A Review of Techniques for Diagnosing the Atmospheric Boundary Layer Height (ABLH) Using Aerosol Lidar Data

The height of the atmospheric boundary layer (ABLH) or the mixing layer height (MLH) is a key parameter characterizing the planetary boundary layer, and the accurate estimation of that is critically important for boundary layer related studies, which include air quality forecasts and numerical weath...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 11; no. 13; p. 1590
Main Authors Dang, Ruijun, Yang, Yi, Hu, Xiao-Ming, Wang, Zhiting, Zhang, Shuwen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 04.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The height of the atmospheric boundary layer (ABLH) or the mixing layer height (MLH) is a key parameter characterizing the planetary boundary layer, and the accurate estimation of that is critically important for boundary layer related studies, which include air quality forecasts and numerical weather prediction. Aerosol lidar is a powerful remote sensing instrument frequently used to retrieve the ABLH through detecting the vertical distributions of aerosol concentration. Presently available methods for ABLH determination from aerosol lidar are summarized in this review, including a lot of classical methodologies as well as some improved versions of them. Some new recently developed methods applying advanced techniques such as image edge detection, as well as some new methods based on multi-wavelength lidar systems, are also summarized. Although a lot of techniques have been proposed and have already given reasonable results in several studies, it is impossible to recommend a technique which is suitable in all atmospheric scenarios. More accurate instantaneous ABLH from robust techniques is required, which can be used to estimate or improve the boundary layer parameterization in the numerical model, or maybe possible to be assimilated into the weather and environment models to improve the simulation or forecast of weather and air quality in the future.
AbstractList The height of the atmospheric boundary layer (ABLH) or the mixing layer height (MLH) is a key parameter characterizing the planetary boundary layer, and the accurate estimation of that is critically important for boundary layer related studies, which include air quality forecasts and numerical weather prediction. Aerosol lidar is a powerful remote sensing instrument frequently used to retrieve the ABLH through detecting the vertical distributions of aerosol concentration. Presently available methods for ABLH determination from aerosol lidar are summarized in this review, including a lot of classical methodologies as well as some improved versions of them. Some new recently developed methods applying advanced techniques such as image edge detection, as well as some new methods based on multi-wavelength lidar systems, are also summarized. Although a lot of techniques have been proposed and have already given reasonable results in several studies, it is impossible to recommend a technique which is suitable in all atmospheric scenarios. More accurate instantaneous ABLH from robust techniques is required, which can be used to estimate or improve the boundary layer parameterization in the numerical model, or maybe possible to be assimilated into the weather and environment models to improve the simulation or forecast of weather and air quality in the future.
The substances emitted into the ABL are gradually dispersed horizontally and vertically due to the action of the turbulence, and are finally completely mixed over the layer if sufficient time is given and if there are no significant sinks [2]. [...]the height of mixing layer (MLH) is a key parameter for air pollution meteorology as it determines the volume available for the dispersion of pollutants; it is also a scaling parameter for the description of vertical profiles such as wind and turbulence. According to the definition, the ABLH or MLH can be determined from turbulent atmospheric parameters (fluxes, variances, turbulent kinetic energy, Richardson-number, structure parameters) or from suitable mean variables (potential temperature, specific humidity, mean wind, trace gas/aerosol concentrations) [8] (summarized in Table 1). [...]the ABL is more polluted than the upper free atmosphere (FT) [63], the aerosol concentration difference between ABL and FT results in a strong negative gradient of lidar backscatter signal [64]; secondly, the entrainment process occurs at the top of well-mixed CBL, which entrains the clear air masses from FT into CBL leading to locally considerable fluctuations in the aerosol concentration which presents as significant temporal variations (variance) in lidar signal [65]. [...]for CBL, assuming that the vertical aerosol distribution rapidly adapts to the changes in the thermal structure of the boundary layer, the MLH (or CBLH) can be determined; for NBL, the determined height is either the depth of RL (NBLH) or the top of surface aerosol layer (MLH). First-order gradient 2. inflection point(second derivative) 3. logarithm gradient 4. cubic root gradient 1. objective 2. low computation cost 1. sensitive to noisy data 2. interfered by multiple layers such as cloud layer and RL 3. averaging may be required to improve signal-to-noise ratio Hayden et al.
Author Zhang, Shuwen
Wang, Zhiting
Dang, Ruijun
Yang, Yi
Hu, Xiao-Ming
Author_xml – sequence: 1
  givenname: Ruijun
  surname: Dang
  fullname: Dang, Ruijun
– sequence: 2
  givenname: Yi
  orcidid: 0000-0002-7813-6616
  surname: Yang
  fullname: Yang, Yi
– sequence: 3
  givenname: Xiao-Ming
  orcidid: 0000-0002-0769-5090
  surname: Hu
  fullname: Hu, Xiao-Ming
– sequence: 4
  givenname: Zhiting
  surname: Wang
  fullname: Wang, Zhiting
– sequence: 5
  givenname: Shuwen
  orcidid: 0000-0003-1122-4643
  surname: Zhang
  fullname: Zhang, Shuwen
BookMark eNptkVtvEzEQhS1UJEroC7_AEi8FKTC-7CZ-3N5IpZWQUPtsee1x4rBZB9sB9d_jNiBQxbx4ZH3naObMa3IyxQkJecvgoxAKPqXMGBOsUfCCnHJY8Lnkip_8078iZzlvoZYQTIE8Jd86-hV_BPxJo6d3aDdT-H7ATH1M9CqY9RRzmNa0bJB2ZRfzfoMpWHoRD5Mz6YH25gETXWFYbwo97y761Xt6_yTpMMUcR9qHCtIrU8wb8tKbMePZ73dG7m-u7y5X8_7L59vLrp9b2UKZL7kC67100oCxquWmUdIhkwIAveHg2lbJhsHgoVm4xsCCLXGwHoQdvLdiRm6Pvi6ard6nsKuT6miCfvqIaa1NKsGOqKEdLLhBonBONmowrhkGIxgobD26oXqdH732KT4GU_QuZIvjaCaMh6y5WjZKiLYGOiPvnqHbeEhT3VRzwThXTasWlYIjZWs8OaHXNhRTQpxKMmHUDPTjMfXfY1bJh2eSPzv9B_4Fb-CgIg
CitedBy_id crossref_primary_10_1364_OE_454094
crossref_primary_10_1002_qj_4254
crossref_primary_10_1088_1361_6501_acf595
crossref_primary_10_5194_amt_15_4153_2022
crossref_primary_10_1080_10408347_2022_2036092
crossref_primary_10_5194_acp_24_13231_2024
crossref_primary_10_1016_j_atmosres_2021_105854
crossref_primary_10_3390_s20226516
crossref_primary_10_1016_j_atmosres_2020_105179
crossref_primary_10_3390_rs16244728
crossref_primary_10_1007_s10546_022_00759_w
crossref_primary_10_5194_acp_19_13097_2019
crossref_primary_10_1134_S1024856022060173
crossref_primary_10_3390_atmos14091409
crossref_primary_10_3390_rs12020340
crossref_primary_10_3390_rs12193259
crossref_primary_10_3390_atmos10100599
crossref_primary_10_3390_s22093412
crossref_primary_10_5194_amt_13_6965_2020
crossref_primary_10_1016_j_atmosenv_2022_119455
crossref_primary_10_1016_j_atmosres_2021_105999
crossref_primary_10_1016_j_jastp_2019_105157
crossref_primary_10_1071_ES24008
crossref_primary_10_3390_rs15051354
crossref_primary_10_3390_su162310175
crossref_primary_10_1364_OE_451728
crossref_primary_10_5194_acp_21_2981_2021
crossref_primary_10_1007_s42865_020_00003_8
crossref_primary_10_1134_S1024856022030022
crossref_primary_10_3390_rs14030745
crossref_primary_10_3390_atmos11090908
crossref_primary_10_3390_rs16122074
crossref_primary_10_5194_amt_13_6675_2020
crossref_primary_10_3390_atmos14071102
crossref_primary_10_3390_rs12142272
crossref_primary_10_1007_s00703_022_00938_x
crossref_primary_10_1175_JTECH_D_20_0050_1
crossref_primary_10_3390_rs15092291
crossref_primary_10_1029_2023JD038523
crossref_primary_10_3390_atmos11121371
crossref_primary_10_3390_rs14020418
crossref_primary_10_5194_amt_15_1185_2022
crossref_primary_10_1039_D4EA00143E
crossref_primary_10_1016_j_rse_2024_114452
crossref_primary_10_3390_rs13183626
crossref_primary_10_3390_rs14164057
crossref_primary_10_3390_rs15051381
crossref_primary_10_1016_j_jqsrt_2020_107382
crossref_primary_10_3390_s21113659
crossref_primary_10_1007_s00704_024_04997_5
crossref_primary_10_5194_amt_16_4031_2023
crossref_primary_10_5194_amt_16_433_2023
crossref_primary_10_5194_amt_15_4735_2022
crossref_primary_10_1109_JSTARS_2023_3289944
crossref_primary_10_3390_rs13091781
crossref_primary_10_3390_rs15235453
crossref_primary_10_5194_amt_14_7341_2021
crossref_primary_10_5194_acp_21_4249_2021
crossref_primary_10_5194_amt_15_3827_2022
crossref_primary_10_3389_feart_2019_00308
crossref_primary_10_1063_5_0211259
crossref_primary_10_1016_j_apr_2021_101310
crossref_primary_10_18412_1816_0395_2023_9_61_65
crossref_primary_10_1016_j_atmosenv_2023_120281
crossref_primary_10_1016_j_atmosres_2022_106290
crossref_primary_10_1016_j_renene_2022_04_047
crossref_primary_10_1016_j_rse_2024_114227
crossref_primary_10_1029_2023JD040207
crossref_primary_10_3390_atmos12111439
crossref_primary_10_3390_atmos12091103
crossref_primary_10_5194_acp_25_3347_2025
Cites_doi 10.1109/TGRS.2013.2284110
10.5194/acp-17-6215-2017
10.1175/1520-0450(1979)018<1495:ACOTMF>2.0.CO;2
10.1109/TPAMI.1986.4767851
10.1016/S1352-2310(99)00349-0
10.1023/A:1002498707645
10.1016/j.atmosres.2018.06.007
10.1007/s10546-014-9929-z
10.1175/1520-0450(1985)024<0806:LOOVOC>2.0.CO;2
10.1175/1520-0450(1989)028<0885:APRFEZ>2.0.CO;2
10.1016/S1352-2310(96)00300-7
10.5194/amt-9-3769-2016
10.1175/1520-0426(1998)015<0849:AVIRWP>2.0.CO;2
10.1016/j.atmosenv.2013.07.019
10.1016/j.atmosenv.2003.09.054
10.1364/AO.38.000945
10.1175/1520-0469(1993)050<0750:DAAOMA>2.0.CO;2
10.1364/AO.38.003175
10.5194/acp-16-13309-2016
10.1002/2016JD025620
10.1175/1520-0426(2002)019<2089:MLSUA>2.0.CO;2
10.1175/1520-0426(2002)019<1151:LTSOIM>2.0.CO;2
10.1117/12.2069892
10.1029/93JD03090
10.1016/j.atmosenv.2011.09.013
10.1175/2009JTECHA1326.1
10.1117/12.417040
10.3390/atmos9050173
10.1007/s10546-005-9020-x
10.1029/2009JD013680
10.1175/JTECH2008.1
10.1175/1520-0426(1999)016<0953:TDOMLD>2.0.CO;2
10.1016/j.atmosres.2003.09.004
10.1175/1520-0426(2000)017<1455:AOMFDA>2.0.CO;2
10.1007/s10546-011-9643-z
10.2478/s11600-012-0054-4
10.1016/j.jqsrt.2017.11.008
10.1007/s10546-012-9743-4
10.5194/amt-10-1893-2017
10.1080/01431161.2017.1292068
10.1175/1520-0450(1986)025<0990:LMOWIT>2.0.CO;2
10.1023/A:1018956525605
10.1175/1520-0450(1988)027<0797:LOOTFS>2.0.CO;2
10.1117/12.511481
10.1109/18.119727
10.1029/2008JD009778
10.1016/j.atmosenv.2005.11.016
10.1023/A:1002628924673
10.1175/JTECH-D-12-00253.1
10.5194/acp-8-7281-2008
10.1175/1520-0450(1984)023<0247:LOOMLD>2.0.CO;2
10.1007/BF00713292
10.1175/JAM2296.1
10.1051/epjconf/201817606007
10.1029/2012JD017524
10.5194/acp-17-6839-2017
10.3390/atmos8040079
10.1002/qj.49710544406
10.1029/94JD01944
10.1364/OE.25.030732
10.1175/1520-0426(2003)020<1092:FBLTAO>2.0.CO;2
10.1127/0941-2948/2008/0312
10.1016/j.optlastec.2012.08.017
10.1023/A:1002790424133
10.1175/1520-0450(2000)039<1233:BLHAEZ>2.0.CO;2
10.1023/A:1000258318944
10.3390/rs11030263
10.1175/1520-0493(1976)104<1317:TDVOMH>2.0.CO;2
10.5194/amt-7-173-2014
10.1029/2002GL015112
10.1002/2016JD025937
10.5194/angeo-28-825-2010
10.1007/BF00707033
10.1029/2012JD018143
10.1007/s10546-005-9005-9
10.1155/2016/5375918
10.1002/jgrd.50710
10.1109/36.210443
10.1016/j.partic.2015.04.004
10.1016/j.atmosenv.2013.04.007
10.1029/94JD02604
10.1007/s10546-005-9035-3
10.1016/j.atmosres.2018.04.017
10.1023/A:1000338817250
10.1007/s00382-018-4269-1
10.1007/s10546-010-9474-3
10.1016/S1352-2310(03)00049-9
10.1016/j.jqsrt.2018.11.003
10.1007/s10546-006-9103-3
10.1175/JCLI-D-15-0766.1
10.5194/amt-7-3685-2014
10.1007/BF00324097
10.5194/acp-10-341-2010
10.1080/16742834.2011.11446916
10.1016/S1352-2310(97)00231-8
10.1016/j.jes.2018.11.003
10.1109/IGARSS.2015.7326688
10.1175/1520-0426(2002)019<1745:CBLDIM>2.0.CO;2
10.1007/s10546-016-0205-2
10.1002/jgrd.50251
10.1175/JTECH-D-11-00114.1
10.1364/AO.37.007019
10.1007/978-1-4757-9128-0_55
10.1007/s10546-012-9791-9
10.1109/TGRS.2006.888434
10.1007/BF00705378
10.1175/1520-0426(2002)019<0431:FTESCA>2.0.CO;2
10.1007/s10546-011-9657-6
10.1016/j.atmosenv.2003.10.065
10.1016/j.partic.2012.04.005
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs11131590
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_06bc0db4e3dd459bad5bba3109e6fedb
10_3390_rs11131590
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c460t-8290cff4d4a0ac962a594de14300efa20d6694510bf057d5a0718ebcf03cbffc3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:14:17 EDT 2025
Fri Jul 11 08:53:25 EDT 2025
Mon Aug 25 17:41:07 EDT 2025
Tue Jul 01 04:14:47 EDT 2025
Thu Apr 24 23:01:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-8290cff4d4a0ac962a594de14300efa20d6694510bf057d5a0718ebcf03cbffc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7813-6616
0000-0002-0769-5090
0000-0003-1122-4643
OpenAccessLink https://www.proquest.com/docview/2312295697?pq-origsite=%requestingapplication%
PQID 2312295697
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_06bc0db4e3dd459bad5bba3109e6fedb
proquest_miscellaneous_2985933603
proquest_journals_2312295697
crossref_citationtrail_10_3390_rs11131590
crossref_primary_10_3390_rs11131590
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190704
PublicationDateYYYYMMDD 2019-07-04
PublicationDate_xml – month: 07
  year: 2019
  text: 20190704
  day: 04
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_94
ref_137
Floors (ref_40) 2013; 147
ref_10
Menut (ref_78) 1999; 38
Lange (ref_135) 2015; 53
Quan (ref_70) 2013; 11
ref_134
Frioud (ref_74) 2003; 37
Mao (ref_106) 2013; 49
ref_15
Boers (ref_73) 1988; 27
Yang (ref_81) 2017; 17
(ref_28) 2002; 19
Wang (ref_123) 2016; 28
ref_126
Moores (ref_17) 1979; 105
Su (ref_125) 2017; 122
Galmarini (ref_23) 2000; 94
Spinhirne (ref_41) 1993; 31
Dupont (ref_71) 1994; 69
ref_122
Beyrich (ref_24) 1993; 57
Huang (ref_110) 2017; 162
Martucci (ref_80) 2006; 24
Cimini (ref_37) 2013; 6
Steyn (ref_85) 1999; 16
Baars (ref_121) 2008; 8
Liu (ref_36) 2015; 26
Gregori (ref_140) 2017; 17
Eresmaa (ref_86) 2005; 5
Stachlewska (ref_115) 2012; 60
Mallat (ref_89) 1992; 38
He (ref_45) 2006; 40
Seibert (ref_2) 2000; 34
Wang (ref_75) 2012; 07
Li (ref_101) 2015; 33
Welton (ref_44) 2000; 4153
Norton (ref_12) 1976; 104
Campbell (ref_61) 2002; 19
Mead (ref_30) 1998; 15
Senff (ref_79) 1996; 69
Rocadenbosch (ref_131) 1998; 37
Martucci (ref_119) 2010; 135
Emeis (ref_51) 2008; 17
Flamant (ref_69) 1997; 83
Hayden (ref_76) 1997; 31
Steyn (ref_87) 2000; 97
Basha (ref_14) 2019; 52
Lange (ref_129) 2013; 52
Guo (ref_16) 2016; 16
Helmis (ref_27) 2012; 145
Gregori (ref_133) 2018; 213
Banks (ref_128) 2014; 9242
Beyrich (ref_25) 1993; 63
ref_84
Wulfmeyer (ref_92) 2005; 44
Ji (ref_82) 2018; 79
Toledo (ref_43) 2017; 38
Lammert (ref_108) 2006; 119
Li (ref_55) 2017; 122
Liu (ref_138) 2018; 206
Crewell (ref_38) 2007; 45
Tsaknakis (ref_77) 2011; 4
Dai (ref_22) 2014; 152
Gan (ref_95) 2011; 45
Chen (ref_102) 1997; 84
Strawbridge (ref_72) 2004; 38
Gamage (ref_97) 1993; 50
Wang (ref_13) 2016; 29
Hennemuth (ref_42) 2006; 120
Sawyer (ref_104) 2013; 79
Canny (ref_117) 1986; 6
Toledo (ref_127) 2014; 31
ref_58
ref_56
Brooks (ref_93) 2003; 20
ref_53
Dang (ref_96) 2016; 2016
Measures (ref_59) 1984; 66
Welton (ref_60) 2002; 19
Kotthaus (ref_62) 2016; 9
Hooper (ref_65) 1986; 25
Nelson (ref_67) 1989; 28
Kottmeier (ref_109) 2011; 141
Xie (ref_57) 2017; 25
Martucci (ref_120) 2010; 27
Sugimoto (ref_136) 2002; 29
Rocadenbosch (ref_132) 1999; 38
Mok (ref_88) 2004; 69
Coulter (ref_103) 1979; 18
Holden (ref_19) 2000; 97
Rocadenbosch (ref_130) 2010; 7827
Emeis (ref_26) 2004; 38
ref_63
Morille (ref_99) 2007; 24
Pal (ref_7) 2013; 118
Collineau (ref_98) 1993; 65
Joffre (ref_68) 2001; 99
Vernekar (ref_20) 1991; 20
Yang (ref_124) 2013; 118
Pal (ref_105) 2010; 28
Schween (ref_113) 2014; 7
Liu (ref_139) 2018; 224
ref_118
Dai (ref_21) 2011; 4
Jordi (ref_18) 1994; 99
ref_35
Leventidou (ref_50) 2013; 74
ref_34
Bianco (ref_33) 2002; 19
ref_32
ref_112
Cooper (ref_9) 1994; 99
ref_39
Grisogono (ref_11) 2010; 10
Stull (ref_1) 1988; Volume 8
Piironen (ref_107) 1995; 100
Beyrich (ref_29) 1997; 31
Emeis (ref_114) 2005; 5979
Haman (ref_5) 2012; 29
Boers (ref_66) 1984; 23
Perrone (ref_47) 2018; 213
Luo (ref_111) 2014; 7
Hu (ref_31) 2011; 39
ref_46
Eresmaa (ref_64) 2007; 124
ref_100
Davis (ref_91) 2000; 17
ref_3
Sicard (ref_83) 2006; 119
ref_49
ref_48
ref_8
Xiang (ref_52) 2019; 43
Haeffelin (ref_116) 2012; 143
Bruine (ref_54) 2017; 10
ref_4
Cohn (ref_90) 2000; 39
ref_6
References_xml – volume: 52
  start-page: 4717
  year: 2013
  ident: ref_129
  article-title: Atmospheric Boundary Layer Height Monitoring Using a Kalman Filter and Backscatter Lidar Returns
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2284110
– volume: 17
  start-page: 6125
  year: 2017
  ident: ref_81
  article-title: Technical note: Boundary layer height determination from lidar for improving air pollution episode modeling: Development of new algorithm and evaluation
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-17-6215-2017
– volume: 18
  start-page: 1495
  year: 1979
  ident: ref_103
  article-title: Comparison of three methods for measuring mixing-layer height
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1979)018<1495:ACOTMF>2.0.CO;2
– volume: 6
  start-page: 679
  year: 1986
  ident: ref_117
  article-title: Computational Approach to Edge Detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1986.4767851
– volume: 34
  start-page: 1001
  year: 2000
  ident: ref_2
  article-title: Review and intercomparison of operational methods for the determination of the mixing height
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(99)00349-0
– ident: ref_100
– volume: 94
  start-page: 175
  year: 2000
  ident: ref_23
  article-title: Turbulent Transport atthe Thermal Internal Boundary-Layer top: Wavelet Analysis of Aircraft Measurements
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1023/A:1002498707645
– volume: 213
  start-page: 185
  year: 2018
  ident: ref_133
  article-title: Study of the planetary boundary layer by microwave radiometer, elastic lidar and Doppler lidar estimations in Southern Iberian Peninsula
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2018.06.007
– volume: 152
  start-page: 277
  year: 2014
  ident: ref_22
  article-title: Determining Boundary-Layer Height from Aircraft Measurements
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/s10546-014-9929-z
– ident: ref_63
  doi: 10.1175/1520-0450(1985)024<0806:LOOVOC>2.0.CO;2
– volume: 28
  start-page: 885
  year: 1989
  ident: ref_67
  article-title: A Prognostic Relationship for Entrainment Zone Thickness
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1989)028<0885:APRFEZ>2.0.CO;2
– volume: 31
  start-page: 2089
  year: 1997
  ident: ref_76
  article-title: The vertical chemical and meteorological structure of the boundary layer in the Lower Fraser Valley during Pacific ‘93
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(96)00300-7
– volume: 9
  start-page: 1
  year: 2016
  ident: ref_62
  article-title: Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-9-3769-2016
– volume: 15
  start-page: 849
  year: 1998
  ident: ref_30
  article-title: A Volume-Imaging Radar Wind Profiler for Atmospheric Boundary Layer Turbulence Studies
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/1520-0426(1998)015<0849:AVIRWP>2.0.CO;2
– volume: 66
  start-page: 686
  year: 1984
  ident: ref_59
  article-title: Laser remote sensing:fundamentals and applications
  publication-title: Eos Trans. Am. Geophys. Union
– volume: 79
  start-page: 518
  year: 2013
  ident: ref_104
  article-title: Detection, variations and intercomparison of the planetary boundary layer depth from radiosonde, lidar and infrared spectrometer
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.07.019
– volume: 38
  start-page: 273
  year: 2004
  ident: ref_26
  article-title: Atmospheric boundary-layer structure from simultaneous SODAR, RASS, and ceilometer measurements
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2003.09.054
– ident: ref_94
– volume: 33
  start-page: 78
  year: 2015
  ident: ref_101
  article-title: Study on Retrieval of Boundary Layer Height Using Wavelet Transformation Method Basd on Lidar Data
  publication-title: J. Arid Meteorol.
– volume: 38
  start-page: 945
  year: 1999
  ident: ref_78
  article-title: Urban boundary-layer height determination from lidar measurements over the Paris area
  publication-title: Appl. Opt.
  doi: 10.1364/AO.38.000945
– volume: 50
  start-page: 750
  year: 1993
  ident: ref_97
  article-title: Detection and Analysis of Microfronts and Associated Coherent Events Using Localized Transforms
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1993)050<0750:DAAOMA>2.0.CO;2
– volume: 38
  start-page: 3175
  year: 1999
  ident: ref_132
  article-title: Lidar inversion of atmospheric backscatter and extinction-to-backscatter ratios by use of a Kalman filter
  publication-title: Appl. Opt.
  doi: 10.1364/AO.38.003175
– volume: 16
  start-page: 13309
  year: 2016
  ident: ref_16
  article-title: The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-16-13309-2016
– volume: 122
  start-page: 4578
  year: 2017
  ident: ref_55
  article-title: Evaluation of retrieval methods of daytime convective boundary layer height based on Lidar data
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1002/2016JD025620
– volume: 19
  start-page: 2089
  year: 2002
  ident: ref_60
  article-title: Micropulse Lidar Signals: Uncertainty Analysis
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/1520-0426(2002)019<2089:MLSUA>2.0.CO;2
– volume: 19
  start-page: 1151
  year: 2002
  ident: ref_28
  article-title: Long-Term Sodar Observations in Moscow and a New Approach to Potential Mixing Determination by Radiosonde Data
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/1520-0426(2002)019<1151:LTSOIM>2.0.CO;2
– ident: ref_49
  doi: 10.1117/12.2069892
– volume: 99
  start-page: 3699
  year: 1994
  ident: ref_18
  article-title: Tethered-balloon measurements of actinic flux in a cloud-capped marine boundary layer
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/93JD03090
– volume: 45
  start-page: 6613
  year: 2011
  ident: ref_95
  article-title: Application of active optical sensors to probe the vertical structure of the urban boundary layer and assess anomalies in air quality model PM2.5 forecasts
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.09.013
– volume: 27
  start-page: 305
  year: 2010
  ident: ref_120
  article-title: Detection of Cloud-Base Height Using Jenoptik CHM15K and Vaisala CL31 Ceilometers
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/2009JTECHA1326.1
– volume: 4153
  start-page: 151
  year: 2000
  ident: ref_44
  article-title: Global Monitoring of Clouds and Aerosols Using a Network of Micro-Pulse Lidar Systems
  publication-title: Proc. SPIE
  doi: 10.1117/12.417040
– ident: ref_58
  doi: 10.3390/atmos9050173
– volume: 24
  start-page: 1158
  year: 2006
  ident: ref_80
  article-title: Comparison between Backscatter Lidar and Radiosonde Measurements of the Diurnal and Nocturnal Stratification in the Lower Troposphere
  publication-title: J. Atmos. Ocean. Technol.
– volume: 119
  start-page: 159
  year: 2006
  ident: ref_108
  article-title: Determination of the convective boundary-layer height with laser remote sensing
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/s10546-005-9020-x
– ident: ref_10
  doi: 10.1029/2009JD013680
– volume: 53
  start-page: 3338
  year: 2015
  ident: ref_135
  article-title: Atmospheric Boundary Layer Height Estimation Using a Kalman Filter and a Frequency modulated Continuous-wave Radar
  publication-title: IEEE Trans.
– ident: ref_53
– volume: 24
  start-page: 761
  year: 2007
  ident: ref_99
  article-title: STRAT: An Automated Algorithm to Retrieve the Vertical Structure of the Atmosphere from Single-Channel Lidar Data
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH2008.1
– volume: 16
  start-page: 953
  year: 1999
  ident: ref_85
  article-title: The Detection of Mixed Layer Depth and Entrainment Zone Thickness from Lidar Backscatter Profiles
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/1520-0426(1999)016<0953:TDOMLD>2.0.CO;2
– volume: 69
  start-page: 147
  year: 2004
  ident: ref_88
  article-title: A lidar study of the atmospheric entrainment zone and mixed layer over Hong Kong
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2003.09.004
– volume: 17
  start-page: 1455
  year: 2000
  ident: ref_91
  article-title: An Objective Method for Deriving Atmospheric Structure from Airborne Lidar Observations
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/1520-0426(2000)017<1455:AOMFDA>2.0.CO;2
– volume: 143
  start-page: 49
  year: 2012
  ident: ref_116
  article-title: Evaluation of Mixing-Height Retrievals from Automatic Profiling Lidars and Ceilometers in View of Future Integrated Networks in Europe
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/s10546-011-9643-z
– volume: 60
  start-page: 1386
  year: 2012
  ident: ref_115
  article-title: Ceilometer observations of the boundary layer over Warsaw, Poland
  publication-title: Acta Geophys.
  doi: 10.2478/s11600-012-0054-4
– volume: 206
  start-page: 117
  year: 2018
  ident: ref_138
  article-title: Two-wavelength Lidar inversion algorithm for determining planetary boundary layer height
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2017.11.008
– ident: ref_3
– volume: 145
  start-page: 507
  year: 2012
  ident: ref_27
  article-title: A Comparative Study and Evaluation of Mixing-Height Estimation Based on Sodar-RASS, Ceilometer Data and Numerical Model Simulations
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/s10546-012-9743-4
– volume: 10
  start-page: 1
  year: 2017
  ident: ref_54
  article-title: Pathfinder: Applying graph theory for consistent tracking of daytime mixed layer height with backscatter lidar
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-10-1893-2017
– volume: 5979
  start-page: 442
  year: 2005
  ident: ref_114
  article-title: Evaluation of mixing layer height monitoring by ceilometer with SODAR and microlight aircraft measurements
  publication-title: Proc. SPIE
– volume: 38
  start-page: 3203
  year: 2017
  ident: ref_43
  article-title: Estimation of the atmospheric boundary layer height during different atmospheric conditions: A comparison on reliability of several methods applied to lidar measurements
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1292068
– volume: 25
  start-page: 990
  year: 1986
  ident: ref_65
  article-title: Lidar Measurements of Wind in the Planetary Boundary Layer: The Method, Accuracy and Results from Joint Measurements with Radiosonde and Kytoon
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1986)025<0990:LMOWIT>2.0.CO;2
– volume: 99
  start-page: 429
  year: 2001
  ident: ref_68
  article-title: Variability of the Stable and Unstable Atmospheric Boundary-Layer Height and Its Scales over a Boreal Forest
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1023/A:1018956525605
– volume: 27
  start-page: 797
  year: 1988
  ident: ref_73
  article-title: Lidar observations of the fine-scale variability of marine stratocumulus clouds
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1988)027<0797:LOOTFS>2.0.CO;2
– ident: ref_48
  doi: 10.1117/12.511481
– volume: 38
  start-page: 617
  year: 1992
  ident: ref_89
  article-title: Singularity detection and processing with wavelets
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.119727
– volume: 69
  start-page: 161
  year: 1996
  ident: ref_79
  article-title: Remote Sesing of Turbulent Ozone Fluxes and the Ozone Budget in the Convective Boundary Layer with DIAL and Radar-RASS: A Case Study
  publication-title: Atmos. Phys.
– ident: ref_112
  doi: 10.1029/2008JD009778
– volume: 40
  start-page: 1064
  year: 2006
  ident: ref_45
  article-title: Observational and modeling studies of urban atmospheric boundary-layer height and its evolution mechanisms
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2005.11.016
– volume: 97
  start-page: 1
  year: 2000
  ident: ref_19
  article-title: Tethered Balloon Observations of the Nocturnal Stable Boundary Layer in a Valley
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1023/A:1002628924673
– volume: 31
  start-page: 422
  year: 2014
  ident: ref_127
  article-title: Cluster Analysis: A new approach applied to Lidar measurements for Atmospheric Boundary Layer height estimation
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-12-00253.1
– volume: 8
  start-page: 7281
  year: 2008
  ident: ref_121
  article-title: Continuous monitoring of the boundary-layer top with lidar
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-8-7281-2008
– volume: 23
  start-page: 247
  year: 1984
  ident: ref_66
  article-title: Lidar Observations of Mixed Layer Dynamics: Tests of Parameterized Entrainment Models of Mixed Layer Growth Rate
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1984)023<0247:LOOMLD>2.0.CO;2
– volume: 69
  start-page: 1
  year: 1994
  ident: ref_71
  article-title: Study of the moist Convective Boundary Layer structure by backscattering lidar
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/BF00713292
– volume: 44
  start-page: 1723
  year: 2005
  ident: ref_92
  article-title: Twenty-Four-Hour Observations of the Marine Boundary Layer Using Shipborne NOAA High-Resolution Doppler Lidar
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/JAM2296.1
– ident: ref_134
  doi: 10.1051/epjconf/201817606007
– ident: ref_137
– ident: ref_6
  doi: 10.1029/2012JD017524
– volume: 17
  start-page: 6839
  year: 2017
  ident: ref_140
  article-title: A new methodology for PBL height estimations based on lidar depolarization measurements: Analysis and comparison against MWR and WRF model-based results
  publication-title: Atmos. Chem.
  doi: 10.5194/acp-17-6839-2017
– volume: 7827
  start-page: 239
  year: 2010
  ident: ref_130
  article-title: Atmospheric boundary-layer height estimation by adaptive Kalman filtering of lidar data
  publication-title: Proc. SPIE
– ident: ref_126
  doi: 10.3390/atmos8040079
– volume: 105
  start-page: 397
  year: 1979
  ident: ref_17
  article-title: Measurements of boundary layer structure and development over SE England using aircraft and tethered balloon instrumentation
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.49710544406
– volume: 07
  start-page: 241
  year: 2012
  ident: ref_75
  article-title: Comparison of retrieval methods of planetary boundary layer height from lidar data
  publication-title: J. Atmos. Environ. Opt.
– volume: 99
  start-page: 22937
  year: 1994
  ident: ref_9
  article-title: Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/94JD01944
– volume: 25
  start-page: 30732
  year: 2017
  ident: ref_57
  article-title: Automated detection of cloud and aerosol features with SACOL micro-pulse lidar in northwest China
  publication-title: Opt. Express
  doi: 10.1364/OE.25.030732
– volume: 20
  start-page: 1092
  year: 2003
  ident: ref_93
  article-title: Finding Boundary Layer Top: Application of Wavelet Covariance Transform to Lidar Backscatter Profiles
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/1520-0426(2003)020<1092:FBLTAO>2.0.CO;2
– volume: 9242
  start-page: 1
  year: 2014
  ident: ref_128
  article-title: Retrieval of boundary layer height from lidar using extended Kalman filter approach, classic methods, and backtrajectory cluster analysis
  publication-title: Proc. SPIE
– volume: 17
  start-page: 621
  year: 2008
  ident: ref_51
  article-title: Surface-based remote sensing of the mixing-layer height—A review
  publication-title: Meteorol. Z.
  doi: 10.1127/0941-2948/2008/0312
– volume: 49
  start-page: 343
  year: 2013
  ident: ref_106
  article-title: Determination of the boundary layer top from lidar backscatter profiles using a Haar wavelet method over Wuhan, China
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2012.08.017
– volume: 97
  start-page: 47
  year: 2000
  ident: ref_87
  article-title: Spatial and Temporal Variability of Mixed-Layer Depth and Entrainment Zone Thickness
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1023/A:1002790424133
– ident: ref_32
– volume: 39
  start-page: 1233
  year: 2000
  ident: ref_90
  article-title: Boundary Layer Height and Entrainment Zone Thickness Measured by Lidars and Wind-Profiling Radars
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/1520-0450(2000)039<1233:BLHAEZ>2.0.CO;2
– volume: 20
  start-page: 312
  year: 1991
  ident: ref_20
  article-title: Structure and growth of atmospheric boundary layer as observed by a tethered balloon payload
  publication-title: Indian J. Radio Space Phys.
– volume: 83
  start-page: 248
  year: 1997
  ident: ref_69
  article-title: Lidar determination of the entrainment zone thickness at the top of the unstable marine boundary layer
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1023/A:1000258318944
– ident: ref_84
– ident: ref_56
  doi: 10.3390/rs11030263
– volume: 104
  start-page: 1317
  year: 1976
  ident: ref_12
  article-title: The diurnal variation of mixing height by month over White Sands Missile Range, New Mexico
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1976)104<1317:TDVOMH>2.0.CO;2
– volume: 7
  start-page: 173
  year: 2014
  ident: ref_111
  article-title: Lidar-based remote sensing of atmospheric boundary layer height over land and ocean
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-7-173-2014
– volume: 29
  start-page: 7-1
  year: 2002
  ident: ref_136
  article-title: Observation of dust and anthropogenic aerosol plumes in the Northwest Pacific with a two-wavelength polarization lidar on board the research vessel Mirai
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2002GL015112
– volume: 122
  start-page: 3929
  year: 2017
  ident: ref_125
  article-title: An intercomparison of long-term planetary boundary layer heights retrieved from CALIPSO, ground-based lidar and radiosonde measurements over Hong Kong
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2016JD025937
– volume: 28
  start-page: 825
  year: 2010
  ident: ref_105
  article-title: Elastic-backscatter-lidar-based characterization of the convective boundary layer and investigation of related statistics
  publication-title: Ann. Geophys.
  doi: 10.5194/angeo-28-825-2010
– volume: 65
  start-page: 357
  year: 1993
  ident: ref_98
  article-title: Detection of turbulent coherent motions in a forest canopy part I: Wavelet analysis
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/BF00707033
– ident: ref_35
– ident: ref_15
  doi: 10.1029/2012JD018143
– volume: 119
  start-page: 135
  year: 2006
  ident: ref_83
  article-title: Mixed-Layer Depth Determination in the Barcelona Coastal Area from Regular Lidar Measurements: Methods, Results and Limitations
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/s10546-005-9005-9
– volume: 2016
  start-page: 1
  year: 2016
  ident: ref_96
  article-title: Statistical analysis of relationship between daytime lidar-derived planetary boundary layer height and relevant atmospheric variables in the semiarid region in northwest China
  publication-title: Adv. Meteorol.
  doi: 10.1155/2016/5375918
– volume: 118
  start-page: 9277
  year: 2013
  ident: ref_7
  article-title: Exploring a geophysical process-based attribution technique for the determination of the atmospheric boundary layer depth using aerosol lidar and near-surface meteorological measurements
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1002/jgrd.50710
– volume: 31
  start-page: 48
  year: 1993
  ident: ref_41
  article-title: Micro Pulse Lidar
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.210443
– ident: ref_118
– volume: 28
  start-page: 15
  year: 2016
  ident: ref_123
  article-title: Measuring boundary-layer height under clear and cloudy conditions using three instruments
  publication-title: Particuology
  doi: 10.1016/j.partic.2015.04.004
– volume: 39
  start-page: 315
  year: 2011
  ident: ref_31
  article-title: Measuring Performance Analysis of Wind Profiling Radar
  publication-title: Meteorol. Sci. Technol.
– volume: 74
  start-page: 360
  year: 2013
  ident: ref_50
  article-title: Factors affecting the comparisons of planetary boundary layer height retrievals from calipso, ecmwf and radiosondes over thessaloniki, greece
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.04.007
– volume: 100
  start-page: 25569
  year: 1995
  ident: ref_107
  article-title: Convective boundary layer mean depths and cloud geometrical properties obtained from volume imaging lidar data
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/94JD02604
– volume: 120
  start-page: 181
  year: 2006
  ident: ref_42
  article-title: Determination of the Atmospheric Boundary Layer Height from Radiosonde and Lidar Backscatter
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/s10546-005-9035-3
– volume: 26
  start-page: 626
  year: 2015
  ident: ref_36
  article-title: Retrieval of Atmospheric Boundary Layer Height from Ground-based Microwave Radiometer Measurements
  publication-title: J. Appl. Meteorol. Sci.
– volume: 213
  start-page: 57
  year: 2018
  ident: ref_47
  article-title: Relationship between the planetary boundary layer height and the particle scattering coefficient at the surface
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2018.04.017
– volume: 84
  start-page: 99
  year: 1997
  ident: ref_102
  article-title: Coherent eddies and temperature structure functions for three contrasting surfaces. Part I: Ramp model with finite microfront time
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1023/A:1000338817250
– volume: 52
  start-page: 2385
  year: 2019
  ident: ref_14
  article-title: Global climatology of planetary boundary layer top obtained from multi-satellite GPS RO observations
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-018-4269-1
– volume: 135
  start-page: 313
  year: 2010
  ident: ref_119
  article-title: Frequency of Boundary-Layer-Top Fluctuations in Convective and Stable Conditions Using Laser Remote Sensing
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/s10546-010-9474-3
– volume: 37
  start-page: 1785
  year: 2003
  ident: ref_74
  article-title: Elevated aerosol stratification above the Rhine Valley under strong anticyclonic conditions
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(03)00049-9
– volume: 224
  start-page: 55
  year: 2018
  ident: ref_139
  article-title: Improved Two-wavelength Lidar algorithm for Retrieving Atmospheric Boundary Layer Height
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2018.11.003
– volume: Volume 8
  start-page: 89
  year: 1988
  ident: ref_1
  article-title: An introduction to boundary layer meteorology
  publication-title: Atmospheric Sciences Library
– volume: 124
  start-page: 117
  year: 2007
  ident: ref_64
  article-title: Retrieval of mixing height and dust concentration with lidar ceilometer
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/s10546-006-9103-3
– volume: 29
  start-page: 6893
  year: 2016
  ident: ref_13
  article-title: Homogenized Variability of Radiosonde Derived Atmospheric Boundary Layer Height over the Global Land Surface from 1973 to 2014
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-15-0766.1
– volume: 7
  start-page: 4275
  year: 2014
  ident: ref_113
  article-title: Mixing-layer height retrieval with ceilometer and Doppler lidar: From case studies to long-term assessment
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-7-3685-2014
– volume: 57
  start-page: 27
  year: 1993
  ident: ref_24
  article-title: On the use of SODAR data to estimate mixing height
  publication-title: Appl. Phys. B Photophys. Laser Chem.
  doi: 10.1007/BF00324097
– ident: ref_34
– volume: 10
  start-page: 341
  year: 2010
  ident: ref_11
  article-title: Parameterization of vertical diffusion and the atmospheric boundary layer height determination in the EMEP model
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-10-341-2010
– volume: 43
  start-page: 0110002-1
  year: 2019
  ident: ref_52
  article-title: Retrieve of Planetary Boundary Layer Height Based on Image Edge Detection
  publication-title: Chin. J. Lasers
– volume: 4
  start-page: 124
  year: 2011
  ident: ref_21
  article-title: Analysis of Atmospheric Boundary Layer Height Characteristics over the Arctic Ocean Using the Aircraft and GPS Soundings
  publication-title: Atmos. Ocean. Sci. Lett.
  doi: 10.1080/16742834.2011.11446916
– volume: 31
  start-page: 3941
  year: 1997
  ident: ref_29
  article-title: Mixing height estimation from sodar data—A critical discussion
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(97)00231-8
– volume: 79
  start-page: 81
  year: 2018
  ident: ref_82
  article-title: Comparison of mixing layer height inversion algorithms using lidar and a pollution case study in Baoding, China
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2018.11.003
– ident: ref_39
  doi: 10.1109/IGARSS.2015.7326688
– volume: 19
  start-page: 1745
  year: 2002
  ident: ref_33
  article-title: Convective Boundary Layer Depth: Improved Measurement by Doppler Radar Wind Profiler Using Fuzzy Logic Methods
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/1520-0426(2002)019<1745:CBLDIM>2.0.CO;2
– volume: 162
  start-page: 503
  year: 2017
  ident: ref_110
  article-title: Estimate of Boundary-Layer Depth Over Beijing, China, Using Doppler Lidar Data During SURF-2015
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/s10546-016-0205-2
– volume: 118
  start-page: 2422
  year: 2013
  ident: ref_124
  article-title: Long-term measurement of daytime atmospheric mixing layer height over Hong Kong
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/jgrd.50251
– volume: 29
  start-page: 697
  year: 2012
  ident: ref_5
  article-title: Seasonal variability in the diurnal evolution of the boundary layer in a near-coastal urban environment
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-11-00114.1
– volume: 37
  start-page: 7019
  year: 1998
  ident: ref_131
  article-title: Adaptive filter solution for processing lidar returns: Optical parameter estimation
  publication-title: Appl. Opt.
  doi: 10.1364/AO.37.007019
– ident: ref_4
  doi: 10.1007/978-1-4757-9128-0_55
– ident: ref_8
  doi: 10.1007/978-1-4757-9128-0_55
– volume: 147
  start-page: 469
  year: 2013
  ident: ref_40
  article-title: The Wind Profile in the Coastal Boundary Layer: Wind Lidar Measurements;and Numerical Modelling
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/s10546-012-9791-9
– volume: 45
  start-page: 2195
  year: 2007
  ident: ref_38
  article-title: Accuracy of Boundary Layer Temperature Profiles Retrieved With Multifrequency Multiangle Microwave Radiometry
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.888434
– volume: 63
  start-page: 97
  year: 1993
  ident: ref_25
  article-title: Some aspects of determining the stable boundary layer depth from sodar data
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/BF00705378
– volume: 5
  start-page: 12697
  year: 2005
  ident: ref_86
  article-title: Mixing height determination by ceilometer
  publication-title: Atmos. Chem. Phys. Discuss.
– ident: ref_122
– ident: ref_46
– volume: 19
  start-page: 431
  year: 2002
  ident: ref_61
  article-title: Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/1520-0426(2002)019<0431:FTESCA>2.0.CO;2
– volume: 141
  start-page: 369
  year: 2011
  ident: ref_109
  article-title: Convective Boundary-Layer Entrainment: Short Review and Progress using Doppler Lidar
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/s10546-011-9657-6
– volume: 4
  start-page: 73
  year: 2011
  ident: ref_77
  article-title: Inter-comparison of lidar and ceilometer retrievals for aerosol and Planetary Boundary Layer profiling over Athens, Greece
  publication-title: Atmos. Meas. Tech. Discuss
– volume: 38
  start-page: 5861
  year: 2004
  ident: ref_72
  article-title: Planetary boundary layer height determination during Pacific 2001 using the advantage of a scanning lidar instrument
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2003.10.065
– volume: 11
  start-page: 34
  year: 2013
  ident: ref_70
  article-title: Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations
  publication-title: Particuology
  doi: 10.1016/j.partic.2012.04.005
– volume: 6
  start-page: 4971
  year: 2013
  ident: ref_37
  article-title: Mixing layer height retrievals by multichannel microwave radiometer observations
  publication-title: Atmos. Meas. Tech. Discuss
SSID ssj0000331904
Score 2.4891934
SecondaryResourceType review_article
Snippet The height of the atmospheric boundary layer (ABLH) or the mixing layer height (MLH) is a key parameter characterizing the planetary boundary layer, and the...
The substances emitted into the ABL are gradually dispersed horizontally and vertically due to the action of the turbulence, and are finally completely mixed...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1590
SubjectTerms Aerodynamics
aerosol lidar
Aerosols
Air entrainment
Air masses
Air pollution
air quality
Aircraft
Atmospheric boundary layer
atmospheric boundary layer height
Backscattering
Boundary layers
Concentration gradient
Dispersion
Entrainment
environmental models
extended Kalman Filter
Fluxes
Free atmosphere
gradient methods
Humidity
ideal profile fitting
Kinetic energy
Lidar
mathematical models
Meteorology
mixing
Outdoor air quality
Parameter estimation
Parameters
Pollutants
Pollution dispersion
Remote sensing
Remote sensing systems
Signal processing
Signal to noise ratio
Specific humidity
Temporal variations
Thermal boundary layer
Trace gases
troposphere
Turbulence
variance analysis
Vertical distribution
wavelet covariance transform
weather forecasting
Wind
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLu0FQWnF8qVB7aEcIkw88cbHbAGt0LanReIW-VOgwgbtZg_8e8ZOdktFJS5ck7FkjceeN_boPca-i7JwahgwQ-FlfGY8y8ocdca9cE5Zn9ukGfnrtxxf49VNcfNC6iv2hHX0wJ3jTrk0ljuDcSwWymhXGKMjn6WXwTsTT1_KeS-KqXQGCwotjh0fqaC6_nS-iKLqlLz5PxkoEfW_OodTcrncYps9KoSqm802--Bnn9nHXqD89mmH_amgu8WHJsB0xbu6AIKccN51y1EOAkJzULUPzSKSBdxZGCXRpPkTTDRBaxine1D4UY0m4xNI3QJQeZplcw-TOzKEc93qL-z68mL6c5z1OgmZRcnbLL6F2hDQoebaKpnrQqHzhIQ490Hn3EmpkDafCYTOXKEJVpTe2MCFNSFY8ZVtzJqZ32WAw9KKIVUNuaWaGUNZWO0dBlRaUdmtBuxk5bva9iTiUcvivqZiIvq5_uvnAfu2tn3sqDP-azWKS7C2iHTX6QMFQd0HQf1WEAzYwWoB634PLmpCrlGrXKrhgB2vf9PuiU8ieuabJdmoyPcmJBd77zGPffaJAJVK7bx4wDba-dIfEmhpzVGKz2f0LOvs
  priority: 102
  providerName: Directory of Open Access Journals
Title A Review of Techniques for Diagnosing the Atmospheric Boundary Layer Height (ABLH) Using Aerosol Lidar Data
URI https://www.proquest.com/docview/2312295697
https://www.proquest.com/docview/2985933603
https://doaj.org/article/06bc0db4e3dd459bad5bba3109e6fedb
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7R5gCXiqdIKdEiONCD1cW73nhPyCENEUorBK3Um7VPqNrGJXYP_ffMrjepqiKu9siy9jHzzUPfB_CBlYWVY88zzpwIbcZPWZlzlVHHrJXG5SZqRh4di_kp_3ZWnKWCW5vGKtc-MTpq25hQIz9AHBKUp4Ucf77-kwXVqNBdTRIaWzBAF1xi8jWYHB5__7GpslCGR4zynpeUYX5_sGqDuDoGcXovEkXC_gf-OAaZ2VPYSeiQVP12PoNHbvkcHieh8t-3L-CiIn01nzSenKz5V1uC0JNM-6k5jEUEUR2puqumDaQB54ZMonjS6pYsFEJsMo_1UPKxmizm-yRODZDK4V82l2RxjoZkqjr1Ek5nhydf5lnSS8gMF7TLQk_UeM8tV1QZKXJVSG4dIiJKnVc5tUJIjpdQe0RptlAIL0qnjafMaO8NewXby2bpXgPh49KwMWYPucHcmfuyMMpZ7rlUEtNvOYT99drVJpGJB02LyxqTirDO9d06D-H9xva6p9D4p9UkbMHGItBexwfN6ledblFNhTbUah4OEi-kVrbQWgVyUye8s3oIe-sNrNNdbOu7kzOEd5vXeItCa0QtXXODNjLwvjFB2e7_P_EGniBkknFgl-_Bdre6cW8RlnR6BFvl7OsIBtX0aPFzlE7iKCb5fwE5WOYS
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxFMsLWAESPQQ1Y2dbHxAKMuypDTtaSv1FvyEirJpN6nQ_il-I2Mn2QqBuPWajKxoPOP5xjOZD-A1yxIjxo5HnNnUlxn3oyzmMqKWGSO0jXXgjDw6TosT_vk0Od2AX8O_ML6tcjgTw0Ftau3vyPcQh3jm6VSM319cRp41yldXBwqNziwO7eonpmzNu4Mp7u-bOJ59nH8oop5VINI8pW3kK4faOW64pFKLNJaJ4MYibqDUOhlTk6aCo6kqh1jGJBKDcGaVdpRp5ZxmuO4tuM0ZE96jstmn9Z0OZWjQlHdTUPE93Vs2nsodIQP9I-4FeoC_Tv8Q0mb34G6PRUneGc992LCLB7DV06J_Wz2E7znpagekdmQ-THttCAJdMu169DDyEcSQJG9_1I0fUXCmySRQNS1XpJQI6EkRbl_J23xSFrsk9CiQ3OJX1uekPENBMpWtfAQnN6LHx7C5qBf2CRA-zjQbY64Sa8zUucsSLa3hjgspMNkXI9gddFfpfnS5Z9A4rzCF8XqurvU8gldr2YtuYMc_pSZ-C9YSfsh2eFAvv1a9z1Y0VZoaxb3Z8kQoaRKlpB-lalNnjRrBzrCBVe_5TXVtpyN4uX6NPusLMXJh6yuUEX7KHEspe_r_JV7AVjE_Kqvy4PhwG-4gWBOhVZjvwGa7vLLPEBC16nmwQgJfbtrsfwNiBB7m
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEE-xUMAIkOghWhM7TnxAKMt2taXLqkKt1FvwEyrKpmxSof1r_DrGeWyFQNx6TUZWZH_2fOOZzAfwkmWJlannEWdOhDTjmyiLuYqoY9ZK42LTaEZ-XIjZMf9wkpxswa_-X5hQVtmfic1BbUsT7shHyEOC8rSQ6ch3ZRGHk-m78x9RUJAKmdZeTqOFyIFb_8TwrXq7P8G1fhXH072j97OoUxiIDBe0jkIW0XjPLVdUGSlilUhuHXIISp1XMbVCSI6w1R55jU0UOuTMaeMpM9p7w3Dca7CdYlREB7A93lscftrc8FCG8Ka87YnKmKSjVRWE3ZFA0D-8YCMW8JcvaBzc9Dbc6pgpyVso3YEtt7wLNzqR9K_re_AtJ20mgZSeHPW9XyuCtJdM2oo99IMEGSXJ6-9lFRoWnBoyboSbVmsyV0jvyay5iyWv8_F8tkuaigWSO_zK8ozMT9GQTFSt7sPxlczkAxgsy6V7CISnmWEpRi6xwbid-ywxylnuuVQSQ385hN1-7grTNTIPehpnBQY0YZ6Ly3kewouN7XnbvuOfVuOwBBuL0HK7eVCuvhTdDi6o0IZazQOIeSK1sonWKjRWdcI7q4ew0y9g0Z0DVXGJ2iE837zGHRzSMmrpygu0kaHnHBOUPfr_EM_gOkK-mO8vDh7DTWRusqkb5jswqFcX7gmyo1o_7WBI4PNVI_83UegkeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Techniques+for+Diagnosing+the+Atmospheric+Boundary+Layer+Height+%28ABLH%29+Using+Aerosol+Lidar+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Dang%2C+Ruijun&rft.au=Yang%2C+Yi&rft.au=Hu%2C+Xiao-Ming&rft.au=Wang%2C+Zhiting&rft.date=2019-07-04&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=13&rft.spage=1590&rft_id=info:doi/10.3390%2Frs11131590&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs11131590
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon