |
SourceID | pubmedcentral proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 274 |
SubjectTerms | Boundary condition Deforming boundaries Smoothed particle hydrodynamics Solid wall model Transport-velocity |
Title | An arbitrary Lagrangian Eulerian smoothed particle hydrodynamics (ALE-SPH) method with a boundary volume fraction formulation for fluid-structure interaction |
URI | https://dx.doi.org/10.1016/j.enganabound.2021.04.006 https://www.proquest.com/docview/2533315075 https://pubmed.ncbi.nlm.nih.gov/PMC8143034 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqIiE4IJ4iPCpX4gAHk13b692VuERVqkBKhSgVvVl-bbooOFHSHLjwT_iveNbeNpE4VOK0L3vl3RnPfLJnvkHoTVMKZ3MdJlKTC8IddUTnjSOqzpXOalUbA-sdn0_F5Jx_uigu9tBRnwsDYZXJ9keb3lnrdGeY_uZw2bbDMyBPKyHvE5aoA8qBDHZegpa__53f7CRkXX1NaEyg9V10eBPj5fxMeYgA9kAaSvOO9RSKH_3bR21h0N0Iyi2XdPwQPUhYEo_icB-hPecfo_tbDINP0J-Rx2ql2y65Hp-oWXBNs6AReLyZg-55vP65gCQsi5fps_HlLxusaqxUv8ZvRydjcvZl8g7HYtMYVm6xwt3nwEujfcPNKqZIYEDBqSYYnONmvmktiTy1m5XDQFCR2j5F58fjb0cTkioyEMNFdkXqWomKaesodaZ0RaFtQEwBY2hX8UYwK2pLC2urpjYiIDlLc6EV1ZXJVW6sYs_Qvl949xxhrVgBTD2ZcZSXplBMNYwB313GdaHUAFW9DKRJdOVQNWMu-7i0H3JLfBLEJzMug_gGiF53XUbOjtt0-tALWu4ooAy-5TbdD3vlkGGCwq6L8m6xWUsaADUD2F0MULmjNdeDA4rv3Se-veyovqsAZzPGX_zf4F6ie3AVo4xfof0gcfc6YKkrfdBNlgN0Z_RxOjmF4_Tr9-lfe9ApIw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgE9IJ4i5bWVQIKDib1evyQ4RJAqpWmF1FbqbdmXU6N0EyWNUC78E34Ff5AZe90mEodKqDfL9q7WO7Mzn3dnviHkTZml1kQKFlIZpQG3zAYqKm0gi0iqsJCF1rjfcXCYDk7419PkdIP8aXNhMKzS2_7GptfW2t_p-tnsTquqe4TkaRnmfeIWNaAcH1m5b5c_4b9t_mnvCwj5LWO7_ePPg8CXFgg0T8OLoChkmsfKWMaszmySKAOuH5ylsjkv09ikhWGJMXlZ6BQgiWFRqiRTuY5kpI2Mod9b5DYHc4FlEz78iq6OLsK6oCeOLsDh3SE7V0Fl1o2kw5BjhyylLKppVrHa0r-d4groXQ_ZXPGBuw_IfQ9eaa-Zn4dkw7pHZGuF0vAx-d1zVM5UVWfz06EcgS8cgQrS_mKMyu7o_HyCWV-GTv0807OlATO-dPK80nP6rjfsB0ffBu9pU92a4lYxlbT-HOy0Mai0nDU5GRRhty9Chte0HC8qEzTEuIuZpciI4d99Qk5uRE5PyaabOPuMUCXjBKmBQm0Zz3QiY1nGMRLshVwlUnZI3spAaM-PjmU6xqINhPshVsQnUHwi5ALE1yHssum0IQm5TqOPraDFmsYLcGbXab7TKocAi4DHPNLZyWIuGCD4GHF-0iHZmtZcDg45xdefuOqs5hbPAT-HMd_-v8G9JncHxwdDMdw73H9O7uGTJsT5BdkE6duXAOQu1Kt64VDy_aZX6l9wIWQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+arbitrary+Lagrangian+Eulerian+smoothed+particle+hydrodynamics+%28ALE-SPH%29+method+with+a+boundary+volume+fraction+formulation+for+fluid-structure+interaction&rft.jtitle=Engineering+analysis+with+boundary+elements&rft.au=Jacob%2C+Bruno&rft.au=Drawert%2C+Brian&rft.au=Yi%2C+Tau-Mu&rft.au=Petzold%2C+Linda&rft.date=2021-07-01&rft.issn=0955-7997&rft.volume=128&rft.spage=274&rft.epage=289&rft_id=info:doi/10.1016%2Fj.enganabound.2021.04.006&rft_id=info%3Apmid%2F34040286&rft.externalDocID=PMC8143034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-7997&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-7997&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-7997&client=summon |