Mechanistic basis of oxygen sensitivity in titanium

A systematic study of Ti-O alloys reveals the mechanism behind acute oxygen sensitivity in titanium. One of the most potent examples of interstitial solute strengthening in metal alloys is the extreme sensitivity of titanium to small amounts of oxygen. Unfortunately, these small amounts of oxygen al...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 6; no. 43
Main Authors Chong, Yan, Poschmann, Max, Zhang, Ruopeng, Zhao, Shiteng, Hooshmand, Mohammad S., Rothchild, Eric, Olmsted, David L., Morris, J. W., Chrzan, Daryl C., Asta, Mark, Minor, Andrew M.
Format Journal Article
LanguageEnglish
Published United States AAAS 23.10.2020
American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A systematic study of Ti-O alloys reveals the mechanism behind acute oxygen sensitivity in titanium. One of the most potent examples of interstitial solute strengthening in metal alloys is the extreme sensitivity of titanium to small amounts of oxygen. Unfortunately, these small amounts of oxygen also lead to a markedly decreased ductility, which in turn drives the increased cost to purify titanium to avoid this oxygen poisoning effect. Here, we report a systematic study on the oxygen sensitivity of titanium that provides a clear mechanistic view of how oxygen impurities affect the mechanical properties of titanium. The increased slip planarity of Ti-O alloys is caused by an interstitial shuffling mechanism, which is sensitive to temperature, strain rate, and oxygen content and leads to the subsequent alteration of deformation twinning behavior. The insights from our experimental and computational work provide a rationale for the design of titanium alloys with increased tolerance to variations in interstitial content, with notable implications for more widespread use of titanium alloys.
AbstractList One of the most potent examples of interstitial solute strengthening in metal alloys is the extreme sensitivity of titanium to small amounts of oxygen. Unfortunately, these small amounts of oxygen also lead to a markedly decreased ductility, which in turn drives the increased cost to purify titanium to avoid this oxygen poisoning effect. Here, we report a systematic study on the oxygen sensitivity of titanium that provides a clear mechanistic view of how oxygen impurities affect the mechanical properties of titanium. The increased slip planarity of Ti-O alloys is caused by an interstitial shuffling mechanism, which is sensitive to temperature, strain rate, and oxygen content and leads to the subsequent alteration of deformation twinning behavior. The insights from our experimental and computational work provide a rationale for the design of titanium alloys with increased tolerance to variations in interstitial content, with notable implications for more widespread use of titanium alloys.
A systematic study of Ti-O alloys reveals the mechanism behind acute oxygen sensitivity in titanium. One of the most potent examples of interstitial solute strengthening in metal alloys is the extreme sensitivity of titanium to small amounts of oxygen. Unfortunately, these small amounts of oxygen also lead to a markedly decreased ductility, which in turn drives the increased cost to purify titanium to avoid this oxygen poisoning effect. Here, we report a systematic study on the oxygen sensitivity of titanium that provides a clear mechanistic view of how oxygen impurities affect the mechanical properties of titanium. The increased slip planarity of Ti-O alloys is caused by an interstitial shuffling mechanism, which is sensitive to temperature, strain rate, and oxygen content and leads to the subsequent alteration of deformation twinning behavior. The insights from our experimental and computational work provide a rationale for the design of titanium alloys with increased tolerance to variations in interstitial content, with notable implications for more widespread use of titanium alloys.
One of the most potent examples of interstitial solute strengthening in metal alloys is the extreme sensitivity of titanium to small amounts of oxygen. Unfortunately, these small amounts of oxygen also lead to a markedly decreased ductility, which in turn drives the increased cost to purify titanium to avoid this oxygen poisoning effect. Here, we report a systematic study on the oxygen sensitivity of titanium that provides a clear mechanistic view of how oxygen impurities affect the mechanical properties of titanium. The increased slip planarity of Ti-O alloys is caused by an interstitial shuffling mechanism, which is sensitive to temperature, strain rate, and oxygen content and leads to the subsequent alteration of deformation twinning behavior. The insights from our experimental and computational work provide a rationale for the design of titanium alloys with increased tolerance to variations in interstitial content, with notable implications for more widespread use of titanium alloys.One of the most potent examples of interstitial solute strengthening in metal alloys is the extreme sensitivity of titanium to small amounts of oxygen. Unfortunately, these small amounts of oxygen also lead to a markedly decreased ductility, which in turn drives the increased cost to purify titanium to avoid this oxygen poisoning effect. Here, we report a systematic study on the oxygen sensitivity of titanium that provides a clear mechanistic view of how oxygen impurities affect the mechanical properties of titanium. The increased slip planarity of Ti-O alloys is caused by an interstitial shuffling mechanism, which is sensitive to temperature, strain rate, and oxygen content and leads to the subsequent alteration of deformation twinning behavior. The insights from our experimental and computational work provide a rationale for the design of titanium alloys with increased tolerance to variations in interstitial content, with notable implications for more widespread use of titanium alloys.
Author Hooshmand, Mohammad S.
Zhao, Shiteng
Poschmann, Max
Asta, Mark
Chrzan, Daryl C.
Zhang, Ruopeng
Minor, Andrew M.
Rothchild, Eric
Morris, J. W.
Chong, Yan
Olmsted, David L.
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0003-2897-5099
  surname: Chong
  fullname: Chong, Yan
  organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA., National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– sequence: 2
  givenname: Max
  orcidid: 0000-0002-4955-6259
  surname: Poschmann
  fullname: Poschmann, Max
  organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
– sequence: 3
  givenname: Ruopeng
  orcidid: 0000-0001-7677-4051
  surname: Zhang
  fullname: Zhang, Ruopeng
  organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA., National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– sequence: 4
  givenname: Shiteng
  orcidid: 0000-0003-4828-9651
  surname: Zhao
  fullname: Zhao, Shiteng
  organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA., National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– sequence: 5
  givenname: Mohammad S.
  surname: Hooshmand
  fullname: Hooshmand, Mohammad S.
  organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
– sequence: 6
  givenname: Eric
  surname: Rothchild
  fullname: Rothchild, Eric
  organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
– sequence: 7
  givenname: David L.
  orcidid: 0000-0002-5909-3761
  surname: Olmsted
  fullname: Olmsted, David L.
  organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
– sequence: 8
  givenname: J. W.
  surname: Morris
  fullname: Morris, J. W.
  organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
– sequence: 9
  givenname: Daryl C.
  orcidid: 0000-0001-6957-2240
  surname: Chrzan
  fullname: Chrzan, Daryl C.
  organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– sequence: 10
  givenname: Mark
  orcidid: 0000-0002-8968-321X
  surname: Asta
  fullname: Asta, Mark
  organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– sequence: 11
  givenname: Andrew M.
  orcidid: 0000-0003-3606-8309
  surname: Minor
  fullname: Minor, Andrew M.
  organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA., National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
BackLink https://www.osti.gov/servlets/purl/1765578$$D View this record in Osti.gov
BookMark eNp1UT1PwzAUtBCIltKVOWJiSbHjjyQLEqr4kopYYLZeHKc1Su0SOxX99zhqhQCJySf57t69d2fo2DqrEbogeEZIJq69MlBvZ1AphgU-QuOM5jzNOCuOf-ARmnr_jjEmTAhOylM0ohSXOWd0jOizViuwxgejkgq88YlrEve5W2qbeG29CWZrwi4xNgkmRGa_PkcnDbReTw_vBL3d373OH9PFy8PT_HaRKiZwSFldlkoVlAOIRpO8aljRAIem5qRRWAGhPB8QhYJAwUELKHkuIihFTTSdoJu976av1rpW2oYOWrnpzBq6nXRg5O8fa1Zy6bYyF7goMhYNLvcGLq4n47VCXFY5a7UKksRJPC8i6eowpXMfvfZBro1Xum3Batd7mTHOCGY5Hfxme6rqnPedbr6zECyHRuS-EXloJArYH0HMAMG4Ia9p_5N9AbjTlE8
CitedBy_id crossref_primary_10_1016_j_msea_2023_144720
crossref_primary_10_1016_j_commatsci_2024_113405
crossref_primary_10_1016_j_jallcom_2022_165930
crossref_primary_10_1016_j_actamat_2024_120300
crossref_primary_10_1016_j_scriptamat_2022_114633
crossref_primary_10_1016_j_jmst_2024_01_068
crossref_primary_10_1103_PhysRevMaterials_6_093601
crossref_primary_10_1038_s41598_022_07640_3
crossref_primary_10_1016_j_pmatsci_2023_101140
crossref_primary_10_1038_s41467_022_32446_2
crossref_primary_10_1142_S0217979224500280
crossref_primary_10_1016_j_actamat_2023_118946
crossref_primary_10_1016_j_msea_2024_147483
crossref_primary_10_1016_j_msea_2024_147602
crossref_primary_10_1016_j_jallcom_2024_175302
crossref_primary_10_1016_j_scriptamat_2022_115051
crossref_primary_10_1016_j_ijplas_2023_103644
crossref_primary_10_1016_j_msea_2024_147487
crossref_primary_10_1016_j_matchar_2024_114244
crossref_primary_10_1016_j_commatsci_2024_113577
crossref_primary_10_1016_j_matdes_2022_111247
crossref_primary_10_1016_j_scriptamat_2023_115434
crossref_primary_10_1103_PhysRevMaterials_5_073604
crossref_primary_10_1038_s41467_022_33437_z
crossref_primary_10_1149_1945_7111_ad8e89
crossref_primary_10_1016_j_vacuum_2024_113830
crossref_primary_10_1007_s11837_022_05386_x
crossref_primary_10_1016_j_jmps_2023_105384
crossref_primary_10_1016_j_msea_2022_144184
crossref_primary_10_1016_j_msea_2024_147611
crossref_primary_10_1080_21663831_2022_2057202
crossref_primary_10_1016_j_actamat_2023_119621
crossref_primary_10_3390_pr11082286
crossref_primary_10_1016_j_actamat_2022_118356
crossref_primary_10_1103_PhysRevMaterials_8_013607
crossref_primary_10_1038_s41467_023_36030_0
crossref_primary_10_1016_j_matlet_2023_135020
crossref_primary_10_1103_PhysRevMaterials_7_103603
crossref_primary_10_1016_j_msea_2021_141394
crossref_primary_10_1016_j_msea_2021_142042
crossref_primary_10_1007_s11665_022_07647_x
crossref_primary_10_1016_j_msea_2022_143258
crossref_primary_10_1016_j_scriptamat_2024_116318
crossref_primary_10_1016_j_mtla_2022_101363
crossref_primary_10_1016_j_scriptamat_2023_115903
crossref_primary_10_1016_j_jmst_2022_02_050
crossref_primary_10_3390_met13091616
crossref_primary_10_1016_j_jmrt_2023_08_010
crossref_primary_10_1016_j_jallcom_2023_173346
crossref_primary_10_3390_coatings13122020
crossref_primary_10_1016_j_jmatprotec_2023_117887
crossref_primary_10_1016_j_jallcom_2024_175765
crossref_primary_10_1016_j_addma_2024_104170
crossref_primary_10_3390_alloys2030014
crossref_primary_10_1016_j_actamat_2023_118842
crossref_primary_10_1016_j_addma_2023_103444
crossref_primary_10_1016_j_scriptamat_2023_115392
crossref_primary_10_1016_j_matchar_2024_114624
crossref_primary_10_1016_j_jallcom_2021_162517
crossref_primary_10_1016_j_jallcom_2024_174394
crossref_primary_10_1063_5_0073228
crossref_primary_10_1016_j_matdes_2025_113709
crossref_primary_10_1016_j_actamat_2023_119082
crossref_primary_10_1016_j_msea_2024_147548
crossref_primary_10_1016_j_ijmecsci_2024_109426
crossref_primary_10_1016_j_scriptamat_2022_115236
crossref_primary_10_1016_j_scriptamat_2024_116402
crossref_primary_10_4028_p_1vn56i
crossref_primary_10_1016_S1003_6326_23_66389_7
crossref_primary_10_1007_s12540_023_01558_9
crossref_primary_10_1002_adma_202408286
crossref_primary_10_1016_j_engfracmech_2024_110214
crossref_primary_10_3389_fsens_2021_826403
crossref_primary_10_1016_j_ijplas_2025_104288
crossref_primary_10_1016_j_jmrt_2024_09_077
crossref_primary_10_1126_sciadv_ads7083
crossref_primary_10_1038_s41467_021_26374_w
crossref_primary_10_1016_j_matchar_2024_113844
crossref_primary_10_1016_j_corsci_2023_111677
crossref_primary_10_1016_j_ijplas_2022_103333
crossref_primary_10_1016_j_actamat_2022_118411
crossref_primary_10_1016_j_actamat_2023_118674
crossref_primary_10_1016_j_addma_2024_104168
crossref_primary_10_1016_j_jmst_2022_07_042
crossref_primary_10_1016_j_actamat_2023_119165
Cites_doi 10.1016/j.commatsci.2016.07.039
10.1103/PhysRevLett.80.5568
10.1016/j.scriptamat.2011.05.025
10.1179/imr.1996.41.1.1
10.1103/PhysRevB.78.054121
10.1088/0965-0393/20/4/045021
10.1038/nmat1292
10.1016/j.msea.2005.03.019
10.1080/01418619608244386
10.1080/0141861021000051109
10.1006/jcph.1995.1039
10.1016/0025-5416(74)90181-5
10.1016/S1359-6454(99)00426-7
10.1016/0927-0256(96)00008-0
10.1103/PhysRevB.54.11169
10.1002/3527602119.ch1
10.1016/j.actamat.2014.05.025
10.1007/978-3-540-71398-2
10.1103/PhysRevB.93.155109
10.1126/science.1260485
10.1098/rspa.1950.0133
10.1007/BF02652870
10.1103/PhysRevB.40.3616
10.1016/j.actamat.2020.01.066
10.1080/01418610208243202
10.1016/S0921-5093(01)01045-0
10.1016/j.scriptamat.2014.11.008
10.1088/0965-0393/18/1/015012
10.1007/BF02646644
10.1016/j.actamat.2012.10.043
10.1016/j.scriptamat.2018.11.025
10.1103/PhysRevB.46.2727
10.1088/0965-0393/18/8/085001
10.1016/0956-7151(94)00434-X
10.1103/PhysRevLett.107.045504
10.1103/PhysRevB.62.3099
10.1016/0079-6425(81)90001-3
10.1016/0036-9748(73)90104-X
10.1126/sciadv.aax2799
10.1016/j.actamat.2015.09.048
10.1080/14786436608244762
10.1016/j.actamat.2018.05.076
10.1016/j.msea.2012.02.021
10.1088/1361-651X/aa9ba9
10.1007/BF02648350
10.2320/jinstmet1952.54.9_976
10.1007/s11661-002-0139-9
10.1080/14786435.2015.1051157
10.1016/j.commatsci.2006.02.009
ContentType Journal Article
Copyright Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors
Copyright_xml – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
– notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
7X8
OIOZB
OTOTI
5PM
DOI 10.1126/sciadv.abc4060
DatabaseName CrossRef
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2375-2548
ExternalDocumentID PMC7608824
1765578
10_1126_sciadv_abc4060
GrantInformation_xml – fundername: ;
GroupedDBID 53G
5VS
AAFWJ
AAYXX
ACGFS
ADAXU
ADBBV
AENVI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BKF
CITATION
EBS
FRP
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
OVD
RHI
RPM
TEORI
7X8
BBORY
OIOZB
OTOTI
RHF
5PM
ID FETCH-LOGICAL-c460t-4d99cc835aa6fe17bf48fa5afd51fc0ca13571fc03a81a85ae6a95765ae96d1e3
IEDL.DBID M48
ISSN 2375-2548
IngestDate Thu Aug 21 18:10:53 EDT 2025
Thu May 18 22:43:28 EDT 2023
Fri Jul 11 16:09:24 EDT 2025
Tue Jul 01 03:52:57 EDT 2025
Thu Apr 24 23:08:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
License https://creativecommons.org/licenses/by-nc/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-4d99cc835aa6fe17bf48fa5afd51fc0ca13571fc03a81a85ae6a95765ae96d1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC02-05CH11231
USDOE Office of Science (SC), Basic Energy Sciences (BES)
These authors contributed equally to this work.
ORCID 0000-0001-7677-4051
0000-0003-2897-5099
0000-0003-4828-9651
0000-0002-4955-6259
0000-0002-5909-3761
0000-0003-3606-8309
0000-0001-6957-2240
0000-0002-8968-321X
000000028968321X
0000000348289651
0000000176774051
0000000328975099
0000000259093761
0000000336068309
0000000169572240
0000000249556259
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.abc4060
PMID 33097543
PQID 2454104734
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7608824
osti_scitechconnect_1765578
proquest_miscellaneous_2454104734
crossref_primary_10_1126_sciadv_abc4060
crossref_citationtrail_10_1126_sciadv_abc4060
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-23
PublicationDateYYYYMMDD 2020-10-23
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science advances
PublicationYear 2020
Publisher AAAS
American Association for the Advancement of Science
Publisher_xml – name: AAAS
– name: American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_24_2
e_1_3_2_47_2
Blackburn M. J. (e_1_3_2_15_2) 1969; 62
Britton T. B. (e_1_3_2_12_2) 2015; 471
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
Perdew J. P. (e_1_3_2_45_2) 1997; 77
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
Bilby B. A. (e_1_3_2_28_2) 1965; 288
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_57_2
– ident: e_1_3_2_51_2
  doi: 10.1016/j.commatsci.2016.07.039
– ident: e_1_3_2_41_2
  doi: 10.1103/PhysRevLett.80.5568
– ident: e_1_3_2_11_2
  doi: 10.1016/j.scriptamat.2011.05.025
– ident: e_1_3_2_7_2
  doi: 10.1179/imr.1996.41.1.1
– ident: e_1_3_2_50_2
  doi: 10.1103/PhysRevB.78.054121
– ident: e_1_3_2_56_2
  doi: 10.1088/0965-0393/20/4/045021
– ident: e_1_3_2_24_2
  doi: 10.1038/nmat1292
– ident: e_1_3_2_29_2
  doi: 10.1016/j.msea.2005.03.019
– ident: e_1_3_2_30_2
  doi: 10.1080/01418619608244386
– ident: e_1_3_2_42_2
  doi: 10.1080/0141861021000051109
– ident: e_1_3_2_49_2
  doi: 10.1006/jcph.1995.1039
– ident: e_1_3_2_14_2
  doi: 10.1016/0025-5416(74)90181-5
– ident: e_1_3_2_17_2
  doi: 10.1016/S1359-6454(99)00426-7
– ident: e_1_3_2_43_2
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_3_2_44_2
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_3_2_5_2
  doi: 10.1002/3527602119.ch1
– volume: 471
  start-page: 20140881
  year: 2015
  ident: e_1_3_2_12_2
  article-title: On the mechanistic basis of deformation at the microscale in hexagonal close-packed metals
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– ident: e_1_3_2_26_2
  doi: 10.1016/j.actamat.2014.05.025
– ident: e_1_3_2_8_2
– ident: e_1_3_2_3_2
  doi: 10.1007/978-3-540-71398-2
– ident: e_1_3_2_47_2
  doi: 10.1103/PhysRevB.93.155109
– ident: e_1_3_2_9_2
  doi: 10.1126/science.1260485
– ident: e_1_3_2_58_2
  doi: 10.1098/rspa.1950.0133
– ident: e_1_3_2_10_2
  doi: 10.1007/BF02652870
– ident: e_1_3_2_46_2
  doi: 10.1103/PhysRevB.40.3616
– ident: e_1_3_2_38_2
  doi: 10.1016/j.actamat.2020.01.066
– ident: e_1_3_2_19_2
  doi: 10.1080/01418610208243202
– ident: e_1_3_2_18_2
  doi: 10.1016/S0921-5093(01)01045-0
– ident: e_1_3_2_25_2
  doi: 10.1016/j.scriptamat.2014.11.008
– volume: 62
  start-page: 398
  year: 1969
  ident: e_1_3_2_15_2
  article-title: Strength, deformation modes and fracture in titanium-aluminum alloys (Yield strength, deformation modes and fracture characteristics of Ti-Al alloys, examining strength and fracture characteristics as function of structure and chemical composition)
  publication-title: Asm. Trans. Quart.
– ident: e_1_3_2_55_2
  doi: 10.1088/0965-0393/18/1/015012
– ident: e_1_3_2_36_2
  doi: 10.1007/BF02646644
– ident: e_1_3_2_2_2
  doi: 10.1016/j.actamat.2012.10.043
– ident: e_1_3_2_52_2
  doi: 10.1016/j.scriptamat.2018.11.025
– ident: e_1_3_2_27_2
  doi: 10.1103/PhysRevB.46.2727
– ident: e_1_3_2_59_2
– ident: e_1_3_2_4_2
– ident: e_1_3_2_54_2
  doi: 10.1088/0965-0393/18/8/085001
– ident: e_1_3_2_31_2
  doi: 10.1016/0956-7151(94)00434-X
– ident: e_1_3_2_23_2
  doi: 10.1103/PhysRevLett.107.045504
– ident: e_1_3_2_39_2
  doi: 10.1103/PhysRevB.62.3099
– ident: e_1_3_2_6_2
  doi: 10.1016/0079-6425(81)90001-3
– ident: e_1_3_2_16_2
  doi: 10.1016/0036-9748(73)90104-X
– ident: e_1_3_2_21_2
  doi: 10.1126/sciadv.aax2799
– ident: e_1_3_2_20_2
  doi: 10.1016/j.actamat.2015.09.048
– volume: 288
  start-page: 240
  year: 1965
  ident: e_1_3_2_28_2
  article-title: The theory of the crystallography of deformation twinning
  publication-title: Proc. R. Soc. London. Ser. A Math. Phys. Sci.
– ident: e_1_3_2_53_2
  doi: 10.1080/14786436608244762
– ident: e_1_3_2_37_2
  doi: 10.1016/j.actamat.2018.05.076
– ident: e_1_3_2_32_2
  doi: 10.1016/j.msea.2012.02.021
– ident: e_1_3_2_48_2
  doi: 10.1088/1361-651X/aa9ba9
– ident: e_1_3_2_34_2
  doi: 10.1007/BF02648350
– volume: 77
  start-page: 3965
  year: 1997
  ident: e_1_3_2_45_2
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– ident: e_1_3_2_35_2
  doi: 10.2320/jinstmet1952.54.9_976
– ident: e_1_3_2_22_2
  doi: 10.1007/s11661-002-0139-9
– ident: e_1_3_2_33_2
  doi: 10.1080/14786435.2015.1051157
– ident: e_1_3_2_40_2
  doi: 10.1016/j.commatsci.2006.02.009
– ident: e_1_3_2_13_2
SSID ssj0001466519
Score 2.4723177
Snippet A systematic study of Ti-O alloys reveals the mechanism behind acute oxygen sensitivity in titanium. One of the most potent examples of interstitial solute...
One of the most potent examples of interstitial solute strengthening in metal alloys is the extreme sensitivity of titanium to small amounts of oxygen....
SourceID pubmedcentral
osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
SubjectTerms MATERIALS SCIENCE
SciAdv r-articles
Title Mechanistic basis of oxygen sensitivity in titanium
URI https://www.proquest.com/docview/2454104734
https://www.osti.gov/servlets/purl/1765578
https://pubmed.ncbi.nlm.nih.gov/PMC7608824
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8yL17ET6zTEUFQD5GmSZP2ICLiFEFPDnYraZrgYLa6buL-e1-6-FFU8FJCEtLwkpf3fu3L7yF0mChooFoRKXhBOLWMpEZSQhW3eWpjqGmifO_FzYDfDuPhV_yTF2D9K7Rz-aQGk_Hp28v8HBT-7NsFGFW8nqpcg3UC-L4MVkm6bAZ33tVvvrdwIeImz0fEZEwAFyWew_HnEC0b1alA11r-Zzt68ps56q-hVe9H4ovFwq-jJVNuoHWvqTU-9nTSJ5uI3Rl3u7chZMZgtEY1riyu3uawdXDt4tcXCSTwqMTuxlk5mj1toUH_6uHyhvhUCURzEU4JL9JUa_CmlBLWUJlbnlgVK1vE1OpQK8pi6UpMJVQlsTJCpQA1oJCKghq2jTplVZodhBUgIAtuh5WR4VLaHM4hBiNECYXRQxYg8iGcTHsecZfOYpw1eCIS2UKYmRdmgI4--z8vGDT-7Nl1sna1jsBWu0gfPc0oTBPOlQAdfCxBBirg_muo0lSzOos4bKmQS8YDJFtr8_lCR6LdbilHjw2ZthQOZPDdf8-yi1Yih7nBfkVsD3Wmk5nZB8dkmvcaQA_P6yHtNbvvHXPv6EI
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+basis+of+oxygen+sensitivity+in+titanium&rft.jtitle=Science+advances&rft.au=Chong%2C+Yan&rft.au=Poschmann%2C+Max&rft.au=Zhang%2C+Ruopeng&rft.au=Zhao%2C+Shiteng&rft.date=2020-10-23&rft.issn=2375-2548&rft.eissn=2375-2548&rft.volume=6&rft.issue=43&rft_id=info:doi/10.1126%2Fsciadv.abc4060&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_sciadv_abc4060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon