Semantic Segmentation of Urban Buildings from VHR Remote Sensing Imagery Using a Deep Convolutional Neural Network

Urban building segmentation is a prevalent research domain for very high resolution (VHR) remote sensing; however, various appearances and complicated background of VHR remote sensing imagery make accurate semantic segmentation of urban buildings a challenge in relevant applications. Following the b...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 11; no. 15; p. 1774
Main Authors Yi, Yaning, Zhang, Zhijie, Zhang, Wanchang, Zhang, Chuanrong, Li, Weidong, Zhao, Tian
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 28.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Urban building segmentation is a prevalent research domain for very high resolution (VHR) remote sensing; however, various appearances and complicated background of VHR remote sensing imagery make accurate semantic segmentation of urban buildings a challenge in relevant applications. Following the basic architecture of U-Net, an end-to-end deep convolutional neural network (denoted as DeepResUnet) was proposed, which can effectively perform urban building segmentation at pixel scale from VHR imagery and generate accurate segmentation results. The method contains two sub-networks: One is a cascade down-sampling network for extracting feature maps of buildings from the VHR image, and the other is an up-sampling network for reconstructing those extracted feature maps back to the same size of the input VHR image. The deep residual learning approach was adopted to facilitate training in order to alleviate the degradation problem that often occurred in the model training process. The proposed DeepResUnet was tested with aerial images with a spatial resolution of 0.075 m and was compared in performance under the exact same conditions with six other state-of-the-art networks—FCN-8s, SegNet, DeconvNet, U-Net, ResUNet and DeepUNet. Results of extensive experiments indicated that the proposed DeepResUnet outperformed the other six existing networks in semantic segmentation of urban buildings in terms of visual and quantitative evaluation, especially in labeling irregular-shape and small-size buildings with higher accuracy and entirety. Compared with the U-Net, the F1 score, Kappa coefficient and overall accuracy of DeepResUnet were improved by 3.52%, 4.67% and 1.72%, respectively. Moreover, the proposed DeepResUnet required much fewer parameters than the U-Net, highlighting its significant improvement among U-Net applications. Nevertheless, the inference time of DeepResUnet is slightly longer than that of the U-Net, which is subject to further improvement.
AbstractList Urban building segmentation is a prevalent research domain for very high resolution (VHR) remote sensing; however, various appearances and complicated background of VHR remote sensing imagery make accurate semantic segmentation of urban buildings a challenge in relevant applications. Following the basic architecture of U-Net, an end-to-end deep convolutional neural network (denoted as DeepResUnet) was proposed, which can effectively perform urban building segmentation at pixel scale from VHR imagery and generate accurate segmentation results. The method contains two sub-networks: One is a cascade down-sampling network for extracting feature maps of buildings from the VHR image, and the other is an up-sampling network for reconstructing those extracted feature maps back to the same size of the input VHR image. The deep residual learning approach was adopted to facilitate training in order to alleviate the degradation problem that often occurred in the model training process. The proposed DeepResUnet was tested with aerial images with a spatial resolution of 0.075 m and was compared in performance under the exact same conditions with six other state-of-the-art networks—FCN-8s, SegNet, DeconvNet, U-Net, ResUNet and DeepUNet. Results of extensive experiments indicated that the proposed DeepResUnet outperformed the other six existing networks in semantic segmentation of urban buildings in terms of visual and quantitative evaluation, especially in labeling irregular-shape and small-size buildings with higher accuracy and entirety. Compared with the U-Net, the F1 score, Kappa coefficient and overall accuracy of DeepResUnet were improved by 3.52%, 4.67% and 1.72%, respectively. Moreover, the proposed DeepResUnet required much fewer parameters than the U-Net, highlighting its significant improvement among U-Net applications. Nevertheless, the inference time of DeepResUnet is slightly longer than that of the U-Net, which is subject to further improvement.
Author Zhang, Wanchang
Li, Weidong
Zhao, Tian
Yi, Yaning
Zhang, Chuanrong
Zhang, Zhijie
Author_xml – sequence: 1
  givenname: Yaning
  orcidid: 0000-0002-2653-8920
  surname: Yi
  fullname: Yi, Yaning
– sequence: 2
  givenname: Zhijie
  orcidid: 0000-0002-7276-5649
  surname: Zhang
  fullname: Zhang, Zhijie
– sequence: 3
  givenname: Wanchang
  orcidid: 0000-0002-2607-4628
  surname: Zhang
  fullname: Zhang, Wanchang
– sequence: 4
  givenname: Chuanrong
  orcidid: 0000-0002-9165-5584
  surname: Zhang
  fullname: Zhang, Chuanrong
– sequence: 5
  givenname: Weidong
  orcidid: 0000-0002-4558-3292
  surname: Li
  fullname: Li, Weidong
– sequence: 6
  givenname: Tian
  surname: Zhao
  fullname: Zhao, Tian
BookMark eNptkd9rFDEQx4NUsNa--BcEfBHhNL82yT7qVduD0kLr-Rqy2cmRczc5k12l_33TO9FSOi8zyXzyJTPf1-gopggIvaXkI-ct-ZQLpbShSokX6JgRxRaCtezoUf0KnZayJTU4py0RxyjfwmjjFBy-hc0IcbJTSBEnj9e5sxF_mcPQh7gp2Oc04h8XN_gGxjRB5WOpDbwa7QbyHV7vTxafAezwMsXfaZgftOyAr2DO-zT9SfnnG_TS26HA6d98gtbfvn5fXiwur89Xy8-XCyckmRZa8pYJzbjWtieizkVkQ1vNlfSKaiUo142U3hMmBDgNrXaKdT3pOLGOO36CVgfdPtmt2eUw2nxnkg1mf5HyxthcJx_AiF41UkjlLemF6DrteON7L8F1znKuq9b7g9Yup18zlMmMoTgYBhshzcWwVkvWSNWIir57gm7TnOsaKsWJIKIljFXqw4FyOZWSwf_7ICXmwU3z380KkyewCwejpmzD8NyTe9OCoZo
CitedBy_id crossref_primary_10_1016_j_eswa_2022_118380
crossref_primary_10_3390_rs14092252
crossref_primary_10_1109_JSTARS_2022_3189277
crossref_primary_10_3390_ijgi9080486
crossref_primary_10_1080_01431161_2021_1903613
crossref_primary_10_3390_mi13111920
crossref_primary_10_3390_rs13193898
crossref_primary_10_3390_s21051794
crossref_primary_10_1080_15481603_2024_2356355
crossref_primary_10_3390_rs13173414
crossref_primary_10_1109_ACCESS_2024_3519260
crossref_primary_10_7717_peerj_cs_2006
crossref_primary_10_1002_ima_22819
crossref_primary_10_1016_j_ecoinf_2021_101430
crossref_primary_10_1016_j_isprsjprs_2024_03_012
crossref_primary_10_3390_rs15184455
crossref_primary_10_3390_rs13163211
crossref_primary_10_1142_S0218213023500331
crossref_primary_10_3390_s23073643
crossref_primary_10_1007_s13369_022_06768_8
crossref_primary_10_3390_s24113677
crossref_primary_10_3390_s24020365
crossref_primary_10_3390_rs13214441
crossref_primary_10_1016_j_jag_2023_103632
crossref_primary_10_3390_rs14236057
crossref_primary_10_1016_j_compenvurbsys_2024_102075
crossref_primary_10_3390_rs13183600
crossref_primary_10_3390_data7040045
crossref_primary_10_1016_j_rse_2023_113856
crossref_primary_10_3390_app14104075
crossref_primary_10_3390_s22176425
crossref_primary_10_61186_jgit_11_3_43
crossref_primary_10_1080_14498596_2022_2037473
crossref_primary_10_1016_j_isprsjprs_2023_05_013
crossref_primary_10_1109_LGRS_2022_3227392
crossref_primary_10_3390_rs12030549
crossref_primary_10_1111_tgis_13133
crossref_primary_10_3390_rs15092464
crossref_primary_10_3390_rs14092237
crossref_primary_10_3390_rs12244145
crossref_primary_10_3390_rs13020294
crossref_primary_10_3390_rs15153766
crossref_primary_10_3390_rs14051128
crossref_primary_10_3390_rs12244149
crossref_primary_10_3390_rs14020269
crossref_primary_10_3390_rs16050818
crossref_primary_10_1109_JSTARS_2020_3043442
crossref_primary_10_3390_rs16010169
crossref_primary_10_1080_15481603_2023_2165256
crossref_primary_10_3390_rs12213603
crossref_primary_10_3390_f12091202
crossref_primary_10_3390_rs12020207
crossref_primary_10_3390_rs16060979
crossref_primary_10_1038_s41598_024_70019_z
crossref_primary_10_3390_f13122170
crossref_primary_10_3390_rs14112611
crossref_primary_10_3390_rs16152776
crossref_primary_10_3390_electronics10232970
crossref_primary_10_1016_j_compag_2022_106873
crossref_primary_10_1109_JSTARS_2020_3028855
crossref_primary_10_1007_s10489_021_02542_9
crossref_primary_10_3390_electronics12040881
crossref_primary_10_3390_rs13071312
crossref_primary_10_1007_s44196_023_00364_w
crossref_primary_10_1109_JSTARS_2024_3381737
crossref_primary_10_17587_mau_22_48_55
crossref_primary_10_1109_ACCESS_2021_3069882
crossref_primary_10_1109_JSTARS_2022_3178470
crossref_primary_10_3390_rs12182932
crossref_primary_10_1109_JSTARS_2022_3230625
crossref_primary_10_7780_kjrs_2025_41_1_15
crossref_primary_10_1007_s12145_024_01267_w
crossref_primary_10_1109_JSTARS_2021_3104726
crossref_primary_10_1134_S0001433820120427
crossref_primary_10_3390_rs15204896
crossref_primary_10_1016_j_isprsjprs_2022_11_006
crossref_primary_10_1109_JSTARS_2023_3270302
crossref_primary_10_3390_app14177499
crossref_primary_10_1007_s11042_025_20676_7
crossref_primary_10_1016_j_rsase_2022_100898
crossref_primary_10_1016_j_cmpb_2020_105727
crossref_primary_10_1016_j_rsase_2021_100537
crossref_primary_10_1109_JSTARS_2021_3071353
crossref_primary_10_3389_frsen_2025_1538808
crossref_primary_10_3390_rs16203864
crossref_primary_10_3390_sym14050960
crossref_primary_10_1007_s11760_022_02383_0
crossref_primary_10_1109_JSTARS_2023_3328315
crossref_primary_10_1109_ACCESS_2020_3003914
crossref_primary_10_3390_rs14040965
crossref_primary_10_1016_j_jag_2022_102748
crossref_primary_10_3390_rs13030440
crossref_primary_10_3390_rs13040760
crossref_primary_10_3390_ijgi10010023
crossref_primary_10_1080_17538947_2023_2230956
crossref_primary_10_3390_s20185292
crossref_primary_10_1109_ACCESS_2022_3194919
crossref_primary_10_14358_PERS_21_00076R2
crossref_primary_10_3390_rs13010039
crossref_primary_10_3390_app13169239
crossref_primary_10_3390_rs12162576
crossref_primary_10_7780_kjrs_2024_40_6_1_2
crossref_primary_10_3390_rs15020488
crossref_primary_10_3390_rs15102689
crossref_primary_10_1080_01431161_2022_2135413
crossref_primary_10_3390_rs13040808
crossref_primary_10_1007_s11042_022_11948_7
crossref_primary_10_1109_JSTARS_2023_3339294
crossref_primary_10_3390_rs13132457
crossref_primary_10_1080_15481603_2022_2143678
crossref_primary_10_3390_rs14194872
crossref_primary_10_1145_3469661
crossref_primary_10_1109_ACCESS_2022_3231362
crossref_primary_10_3390_rs13163083
crossref_primary_10_3390_s23083805
crossref_primary_10_1016_j_eclinm_2023_102270
crossref_primary_10_1109_TGRS_2021_3093004
crossref_primary_10_3390_rs13163087
crossref_primary_10_7780_kjrs_2024_40_6_1_23
crossref_primary_10_1016_j_procs_2023_08_201
crossref_primary_10_3390_rs13214411
crossref_primary_10_1016_j_catena_2020_104851
crossref_primary_10_1109_JSTSP_2022_3159032
crossref_primary_10_1016_j_heliyon_2024_e38141
crossref_primary_10_1007_s11063_021_10592_w
crossref_primary_10_1093_nsr_nwac290
crossref_primary_10_3390_rs15082046
crossref_primary_10_1109_JSTARS_2021_3079459
crossref_primary_10_3390_rs12050852
crossref_primary_10_3390_rs12091515
crossref_primary_10_3390_rs14215527
crossref_primary_10_3390_rs11242912
crossref_primary_10_1016_j_neucom_2021_10_076
crossref_primary_10_1155_2022_4992547
crossref_primary_10_3390_rs12101574
crossref_primary_10_3390_rs12132159
crossref_primary_10_1109_JSTARS_2024_3388464
crossref_primary_10_3390_rs16152851
crossref_primary_10_1080_01431161_2023_2275326
crossref_primary_10_1016_j_ocecoaman_2022_106381
crossref_primary_10_3390_rs12081289
crossref_primary_10_1080_17538947_2023_2177359
crossref_primary_10_1007_s11069_022_05612_4
crossref_primary_10_1007_s11442_025_2339_y
crossref_primary_10_1080_10106049_2021_1943009
crossref_primary_10_3390_drones6070175
crossref_primary_10_3390_rs16132504
crossref_primary_10_1016_j_energy_2023_130202
crossref_primary_10_1016_j_cviu_2024_104253
crossref_primary_10_3390_rs15081996
crossref_primary_10_54751_revistafoco_v16n7_016
crossref_primary_10_1109_TGRS_2021_3133109
crossref_primary_10_3390_rs14122745
crossref_primary_10_3390_rs14194889
crossref_primary_10_1007_s13369_023_08593_z
crossref_primary_10_3390_geomatics3010007
crossref_primary_10_1080_19475705_2022_2030414
Cites_doi 10.1016/j.compenvurbsys.2017.03.001
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2015.7298594
10.3390/rs9050446
10.1109/JSTARS.2018.2825099
10.1080/01431161.2016.1266108
10.3390/rs3081777
10.20944/preprints201608.0022.v1
10.1109/TGRS.2016.2616585
10.1016/j.isprsjprs.2019.02.019
10.1109/CVPR.2017.243
10.1109/ICCV.2015.169
10.1109/CVPR.2015.7298965
10.3390/rs10020236
10.1016/j.rse.2018.04.050
10.1109/LGRS.2018.2822760
10.3390/rs8110954
10.1117/1.JRS.11.042609
10.1016/j.rse.2012.03.013
10.1109/JSTARS.2018.2849363
10.1109/LGRS.2018.2802944
10.1109/IGARSS.2015.7326158
10.1109/JSTARS.2017.2747599
10.1109/TPAMI.2016.2644615
10.3390/rs11080917
10.1109/TITS.2016.2622280
10.3390/rs8030258
10.1109/ICCV.2015.178
10.1016/j.isprsjprs.2017.11.011
10.3390/rs10010052
10.14358/PERS.70.12.1365
10.1109/MGRS.2016.2540798
10.1007/978-3-319-46448-0_2
10.2352/J.ImagingSci.Technol.2016.60.1.010402
10.1109/CVPRW.2017.156
10.1109/CVPR.2015.7299173
10.1007/978-3-030-01440-7_15
10.1016/j.isprsjprs.2017.12.007
10.3390/rs10010144
10.1109/TGRS.2016.2542342
10.1109/TPAMI.2017.2699184
10.1109/LGRS.2018.2795531
10.1016/j.isprsjprs.2017.11.009
10.1109/JSTARS.2018.2833382
10.1109/TGRS.2018.2837142
10.3390/rs10030407
10.1109/TGRS.2011.2136381
10.1109/TPAMI.2017.2750680
10.1109/CVPR.2016.90
10.1109/JPROC.2012.2211551
10.1016/j.isprsjprs.2016.10.010
10.1109/LGRS.2014.2309695
10.1109/ICUS.2017.8278309
10.1109/TGRS.2018.2858817
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs11151774
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_4d756467fa0d44bb8c35fdf6ecbca338
10_3390_rs11151774
GeographicLocations Beijing China
United States--US
China
GeographicLocations_xml – name: China
– name: Beijing China
– name: United States--US
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c460t-86392482388ad04517065198376f71874138566ff0244ec8e98c72bd0b30ac3c3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:31:36 EDT 2025
Thu Jul 10 20:16:44 EDT 2025
Fri Jul 25 12:14:05 EDT 2025
Tue Jul 01 04:14:49 EDT 2025
Thu Apr 24 22:57:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-86392482388ad04517065198376f71874138566ff0244ec8e98c72bd0b30ac3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2653-8920
0000-0002-4558-3292
0000-0002-2607-4628
0000-0002-7276-5649
0000-0002-9165-5584
OpenAccessLink https://doaj.org/article/4d756467fa0d44bb8c35fdf6ecbca338
PQID 2304049022
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_4d756467fa0d44bb8c35fdf6ecbca338
proquest_miscellaneous_2986256754
proquest_journals_2304049022
crossref_primary_10_3390_rs11151774
crossref_citationtrail_10_3390_rs11151774
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190728
PublicationDateYYYYMMDD 2019-07-28
PublicationDate_xml – month: 07
  year: 2019
  text: 20190728
  day: 28
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Marmanis (ref_4) 2018; 135
ref_58
Shu (ref_8) 2018; 15
Bittner (ref_42) 2018; 11
ref_54
Zhong (ref_36) 2016; 54
Yuan (ref_39) 2018; 40
ref_53
ref_52
Grinias (ref_1) 2016; 122
ref_18
Zhou (ref_6) 2017; 18
ref_59
Badrinarayanan (ref_29) 2017; 39
Erener (ref_3) 2013; 21
ref_61
Saito (ref_41) 2016; 60
ref_60
Audebert (ref_64) 2018; 140
Ball (ref_15) 2017; 11
ref_25
ref_24
ref_23
ref_21
ref_65
Yousefi (ref_17) 2014; 30
ref_20
Zhang (ref_51) 2018; 15
ref_62
Li (ref_57) 2018; 11
Liu (ref_50) 2017; 145
Matikainen (ref_11) 2011; 3
ref_28
ref_27
ref_26
Zhang (ref_32) 2016; 4
Ma (ref_37) 2018; 56
Volpi (ref_56) 2017; 55
ref_33
Huang (ref_10) 2018; 214
ref_31
Ji (ref_40) 2019; 57
ref_30
Dalponte (ref_13) 2012; 123
Moser (ref_9) 2013; 101
ref_38
Song (ref_19) 2004; 70
Chen (ref_55) 2018; 40
Sun (ref_63) 2018; 15
Zhang (ref_12) 2017; 64
Chen (ref_35) 2014; 11
ref_46
ref_45
ref_44
ref_43
Huang (ref_66) 2019; 151
Das (ref_22) 2011; 49
Schilling (ref_34) 2018; 11
ref_2
ref_49
Cheng (ref_47) 2017; 10
ref_48
Turker (ref_16) 2015; 34
ref_5
ref_7
Meave (ref_14) 2017; 38
References_xml – volume: 64
  start-page: 215
  year: 2017
  ident: ref_12
  article-title: Parcel-based urban land use classification in megacity using airborne LiDAR, high resolution orthoimagery, and Google Street View
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2017.03.001
– ident: ref_30
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_26
  doi: 10.1109/CVPR.2015.7298594
– ident: ref_46
  doi: 10.3390/rs9050446
– volume: 11
  start-page: 4299
  year: 2018
  ident: ref_34
  article-title: Detection of Vehicles in Multisensor Data via Multibranch Convolutional Neural Networks
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2825099
– ident: ref_49
– volume: 38
  start-page: 492
  year: 2017
  ident: ref_14
  article-title: Predicting old-growth tropical forest attributes from very high resolution (VHR)-derived surface metrics
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1266108
– volume: 3
  start-page: 1777
  year: 2011
  ident: ref_11
  article-title: Segment-Based Land Cover Mapping of a Suburban Area—Comparison of High-Resolution Remotely Sensed Datasets Using Classification Trees and Test Field Points
  publication-title: Remote Sens.
  doi: 10.3390/rs3081777
– ident: ref_21
  doi: 10.20944/preprints201608.0022.v1
– volume: 55
  start-page: 881
  year: 2017
  ident: ref_56
  article-title: Dense Semantic Labeling of Subdecimeter Resolution Images With Convolutional Neural Networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2616585
– volume: 151
  start-page: 91
  year: 2019
  ident: ref_66
  article-title: Automatic building extraction from high-resolution aerial images and LiDAR data using gated residual refinement network
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.02.019
– ident: ref_59
  doi: 10.1109/CVPR.2017.243
– ident: ref_23
  doi: 10.1109/ICCV.2015.169
– ident: ref_28
  doi: 10.1109/CVPR.2015.7298965
– ident: ref_33
  doi: 10.3390/rs10020236
– volume: 34
  start-page: 58
  year: 2015
  ident: ref_16
  article-title: Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (SVM) classification, Hough transformation and perceptual grouping
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 214
  start-page: 73
  year: 2018
  ident: ref_10
  article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.050
– volume: 15
  start-page: 1100
  year: 2018
  ident: ref_8
  article-title: Center-Point-Guided Proposal Generation for Detection of Small and Dense Buildings in Aerial Imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2822760
– ident: ref_20
  doi: 10.3390/rs8110954
– volume: 11
  start-page: 54
  year: 2017
  ident: ref_15
  article-title: Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.11.042609
– volume: 30
  start-page: 158
  year: 2014
  ident: ref_17
  article-title: Hierarchical segmentation of urban satellite imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 123
  start-page: 258
  year: 2012
  ident: ref_13
  article-title: Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.03.013
– ident: ref_27
– volume: 11
  start-page: 2615
  year: 2018
  ident: ref_42
  article-title: Building Footprint Extraction From VHR Remote Sensing Images Combined With Normalized DSMs Using Fused Fully Convolutional Networks
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2849363
– volume: 15
  start-page: 749
  year: 2018
  ident: ref_51
  article-title: Road Extraction by Deep Residual U-Net
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2802944
– ident: ref_52
– ident: ref_43
  doi: 10.1109/IGARSS.2015.7326158
– ident: ref_48
– volume: 10
  start-page: 5769
  year: 2017
  ident: ref_47
  article-title: FusionNet: Edge Aware Deep Convolutional Networks for Semantic Segmentation of Remote Sensing Harbor Images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2747599
– volume: 39
  start-page: 2481
  year: 2017
  ident: ref_29
  article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref_62
– ident: ref_38
  doi: 10.3390/rs11080917
– volume: 18
  start-page: 1713
  year: 2017
  ident: ref_6
  article-title: On Detecting Road Regions in a Single UAV Image
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2622280
– ident: ref_45
– ident: ref_18
  doi: 10.3390/rs8030258
– volume: 21
  start-page: 397
  year: 2013
  ident: ref_3
  article-title: Classification method, spectral diversity, band combination and accuracy assessment evaluation for urban feature detection
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_31
  doi: 10.1109/ICCV.2015.178
– ident: ref_53
– volume: 140
  start-page: 20
  year: 2018
  ident: ref_64
  article-title: Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.011
– ident: ref_65
  doi: 10.3390/rs10010052
– volume: 70
  start-page: 1365
  year: 2004
  ident: ref_19
  article-title: Road extraction using SVM and image segmentation
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.70.12.1365
– ident: ref_24
– volume: 4
  start-page: 22
  year: 2016
  ident: ref_32
  article-title: Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2540798
– ident: ref_25
  doi: 10.1007/978-3-319-46448-0_2
– volume: 60
  start-page: 104021
  year: 2016
  ident: ref_41
  article-title: Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks
  publication-title: J. Imaging Sci. Technol.
  doi: 10.2352/J.ImagingSci.Technol.2016.60.1.010402
– ident: ref_60
  doi: 10.1109/CVPRW.2017.156
– ident: ref_61
  doi: 10.1109/CVPR.2015.7299173
– ident: ref_7
  doi: 10.1007/978-3-030-01440-7_15
– volume: 145
  start-page: 78
  year: 2017
  ident: ref_50
  article-title: Semantic labeling in very high resolution images via a self-cascaded convolutional neural network
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.12.007
– ident: ref_54
  doi: 10.3390/rs10010144
– volume: 54
  start-page: 4461
  year: 2016
  ident: ref_36
  article-title: Efficient Multiple Feature Fusion With Hashing for Hyperspectral Imagery Classification: A Comparative Study
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2542342
– volume: 40
  start-page: 834
  year: 2018
  ident: ref_55
  article-title: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– volume: 15
  start-page: 474
  year: 2018
  ident: ref_63
  article-title: Fully Convolutional Networks for Semantic Segmentation of Very High Resolution Remotely Sensed Images Combined With DSM
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2795531
– volume: 135
  start-page: 158
  year: 2018
  ident: ref_4
  article-title: Classification with an edge: Improving semantic with boundary detection
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.009
– volume: 11
  start-page: 3954
  year: 2018
  ident: ref_57
  article-title: DeepUNet: A Deep Fully Convolutional Network for Pixel-Level Sea-Land Segmentation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2833382
– volume: 56
  start-page: 4781
  year: 2018
  ident: ref_37
  article-title: Hyperspectral Image Classification Based on Deep Deconvolution Network With Skip Architecture
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2837142
– ident: ref_58
  doi: 10.3390/rs10030407
– volume: 49
  start-page: 3906
  year: 2011
  ident: ref_22
  article-title: Use of Salient Features for the Design of a Multistage Framework to Extract Roads From High-Resolution Multispectral Satellite Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2136381
– volume: 40
  start-page: 2793
  year: 2018
  ident: ref_39
  article-title: Learning Building Extraction in Aerial Scenes with Convolutional Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2750680
– ident: ref_44
  doi: 10.1109/CVPR.2016.90
– volume: 101
  start-page: 631
  year: 2013
  ident: ref_9
  article-title: Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information in Very-High-Resolution Remote Sensing Images
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2211551
– ident: ref_2
– volume: 122
  start-page: 145
  year: 2016
  ident: ref_1
  article-title: MRF-based segmentation and unsupervised classification for building and road detection in peri-urban areas of high-resolution satellite images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.10.010
– volume: 11
  start-page: 1797
  year: 2014
  ident: ref_35
  article-title: Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2309695
– ident: ref_5
  doi: 10.1109/ICUS.2017.8278309
– volume: 57
  start-page: 574
  year: 2019
  ident: ref_40
  article-title: Fully Convolutional Networks for Multisource Building Extraction From an Open Aerial and Satellite Imagery Data Set
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2858817
SSID ssj0000331904
Score 2.6040652
Snippet Urban building segmentation is a prevalent research domain for very high resolution (VHR) remote sensing; however, various appearances and complicated...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1774
SubjectTerms aerial photography
artificial intelligence
Artificial neural networks
Buildings
Classification
deep convolutional neural network
Deep learning
Detection
Feature extraction
Feature maps
Image processing
Image reconstruction
Image segmentation
Neural networks
Pattern recognition
quantitative analysis
Remote sensing
Sampling
Semantic segmentation
Semantics
Spatial discrimination
Spatial resolution
Training
U-Net
urban building extraction
VHR remote sensing imagery
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LattAcGidQ3spSR_UTVK2tJceRPRYaVenEqcJbqGhOHXJTeyuZpNCLTmyU8jfZ0ZeO4SEngzyIMG83wPwSVntuN8vcokvI2lID1qZlFGutdfkwTo0POD847QYT-X38_w8JNwWoa1yrRN7RV23jnPkB5y85CpVmn6ZX0V8NYqrq-GExlPYIhWs9QC2RsenPyebLEucEYvFcrWXNKP4_qBbkHTniVLyniXqF_Y_0Me9kTnZhhfBOxSHK3LuwBNsXsKzcKj88uYVdGc4I1z8ceIML2ZhbqgRrRfTzppGjMKV64XguRHxezwREyRqIME3nBYQ32a8teJG9L0CwoiviHNx1Db_Ag_S53lhR__Td4i_hunJ8a-jcRTOJkROFvEy0uR0pFKTLdam5vUxXMlMSopEC6_4BF-SaXLivCfzLNFpLLVTqa1jm8XGZS57A4OmbfAtCKuSWiYaE4sUNmWmlMp4VKUpUlWTdzGEz2sUVi7sFOfTFn8rii0Y3dUduofwcQM7X23SeBRqxJTYQPD26_5B211UQZgqWau8IA3vTVxLaYndstzXvkBnnaGYewh7azpWQSQX1R0DDeHD5m8SJq6QmAbba4IpKcDLKYaS7_7_il14Tp4Tj39Fqd6DwbK7xn3yTpb2fWDBWxoY5Bw
  priority: 102
  providerName: ProQuest
Title Semantic Segmentation of Urban Buildings from VHR Remote Sensing Imagery Using a Deep Convolutional Neural Network
URI https://www.proquest.com/docview/2304049022
https://www.proquest.com/docview/2986256754
https://doaj.org/article/4d756467fa0d44bb8c35fdf6ecbca338
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED9t7IG9oH2A1sEqT_Cyh4h8OLHzSIGumwaa2hXxFtnOmU1aU9SWSfz3u0tMBxrSXvZkKTkl1vk-bd_vAA6U1Y7v-0Uu8WUkDdlBK5MyyrX2miJYh4YLnM_Oi9FUfr7ML--1-uI7YR08cMe4Q1mrvCBt9iaupbT06Sz3tS_QWWcov2LrSz7vXjLV2uCMRCuWHR5pRnn94WJJWp0nSskHHqgF6v_LDrfOZfgCtkJUKI662byEJ9i8gs3QoPz77WtYTHBGPPjhxASvZqFeqBFzL6YLaxoxCN2tl4LrRcTFaCzGSKuARN_wdoD4NGO0ilvR3hEQRpwgXovjefMryB79noE62qG9Gb4N0-Hpt-NRFNolRE4W8SrSFGykUpMP1qZm2Bg-wUxKykALr7j1XpJpCt68J7cs0WkstVOprWObxcZlLtuBjWbe4BsQViW1TDQmFildykwplfGoSlOkqqaoogcf7lhYuYAlzi0tflaUUzC7qz_s7sH-mva6Q9B4lGrAK7GmYNTr9gHJQhVkofqXLPRg724dq6CKy4p3vfl4M0178H79mpSIT0ZMg_Mboikpscspd5Jv_8c8duE5xVVcHBaleg82VosbfEexy8r24akefuzDs6OTsy8TGgen51_H_VZ4fwML9PCs
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKoVxQeYmlBYyAA4eoeTixc0CItmx36ePQdlFvqe3YBambbLNb0P4U38hM1tmqAnHrKVI8sqWZ8Tw8L4B3QktD-X6BiVwecIVyUPMoD1IpnUQL1lhFBc6HR9lgxL-epWcr8LurhaG0yk4mtoK6rA29kW_R4yVFqeL40-QqoKlRFF3tRmgs2GLfzn-hyzb9ONxF-r6P4_6X051B4KcKBIZn4SyQqJNjLlFVSVVSdxUK9KHrjTfNCZpQFyUSbRznUHtxa6TNpRGxLkOdhMokJsF978F9nqAmp8r0_t7yTSdMkKFDvuiCiuvhVjNFWYJHCH5L77XjAf6S_q1K66_DQ2-Lss8L5nkEK7Z6DGt-LPr3-RNoTuwYMf_DsBN7MfZVShWrHRs1WlVs28_UnjKqUmHfBsfs2CLtLcJX9AjBhmPqkTFnbWYCU2zX2gnbqaufnuPxeGoP0n7afPSnMLoTdD6D1aqu7HNgWkQlj6SNtEUnLVE5F8pZkassFiXaMj340KGwML6DOQ3SuCzQkyF0Fzfo7sHbJexk0bfjn1DbRIklBPXabn_UzUXhr27BS5FmqE-cCkvONTJ3krrSZdZoo9DD78FmR8fCC4BpccOuPXizXMarS_EYVdn6GmFydCdT9Nj4i_9v8RrWBqeHB8XB8Gh_Ax6gzUaFZ0EsN2F11lzbl2gXzfSrlhkZnN819_8BsKgcOQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKdIKbAIOHCw4sfaXh8QIk2jhEJUpQT15u6udwtSYwcnBeWv8euYcdapEIhbT5bs0Vra_ea58wB4lSqhKd_P04HNPC5RDioeZF4shBVowWojqcD50yQZzfiH0_h0B361tTCUVtnKxEZQF5WmGHmPgpd0SxWGPevSIo4Hw3eL7x5NkKKb1nacxgYiR2b9E9235dvxAM_6dRgODz8fjDw3YcDTPPFXnkD9HHKBakvIgjqt0KUfuuHIdTalaXVBJNDesRY1GTdamEzoNFSFryJf6khHuO4N2E3JK-rAbv9wcjzdRnj8COHt801P1CjK_F69RMmCP0n5H1qwGRbwly5oFNzwLtxxlil7v4HSPdgx5X245Yakf10_gPrEzPEcvml2Ys7nrmapZJVls1rJkvXdhO0lo5oV9mU0ZVODSDBIX1JIgo3n1DFjzZo8BSbZwJgFO6jKHw7_-HtqFtI8muz0hzC7lg19BJ2yKs1jYCoNCh4IEyiDLlskM55Ka9JMJmFaoGXThTftFuba9TOnsRoXOfo1tN351XZ34eWWdrHp4vFPqj6dxJaCOm83L6r6PHeMnPMijRPULlb6BecKoR7FtrCJ0UpL9Pe7sN-eY-7EwTK_Am8XXmw_IyPT7YwsTXWJNBk6lzH6b3zv_0s8h5uI_PzjeHL0BG6jAUdVaF4o9qGzqi_NUzSSVuqZQyODs-tmgN_COCHL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+Segmentation+of+Urban+Buildings+from+VHR+Remote+Sensing+Imagery+Using+a+Deep+Convolutional+Neural+Network&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Yaning+Yi&rft.au=Zhijie+Zhang&rft.au=Wanchang+Zhang&rft.au=Chuanrong+Zhang&rft.date=2019-07-28&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=15&rft.spage=1774&rft_id=info:doi/10.3390%2Frs11151774&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4d756467fa0d44bb8c35fdf6ecbca338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon