Road Extraction of High-Resolution Remote Sensing Images Derived from DenseUNet

Road network extraction is one of the significant assignments for disaster emergency response, intelligent transportation systems, and real-time updating road network. Road extraction base on high-resolution remote sensing images has become a hot topic. Presently, most of the researches are based on...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 11; no. 21; p. 2499
Main Authors Xin, Jiang, Zhang, Xinchang, Zhang, Zhiqiang, Fang, Wu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 25.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Road network extraction is one of the significant assignments for disaster emergency response, intelligent transportation systems, and real-time updating road network. Road extraction base on high-resolution remote sensing images has become a hot topic. Presently, most of the researches are based on traditional machine learning algorithms, which are complex and computational because of impervious surfaces such as roads and buildings that are discernible in the images. Given the above problems, we propose a new method to extract the road network from remote sensing images using a DenseUNet model with few parameters and robust characteristics. DenseUNet consists of dense connection units and skips connections, which strengthens the fusion of different scales by connections at various network layers. The performance of the advanced method is validated on two datasets of high-resolution images by comparison with three classical semantic segmentation methods. The experimental results show that the method can be used for road extraction in complex scenes.
AbstractList Road network extraction is one of the significant assignments for disaster emergency response, intelligent transportation systems, and real-time updating road network. Road extraction base on high-resolution remote sensing images has become a hot topic. Presently, most of the researches are based on traditional machine learning algorithms, which are complex and computational because of impervious surfaces such as roads and buildings that are discernible in the images. Given the above problems, we propose a new method to extract the road network from remote sensing images using a DenseUNet model with few parameters and robust characteristics. DenseUNet consists of dense connection units and skips connections, which strengthens the fusion of different scales by connections at various network layers. The performance of the advanced method is validated on two datasets of high-resolution images by comparison with three classical semantic segmentation methods. The experimental results show that the method can be used for road extraction in complex scenes.
Author Xin, Jiang
Fang, Wu
Zhang, Zhiqiang
Zhang, Xinchang
Author_xml – sequence: 1
  givenname: Jiang
  surname: Xin
  fullname: Xin, Jiang
– sequence: 2
  givenname: Xinchang
  surname: Zhang
  fullname: Zhang, Xinchang
– sequence: 3
  givenname: Zhiqiang
  surname: Zhang
  fullname: Zhang, Zhiqiang
– sequence: 4
  givenname: Wu
  surname: Fang
  fullname: Fang, Wu
BookMark eNptkUtLLDEQhYMo-Nz4CxrciNDXymu6sxQf1wFRGHUd0unKmKG7o0mP6L8341y8ItYmVcWXw0nOLtkcwoCEHFL4w7mC05goZZQJpTbIDoOKlYIptvmt3yYHKS0gF-dUgdghd7Ng2uLybYzGjj4MRXDFtZ8_lTNMoVt-rmbYhxGLexySH-bFtDdzTMUFRv-KbeFi6PMwJHy8xXGfbDnTJTz4d-6Rx6vLh_Pr8ubu7_T87Ka0YgJjWUlqHZdWOVZL1zTOQmO4qexEoeA1FTLbc05UXLUUBDKEClVdo1Mwabnke2S61m2DWejn6HsT33UwXn8uQpxrE0dvO9SSNyhxQqECKqw0BhxlpgGlGiErWWet47XWcwwvS0yj7n2y2HVmwLBMmqlaqowzltGjH-giLOOQX6qZlMBqqOlK8GRN2RhSiui-DFLQq6j0_6gyDD9g60ez-vicie9-u_IBPP2VOQ
CitedBy_id crossref_primary_10_1061_JITSE4_ISENG_2351
crossref_primary_10_1109_LGRS_2021_3065148
crossref_primary_10_3390_s21093152
crossref_primary_10_3390_app12084068
crossref_primary_10_3390_rs16050839
crossref_primary_10_48084_etasr_5247
crossref_primary_10_1109_JSTARS_2021_3071353
crossref_primary_10_3390_rs14215342
crossref_primary_10_3390_s24051708
crossref_primary_10_1016_j_jag_2022_102833
crossref_primary_10_1109_TGRS_2022_3197546
crossref_primary_10_1109_ACCESS_2023_3253289
crossref_primary_10_1007_s42461_022_00548_6
crossref_primary_10_1109_JMASS_2023_3299330
crossref_primary_10_3390_rs16122056
crossref_primary_10_1109_MGRS_2024_3491014
crossref_primary_10_1109_LGRS_2020_3028468
crossref_primary_10_54097_ijeh_v4i3_1649
crossref_primary_10_3390_rs12182866
crossref_primary_10_47164_ijngc_v14i3_1301
crossref_primary_10_1016_j_isprsjprs_2023_03_012
crossref_primary_10_1109_LGRS_2021_3093101
crossref_primary_10_1016_j_isprsjprs_2022_09_005
crossref_primary_10_3390_s22207735
crossref_primary_10_1002_pat_6506
crossref_primary_10_1016_j_neunet_2023_01_031
crossref_primary_10_3390_rs13010158
crossref_primary_10_1007_s11042_022_12994_x
crossref_primary_10_3390_rs15153799
crossref_primary_10_1080_10106049_2022_2060319
crossref_primary_10_1016_j_dsp_2024_104637
crossref_primary_10_3390_ijgi10050329
crossref_primary_10_3390_rs14236015
crossref_primary_10_1109_TGRS_2023_3305031
crossref_primary_10_1109_JSTARS_2021_3083055
crossref_primary_10_3390_rs14194872
crossref_primary_10_1080_10106049_2021_1926555
crossref_primary_10_3389_fpls_2023_1103276
crossref_primary_10_1371_journal_pone_0297152
crossref_primary_10_1016_j_iswcr_2021_10_004
crossref_primary_10_3390_su152316537
crossref_primary_10_6002_ect_2021_0480
crossref_primary_10_3390_jimaging8050124
crossref_primary_10_3390_rs12223764
crossref_primary_10_3390_rs13183710
crossref_primary_10_3390_app15031027
crossref_primary_10_3390_rs13244958
crossref_primary_10_1016_j_isprsjprs_2020_08_019
crossref_primary_10_3390_rs14020349
crossref_primary_10_3390_rs12091444
crossref_primary_10_1007_s10553_025_01825_y
crossref_primary_10_1049_ipr2_12948
crossref_primary_10_1109_ACCESS_2020_3027573
crossref_primary_10_3390_rs13030465
crossref_primary_10_1007_s41064_022_00194_z
crossref_primary_10_1016_j_procs_2024_04_158
crossref_primary_10_1109_TGRS_2020_3034011
crossref_primary_10_1109_TGRS_2024_3379988
crossref_primary_10_52547_jgit_9_3_109
crossref_primary_10_3390_ijgi11100502
crossref_primary_10_1080_17480930_2021_1949800
crossref_primary_10_3390_rs15174215
crossref_primary_10_1016_j_isprsjprs_2023_07_026
crossref_primary_10_3390_rs14030613
crossref_primary_10_1007_s44230_023_00015_5
crossref_primary_10_3390_rs15082099
crossref_primary_10_1016_j_isprsjprs_2022_10_005
crossref_primary_10_1088_1755_1315_1127_1_012047
crossref_primary_10_1186_s10033_024_01018_4
crossref_primary_10_3390_ijgi11010009
crossref_primary_10_3390_math10111915
crossref_primary_10_1016_j_jksuci_2024_102009
crossref_primary_10_1080_14498596_2024_2309605
crossref_primary_10_1080_07038992_2021_1929884
crossref_primary_10_35784_acs_2023_19
crossref_primary_10_1007_s12524_022_01532_9
crossref_primary_10_1109_TAI_2024_3357437
crossref_primary_10_1109_JSTARS_2024_3486723
crossref_primary_10_3390_rs13214235
crossref_primary_10_1007_s13369_022_07082_z
crossref_primary_10_1016_j_rsase_2025_101465
Cites_doi 10.3390/rs11060696
10.1007/978-3-319-24574-4_28
10.1109/CVPRW.2018.00034
10.1109/LGRS.2017.2672734
10.1109/TGRS.2010.2041783
10.1371/journal.pone.0138071
10.1109/72.977323
10.1109/TGRS.2012.2190078
10.1016/j.isprsjprs.2017.02.008
10.1109/LGRS.2012.2214761
10.1038/s41591-018-0316-z
10.1109/CVPR.2017.660
10.1109/LGRS.2006.873875
10.3390/rs10091461
10.1109/ICIP.2014.7026027
10.1109/TGRS.2017.2669341
10.1109/JSTARS.2019.2909478
10.1142/S0218001400000635
10.1080/2150704X.2018.1557791
10.1186/s13640-015-0062-9
10.3390/rs11010079
10.1007/978-3-642-15561-1
10.1109/TPAMI.2016.2644615
10.14358/PERS.70.12.1365
10.1109/CVPR.2018.00496
10.3390/rs10081284
10.3390/rs11050552
10.1038/nature14539
10.1613/jair.953
10.1080/01431161.2010.540587
10.1080/13658810210149416
10.1109/ICCV.2015.178
10.1080/01431160802546837
10.1109/TPAMI.2012.231
10.1109/IGARSS.2016.7729408
10.1109/TGRS.2019.2912301
10.1109/CVPR.2016.90
10.1109/CVPR.2015.7298965
10.1109/CVPR.2017.243
10.1109/ICCV.2013.175
10.3390/rs11080930
10.1007/978-3-030-01234-2_49
10.3115/v1/D14-1181
10.3390/rs11091015
10.1007/978-3-030-01261-8_20
10.1109/LGRS.2018.2802944
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs11212499
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Proquest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_53be5e6107014c5aa0f12ab099b45758
10_3390_rs11212499
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c460t-751cf35c9f285fbbfc0ba3a7c69e438145190ff4739d104e2e07e988ef906d353
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:29:59 EDT 2025
Fri Jul 11 01:19:45 EDT 2025
Fri Jul 25 09:29:34 EDT 2025
Tue Jul 01 04:14:53 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-751cf35c9f285fbbfc0ba3a7c69e438145190ff4739d104e2e07e988ef906d353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/53be5e6107014c5aa0f12ab099b45758
PQID 2550280818
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_53be5e6107014c5aa0f12ab099b45758
proquest_miscellaneous_2985909922
proquest_journals_2550280818
crossref_primary_10_3390_rs11212499
crossref_citationtrail_10_3390_rs11212499
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191025
PublicationDateYYYYMMDD 2019-10-25
PublicationDate_xml – month: 10
  year: 2019
  text: 20191025
  day: 25
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Miao (ref_4) 2012; 10
Cheng (ref_14) 2017; 55
ref_58
ref_57
ref_56
ref_11
ref_55
ref_53
ref_52
ref_51
Huang (ref_8) 2009; 30
ref_59
Li (ref_5) 2002; 16
ref_60
Bong (ref_3) 2009; 5
Li (ref_31) 2019; 10
ref_25
Rianto (ref_17) 2000; 14
ref_24
ref_22
Chawla (ref_54) 2002; 16
Li (ref_40) 2019; 12
ref_29
ref_28
ref_27
Wei (ref_32) 2017; 14
Yu (ref_48) 2002; 13
ref_26
Badrinarayanan (ref_44) 2017; 39
Saito (ref_12) 2016; 2016
Wang (ref_16) 2017; 46
Zhang (ref_18) 2011; 32
Song (ref_15) 2004; 70
Alshehhi (ref_13) 2017; 126
Esteva (ref_47) 2019; 25
ref_35
ref_34
Unsalan (ref_10) 2012; 50
ref_30
Su (ref_33) 2019; 55
Gamba (ref_20) 2006; 3
ref_39
Movaghati (ref_19) 2010; 48
Li (ref_21) 2016; 44
ref_38
Yang (ref_36) 2019; 59
ref_45
Zhang (ref_37) 2018; 15
ref_43
ref_42
ref_41
ref_1
ref_2
LeCun (ref_46) 2015; 521
ref_49
ref_9
Sujatha (ref_7) 2015; 2015
ref_6
Farabet (ref_23) 2012; 35
References_xml – ident: ref_30
  doi: 10.3390/rs11060696
– ident: ref_43
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_38
  doi: 10.1109/CVPRW.2018.00034
– volume: 14
  start-page: 709
  year: 2017
  ident: ref_32
  article-title: Road structure refined CNN for road extraction in aerial image
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2672734
– ident: ref_51
– volume: 48
  start-page: 2807
  year: 2010
  ident: ref_19
  article-title: Road extraction from satellite images using particle filtering and extended Kalman filtering
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2041783
– ident: ref_6
  doi: 10.1371/journal.pone.0138071
– volume: 13
  start-page: 251
  year: 2002
  ident: ref_48
  article-title: A general backpropagation algorithm for feedforward neural networks learning
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.977323
– volume: 50
  start-page: 4441
  year: 2012
  ident: ref_10
  article-title: Road network detection using probabilistic and graph theoretical methods
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2190078
– volume: 126
  start-page: 245
  year: 2017
  ident: ref_13
  article-title: Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images
  publication-title: ISPRS-J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.02.008
– volume: 10
  start-page: 583
  year: 2012
  ident: ref_4
  article-title: Road centerline extraction from high-resolution imagery based on shape features and multivariate adaptive regression splines
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2012.2214761
– volume: 25
  start-page: 24
  year: 2019
  ident: ref_47
  article-title: A guide to deep learning in healthcare
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0316-z
– ident: ref_57
  doi: 10.1109/CVPR.2017.660
– volume: 3
  start-page: 387
  year: 2006
  ident: ref_20
  article-title: Improving urban road extraction in high-resolution images exploiting directional filtering, perceptual grouping, and simple topological concepts
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2006.873875
– ident: ref_41
  doi: 10.3390/rs10091461
– ident: ref_56
– ident: ref_27
– ident: ref_52
– ident: ref_11
  doi: 10.1109/ICIP.2014.7026027
– volume: 55
  start-page: 3322
  year: 2017
  ident: ref_14
  article-title: Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2669341
– volume: 12
  start-page: 2279
  year: 2019
  ident: ref_40
  article-title: Road Segmentation of Unmanned Aerial Vehicle Remote Sensing Images Using Adversarial Network with Multiscale Context Aggregation
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2019.2909478
– volume: 55
  start-page: 207
  year: 2019
  ident: ref_33
  article-title: U-Net based semantic segmentation method for high resolution remote sensing image
  publication-title: Comput. Appl.
– volume: 14
  start-page: 1009
  year: 2000
  ident: ref_17
  article-title: Detection of roads from satellite images using optimal search
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001400000635
– volume: 10
  start-page: 381
  year: 2019
  ident: ref_31
  article-title: A Y-Net deep learning method for road segmentation using high-resolution visible remote sensing images
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2018.1557791
– volume: 2015
  start-page: 8
  year: 2015
  ident: ref_7
  article-title: Connected component-based technique for automatic extraction of road centerline in high resolution satellite images
  publication-title: EURASIP J. Image Video Process.
  doi: 10.1186/s13640-015-0062-9
– ident: ref_2
  doi: 10.3390/rs11010079
– ident: ref_9
  doi: 10.1007/978-3-642-15561-1
– volume: 39
  start-page: 2481
  year: 2017
  ident: ref_44
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref_45
– volume: 70
  start-page: 1365
  year: 2004
  ident: ref_15
  article-title: Road extraction using SVM and image segmentation
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.70.12.1365
– ident: ref_28
– ident: ref_39
  doi: 10.1109/CVPR.2018.00496
– ident: ref_53
– ident: ref_1
  doi: 10.3390/rs10081284
– ident: ref_35
  doi: 10.3390/rs11050552
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_46
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 16
  start-page: 321
  year: 2002
  ident: ref_54
  article-title: SMOTE: Synthetic minority over-sampling technique. J
  publication-title: Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 32
  start-page: 8331
  year: 2011
  ident: ref_18
  article-title: Semi-automatic road tracking by template matching and distance transformation in urban areas
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.540587
– volume: 16
  start-page: 699
  year: 2002
  ident: ref_5
  article-title: Quantitative measures for spatial information of maps
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658810210149416
– volume: 2016
  start-page: 1
  year: 2016
  ident: ref_12
  article-title: Multiple object extraction from aerial imagery with convolutional neural networks
  publication-title: J. Electron. Imaging
– ident: ref_24
  doi: 10.1109/ICCV.2015.178
– volume: 46
  start-page: 1978
  year: 2017
  ident: ref_16
  article-title: Road Extraction from High-spatial-resolution Remote Sensing Image by Combining with GVF Snake with Salient Features
  publication-title: Acta Geod. Cartogr. Sin.
– volume: 5
  start-page: 209
  year: 2009
  ident: ref_3
  article-title: Automatic Road Network Recognition and Extraction for Urban Planning
  publication-title: Int. J. Appl. Sci. Eng. Technol.
– volume: 30
  start-page: 1977
  year: 2009
  ident: ref_8
  article-title: Road centreline extraction from high—Resolution imagery based on multiscale structural features and support vector machines
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160802546837
– volume: 35
  start-page: 1915
  year: 2012
  ident: ref_23
  article-title: Learning hierarchical features for scene labeling
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.231
– ident: ref_25
  doi: 10.1109/IGARSS.2016.7729408
– volume: 44
  start-page: 217
  year: 2016
  ident: ref_21
  article-title: Region-based urban road extraction from VHR satellite images using binary partition tree
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 59
  start-page: 7209
  year: 2019
  ident: ref_36
  article-title: Road Detection and Centerline Extraction Via Deep Recurrent Convolutional Neural Network U-Net
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2912301
– ident: ref_49
  doi: 10.1109/CVPR.2016.90
– ident: ref_42
  doi: 10.1109/CVPR.2015.7298965
– ident: ref_50
  doi: 10.1109/CVPR.2017.243
– ident: ref_55
  doi: 10.1109/ICCV.2013.175
– ident: ref_34
  doi: 10.3390/rs11080930
– ident: ref_58
  doi: 10.1007/978-3-030-01234-2_49
– ident: ref_26
  doi: 10.3115/v1/D14-1181
– ident: ref_29
  doi: 10.3390/rs11091015
– ident: ref_59
  doi: 10.1007/978-3-030-01261-8_20
– ident: ref_60
– ident: ref_22
– volume: 15
  start-page: 749
  year: 2018
  ident: ref_37
  article-title: Road extraction by deep residual U-Net
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2802944
SSID ssj0000331904
Score 2.5022376
Snippet Road network extraction is one of the significant assignments for disaster emergency response, intelligent transportation systems, and real-time updating road...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2499
SubjectTerms Algorithms
artificial intelligence
Automation
buildings
Computer applications
data collection
denseunet
Disaster management
Emergency preparedness
Emergency response
Emergency vehicles
High resolution
high-resolution remote sensing imagery
Image resolution
Image segmentation
Intelligent transportation systems
Learning algorithms
Machine learning
Methods
multi-scale
Neural networks
Parameter robustness
Remote sensing
road extraction
roads
Roads & highways
Semantics
Skips
Transportation networks
Urban areas
SummonAdditionalLinks – databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVge4AL4lMsLcgILhyseuPYjk-IwlYFiQUtrNRbZDvj9gBJu0kR_HtmNt6tEIhjklEO4_HMmxn7DWMvC-NNEyojZtEFUSIEEE6BFjE0hYoYIsaO7seFOVmVH071aS649flY5dYnbhx100WqkR8i9KUuIMaX1xeXgqZGUXc1j9C4yfbQBVfVhO0dzRefl7sqi1RoYrIceUkV5veH6x4RBk1cdn9Eog1h_1_-eBNkju-yOxkd8jfjct5jN6C9z27lQeXnvx6wT8vON3z-c1iPFxJ4lzgd1RBUhh-NiC8B1Q_8Cx1Nb8_4--_oMnr-Dk3tBzSc7pPgQ9vDagHDQ7Y6nn99eyLyTAQRSyMHYfUsJqWjS0WlUwgpyuCVt9E4ILYuYouRKZVWuQYzLShAWnBVBclJ0yitHrFJ27XwmPHgI2jqI3qlS6u1DzMdZLLBmmhjYabs1VY_dcyE4TS34luNiQPpsr7W5ZS92MlejDQZ_5Q6IjXvJIjaevOiW5_VeafUWgXQgKjOYvYWtfcyzQofEMmGErFlNWUH20Wq837r62vrmLLnu8-4U6j94VvorlDGVdpJ4uF98v9f7LPbCIscRahCH7DJsL6Cpwg9hvAs29dvw3PXqQ
  priority: 102
  providerName: ProQuest
Title Road Extraction of High-Resolution Remote Sensing Images Derived from DenseUNet
URI https://www.proquest.com/docview/2550280818
https://www.proquest.com/docview/2985909922
https://doaj.org/article/53be5e6107014c5aa0f12ab099b45758
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BOcCl4lMslJURXDhE9caxHR9buktBdEFbVuotsp1xOUC22k0R_HtmknQpAokLpyjxHKyZsedNxn4D8DI33tShNNkkupAVBAEyp1BnMdS5ihQi-oruydwcL4t3Z_rsWqsvPhPW0wP3itvXKqBGCvKWwHzU3ss0yX0gYBMKghrdNV-KedeSqW4PVuRasuj5SBXl9fvrDSEL7rTsfotAHVH_H_twF1xmd2F3QIXioJ_NPbiBzX24PTQo__zjAXxYrHwtpt_bdX8RQayS4CMaGf9-751HLJDUjuKUj6Q35-LtV9oqNuKIXOwb1oLvkdBLs8HlHNuHsJxNP70-zoZeCFksjGwzqycxKR1dykudQkhRBq-8jcYhs3QxS4xMqbDK1ZRhYY7SoitLTE6aWmn1CHaaVYOPQQQfUXP90CtdWK19mOggkw3WRBtzM4JXV_qp4kAUzv0qvlSUMLAuq1-6HMGLrexFT4_xV6lDVvNWgimtuw9k6GowdPUvQ49g78pI1bDONhUlRFwbJtQxgufbYVohXPbwDa4uScaV2knm333yP-bxFO4QaHIcv3K9Bzvt-hKfETBpwxhulrM3Y7h1cHTy_pSeh9P5x8W488yfZEniFw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigXxFNsKWAEHDhE9caxEx8QAtpll7aLVLpSb8F2xuVAk3aTAv1T_EZm8tgKgbj1mGSUw_jzzDcezwxjL2JtdeEyHY29cVGCFCAyElTkXRFLjy6iy-gezPV0kXw8Vsdr7NdQC0PXKgeb2BrqovJ0Rr6N1JeygOhf3pydRzQ1irKrwwiNDhZ7cPkDQ7b69WwH1_dlHE92j95Po36qQOQTLZooVWMfpPImxJkKzgUvnJU29doA9buifisihCSVpsBYBWIQKZgsg2CELtopEWjybyQSPTlVpk8-rM50hERAi6TrgorfxfayRj5D853NH36vHQ_wl_VvXdrkNrvVc1H-tgPPHbYG5V220Y9F_3p5j306rGzBd382y678gVeB08WQiA79O8jyQ8DFBv6ZLsKXJ3x2igaq5jsI7O9QcKpewYeyhsUcmvtscS26esDWy6qEh4w760FR1tJKlaRKWTdWToTUpdqnPtYj9mrQT-779uQ0JeNbjmEK6TK_0uWIPV_JnnVNOf4p9Y7UvJKgRtrti2p5kvf7MlfSgQLkkCnGil5ZK8I4tg55s0uQyWYjtjUsUt7v7jq_wuKIPVt9xn1JyRZbQnWBMiZTRlDX383__-Ip25geHezn-7P53iN2EwmZId8Yqy223iwv4DGSnsY9aZHG2ZfrhvZvAvoSyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrQRcEE-xtIARcOAQrdeO4_iAEGV31aWwVAsr9Zbajl0ONCmbFOhf49cxk8dWCMStxySjHMafZ77xjGcIec4Tk-Q2TaKx0zaKgQJEWngZOZtz4cBFtBndD4tkfxW_O5JHW-RXfxcGyyp7m9gY6rx0eEY-AuqLWUDwL6PQlUUcTmavz75FOEEKM639OI0WIgf-4geEb9Wr-QTW-gXns-nnt_tRN2EgcnHC6kjJsQtCOh14KoO1wTFrhFEu0R57X2HvFRZCrITOIW7x3DPldZr6oFmSNxMjwPxvK4yKBmR7b7o4XG5OeJgAeLO47YkqhGajdQXsBqc96z-8YDMs4C9f0Di42S1ys2Om9E0Lpdtkyxd3yPVuSPqXi7vk47I0OZ3-rNftZQhaBoplIhGmAFoA06WHpff0E5bFFyd0fgrmqqITgPl3n1O8ywIPReVXC1_fI6sr0dZ9MijKwj8g1BrnJeYwjZCxktLYsbQsKKsSpxxPhuRlr5_Mdc3KcWbG1wyCFtRldqnLIXm2kT1rW3T8U2oP1byRwLbazYtyfZJ1uzSTwnrpgVEqiBydNIaFMTcWWLSNgdemQ7LbL1LW7fUqu0TmkDzdfIZdiqkXU_jyHGR0KjXDHsAP__-LJ-QawDp7P18c7JAbwM40Okoud8mgXp_7R8CAavu4gxolx1eN7t9Soxhc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Road+Extraction+of+High-Resolution+Remote+Sensing+Images+Derived+from+DenseUNet&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Xin%2C+Jiang&rft.au=Zhang%2C+Xinchang&rft.au=Zhang%2C+Zhiqiang&rft.au=Fang%2C+Wu&rft.date=2019-10-25&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=21&rft.spage=2499&rft_id=info:doi/10.3390%2Frs11212499&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs11212499
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon