A Review of Techniques for Diagnosing the Atmospheric Boundary Layer Height (ABLH) Using Aerosol Lidar Data
The height of the atmospheric boundary layer (ABLH) or the mixing layer height (MLH) is a key parameter characterizing the planetary boundary layer, and the accurate estimation of that is critically important for boundary layer related studies, which include air quality forecasts and numerical weath...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 11; no. 13; p. 1590 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
04.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The height of the atmospheric boundary layer (ABLH) or the mixing layer height (MLH) is a key parameter characterizing the planetary boundary layer, and the accurate estimation of that is critically important for boundary layer related studies, which include air quality forecasts and numerical weather prediction. Aerosol lidar is a powerful remote sensing instrument frequently used to retrieve the ABLH through detecting the vertical distributions of aerosol concentration. Presently available methods for ABLH determination from aerosol lidar are summarized in this review, including a lot of classical methodologies as well as some improved versions of them. Some new recently developed methods applying advanced techniques such as image edge detection, as well as some new methods based on multi-wavelength lidar systems, are also summarized. Although a lot of techniques have been proposed and have already given reasonable results in several studies, it is impossible to recommend a technique which is suitable in all atmospheric scenarios. More accurate instantaneous ABLH from robust techniques is required, which can be used to estimate or improve the boundary layer parameterization in the numerical model, or maybe possible to be assimilated into the weather and environment models to improve the simulation or forecast of weather and air quality in the future. |
---|---|
AbstractList | The height of the atmospheric boundary layer (ABLH) or the mixing layer height (MLH) is a key parameter characterizing the planetary boundary layer, and the accurate estimation of that is critically important for boundary layer related studies, which include air quality forecasts and numerical weather prediction. Aerosol lidar is a powerful remote sensing instrument frequently used to retrieve the ABLH through detecting the vertical distributions of aerosol concentration. Presently available methods for ABLH determination from aerosol lidar are summarized in this review, including a lot of classical methodologies as well as some improved versions of them. Some new recently developed methods applying advanced techniques such as image edge detection, as well as some new methods based on multi-wavelength lidar systems, are also summarized. Although a lot of techniques have been proposed and have already given reasonable results in several studies, it is impossible to recommend a technique which is suitable in all atmospheric scenarios. More accurate instantaneous ABLH from robust techniques is required, which can be used to estimate or improve the boundary layer parameterization in the numerical model, or maybe possible to be assimilated into the weather and environment models to improve the simulation or forecast of weather and air quality in the future. The substances emitted into the ABL are gradually dispersed horizontally and vertically due to the action of the turbulence, and are finally completely mixed over the layer if sufficient time is given and if there are no significant sinks [2]. [...]the height of mixing layer (MLH) is a key parameter for air pollution meteorology as it determines the volume available for the dispersion of pollutants; it is also a scaling parameter for the description of vertical profiles such as wind and turbulence. According to the definition, the ABLH or MLH can be determined from turbulent atmospheric parameters (fluxes, variances, turbulent kinetic energy, Richardson-number, structure parameters) or from suitable mean variables (potential temperature, specific humidity, mean wind, trace gas/aerosol concentrations) [8] (summarized in Table 1). [...]the ABL is more polluted than the upper free atmosphere (FT) [63], the aerosol concentration difference between ABL and FT results in a strong negative gradient of lidar backscatter signal [64]; secondly, the entrainment process occurs at the top of well-mixed CBL, which entrains the clear air masses from FT into CBL leading to locally considerable fluctuations in the aerosol concentration which presents as significant temporal variations (variance) in lidar signal [65]. [...]for CBL, assuming that the vertical aerosol distribution rapidly adapts to the changes in the thermal structure of the boundary layer, the MLH (or CBLH) can be determined; for NBL, the determined height is either the depth of RL (NBLH) or the top of surface aerosol layer (MLH). First-order gradient 2. inflection point(second derivative) 3. logarithm gradient 4. cubic root gradient 1. objective 2. low computation cost 1. sensitive to noisy data 2. interfered by multiple layers such as cloud layer and RL 3. averaging may be required to improve signal-to-noise ratio Hayden et al. |
Author | Zhang, Shuwen Wang, Zhiting Dang, Ruijun Yang, Yi Hu, Xiao-Ming |
Author_xml | – sequence: 1 givenname: Ruijun surname: Dang fullname: Dang, Ruijun – sequence: 2 givenname: Yi orcidid: 0000-0002-7813-6616 surname: Yang fullname: Yang, Yi – sequence: 3 givenname: Xiao-Ming orcidid: 0000-0002-0769-5090 surname: Hu fullname: Hu, Xiao-Ming – sequence: 4 givenname: Zhiting surname: Wang fullname: Wang, Zhiting – sequence: 5 givenname: Shuwen orcidid: 0000-0003-1122-4643 surname: Zhang fullname: Zhang, Shuwen |
BookMark | eNptkVtvEzEQhS1UJEroC7_AEi8FKTC-7CZ-3N5IpZWQUPtsee1x4rBZB9sB9d_jNiBQxbx4ZH3naObMa3IyxQkJecvgoxAKPqXMGBOsUfCCnHJY8Lnkip_8078iZzlvoZYQTIE8Jd86-hV_BPxJo6d3aDdT-H7ATH1M9CqY9RRzmNa0bJB2ZRfzfoMpWHoRD5Mz6YH25gETXWFYbwo97y761Xt6_yTpMMUcR9qHCtIrU8wb8tKbMePZ73dG7m-u7y5X8_7L59vLrp9b2UKZL7kC67100oCxquWmUdIhkwIAveHg2lbJhsHgoVm4xsCCLXGwHoQdvLdiRm6Pvi6ard6nsKuT6miCfvqIaa1NKsGOqKEdLLhBonBONmowrhkGIxgobD26oXqdH732KT4GU_QuZIvjaCaMh6y5WjZKiLYGOiPvnqHbeEhT3VRzwThXTasWlYIjZWs8OaHXNhRTQpxKMmHUDPTjMfXfY1bJh2eSPzv9B_4Fb-CgIg |
CitedBy_id | crossref_primary_10_1364_OE_454094 crossref_primary_10_1002_qj_4254 crossref_primary_10_1088_1361_6501_acf595 crossref_primary_10_5194_amt_15_4153_2022 crossref_primary_10_1080_10408347_2022_2036092 crossref_primary_10_5194_acp_24_13231_2024 crossref_primary_10_1016_j_atmosres_2021_105854 crossref_primary_10_3390_s20226516 crossref_primary_10_1016_j_atmosres_2020_105179 crossref_primary_10_3390_rs16244728 crossref_primary_10_1007_s10546_022_00759_w crossref_primary_10_5194_acp_19_13097_2019 crossref_primary_10_1134_S1024856022060173 crossref_primary_10_3390_atmos14091409 crossref_primary_10_3390_rs12020340 crossref_primary_10_3390_rs12193259 crossref_primary_10_3390_atmos10100599 crossref_primary_10_3390_s22093412 crossref_primary_10_5194_amt_13_6965_2020 crossref_primary_10_1016_j_atmosenv_2022_119455 crossref_primary_10_1016_j_atmosres_2021_105999 crossref_primary_10_1016_j_jastp_2019_105157 crossref_primary_10_1071_ES24008 crossref_primary_10_3390_rs15051354 crossref_primary_10_3390_su162310175 crossref_primary_10_1364_OE_451728 crossref_primary_10_5194_acp_21_2981_2021 crossref_primary_10_1007_s42865_020_00003_8 crossref_primary_10_1134_S1024856022030022 crossref_primary_10_3390_rs14030745 crossref_primary_10_3390_atmos11090908 crossref_primary_10_3390_rs16122074 crossref_primary_10_5194_amt_13_6675_2020 crossref_primary_10_3390_atmos14071102 crossref_primary_10_3390_rs12142272 crossref_primary_10_1007_s00703_022_00938_x crossref_primary_10_1175_JTECH_D_20_0050_1 crossref_primary_10_3390_rs15092291 crossref_primary_10_1029_2023JD038523 crossref_primary_10_3390_atmos11121371 crossref_primary_10_3390_rs14020418 crossref_primary_10_5194_amt_15_1185_2022 crossref_primary_10_1039_D4EA00143E crossref_primary_10_1016_j_rse_2024_114452 crossref_primary_10_3390_rs13183626 crossref_primary_10_3390_rs14164057 crossref_primary_10_3390_rs15051381 crossref_primary_10_1016_j_jqsrt_2020_107382 crossref_primary_10_3390_s21113659 crossref_primary_10_1007_s00704_024_04997_5 crossref_primary_10_5194_amt_16_4031_2023 crossref_primary_10_5194_amt_16_433_2023 crossref_primary_10_5194_amt_15_4735_2022 crossref_primary_10_1109_JSTARS_2023_3289944 crossref_primary_10_3390_rs13091781 crossref_primary_10_3390_rs15235453 crossref_primary_10_5194_amt_14_7341_2021 crossref_primary_10_5194_acp_21_4249_2021 crossref_primary_10_5194_amt_15_3827_2022 crossref_primary_10_3389_feart_2019_00308 crossref_primary_10_1063_5_0211259 crossref_primary_10_1016_j_apr_2021_101310 crossref_primary_10_18412_1816_0395_2023_9_61_65 crossref_primary_10_1016_j_atmosenv_2023_120281 crossref_primary_10_1016_j_atmosres_2022_106290 crossref_primary_10_1016_j_renene_2022_04_047 crossref_primary_10_1016_j_rse_2024_114227 crossref_primary_10_1029_2023JD040207 crossref_primary_10_3390_atmos12111439 crossref_primary_10_3390_atmos12091103 crossref_primary_10_5194_acp_25_3347_2025 |
Cites_doi | 10.1109/TGRS.2013.2284110 10.5194/acp-17-6215-2017 10.1175/1520-0450(1979)018<1495:ACOTMF>2.0.CO;2 10.1109/TPAMI.1986.4767851 10.1016/S1352-2310(99)00349-0 10.1023/A:1002498707645 10.1016/j.atmosres.2018.06.007 10.1007/s10546-014-9929-z 10.1175/1520-0450(1985)024<0806:LOOVOC>2.0.CO;2 10.1175/1520-0450(1989)028<0885:APRFEZ>2.0.CO;2 10.1016/S1352-2310(96)00300-7 10.5194/amt-9-3769-2016 10.1175/1520-0426(1998)015<0849:AVIRWP>2.0.CO;2 10.1016/j.atmosenv.2013.07.019 10.1016/j.atmosenv.2003.09.054 10.1364/AO.38.000945 10.1175/1520-0469(1993)050<0750:DAAOMA>2.0.CO;2 10.1364/AO.38.003175 10.5194/acp-16-13309-2016 10.1002/2016JD025620 10.1175/1520-0426(2002)019<2089:MLSUA>2.0.CO;2 10.1175/1520-0426(2002)019<1151:LTSOIM>2.0.CO;2 10.1117/12.2069892 10.1029/93JD03090 10.1016/j.atmosenv.2011.09.013 10.1175/2009JTECHA1326.1 10.1117/12.417040 10.3390/atmos9050173 10.1007/s10546-005-9020-x 10.1029/2009JD013680 10.1175/JTECH2008.1 10.1175/1520-0426(1999)016<0953:TDOMLD>2.0.CO;2 10.1016/j.atmosres.2003.09.004 10.1175/1520-0426(2000)017<1455:AOMFDA>2.0.CO;2 10.1007/s10546-011-9643-z 10.2478/s11600-012-0054-4 10.1016/j.jqsrt.2017.11.008 10.1007/s10546-012-9743-4 10.5194/amt-10-1893-2017 10.1080/01431161.2017.1292068 10.1175/1520-0450(1986)025<0990:LMOWIT>2.0.CO;2 10.1023/A:1018956525605 10.1175/1520-0450(1988)027<0797:LOOTFS>2.0.CO;2 10.1117/12.511481 10.1109/18.119727 10.1029/2008JD009778 10.1016/j.atmosenv.2005.11.016 10.1023/A:1002628924673 10.1175/JTECH-D-12-00253.1 10.5194/acp-8-7281-2008 10.1175/1520-0450(1984)023<0247:LOOMLD>2.0.CO;2 10.1007/BF00713292 10.1175/JAM2296.1 10.1051/epjconf/201817606007 10.1029/2012JD017524 10.5194/acp-17-6839-2017 10.3390/atmos8040079 10.1002/qj.49710544406 10.1029/94JD01944 10.1364/OE.25.030732 10.1175/1520-0426(2003)020<1092:FBLTAO>2.0.CO;2 10.1127/0941-2948/2008/0312 10.1016/j.optlastec.2012.08.017 10.1023/A:1002790424133 10.1175/1520-0450(2000)039<1233:BLHAEZ>2.0.CO;2 10.1023/A:1000258318944 10.3390/rs11030263 10.1175/1520-0493(1976)104<1317:TDVOMH>2.0.CO;2 10.5194/amt-7-173-2014 10.1029/2002GL015112 10.1002/2016JD025937 10.5194/angeo-28-825-2010 10.1007/BF00707033 10.1029/2012JD018143 10.1007/s10546-005-9005-9 10.1155/2016/5375918 10.1002/jgrd.50710 10.1109/36.210443 10.1016/j.partic.2015.04.004 10.1016/j.atmosenv.2013.04.007 10.1029/94JD02604 10.1007/s10546-005-9035-3 10.1016/j.atmosres.2018.04.017 10.1023/A:1000338817250 10.1007/s00382-018-4269-1 10.1007/s10546-010-9474-3 10.1016/S1352-2310(03)00049-9 10.1016/j.jqsrt.2018.11.003 10.1007/s10546-006-9103-3 10.1175/JCLI-D-15-0766.1 10.5194/amt-7-3685-2014 10.1007/BF00324097 10.5194/acp-10-341-2010 10.1080/16742834.2011.11446916 10.1016/S1352-2310(97)00231-8 10.1016/j.jes.2018.11.003 10.1109/IGARSS.2015.7326688 10.1175/1520-0426(2002)019<1745:CBLDIM>2.0.CO;2 10.1007/s10546-016-0205-2 10.1002/jgrd.50251 10.1175/JTECH-D-11-00114.1 10.1364/AO.37.007019 10.1007/978-1-4757-9128-0_55 10.1007/s10546-012-9791-9 10.1109/TGRS.2006.888434 10.1007/BF00705378 10.1175/1520-0426(2002)019<0431:FTESCA>2.0.CO;2 10.1007/s10546-011-9657-6 10.1016/j.atmosenv.2003.10.065 10.1016/j.partic.2012.04.005 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs11131590 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_06bc0db4e3dd459bad5bba3109e6fedb 10_3390_rs11131590 |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO 7S9 L.6 |
ID | FETCH-LOGICAL-c460t-8290cff4d4a0ac962a594de14300efa20d6694510bf057d5a0718ebcf03cbffc3 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:14:17 EDT 2025 Fri Jul 11 08:53:25 EDT 2025 Mon Aug 25 17:41:07 EDT 2025 Tue Jul 01 04:14:47 EDT 2025 Thu Apr 24 23:01:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-8290cff4d4a0ac962a594de14300efa20d6694510bf057d5a0718ebcf03cbffc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7813-6616 0000-0002-0769-5090 0000-0003-1122-4643 |
OpenAccessLink | https://www.proquest.com/docview/2312295697?pq-origsite=%requestingapplication% |
PQID | 2312295697 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_06bc0db4e3dd459bad5bba3109e6fedb proquest_miscellaneous_2985933603 proquest_journals_2312295697 crossref_citationtrail_10_3390_rs11131590 crossref_primary_10_3390_rs11131590 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190704 |
PublicationDateYYYYMMDD | 2019-07-04 |
PublicationDate_xml | – month: 07 year: 2019 text: 20190704 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_94 ref_137 Floors (ref_40) 2013; 147 ref_10 Menut (ref_78) 1999; 38 Lange (ref_135) 2015; 53 Quan (ref_70) 2013; 11 ref_134 Frioud (ref_74) 2003; 37 Mao (ref_106) 2013; 49 ref_15 Boers (ref_73) 1988; 27 Yang (ref_81) 2017; 17 (ref_28) 2002; 19 Wang (ref_123) 2016; 28 ref_126 Moores (ref_17) 1979; 105 Su (ref_125) 2017; 122 Galmarini (ref_23) 2000; 94 Spinhirne (ref_41) 1993; 31 Dupont (ref_71) 1994; 69 ref_122 Beyrich (ref_24) 1993; 57 Huang (ref_110) 2017; 162 Martucci (ref_80) 2006; 24 Cimini (ref_37) 2013; 6 Steyn (ref_85) 1999; 16 Baars (ref_121) 2008; 8 Liu (ref_36) 2015; 26 Gregori (ref_140) 2017; 17 Eresmaa (ref_86) 2005; 5 Stachlewska (ref_115) 2012; 60 Mallat (ref_89) 1992; 38 He (ref_45) 2006; 40 Seibert (ref_2) 2000; 34 Wang (ref_75) 2012; 07 Li (ref_101) 2015; 33 Welton (ref_44) 2000; 4153 Norton (ref_12) 1976; 104 Campbell (ref_61) 2002; 19 Mead (ref_30) 1998; 15 Senff (ref_79) 1996; 69 Rocadenbosch (ref_131) 1998; 37 Martucci (ref_119) 2010; 135 Emeis (ref_51) 2008; 17 Flamant (ref_69) 1997; 83 Hayden (ref_76) 1997; 31 Steyn (ref_87) 2000; 97 Basha (ref_14) 2019; 52 Lange (ref_129) 2013; 52 Guo (ref_16) 2016; 16 Helmis (ref_27) 2012; 145 Gregori (ref_133) 2018; 213 Banks (ref_128) 2014; 9242 Beyrich (ref_25) 1993; 63 ref_84 Wulfmeyer (ref_92) 2005; 44 Ji (ref_82) 2018; 79 Toledo (ref_43) 2017; 38 Lammert (ref_108) 2006; 119 Li (ref_55) 2017; 122 Liu (ref_138) 2018; 206 Crewell (ref_38) 2007; 45 Tsaknakis (ref_77) 2011; 4 Dai (ref_22) 2014; 152 Gan (ref_95) 2011; 45 Chen (ref_102) 1997; 84 Strawbridge (ref_72) 2004; 38 Gamage (ref_97) 1993; 50 Wang (ref_13) 2016; 29 Hennemuth (ref_42) 2006; 120 Sawyer (ref_104) 2013; 79 Canny (ref_117) 1986; 6 Toledo (ref_127) 2014; 31 ref_58 ref_56 Brooks (ref_93) 2003; 20 ref_53 Dang (ref_96) 2016; 2016 Measures (ref_59) 1984; 66 Welton (ref_60) 2002; 19 Kotthaus (ref_62) 2016; 9 Hooper (ref_65) 1986; 25 Nelson (ref_67) 1989; 28 Kottmeier (ref_109) 2011; 141 Xie (ref_57) 2017; 25 Martucci (ref_120) 2010; 27 Sugimoto (ref_136) 2002; 29 Rocadenbosch (ref_132) 1999; 38 Mok (ref_88) 2004; 69 Coulter (ref_103) 1979; 18 Holden (ref_19) 2000; 97 Rocadenbosch (ref_130) 2010; 7827 Emeis (ref_26) 2004; 38 ref_63 Morille (ref_99) 2007; 24 Pal (ref_7) 2013; 118 Collineau (ref_98) 1993; 65 Joffre (ref_68) 2001; 99 Vernekar (ref_20) 1991; 20 Yang (ref_124) 2013; 118 Pal (ref_105) 2010; 28 Schween (ref_113) 2014; 7 Liu (ref_139) 2018; 224 ref_118 Dai (ref_21) 2011; 4 Jordi (ref_18) 1994; 99 ref_35 Leventidou (ref_50) 2013; 74 ref_34 Bianco (ref_33) 2002; 19 ref_32 ref_112 Cooper (ref_9) 1994; 99 ref_39 Grisogono (ref_11) 2010; 10 Stull (ref_1) 1988; Volume 8 Piironen (ref_107) 1995; 100 Beyrich (ref_29) 1997; 31 Emeis (ref_114) 2005; 5979 Haman (ref_5) 2012; 29 Boers (ref_66) 1984; 23 Perrone (ref_47) 2018; 213 Luo (ref_111) 2014; 7 Hu (ref_31) 2011; 39 ref_46 Eresmaa (ref_64) 2007; 124 ref_100 Davis (ref_91) 2000; 17 ref_3 Sicard (ref_83) 2006; 119 ref_49 ref_48 ref_8 Xiang (ref_52) 2019; 43 Haeffelin (ref_116) 2012; 143 Bruine (ref_54) 2017; 10 ref_4 Cohn (ref_90) 2000; 39 ref_6 |
References_xml | – volume: 52 start-page: 4717 year: 2013 ident: ref_129 article-title: Atmospheric Boundary Layer Height Monitoring Using a Kalman Filter and Backscatter Lidar Returns publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2284110 – volume: 17 start-page: 6125 year: 2017 ident: ref_81 article-title: Technical note: Boundary layer height determination from lidar for improving air pollution episode modeling: Development of new algorithm and evaluation publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-17-6215-2017 – volume: 18 start-page: 1495 year: 1979 ident: ref_103 article-title: Comparison of three methods for measuring mixing-layer height publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1979)018<1495:ACOTMF>2.0.CO;2 – volume: 6 start-page: 679 year: 1986 ident: ref_117 article-title: Computational Approach to Edge Detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1986.4767851 – volume: 34 start-page: 1001 year: 2000 ident: ref_2 article-title: Review and intercomparison of operational methods for the determination of the mixing height publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(99)00349-0 – ident: ref_100 – volume: 94 start-page: 175 year: 2000 ident: ref_23 article-title: Turbulent Transport atthe Thermal Internal Boundary-Layer top: Wavelet Analysis of Aircraft Measurements publication-title: Bound.-Layer Meteorol. doi: 10.1023/A:1002498707645 – volume: 213 start-page: 185 year: 2018 ident: ref_133 article-title: Study of the planetary boundary layer by microwave radiometer, elastic lidar and Doppler lidar estimations in Southern Iberian Peninsula publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2018.06.007 – volume: 152 start-page: 277 year: 2014 ident: ref_22 article-title: Determining Boundary-Layer Height from Aircraft Measurements publication-title: Bound.-Layer Meteorol. doi: 10.1007/s10546-014-9929-z – ident: ref_63 doi: 10.1175/1520-0450(1985)024<0806:LOOVOC>2.0.CO;2 – volume: 28 start-page: 885 year: 1989 ident: ref_67 article-title: A Prognostic Relationship for Entrainment Zone Thickness publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1989)028<0885:APRFEZ>2.0.CO;2 – volume: 31 start-page: 2089 year: 1997 ident: ref_76 article-title: The vertical chemical and meteorological structure of the boundary layer in the Lower Fraser Valley during Pacific ‘93 publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(96)00300-7 – volume: 9 start-page: 1 year: 2016 ident: ref_62 article-title: Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-9-3769-2016 – volume: 15 start-page: 849 year: 1998 ident: ref_30 article-title: A Volume-Imaging Radar Wind Profiler for Atmospheric Boundary Layer Turbulence Studies publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/1520-0426(1998)015<0849:AVIRWP>2.0.CO;2 – volume: 66 start-page: 686 year: 1984 ident: ref_59 article-title: Laser remote sensing:fundamentals and applications publication-title: Eos Trans. Am. Geophys. Union – volume: 79 start-page: 518 year: 2013 ident: ref_104 article-title: Detection, variations and intercomparison of the planetary boundary layer depth from radiosonde, lidar and infrared spectrometer publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.07.019 – volume: 38 start-page: 273 year: 2004 ident: ref_26 article-title: Atmospheric boundary-layer structure from simultaneous SODAR, RASS, and ceilometer measurements publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2003.09.054 – ident: ref_94 – volume: 33 start-page: 78 year: 2015 ident: ref_101 article-title: Study on Retrieval of Boundary Layer Height Using Wavelet Transformation Method Basd on Lidar Data publication-title: J. Arid Meteorol. – volume: 38 start-page: 945 year: 1999 ident: ref_78 article-title: Urban boundary-layer height determination from lidar measurements over the Paris area publication-title: Appl. Opt. doi: 10.1364/AO.38.000945 – volume: 50 start-page: 750 year: 1993 ident: ref_97 article-title: Detection and Analysis of Microfronts and Associated Coherent Events Using Localized Transforms publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1993)050<0750:DAAOMA>2.0.CO;2 – volume: 38 start-page: 3175 year: 1999 ident: ref_132 article-title: Lidar inversion of atmospheric backscatter and extinction-to-backscatter ratios by use of a Kalman filter publication-title: Appl. Opt. doi: 10.1364/AO.38.003175 – volume: 16 start-page: 13309 year: 2016 ident: ref_16 article-title: The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-13309-2016 – volume: 122 start-page: 4578 year: 2017 ident: ref_55 article-title: Evaluation of retrieval methods of daytime convective boundary layer height based on Lidar data publication-title: J. Geophys. Res.-Atmos. doi: 10.1002/2016JD025620 – volume: 19 start-page: 2089 year: 2002 ident: ref_60 article-title: Micropulse Lidar Signals: Uncertainty Analysis publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/1520-0426(2002)019<2089:MLSUA>2.0.CO;2 – volume: 19 start-page: 1151 year: 2002 ident: ref_28 article-title: Long-Term Sodar Observations in Moscow and a New Approach to Potential Mixing Determination by Radiosonde Data publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/1520-0426(2002)019<1151:LTSOIM>2.0.CO;2 – ident: ref_49 doi: 10.1117/12.2069892 – volume: 99 start-page: 3699 year: 1994 ident: ref_18 article-title: Tethered-balloon measurements of actinic flux in a cloud-capped marine boundary layer publication-title: J. Geophys. Res. Atmos. doi: 10.1029/93JD03090 – volume: 45 start-page: 6613 year: 2011 ident: ref_95 article-title: Application of active optical sensors to probe the vertical structure of the urban boundary layer and assess anomalies in air quality model PM2.5 forecasts publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.09.013 – volume: 27 start-page: 305 year: 2010 ident: ref_120 article-title: Detection of Cloud-Base Height Using Jenoptik CHM15K and Vaisala CL31 Ceilometers publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/2009JTECHA1326.1 – volume: 4153 start-page: 151 year: 2000 ident: ref_44 article-title: Global Monitoring of Clouds and Aerosols Using a Network of Micro-Pulse Lidar Systems publication-title: Proc. SPIE doi: 10.1117/12.417040 – ident: ref_58 doi: 10.3390/atmos9050173 – volume: 24 start-page: 1158 year: 2006 ident: ref_80 article-title: Comparison between Backscatter Lidar and Radiosonde Measurements of the Diurnal and Nocturnal Stratification in the Lower Troposphere publication-title: J. Atmos. Ocean. Technol. – volume: 119 start-page: 159 year: 2006 ident: ref_108 article-title: Determination of the convective boundary-layer height with laser remote sensing publication-title: Bound.-Layer Meteorol. doi: 10.1007/s10546-005-9020-x – ident: ref_10 doi: 10.1029/2009JD013680 – volume: 53 start-page: 3338 year: 2015 ident: ref_135 article-title: Atmospheric Boundary Layer Height Estimation Using a Kalman Filter and a Frequency modulated Continuous-wave Radar publication-title: IEEE Trans. – ident: ref_53 – volume: 24 start-page: 761 year: 2007 ident: ref_99 article-title: STRAT: An Automated Algorithm to Retrieve the Vertical Structure of the Atmosphere from Single-Channel Lidar Data publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH2008.1 – volume: 16 start-page: 953 year: 1999 ident: ref_85 article-title: The Detection of Mixed Layer Depth and Entrainment Zone Thickness from Lidar Backscatter Profiles publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/1520-0426(1999)016<0953:TDOMLD>2.0.CO;2 – volume: 69 start-page: 147 year: 2004 ident: ref_88 article-title: A lidar study of the atmospheric entrainment zone and mixed layer over Hong Kong publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2003.09.004 – volume: 17 start-page: 1455 year: 2000 ident: ref_91 article-title: An Objective Method for Deriving Atmospheric Structure from Airborne Lidar Observations publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/1520-0426(2000)017<1455:AOMFDA>2.0.CO;2 – volume: 143 start-page: 49 year: 2012 ident: ref_116 article-title: Evaluation of Mixing-Height Retrievals from Automatic Profiling Lidars and Ceilometers in View of Future Integrated Networks in Europe publication-title: Bound.-Layer Meteorol. doi: 10.1007/s10546-011-9643-z – volume: 60 start-page: 1386 year: 2012 ident: ref_115 article-title: Ceilometer observations of the boundary layer over Warsaw, Poland publication-title: Acta Geophys. doi: 10.2478/s11600-012-0054-4 – volume: 206 start-page: 117 year: 2018 ident: ref_138 article-title: Two-wavelength Lidar inversion algorithm for determining planetary boundary layer height publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2017.11.008 – ident: ref_3 – volume: 145 start-page: 507 year: 2012 ident: ref_27 article-title: A Comparative Study and Evaluation of Mixing-Height Estimation Based on Sodar-RASS, Ceilometer Data and Numerical Model Simulations publication-title: Bound.-Layer Meteorol. doi: 10.1007/s10546-012-9743-4 – volume: 10 start-page: 1 year: 2017 ident: ref_54 article-title: Pathfinder: Applying graph theory for consistent tracking of daytime mixed layer height with backscatter lidar publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-10-1893-2017 – volume: 5979 start-page: 442 year: 2005 ident: ref_114 article-title: Evaluation of mixing layer height monitoring by ceilometer with SODAR and microlight aircraft measurements publication-title: Proc. SPIE – volume: 38 start-page: 3203 year: 2017 ident: ref_43 article-title: Estimation of the atmospheric boundary layer height during different atmospheric conditions: A comparison on reliability of several methods applied to lidar measurements publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1292068 – volume: 25 start-page: 990 year: 1986 ident: ref_65 article-title: Lidar Measurements of Wind in the Planetary Boundary Layer: The Method, Accuracy and Results from Joint Measurements with Radiosonde and Kytoon publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1986)025<0990:LMOWIT>2.0.CO;2 – volume: 99 start-page: 429 year: 2001 ident: ref_68 article-title: Variability of the Stable and Unstable Atmospheric Boundary-Layer Height and Its Scales over a Boreal Forest publication-title: Bound.-Layer Meteorol. doi: 10.1023/A:1018956525605 – volume: 27 start-page: 797 year: 1988 ident: ref_73 article-title: Lidar observations of the fine-scale variability of marine stratocumulus clouds publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1988)027<0797:LOOTFS>2.0.CO;2 – ident: ref_48 doi: 10.1117/12.511481 – volume: 38 start-page: 617 year: 1992 ident: ref_89 article-title: Singularity detection and processing with wavelets publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.119727 – volume: 69 start-page: 161 year: 1996 ident: ref_79 article-title: Remote Sesing of Turbulent Ozone Fluxes and the Ozone Budget in the Convective Boundary Layer with DIAL and Radar-RASS: A Case Study publication-title: Atmos. Phys. – ident: ref_112 doi: 10.1029/2008JD009778 – volume: 40 start-page: 1064 year: 2006 ident: ref_45 article-title: Observational and modeling studies of urban atmospheric boundary-layer height and its evolution mechanisms publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2005.11.016 – volume: 97 start-page: 1 year: 2000 ident: ref_19 article-title: Tethered Balloon Observations of the Nocturnal Stable Boundary Layer in a Valley publication-title: Bound.-Layer Meteorol. doi: 10.1023/A:1002628924673 – volume: 31 start-page: 422 year: 2014 ident: ref_127 article-title: Cluster Analysis: A new approach applied to Lidar measurements for Atmospheric Boundary Layer height estimation publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-12-00253.1 – volume: 8 start-page: 7281 year: 2008 ident: ref_121 article-title: Continuous monitoring of the boundary-layer top with lidar publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-8-7281-2008 – volume: 23 start-page: 247 year: 1984 ident: ref_66 article-title: Lidar Observations of Mixed Layer Dynamics: Tests of Parameterized Entrainment Models of Mixed Layer Growth Rate publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1984)023<0247:LOOMLD>2.0.CO;2 – volume: 69 start-page: 1 year: 1994 ident: ref_71 article-title: Study of the moist Convective Boundary Layer structure by backscattering lidar publication-title: Bound.-Layer Meteorol. doi: 10.1007/BF00713292 – volume: 44 start-page: 1723 year: 2005 ident: ref_92 article-title: Twenty-Four-Hour Observations of the Marine Boundary Layer Using Shipborne NOAA High-Resolution Doppler Lidar publication-title: J. Appl. Meteorol. doi: 10.1175/JAM2296.1 – ident: ref_134 doi: 10.1051/epjconf/201817606007 – ident: ref_137 – ident: ref_6 doi: 10.1029/2012JD017524 – volume: 17 start-page: 6839 year: 2017 ident: ref_140 article-title: A new methodology for PBL height estimations based on lidar depolarization measurements: Analysis and comparison against MWR and WRF model-based results publication-title: Atmos. Chem. doi: 10.5194/acp-17-6839-2017 – volume: 7827 start-page: 239 year: 2010 ident: ref_130 article-title: Atmospheric boundary-layer height estimation by adaptive Kalman filtering of lidar data publication-title: Proc. SPIE – ident: ref_126 doi: 10.3390/atmos8040079 – volume: 105 start-page: 397 year: 1979 ident: ref_17 article-title: Measurements of boundary layer structure and development over SE England using aircraft and tethered balloon instrumentation publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.49710544406 – volume: 07 start-page: 241 year: 2012 ident: ref_75 article-title: Comparison of retrieval methods of planetary boundary layer height from lidar data publication-title: J. Atmos. Environ. Opt. – volume: 99 start-page: 22937 year: 1994 ident: ref_9 article-title: Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations publication-title: J. Geophys. Res. Atmos. doi: 10.1029/94JD01944 – volume: 25 start-page: 30732 year: 2017 ident: ref_57 article-title: Automated detection of cloud and aerosol features with SACOL micro-pulse lidar in northwest China publication-title: Opt. Express doi: 10.1364/OE.25.030732 – volume: 20 start-page: 1092 year: 2003 ident: ref_93 article-title: Finding Boundary Layer Top: Application of Wavelet Covariance Transform to Lidar Backscatter Profiles publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/1520-0426(2003)020<1092:FBLTAO>2.0.CO;2 – volume: 9242 start-page: 1 year: 2014 ident: ref_128 article-title: Retrieval of boundary layer height from lidar using extended Kalman filter approach, classic methods, and backtrajectory cluster analysis publication-title: Proc. SPIE – volume: 17 start-page: 621 year: 2008 ident: ref_51 article-title: Surface-based remote sensing of the mixing-layer height—A review publication-title: Meteorol. Z. doi: 10.1127/0941-2948/2008/0312 – volume: 49 start-page: 343 year: 2013 ident: ref_106 article-title: Determination of the boundary layer top from lidar backscatter profiles using a Haar wavelet method over Wuhan, China publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2012.08.017 – volume: 97 start-page: 47 year: 2000 ident: ref_87 article-title: Spatial and Temporal Variability of Mixed-Layer Depth and Entrainment Zone Thickness publication-title: Bound.-Layer Meteorol. doi: 10.1023/A:1002790424133 – ident: ref_32 – volume: 39 start-page: 1233 year: 2000 ident: ref_90 article-title: Boundary Layer Height and Entrainment Zone Thickness Measured by Lidars and Wind-Profiling Radars publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/1520-0450(2000)039<1233:BLHAEZ>2.0.CO;2 – volume: 20 start-page: 312 year: 1991 ident: ref_20 article-title: Structure and growth of atmospheric boundary layer as observed by a tethered balloon payload publication-title: Indian J. Radio Space Phys. – volume: 83 start-page: 248 year: 1997 ident: ref_69 article-title: Lidar determination of the entrainment zone thickness at the top of the unstable marine boundary layer publication-title: Bound.-Layer Meteorol. doi: 10.1023/A:1000258318944 – ident: ref_84 – ident: ref_56 doi: 10.3390/rs11030263 – volume: 104 start-page: 1317 year: 1976 ident: ref_12 article-title: The diurnal variation of mixing height by month over White Sands Missile Range, New Mexico publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1976)104<1317:TDVOMH>2.0.CO;2 – volume: 7 start-page: 173 year: 2014 ident: ref_111 article-title: Lidar-based remote sensing of atmospheric boundary layer height over land and ocean publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-7-173-2014 – volume: 29 start-page: 7-1 year: 2002 ident: ref_136 article-title: Observation of dust and anthropogenic aerosol plumes in the Northwest Pacific with a two-wavelength polarization lidar on board the research vessel Mirai publication-title: Geophys. Res. Lett. doi: 10.1029/2002GL015112 – volume: 122 start-page: 3929 year: 2017 ident: ref_125 article-title: An intercomparison of long-term planetary boundary layer heights retrieved from CALIPSO, ground-based lidar and radiosonde measurements over Hong Kong publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2016JD025937 – volume: 28 start-page: 825 year: 2010 ident: ref_105 article-title: Elastic-backscatter-lidar-based characterization of the convective boundary layer and investigation of related statistics publication-title: Ann. Geophys. doi: 10.5194/angeo-28-825-2010 – volume: 65 start-page: 357 year: 1993 ident: ref_98 article-title: Detection of turbulent coherent motions in a forest canopy part I: Wavelet analysis publication-title: Bound.-Layer Meteorol. doi: 10.1007/BF00707033 – ident: ref_35 – ident: ref_15 doi: 10.1029/2012JD018143 – volume: 119 start-page: 135 year: 2006 ident: ref_83 article-title: Mixed-Layer Depth Determination in the Barcelona Coastal Area from Regular Lidar Measurements: Methods, Results and Limitations publication-title: Bound.-Layer Meteorol. doi: 10.1007/s10546-005-9005-9 – volume: 2016 start-page: 1 year: 2016 ident: ref_96 article-title: Statistical analysis of relationship between daytime lidar-derived planetary boundary layer height and relevant atmospheric variables in the semiarid region in northwest China publication-title: Adv. Meteorol. doi: 10.1155/2016/5375918 – volume: 118 start-page: 9277 year: 2013 ident: ref_7 article-title: Exploring a geophysical process-based attribution technique for the determination of the atmospheric boundary layer depth using aerosol lidar and near-surface meteorological measurements publication-title: J. Geophys. Res.-Atmos. doi: 10.1002/jgrd.50710 – volume: 31 start-page: 48 year: 1993 ident: ref_41 article-title: Micro Pulse Lidar publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.210443 – ident: ref_118 – volume: 28 start-page: 15 year: 2016 ident: ref_123 article-title: Measuring boundary-layer height under clear and cloudy conditions using three instruments publication-title: Particuology doi: 10.1016/j.partic.2015.04.004 – volume: 39 start-page: 315 year: 2011 ident: ref_31 article-title: Measuring Performance Analysis of Wind Profiling Radar publication-title: Meteorol. Sci. Technol. – volume: 74 start-page: 360 year: 2013 ident: ref_50 article-title: Factors affecting the comparisons of planetary boundary layer height retrievals from calipso, ecmwf and radiosondes over thessaloniki, greece publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.04.007 – volume: 100 start-page: 25569 year: 1995 ident: ref_107 article-title: Convective boundary layer mean depths and cloud geometrical properties obtained from volume imaging lidar data publication-title: J. Geophys. Res. Atmos. doi: 10.1029/94JD02604 – volume: 120 start-page: 181 year: 2006 ident: ref_42 article-title: Determination of the Atmospheric Boundary Layer Height from Radiosonde and Lidar Backscatter publication-title: Bound.-Layer Meteorol. doi: 10.1007/s10546-005-9035-3 – volume: 26 start-page: 626 year: 2015 ident: ref_36 article-title: Retrieval of Atmospheric Boundary Layer Height from Ground-based Microwave Radiometer Measurements publication-title: J. Appl. Meteorol. Sci. – volume: 213 start-page: 57 year: 2018 ident: ref_47 article-title: Relationship between the planetary boundary layer height and the particle scattering coefficient at the surface publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2018.04.017 – volume: 84 start-page: 99 year: 1997 ident: ref_102 article-title: Coherent eddies and temperature structure functions for three contrasting surfaces. Part I: Ramp model with finite microfront time publication-title: Bound.-Layer Meteorol. doi: 10.1023/A:1000338817250 – volume: 52 start-page: 2385 year: 2019 ident: ref_14 article-title: Global climatology of planetary boundary layer top obtained from multi-satellite GPS RO observations publication-title: Clim. Dyn. doi: 10.1007/s00382-018-4269-1 – volume: 135 start-page: 313 year: 2010 ident: ref_119 article-title: Frequency of Boundary-Layer-Top Fluctuations in Convective and Stable Conditions Using Laser Remote Sensing publication-title: Bound.-Layer Meteorol. doi: 10.1007/s10546-010-9474-3 – volume: 37 start-page: 1785 year: 2003 ident: ref_74 article-title: Elevated aerosol stratification above the Rhine Valley under strong anticyclonic conditions publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(03)00049-9 – volume: 224 start-page: 55 year: 2018 ident: ref_139 article-title: Improved Two-wavelength Lidar algorithm for Retrieving Atmospheric Boundary Layer Height publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2018.11.003 – volume: Volume 8 start-page: 89 year: 1988 ident: ref_1 article-title: An introduction to boundary layer meteorology publication-title: Atmospheric Sciences Library – volume: 124 start-page: 117 year: 2007 ident: ref_64 article-title: Retrieval of mixing height and dust concentration with lidar ceilometer publication-title: Bound.-Layer Meteorol. doi: 10.1007/s10546-006-9103-3 – volume: 29 start-page: 6893 year: 2016 ident: ref_13 article-title: Homogenized Variability of Radiosonde Derived Atmospheric Boundary Layer Height over the Global Land Surface from 1973 to 2014 publication-title: J. Clim. doi: 10.1175/JCLI-D-15-0766.1 – volume: 7 start-page: 4275 year: 2014 ident: ref_113 article-title: Mixing-layer height retrieval with ceilometer and Doppler lidar: From case studies to long-term assessment publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-7-3685-2014 – volume: 57 start-page: 27 year: 1993 ident: ref_24 article-title: On the use of SODAR data to estimate mixing height publication-title: Appl. Phys. B Photophys. Laser Chem. doi: 10.1007/BF00324097 – ident: ref_34 – volume: 10 start-page: 341 year: 2010 ident: ref_11 article-title: Parameterization of vertical diffusion and the atmospheric boundary layer height determination in the EMEP model publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-10-341-2010 – volume: 43 start-page: 0110002-1 year: 2019 ident: ref_52 article-title: Retrieve of Planetary Boundary Layer Height Based on Image Edge Detection publication-title: Chin. J. Lasers – volume: 4 start-page: 124 year: 2011 ident: ref_21 article-title: Analysis of Atmospheric Boundary Layer Height Characteristics over the Arctic Ocean Using the Aircraft and GPS Soundings publication-title: Atmos. Ocean. Sci. Lett. doi: 10.1080/16742834.2011.11446916 – volume: 31 start-page: 3941 year: 1997 ident: ref_29 article-title: Mixing height estimation from sodar data—A critical discussion publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(97)00231-8 – volume: 79 start-page: 81 year: 2018 ident: ref_82 article-title: Comparison of mixing layer height inversion algorithms using lidar and a pollution case study in Baoding, China publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2018.11.003 – ident: ref_39 doi: 10.1109/IGARSS.2015.7326688 – volume: 19 start-page: 1745 year: 2002 ident: ref_33 article-title: Convective Boundary Layer Depth: Improved Measurement by Doppler Radar Wind Profiler Using Fuzzy Logic Methods publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/1520-0426(2002)019<1745:CBLDIM>2.0.CO;2 – volume: 162 start-page: 503 year: 2017 ident: ref_110 article-title: Estimate of Boundary-Layer Depth Over Beijing, China, Using Doppler Lidar Data During SURF-2015 publication-title: Bound.-Layer Meteorol. doi: 10.1007/s10546-016-0205-2 – volume: 118 start-page: 2422 year: 2013 ident: ref_124 article-title: Long-term measurement of daytime atmospheric mixing layer height over Hong Kong publication-title: J. Geophys. Res. Atmos. doi: 10.1002/jgrd.50251 – volume: 29 start-page: 697 year: 2012 ident: ref_5 article-title: Seasonal variability in the diurnal evolution of the boundary layer in a near-coastal urban environment publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-11-00114.1 – volume: 37 start-page: 7019 year: 1998 ident: ref_131 article-title: Adaptive filter solution for processing lidar returns: Optical parameter estimation publication-title: Appl. Opt. doi: 10.1364/AO.37.007019 – ident: ref_4 doi: 10.1007/978-1-4757-9128-0_55 – ident: ref_8 doi: 10.1007/978-1-4757-9128-0_55 – volume: 147 start-page: 469 year: 2013 ident: ref_40 article-title: The Wind Profile in the Coastal Boundary Layer: Wind Lidar Measurements;and Numerical Modelling publication-title: Bound.-Layer Meteorol. doi: 10.1007/s10546-012-9791-9 – volume: 45 start-page: 2195 year: 2007 ident: ref_38 article-title: Accuracy of Boundary Layer Temperature Profiles Retrieved With Multifrequency Multiangle Microwave Radiometry publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.888434 – volume: 63 start-page: 97 year: 1993 ident: ref_25 article-title: Some aspects of determining the stable boundary layer depth from sodar data publication-title: Bound.-Layer Meteorol. doi: 10.1007/BF00705378 – volume: 5 start-page: 12697 year: 2005 ident: ref_86 article-title: Mixing height determination by ceilometer publication-title: Atmos. Chem. Phys. Discuss. – ident: ref_122 – ident: ref_46 – volume: 19 start-page: 431 year: 2002 ident: ref_61 article-title: Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/1520-0426(2002)019<0431:FTESCA>2.0.CO;2 – volume: 141 start-page: 369 year: 2011 ident: ref_109 article-title: Convective Boundary-Layer Entrainment: Short Review and Progress using Doppler Lidar publication-title: Bound.-Layer Meteorol. doi: 10.1007/s10546-011-9657-6 – volume: 4 start-page: 73 year: 2011 ident: ref_77 article-title: Inter-comparison of lidar and ceilometer retrievals for aerosol and Planetary Boundary Layer profiling over Athens, Greece publication-title: Atmos. Meas. Tech. Discuss – volume: 38 start-page: 5861 year: 2004 ident: ref_72 article-title: Planetary boundary layer height determination during Pacific 2001 using the advantage of a scanning lidar instrument publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2003.10.065 – volume: 11 start-page: 34 year: 2013 ident: ref_70 article-title: Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations publication-title: Particuology doi: 10.1016/j.partic.2012.04.005 – volume: 6 start-page: 4971 year: 2013 ident: ref_37 article-title: Mixing layer height retrievals by multichannel microwave radiometer observations publication-title: Atmos. Meas. Tech. Discuss |
SSID | ssj0000331904 |
Score | 2.4891934 |
SecondaryResourceType | review_article |
Snippet | The height of the atmospheric boundary layer (ABLH) or the mixing layer height (MLH) is a key parameter characterizing the planetary boundary layer, and the... The substances emitted into the ABL are gradually dispersed horizontally and vertically due to the action of the turbulence, and are finally completely mixed... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1590 |
SubjectTerms | Aerodynamics aerosol lidar Aerosols Air entrainment Air masses Air pollution air quality Aircraft Atmospheric boundary layer atmospheric boundary layer height Backscattering Boundary layers Concentration gradient Dispersion Entrainment environmental models extended Kalman Filter Fluxes Free atmosphere gradient methods Humidity ideal profile fitting Kinetic energy Lidar mathematical models Meteorology mixing Outdoor air quality Parameter estimation Parameters Pollutants Pollution dispersion Remote sensing Remote sensing systems Signal processing Signal to noise ratio Specific humidity Temporal variations Thermal boundary layer Trace gases troposphere Turbulence variance analysis Vertical distribution wavelet covariance transform weather forecasting Wind |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLu0FQWnF8qVB7aEcIkw88cbHbAGt0LanReIW-VOgwgbtZg_8e8ZOdktFJS5ck7FkjceeN_boPca-i7JwahgwQ-FlfGY8y8ocdca9cE5Zn9ukGfnrtxxf49VNcfNC6iv2hHX0wJ3jTrk0ljuDcSwWymhXGKMjn6WXwTsTT1_KeS-KqXQGCwotjh0fqaC6_nS-iKLqlLz5PxkoEfW_OodTcrncYps9KoSqm802--Bnn9nHXqD89mmH_amgu8WHJsB0xbu6AIKccN51y1EOAkJzULUPzSKSBdxZGCXRpPkTTDRBaxine1D4UY0m4xNI3QJQeZplcw-TOzKEc93qL-z68mL6c5z1OgmZRcnbLL6F2hDQoebaKpnrQqHzhIQ490Hn3EmpkDafCYTOXKEJVpTe2MCFNSFY8ZVtzJqZ32WAw9KKIVUNuaWaGUNZWO0dBlRaUdmtBuxk5bva9iTiUcvivqZiIvq5_uvnAfu2tn3sqDP-azWKS7C2iHTX6QMFQd0HQf1WEAzYwWoB634PLmpCrlGrXKrhgB2vf9PuiU8ieuabJdmoyPcmJBd77zGPffaJAJVK7bx4wDba-dIfEmhpzVGKz2f0LOvs priority: 102 providerName: Directory of Open Access Journals |
Title | A Review of Techniques for Diagnosing the Atmospheric Boundary Layer Height (ABLH) Using Aerosol Lidar Data |
URI | https://www.proquest.com/docview/2312295697 https://www.proquest.com/docview/2985933603 https://doaj.org/article/06bc0db4e3dd459bad5bba3109e6fedb |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7R5gCXiqdIKdEiONCD1cW73nhPyCENEUorBK3Um7VPqNrGJXYP_ffMrjepqiKu9siy9jHzzUPfB_CBlYWVY88zzpwIbcZPWZlzlVHHrJXG5SZqRh4di_kp_3ZWnKWCW5vGKtc-MTpq25hQIz9AHBKUp4Ucf77-kwXVqNBdTRIaWzBAF1xi8jWYHB5__7GpslCGR4zynpeUYX5_sGqDuDoGcXovEkXC_gf-OAaZ2VPYSeiQVP12PoNHbvkcHieh8t-3L-CiIn01nzSenKz5V1uC0JNM-6k5jEUEUR2puqumDaQB54ZMonjS6pYsFEJsMo_1UPKxmizm-yRODZDK4V82l2RxjoZkqjr1Ek5nhydf5lnSS8gMF7TLQk_UeM8tV1QZKXJVSG4dIiJKnVc5tUJIjpdQe0RptlAIL0qnjafMaO8NewXby2bpXgPh49KwMWYPucHcmfuyMMpZ7rlUEtNvOYT99drVJpGJB02LyxqTirDO9d06D-H9xva6p9D4p9UkbMHGItBexwfN6ledblFNhTbUah4OEi-kVrbQWgVyUye8s3oIe-sNrNNdbOu7kzOEd5vXeItCa0QtXXODNjLwvjFB2e7_P_EGniBkknFgl-_Bdre6cW8RlnR6BFvl7OsIBtX0aPFzlE7iKCb5fwE5WOYS |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxFMsLWAESPQQ1Y2dbHxAKMuypDTtaSv1FvyEirJpN6nQ_il-I2Mn2QqBuPWajKxoPOP5xjOZD-A1yxIjxo5HnNnUlxn3oyzmMqKWGSO0jXXgjDw6TosT_vk0Od2AX8O_ML6tcjgTw0Ftau3vyPcQh3jm6VSM319cRp41yldXBwqNziwO7eonpmzNu4Mp7u-bOJ59nH8oop5VINI8pW3kK4faOW64pFKLNJaJ4MYibqDUOhlTk6aCo6kqh1jGJBKDcGaVdpRp5ZxmuO4tuM0ZE96jstmn9Z0OZWjQlHdTUPE93Vs2nsodIQP9I-4FeoC_Tv8Q0mb34G6PRUneGc992LCLB7DV06J_Wz2E7znpagekdmQ-THttCAJdMu169DDyEcSQJG9_1I0fUXCmySRQNS1XpJQI6EkRbl_J23xSFrsk9CiQ3OJX1uekPENBMpWtfAQnN6LHx7C5qBf2CRA-zjQbY64Sa8zUucsSLa3hjgspMNkXI9gddFfpfnS5Z9A4rzCF8XqurvU8gldr2YtuYMc_pSZ-C9YSfsh2eFAvv1a9z1Y0VZoaxb3Z8kQoaRKlpB-lalNnjRrBzrCBVe_5TXVtpyN4uX6NPusLMXJh6yuUEX7KHEspe_r_JV7AVjE_Kqvy4PhwG-4gWBOhVZjvwGa7vLLPEBC16nmwQgJfbtrsfwNiBB7m |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEE-xUMAIkOghWhM7TnxAKMt2taXLqkKt1FvwEyrKpmxSof1r_DrGeWyFQNx6TUZWZH_2fOOZzAfwkmWJlannEWdOhDTjmyiLuYqoY9ZK42LTaEZ-XIjZMf9wkpxswa_-X5hQVtmfic1BbUsT7shHyEOC8rSQ6ch3ZRGHk-m78x9RUJAKmdZeTqOFyIFb_8TwrXq7P8G1fhXH072j97OoUxiIDBe0jkIW0XjPLVdUGSlilUhuHXIISp1XMbVCSI6w1R55jU0UOuTMaeMpM9p7w3Dca7CdYlREB7A93lscftrc8FCG8Ka87YnKmKSjVRWE3ZFA0D-8YCMW8JcvaBzc9Dbc6pgpyVso3YEtt7wLNzqR9K_re_AtJ20mgZSeHPW9XyuCtJdM2oo99IMEGSXJ6-9lFRoWnBoyboSbVmsyV0jvyay5iyWv8_F8tkuaigWSO_zK8ozMT9GQTFSt7sPxlczkAxgsy6V7CISnmWEpRi6xwbid-ywxylnuuVQSQ385hN1-7grTNTIPehpnBQY0YZ6Ly3kewouN7XnbvuOfVuOwBBuL0HK7eVCuvhTdDi6o0IZazQOIeSK1sonWKjRWdcI7q4ew0y9g0Z0DVXGJ2iE837zGHRzSMmrpygu0kaHnHBOUPfr_EM_gOkK-mO8vDh7DTWRusqkb5jswqFcX7gmyo1o_7WBI4PNVI_83UegkeA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Techniques+for+Diagnosing+the+Atmospheric+Boundary+Layer+Height+%28ABLH%29+Using+Aerosol+Lidar+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Dang%2C+Ruijun&rft.au=Yang%2C+Yi&rft.au=Hu%2C+Xiao-Ming&rft.au=Wang%2C+Zhiting&rft.date=2019-07-04&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=13&rft.spage=1590&rft_id=info:doi/10.3390%2Frs11131590&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs11131590 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |