Satellite Observational Evidence of Contrasting Changes in Northern Eurasian Wildfires from 2003 to 2020
Wildfires play a critical role in re-shaping boreal ecosystems and climate. It was projected that, owing to the Arctic amplification, boreal wildfires would become more frequent and severe in the coming decades. Although provoking concern, the spatiotemporal changes in boreal wildfires remain unclea...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 17; p. 4180 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
25.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wildfires play a critical role in re-shaping boreal ecosystems and climate. It was projected that, owing to the Arctic amplification, boreal wildfires would become more frequent and severe in the coming decades. Although provoking concern, the spatiotemporal changes in boreal wildfires remain unclear, and there are substantial inconsistencies among previous findings. In this study, we performed a comprehensive analysis to determine the spatiotemporal changes in wildfires over Northern Eurasia (NEA) from 2003 to 2020 using a reconstructed Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product. We found that wildfires in NEA exhibited contrasting changes in different latitudinal zones, land cover types, and seasons from 2003 to 2020. Cropland wildfires, mainly distributed at low latitudes (50–60°N), considerably decreased by 81% during the study period. Whereas forest wildfires ignited at high latitudes (north of 60°N) have nearly tripled (increasing at rate of 11~13% per year) during the past two decades. The southwestern and northeastern NEA regions exhibited contrasting patterns of wildfire changes. The active fire counts in the southwestern NEA decreased by 90% at a rate of 0.29(±0.12) × 105 per year, with cropland fires contributing to ~66% of the decrease. However, the fire counts in the northeastern NEA increased by 292% at a rate of 0.23(±0.12) × 105 per year, with boreal forests contributing to ~97% of the increase. It is worth noting that the contrasting changes in wildfires during the past two decades have led to significant structural alternation in the NEA wildfire composition. Forest fires, contributing over 60% of the total fire counts in NEA nowadays, have become the predominant component of the NEA wildfires. The contrasting changes in NEA wildfires imply that more forest fires may emerge in far northern regions of the North Hemisphere as the Arctic becomes progressively warmer in the coming decades. As wildfires continue to increase, more gases and aerosols would be released to the atmosphere and cause considerable feedback to the Arctic climate. The increased wildfire-related climate feedbacks should, therefore, be seriously considered in climate models and projections. |
---|---|
AbstractList | Wildfires play a critical role in re-shaping boreal ecosystems and climate. It was projected that, owing to the Arctic amplification, boreal wildfires would become more frequent and severe in the coming decades. Although provoking concern, the spatiotemporal changes in boreal wildfires remain unclear, and there are substantial inconsistencies among previous findings. In this study, we performed a comprehensive analysis to determine the spatiotemporal changes in wildfires over Northern Eurasia (NEA) from 2003 to 2020 using a reconstructed Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product. We found that wildfires in NEA exhibited contrasting changes in different latitudinal zones, land cover types, and seasons from 2003 to 2020. Cropland wildfires, mainly distributed at low latitudes (50–60°N), considerably decreased by 81% during the study period. Whereas forest wildfires ignited at high latitudes (north of 60°N) have nearly tripled (increasing at rate of 11~13% per year) during the past two decades. The southwestern and northeastern NEA regions exhibited contrasting patterns of wildfire changes. The active fire counts in the southwestern NEA decreased by 90% at a rate of 0.29(±0.12) × 105 per year, with cropland fires contributing to ~66% of the decrease. However, the fire counts in the northeastern NEA increased by 292% at a rate of 0.23(±0.12) × 105 per year, with boreal forests contributing to ~97% of the increase. It is worth noting that the contrasting changes in wildfires during the past two decades have led to significant structural alternation in the NEA wildfire composition. Forest fires, contributing over 60% of the total fire counts in NEA nowadays, have become the predominant component of the NEA wildfires. The contrasting changes in NEA wildfires imply that more forest fires may emerge in far northern regions of the North Hemisphere as the Arctic becomes progressively warmer in the coming decades. As wildfires continue to increase, more gases and aerosols would be released to the atmosphere and cause considerable feedback to the Arctic climate. The increased wildfire-related climate feedbacks should, therefore, be seriously considered in climate models and projections. Wildfires play a critical role in re-shaping boreal ecosystems and climate. It was projected that, owing to the Arctic amplification, boreal wildfires would become more frequent and severe in the coming decades. Although provoking concern, the spatiotemporal changes in boreal wildfires remain unclear, and there are substantial inconsistencies among previous findings. In this study, we performed a comprehensive analysis to determine the spatiotemporal changes in wildfires over Northern Eurasia (NEA) from 2003 to 2020 using a reconstructed Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product. We found that wildfires in NEA exhibited contrasting changes in different latitudinal zones, land cover types, and seasons from 2003 to 2020. Cropland wildfires, mainly distributed at low latitudes (50–60°N), considerably decreased by 81% during the study period. Whereas forest wildfires ignited at high latitudes (north of 60°N) have nearly tripled (increasing at rate of 11~13% per year) during the past two decades. The southwestern and northeastern NEA regions exhibited contrasting patterns of wildfire changes. The active fire counts in the southwestern NEA decreased by 90% at a rate of 0.29(±0.12) × 10⁵ per year, with cropland fires contributing to ~66% of the decrease. However, the fire counts in the northeastern NEA increased by 292% at a rate of 0.23(±0.12) × 10⁵ per year, with boreal forests contributing to ~97% of the increase. It is worth noting that the contrasting changes in wildfires during the past two decades have led to significant structural alternation in the NEA wildfire composition. Forest fires, contributing over 60% of the total fire counts in NEA nowadays, have become the predominant component of the NEA wildfires. The contrasting changes in NEA wildfires imply that more forest fires may emerge in far northern regions of the North Hemisphere as the Arctic becomes progressively warmer in the coming decades. As wildfires continue to increase, more gases and aerosols would be released to the atmosphere and cause considerable feedback to the Arctic climate. The increased wildfire-related climate feedbacks should, therefore, be seriously considered in climate models and projections. |
Author | Chen, Feng Cao, Yunfeng Tian, Jiaxin Chen, Xiaoning |
Author_xml | – sequence: 1 givenname: Jiaxin surname: Tian fullname: Tian, Jiaxin – sequence: 2 givenname: Xiaoning surname: Chen fullname: Chen, Xiaoning – sequence: 3 givenname: Yunfeng surname: Cao fullname: Cao, Yunfeng – sequence: 4 givenname: Feng surname: Chen fullname: Chen, Feng |
BookMark | eNptkU1rHDEMhk1IoGmSS3-BIZdS2NRfM545lmXbBkJzaEKPRmPLu15m7dT2Bvrv62RbUkJ1kbAevcKv3pLjmCIS8o6zKylH9jEXrrhWfGBH5FQwLRZKjOL4n_oNuShly1pIyUemTsnmO1Sc51CR3k4F8yPUkCLMdPUYHEaLNHm6TLFmKDXENV1uIK6x0BDpt5TrBnOkq33rBoj0R5idD7m1fU47KtoeWlPLgp2TEw9zwYs_-Yzcf17dLb8ubm6_XC8_3Sys6lldDHIa_cgE77TrhBOdQC2FBSZRDzCJfgDbj6Al19h71zmhrGUoJ4YemdTyjFwfdF2CrXnIYQf5l0kQzPNDymsDuQY7oxm4mNBx75wCxX0PVnDuPUcP3aRhalrvD1oPOf3cY6lmF4ptdkHEtC9GaCE5U6PqG3r5Ct2mfW5GPlGcKy37XjWKHSibUykZvbGhPjve_A2z4cw8XdK8XLKNfHg18vdP_4F_A4C0ntM |
CitedBy_id | crossref_primary_10_1038_s41612_024_00747_6 crossref_primary_10_1016_j_agrformet_2025_110507 crossref_primary_10_1016_j_scitotenv_2023_163397 crossref_primary_10_1029_2022JD038007 crossref_primary_10_3390_rs17010083 crossref_primary_10_1016_j_atmosres_2024_107458 |
Cites_doi | 10.1080/10106049.2021.1973581 10.1126/sciadv.aax1396 10.1016/j.rse.2008.01.005 10.1016/j.foreco.2012.09.027 10.1126/science.1155121 10.1016/j.rse.2018.10.028 10.1029/2008GL036194 10.1134/S1028334X20050049 10.1126/sciadv.aaw9883 10.1016/j.rse.2016.02.054 10.3390/rs10060940 10.1071/WF19129 10.5194/bg-18-2559-2021 10.1126/science.abf3903 10.1038/s41558-020-00922-6 10.1038/s41586-019-1474-y 10.1071/WF08187 10.1016/S0034-4257(02)00076-7 10.1109/TGRS.2006.875941 10.1088/1748-9326/ac3287 10.1038/s41561-020-00645-5 10.1029/2018GL078283 10.1038/s41467-018-08237-z 10.1038/s41558-021-01011-y 10.1029/2008GL035779 10.1088/1748-9326/11/9/095001 10.1088/1748-9326/ac6311 10.1111/ecog.02205 10.1038/nature10283 10.1134/S1067413617060042 10.1038/nature20584 10.1038/nclimate3329 10.1016/j.rse.2022.113181 10.1111/j.1365-2486.2012.02649.x 10.1038/nature14338 10.1038/s41467-018-05457-1 10.1088/1748-9326/abf0d0 10.1016/j.foreco.2016.10.015 10.1007/s13280-020-01490-x 10.1111/ele.12889 10.1111/gcb.15322 10.3390/f7060125 10.1073/pnas.1815107116 10.1126/science.aal4108 10.1038/s41558-020-00920-8 10.1073/pnas.1613401114 10.1038/s41558-020-00969-5 10.1016/j.isprsjprs.2017.01.016 10.1126/sciadv.aax3308 10.5194/gmd-9-4461-2016 10.1360/N972018-00462 10.1175/BAMS-D-13-00017.1 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs14174180 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_812bed1fdd4a41f6ac211ff1efa5b7ab 10_3390_rs14174180 |
GeographicLocations | Arctic Ocean Eurasia Arctic region Siberia Russia |
GeographicLocations_xml | – name: Eurasia – name: Siberia – name: Russia – name: Arctic Ocean – name: Arctic region |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c460t-83b9f902157d52d252e732ca03e78ab268ac69a7317e6fd5d24cc0e3b0efe0373 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:21:09 EDT 2025 Thu Jul 10 17:54:18 EDT 2025 Fri Jul 25 09:33:53 EDT 2025 Tue Jul 01 01:59:46 EDT 2025 Thu Apr 24 23:07:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-83b9f902157d52d252e732ca03e78ab268ac69a7317e6fd5d24cc0e3b0efe0373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2711473664?pq-origsite=%requestingapplication% |
PQID | 2711473664 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_812bed1fdd4a41f6ac211ff1efa5b7ab proquest_miscellaneous_2723104946 proquest_journals_2711473664 crossref_citationtrail_10_3390_rs14174180 crossref_primary_10_3390_rs14174180 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220825 |
PublicationDateYYYYMMDD | 2022-08-25 |
PublicationDate_xml | – month: 08 year: 2022 text: 20220825 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Justino (ref_23) 2021; 16 Veraverbeke (ref_19) 2017; 7 Kharuk (ref_32) 2021; 50 ref_51 Hessilt (ref_56) 2022; 17 Flannigan (ref_24) 2013; 294 Walker (ref_3) 2019; 572 Kemp (ref_6) 2018; 21 Young (ref_27) 2017; 40 McCarty (ref_36) 2020; 13 Pekel (ref_45) 2016; 540 Kharuk (ref_31) 2017; 48 Bondur (ref_34) 2020; 492 Csiszar (ref_41) 2006; 44 Schmale (ref_14) 2021; 11 Winiger (ref_15) 2017; 114 Fusco (ref_42) 2019; 220 Warneke (ref_49) 2009; 36 Park (ref_20) 2020; 26 Yang (ref_47) 2017; 125 Liu (ref_13) 2019; 10 Reinhart (ref_46) 2021; 94 Giglio (ref_40) 2016; 178 Schroeder (ref_43) 2008; 112 Cao (ref_16) 2018; 63 Wang (ref_38) 2022; 280 Liu (ref_26) 2012; 18 Flannigan (ref_25) 2009; 18 Chen (ref_2) 2021; 11 Schuur (ref_11) 2015; 520 Post (ref_17) 2019; 5 ref_33 Mack (ref_9) 2021; 372 ref_37 Kim (ref_50) 2020; 6 Hoy (ref_5) 2016; 11 Bonan (ref_12) 2008; 320 Hao (ref_30) 2021; 18 Glushkov (ref_48) 2021; 16 Davis (ref_4) 2019; 116 Justice (ref_39) 2002; 83 Kukavskaya (ref_52) 2016; 382 Coogan (ref_55) 2020; 29 Gonard (ref_35) 2020; 29 Loehman (ref_7) 2020; 10 ref_44 Gibson (ref_10) 2018; 9 ref_1 Yuan (ref_18) 2019; 5 Walker (ref_21) 2020; 10 Law (ref_53) 2014; 95 Mack (ref_8) 2011; 475 Andela (ref_28) 2017; 356 Hao (ref_29) 2016; 9 Park (ref_22) 2008; 35 Liu (ref_54) 2018; 45 |
References_xml | – ident: ref_37 doi: 10.1080/10106049.2021.1973581 – volume: 5 start-page: eaax1396 year: 2019 ident: ref_18 article-title: Increased atmospheric vapor pressure deficit reduces global vegetation growth publication-title: Sci. Adv. doi: 10.1126/sciadv.aax1396 – volume: 112 start-page: 2711 year: 2008 ident: ref_43 article-title: Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.01.005 – ident: ref_51 – volume: 294 start-page: 35 year: 2013 ident: ref_24 article-title: Climate change impacts on future boreal fire regimes publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2012.09.027 – volume: 320 start-page: 1444 year: 2008 ident: ref_12 article-title: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests publication-title: Science doi: 10.1126/science.1155121 – volume: 220 start-page: 30 year: 2019 ident: ref_42 article-title: Detection rates and biases of fire observations from MODIS and agency reports in the conterminous United States publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.10.028 – volume: 36 start-page: L02813 year: 2009 ident: ref_49 article-title: Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008 publication-title: Geophys. Res. Lett. doi: 10.1029/2008GL036194 – volume: 492 start-page: 370 year: 2020 ident: ref_34 article-title: Satellite Monitoring of Siberian Wildfires and Their Effects: Features of 2019 Anomalies and Trends of 20-Year Changes publication-title: Dokl. Earth Sci. doi: 10.1134/S1028334X20050049 – volume: 5 start-page: eaaw9883 year: 2019 ident: ref_17 article-title: The polar regions in a 2 °C warmer world publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw9883 – volume: 29 start-page: 26 year: 2020 ident: ref_35 article-title: Fire in the North: The 2020 Siberian fire season publication-title: Wildfire – volume: 178 start-page: 31 year: 2016 ident: ref_40 article-title: The collection 6 MODIS active fire detection algorithm and fire products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.054 – ident: ref_1 doi: 10.3390/rs10060940 – volume: 29 start-page: 473 year: 2020 ident: ref_55 article-title: Seasonality and trends in human- and lightning-caused wildfires ≥ 2 ha in Canada, 1959–2018 publication-title: Int. J. Wildland Fire doi: 10.1071/WF19129 – volume: 18 start-page: 2559 year: 2021 ident: ref_30 article-title: Wetter environment and increased grazing reduced the area burned in northern Eurasia from 2002 to 2016 publication-title: Biogeosciences doi: 10.5194/bg-18-2559-2021 – volume: 372 start-page: 280 year: 2021 ident: ref_9 article-title: Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees publication-title: Science doi: 10.1126/science.abf3903 – volume: 10 start-page: 1070 year: 2020 ident: ref_7 article-title: Drivers of wildfire carbon emissions publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-020-00922-6 – volume: 572 start-page: 520 year: 2019 ident: ref_3 article-title: Increasing wildfires threaten historic carbon sink of boreal forest soils publication-title: Nature doi: 10.1038/s41586-019-1474-y – volume: 18 start-page: 483 year: 2009 ident: ref_25 article-title: Implications of changing climate for global wildland fire publication-title: Int. J. Wildland Fire doi: 10.1071/WF08187 – volume: 83 start-page: 244 year: 2002 ident: ref_39 article-title: The MODIS fire products publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00076-7 – volume: 44 start-page: 1757 year: 2006 ident: ref_41 article-title: Validation of active fire detection from moderate-resolution satellite sensors: The MODIS example in northern eurasia publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.875941 – volume: 16 start-page: 125005 year: 2021 ident: ref_48 article-title: Spring fires in Russia: Results from participatory burned area mapping with Sentinel-2 imagery publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac3287 – volume: 13 start-page: 658 year: 2020 ident: ref_36 article-title: Arctic fires re-emerging publication-title: Nat. Geosci. doi: 10.1038/s41561-020-00645-5 – volume: 45 start-page: 6485 year: 2018 ident: ref_54 article-title: Increases in Land Surface Temperature in Response to Fire in Siberian Boreal Forests and Their Attribution to Biophysical Processes publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL078283 – volume: 10 start-page: 214 year: 2019 ident: ref_13 article-title: Biophysical feedback of global forest fires on surface temperature publication-title: Nat. Commun. doi: 10.1038/s41467-018-08237-z – volume: 11 start-page: 404 year: 2021 ident: ref_2 article-title: Future increases in Arctic lightning and fire risk for permafrost carbon publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-021-01011-y – volume: 35 start-page: L22703 year: 2008 ident: ref_22 article-title: Multidecadal and multicentennial variability of the meridional overturning circulation publication-title: Geophys. Res. Lett. doi: 10.1029/2008GL035779 – volume: 94 start-page: 102221 year: 2021 ident: ref_46 article-title: Comparison of ESA climate change initiative land cover to CORINE land cover over Eastern Europe and the Baltic States from a regional climate modeling perspective publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 11 start-page: 095001 year: 2016 ident: ref_5 article-title: More frequent burning increases vulnerability of Alaskan boreal black spruce forests publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/11/9/095001 – volume: 17 start-page: 054008 year: 2022 ident: ref_56 article-title: Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac6311 – volume: 40 start-page: 606 year: 2017 ident: ref_27 article-title: Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change publication-title: Ecography doi: 10.1111/ecog.02205 – volume: 475 start-page: 489 year: 2011 ident: ref_8 article-title: Carbon loss from an unprecedented Arctic tundra wildfire publication-title: Nature doi: 10.1038/nature10283 – volume: 48 start-page: 507 year: 2017 ident: ref_31 article-title: Spatiotemporal characteristics of wildfire frequency and relative area burned in larch-dominated forests of Central Siberia publication-title: Russ. J. Ecol. doi: 10.1134/S1067413617060042 – volume: 540 start-page: 418 year: 2016 ident: ref_45 article-title: High-resolution mapping of global surface water and its long-term changes publication-title: Nature doi: 10.1038/nature20584 – volume: 7 start-page: 529 year: 2017 ident: ref_19 article-title: Lightning as a major driver of recent large fire years in North American boreal forests publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate3329 – volume: 280 start-page: 113181 year: 2022 ident: ref_38 article-title: Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-Land land surface temperature data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113181 – volume: 18 start-page: 2041 year: 2012 ident: ref_26 article-title: Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2012.02649.x – volume: 520 start-page: 171 year: 2015 ident: ref_11 article-title: Climate change and the permafrost carbon feedback publication-title: Nature doi: 10.1038/nature14338 – volume: 9 start-page: 3041 year: 2018 ident: ref_10 article-title: Wildfire as a major driver of recent permafrost thaw in boreal peatlands publication-title: Nat. Commun. doi: 10.1038/s41467-018-05457-1 – volume: 16 start-page: 044060 year: 2021 ident: ref_23 article-title: Estimates of temporal-spatial variability of wildfire danger across the Pan-Arctic and extra-tropics publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/abf0d0 – ident: ref_44 – volume: 382 start-page: 225 year: 2016 ident: ref_52 article-title: The impact of increasing fire frequency on forest transformations in southern Siberia publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2016.10.015 – volume: 50 start-page: 1953 year: 2021 ident: ref_32 article-title: Wildfires in the Siberian taiga publication-title: Ambio doi: 10.1007/s13280-020-01490-x – volume: 21 start-page: 243 year: 2018 ident: ref_6 article-title: Evidence for declining forest resilience to wildfires under climate change publication-title: Ecol. Lett. doi: 10.1111/ele.12889 – volume: 26 start-page: 6190 year: 2020 ident: ref_20 article-title: Accelerated rate of vegetation green-up related to warming at northern high latitudes publication-title: Glob. Change Biol. doi: 10.1111/gcb.15322 – ident: ref_33 doi: 10.3390/f7060125 – volume: 116 start-page: 6193 year: 2019 ident: ref_4 article-title: Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1815107116 – volume: 356 start-page: 1356 year: 2017 ident: ref_28 article-title: A human-driven decline in global burned area publication-title: Science doi: 10.1126/science.aal4108 – volume: 10 start-page: 1130 year: 2020 ident: ref_21 article-title: Fuel availability not fire weather controls boreal wildfire severity and carbon emissions publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-020-00920-8 – volume: 114 start-page: E1054 year: 2017 ident: ref_15 article-title: Siberian Arctic black carbon sources constrained by model and observation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1613401114 – volume: 11 start-page: 95 year: 2021 ident: ref_14 article-title: Aerosols in current and future Arctic climate publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-020-00969-5 – volume: 125 start-page: 156 year: 2017 ident: ref_47 article-title: Accuracy assessment of seven global land cover datasets over China publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.01.016 – volume: 6 start-page: eaax3308 year: 2020 ident: ref_50 article-title: Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation publication-title: Sci. Adv. doi: 10.1126/sciadv.aax3308 – volume: 9 start-page: 4461 year: 2016 ident: ref_29 article-title: Daily black carbon emissions from fires in northern Eurasia for 2002–2015 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-4461-2016 – volume: 63 start-page: 2757 year: 2018 ident: ref_16 article-title: Recent advances in driving mechanisms of the Arctic amplification: A review publication-title: Chin. Sci. Bull. doi: 10.1360/N972018-00462 – volume: 95 start-page: 1873 year: 2014 ident: ref_53 article-title: Arctic Air Pollution: New Insights from POLARCAT-IPY publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-13-00017.1 |
SSID | ssj0000331904 |
Score | 2.3630855 |
Snippet | Wildfires play a critical role in re-shaping boreal ecosystems and climate. It was projected that, owing to the Arctic amplification, boreal wildfires would... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4180 |
SubjectTerms | Agricultural land Arctic amplification Arctic region Atmospheric models Biomass Boreal forests Carbon climate Climate change Climate models cropland Datasets Ecosystems Eurasia Forest fires Forests Land cover Latitude Northern Eurasia Observational studies Permafrost Remote sensing Satellite observation Satellites spatiotemporal analysis Spectroradiometers Taiga & tundra Trends Vegetation wildfire changes Wildfires |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS_iE1dXiejFQzHNc3tUWVkE9aCCt5KkCQrSlbZ78N8703ZXRcGLp0A7hTCZzMzXZL4h5IQHrriXPNEq84l0XCaOBZYYC_FQR2u9wtrhm1s9eZTXT-rpS6svvBPW0QN3ijuDAORCkcaikFamUVsPkCXGNESrnLEOvS_EvC9gqvXBAkyLyY6PVACuP6vqVKZI1cK-RaCWqP-HH26Dy9U6WeuzQnrezWaDLIVyk6z0Dcqf37fI871tqTObQO_c4kcqfDLvCkqnkSLTVGVrvMhMu6qBmr6UtD2aCVVJx7OqrZmk4AqKCL6uplhdQvHmGG2mMHK2TR6vxg-Xk6RvkpB4qVmTjITLYoaR2xSKF6D5YAT3lolgRtZxPbJeZ9ZAnhB0LFTBpfcsCFiRGJgwYocsl9My7BKqAygUIAnIOKTBso55QDswZgryFjcgp3PF5b5nEMdGFq85IAlUcv6p5AE5Xsi-dbwZv0pdoP4XEsh13T4AC8h7C8j_soABGc5XL-83YJ1zA0DPCK3lgBwtXsPWwfMQW4bpDGUwuZWZ1Hv_MY99ssqxNoKB61FDstxUs3AAGUvjDlvj_ACLy-qv priority: 102 providerName: Directory of Open Access Journals |
Title | Satellite Observational Evidence of Contrasting Changes in Northern Eurasian Wildfires from 2003 to 2020 |
URI | https://www.proquest.com/docview/2711473664 https://www.proquest.com/docview/2723104946 https://doaj.org/article/812bed1fdd4a41f6ac211ff1efa5b7ab |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZo9wAXxFMslJURXDhEdfxMTlUfu1SIFkSp1FtkOzZFQklJsgf-fWey3lQIxMlSMomsGXte9nxDyDseuOJe8kyr0mfScZk5FlhmLNhDHa31CmuHz8716aX8eKWuUsKtT9cqtzpxVNR16zFHvs8NeO5GaC0Pbn5l2DUKT1dTC40dMgMVXEDwNTtann_5OmVZmIAlxuQGl1RAfL_f9bnMEbKF_WGJRsD-v_TxaGRWj8jD5B3Sw404H5N7oXlC7qdG5de_n5LrCztCaA6BfnZTQhU-2XYHpW2kiDjV2R4vNNNN9UBPfzR0PKIJXUOX626snaSgEuoIOq-nWGVC8QYZHVoYOXtGLlfLb8enWWqWkHmp2ZAVwpWxRAtuasVrkEAwgnvLRDCFdVwX1uvSGvAXgo61qrn0ngUBkomBCSOek92mbcILQnVwxkJoAjQO4bCsYx6iHhhLBf6Lm5P3W8ZVPiGJY0OLnxVEFMjk6o7Jc_J2or3Z4Gf8k-oI-T9RIOb1-KDtvldpC1XgirhQ57GupZV51NZD8BpjHqJVMGGY1t5WelXaiH11t2zm5M30GrYQnovYJrRrpEEnV5ZSv_z_L16RBxyrHxgoF7VHdoduHV6DTzK4BdkpVh8WZHZ4cvbpYpGW4WKM8G8B1uvk0w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwELZKOZQLYhWPFjACDhyiOrZjvxwQYunjlS4caKXegtcWCSVtkifUP8VvZCZbhUDcerKUTCxnPJ7F9nxDyEseeMad5InKcpdIy2ViWWCJNmAPVTTGZZg7fHColsfy80l2skZ-jbkweK1y1ImdovaVwz3yba7Bc9dCKfn2_CLBqlF4ujqW0OjFYi9c_oSQrXmz-xHm9xXni52jD8tkqCqQOKlYm8yFzWOOpk77jHsYatCCO8NE0HNjuZobp3KjwbAGFX3muXSOBQG_EAMTWkC_N8hNKUSOK2q--DTt6TABAs1kj4IK79l23aQyRYAY9ofd68oD_KX9O5O2uENuD74ofdcLz12yFsp7ZGMoi352eZ-cfTUdYGcb6Bc7bd_CJ2MtUlpFivhWtWnw-jTtcxUa-r2k3YFQqEu6s6q7TE0KCshH0LANxZwWivfVaFtBy9kDcnwtTHxI1suqDI8IVcFqA4EQ0FgE3zKWOYixoM0z8JbsjLweGVe4Abccy2f8KCB-QSYXV0yekRcT7XmP1vFPqvfI_4kCEba7B1V9WgwLtgDHxwafRu-lkWlUxkGoHGMaoslgwDCsrXH2imHZN8WVkM7I8-k1LFg8hTFlqFZIgy61zKV6_P8unpGN5dHBfrG_e7i3SW5xzLtgoNayLbLe1qvwBLyh1j7tRJCSb9ct878BqcQcqQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgIuiKfYUsAIOHCI1rEde3NAiNJdtRSWCqjUW2o7NkWqkpJkhfrX-HXM5FUhELeeLCUTyxmP52F7viHkBfc84U7ySCWpi6TlMrLMs0gbsIcqGOMSzB3-uFJ7R_L9cXK8QX4NuTB4rXLQia2izkuHe-QzrsFz10IpOQv9tYjD3eWb8x8RVpDCk9ahnEYnIgf-4ieEb_Xr_V2Y65ecLxdf3-1FfYWByEnFmmgubBpSNHs6T3gOw_ZacGeY8HpuLFdz41RqNBhZr0Ke5Fw6x7yA3wmeCS2g32tkU0NUxCZkc2exOvw87vAwAeLNZIeJKkTKZlUdyxjhYtgfVrAtFvCXLWgN3PI2udV7pvRtJ0p3yIYv7pIbfZH004t75PSLaeE7G08_2XEzFz4ZKpPSMlBEu6pMjZepaZe5UNPvBW2Ph3xV0MW6avM2KaijPIC-rSlmuFC8vUabElrO7pOjK2HjAzIpysI_JFR5qw2ERUBjEYrLWOYg4oI2TcB3slPyamBc5noUcyymcZZBNINMzi6ZPCXPR9rzDrvjn1Q7yP-RAvG22wdl9S3rl28GbpD1eRzyXBoZB2UcBM4hxD6YBAYMw9oeZi_rlUCdXYrslDwbX8PyxTMZU_hyjTToYMtUqq3_d_GUXAd5zz7srw4ekZsckzAY6Lhkm0yaau0fg2vU2Ce9DFJyctVi_xuKTCI7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Satellite+Observational+Evidence+of+Contrasting+Changes+in+Northern+Eurasian+Wildfires+from+2003+to+2020&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Tian%2C+Jiaxin&rft.au=Chen%2C+Xiaoning&rft.au=Cao%2C+Yunfeng&rft.au=Chen%2C+Feng&rft.date=2022-08-25&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=17&rft.spage=4180&rft_id=info:doi/10.3390%2Frs14174180&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14174180 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |