Mechanistic basis of oxygen sensitivity in titanium
A systematic study of Ti-O alloys reveals the mechanism behind acute oxygen sensitivity in titanium. One of the most potent examples of interstitial solute strengthening in metal alloys is the extreme sensitivity of titanium to small amounts of oxygen. Unfortunately, these small amounts of oxygen al...
Saved in:
Published in | Science advances Vol. 6; no. 43 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
AAAS
23.10.2020
American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A systematic study of Ti-O alloys reveals the mechanism behind acute oxygen sensitivity in titanium.
One of the most potent examples of interstitial solute strengthening in metal alloys is the extreme sensitivity of titanium to small amounts of oxygen. Unfortunately, these small amounts of oxygen also lead to a markedly decreased ductility, which in turn drives the increased cost to purify titanium to avoid this oxygen poisoning effect. Here, we report a systematic study on the oxygen sensitivity of titanium that provides a clear mechanistic view of how oxygen impurities affect the mechanical properties of titanium. The increased slip planarity of Ti-O alloys is caused by an interstitial shuffling mechanism, which is sensitive to temperature, strain rate, and oxygen content and leads to the subsequent alteration of deformation twinning behavior. The insights from our experimental and computational work provide a rationale for the design of titanium alloys with increased tolerance to variations in interstitial content, with notable implications for more widespread use of titanium alloys. |
---|---|
AbstractList | One of the most potent examples of interstitial solute strengthening in metal alloys is the extreme sensitivity of titanium to small amounts of oxygen. Unfortunately, these small amounts of oxygen also lead to a markedly decreased ductility, which in turn drives the increased cost to purify titanium to avoid this oxygen poisoning effect. Here, we report a systematic study on the oxygen sensitivity of titanium that provides a clear mechanistic view of how oxygen impurities affect the mechanical properties of titanium. The increased slip planarity of Ti-O alloys is caused by an interstitial shuffling mechanism, which is sensitive to temperature, strain rate, and oxygen content and leads to the subsequent alteration of deformation twinning behavior. The insights from our experimental and computational work provide a rationale for the design of titanium alloys with increased tolerance to variations in interstitial content, with notable implications for more widespread use of titanium alloys. A systematic study of Ti-O alloys reveals the mechanism behind acute oxygen sensitivity in titanium. One of the most potent examples of interstitial solute strengthening in metal alloys is the extreme sensitivity of titanium to small amounts of oxygen. Unfortunately, these small amounts of oxygen also lead to a markedly decreased ductility, which in turn drives the increased cost to purify titanium to avoid this oxygen poisoning effect. Here, we report a systematic study on the oxygen sensitivity of titanium that provides a clear mechanistic view of how oxygen impurities affect the mechanical properties of titanium. The increased slip planarity of Ti-O alloys is caused by an interstitial shuffling mechanism, which is sensitive to temperature, strain rate, and oxygen content and leads to the subsequent alteration of deformation twinning behavior. The insights from our experimental and computational work provide a rationale for the design of titanium alloys with increased tolerance to variations in interstitial content, with notable implications for more widespread use of titanium alloys. One of the most potent examples of interstitial solute strengthening in metal alloys is the extreme sensitivity of titanium to small amounts of oxygen. Unfortunately, these small amounts of oxygen also lead to a markedly decreased ductility, which in turn drives the increased cost to purify titanium to avoid this oxygen poisoning effect. Here, we report a systematic study on the oxygen sensitivity of titanium that provides a clear mechanistic view of how oxygen impurities affect the mechanical properties of titanium. The increased slip planarity of Ti-O alloys is caused by an interstitial shuffling mechanism, which is sensitive to temperature, strain rate, and oxygen content and leads to the subsequent alteration of deformation twinning behavior. The insights from our experimental and computational work provide a rationale for the design of titanium alloys with increased tolerance to variations in interstitial content, with notable implications for more widespread use of titanium alloys.One of the most potent examples of interstitial solute strengthening in metal alloys is the extreme sensitivity of titanium to small amounts of oxygen. Unfortunately, these small amounts of oxygen also lead to a markedly decreased ductility, which in turn drives the increased cost to purify titanium to avoid this oxygen poisoning effect. Here, we report a systematic study on the oxygen sensitivity of titanium that provides a clear mechanistic view of how oxygen impurities affect the mechanical properties of titanium. The increased slip planarity of Ti-O alloys is caused by an interstitial shuffling mechanism, which is sensitive to temperature, strain rate, and oxygen content and leads to the subsequent alteration of deformation twinning behavior. The insights from our experimental and computational work provide a rationale for the design of titanium alloys with increased tolerance to variations in interstitial content, with notable implications for more widespread use of titanium alloys. |
Author | Hooshmand, Mohammad S. Zhao, Shiteng Poschmann, Max Asta, Mark Chrzan, Daryl C. Zhang, Ruopeng Minor, Andrew M. Rothchild, Eric Morris, J. W. Chong, Yan Olmsted, David L. |
Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0003-2897-5099 surname: Chong fullname: Chong, Yan organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA., National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 2 givenname: Max orcidid: 0000-0002-4955-6259 surname: Poschmann fullname: Poschmann, Max organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA – sequence: 3 givenname: Ruopeng orcidid: 0000-0001-7677-4051 surname: Zhang fullname: Zhang, Ruopeng organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA., National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 4 givenname: Shiteng orcidid: 0000-0003-4828-9651 surname: Zhao fullname: Zhao, Shiteng organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA., National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 5 givenname: Mohammad S. surname: Hooshmand fullname: Hooshmand, Mohammad S. organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA – sequence: 6 givenname: Eric surname: Rothchild fullname: Rothchild, Eric organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA – sequence: 7 givenname: David L. orcidid: 0000-0002-5909-3761 surname: Olmsted fullname: Olmsted, David L. organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA – sequence: 8 givenname: J. W. surname: Morris fullname: Morris, J. W. organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA – sequence: 9 givenname: Daryl C. orcidid: 0000-0001-6957-2240 surname: Chrzan fullname: Chrzan, Daryl C. organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 10 givenname: Mark orcidid: 0000-0002-8968-321X surname: Asta fullname: Asta, Mark organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 11 givenname: Andrew M. orcidid: 0000-0003-3606-8309 surname: Minor fullname: Minor, Andrew M. organization: Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA., National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA |
BackLink | https://www.osti.gov/servlets/purl/1765578$$D View this record in Osti.gov |
BookMark | eNp1UT1PwzAUtBCIltKVOWJiSbHjjyQLEqr4kopYYLZeHKc1Su0SOxX99zhqhQCJySf57t69d2fo2DqrEbogeEZIJq69MlBvZ1AphgU-QuOM5jzNOCuOf-ARmnr_jjEmTAhOylM0ohSXOWd0jOizViuwxgejkgq88YlrEve5W2qbeG29CWZrwi4xNgkmRGa_PkcnDbReTw_vBL3d373OH9PFy8PT_HaRKiZwSFldlkoVlAOIRpO8aljRAIem5qRRWAGhPB8QhYJAwUELKHkuIihFTTSdoJu976av1rpW2oYOWrnpzBq6nXRg5O8fa1Zy6bYyF7goMhYNLvcGLq4n47VCXFY5a7UKksRJPC8i6eowpXMfvfZBro1Xum3Batd7mTHOCGY5Hfxme6rqnPedbr6zECyHRuS-EXloJArYH0HMAMG4Ia9p_5N9AbjTlE8 |
CitedBy_id | crossref_primary_10_1016_j_msea_2023_144720 crossref_primary_10_1016_j_commatsci_2024_113405 crossref_primary_10_1016_j_jallcom_2022_165930 crossref_primary_10_1016_j_actamat_2024_120300 crossref_primary_10_1016_j_scriptamat_2022_114633 crossref_primary_10_1016_j_jmst_2024_01_068 crossref_primary_10_1103_PhysRevMaterials_6_093601 crossref_primary_10_1038_s41598_022_07640_3 crossref_primary_10_1016_j_pmatsci_2023_101140 crossref_primary_10_1038_s41467_022_32446_2 crossref_primary_10_1142_S0217979224500280 crossref_primary_10_1016_j_actamat_2023_118946 crossref_primary_10_1016_j_msea_2024_147483 crossref_primary_10_1016_j_msea_2024_147602 crossref_primary_10_1016_j_jallcom_2024_175302 crossref_primary_10_1016_j_scriptamat_2022_115051 crossref_primary_10_1016_j_ijplas_2023_103644 crossref_primary_10_1016_j_msea_2024_147487 crossref_primary_10_1016_j_matchar_2024_114244 crossref_primary_10_1016_j_commatsci_2024_113577 crossref_primary_10_1016_j_matdes_2022_111247 crossref_primary_10_1016_j_scriptamat_2023_115434 crossref_primary_10_1103_PhysRevMaterials_5_073604 crossref_primary_10_1038_s41467_022_33437_z crossref_primary_10_1149_1945_7111_ad8e89 crossref_primary_10_1016_j_vacuum_2024_113830 crossref_primary_10_1007_s11837_022_05386_x crossref_primary_10_1016_j_jmps_2023_105384 crossref_primary_10_1016_j_msea_2022_144184 crossref_primary_10_1016_j_msea_2024_147611 crossref_primary_10_1080_21663831_2022_2057202 crossref_primary_10_1016_j_actamat_2023_119621 crossref_primary_10_3390_pr11082286 crossref_primary_10_1016_j_actamat_2022_118356 crossref_primary_10_1103_PhysRevMaterials_8_013607 crossref_primary_10_1038_s41467_023_36030_0 crossref_primary_10_1016_j_matlet_2023_135020 crossref_primary_10_1103_PhysRevMaterials_7_103603 crossref_primary_10_1016_j_msea_2021_141394 crossref_primary_10_1016_j_msea_2021_142042 crossref_primary_10_1007_s11665_022_07647_x crossref_primary_10_1016_j_msea_2022_143258 crossref_primary_10_1016_j_scriptamat_2024_116318 crossref_primary_10_1016_j_mtla_2022_101363 crossref_primary_10_1016_j_scriptamat_2023_115903 crossref_primary_10_1016_j_jmst_2022_02_050 crossref_primary_10_3390_met13091616 crossref_primary_10_1016_j_jmrt_2023_08_010 crossref_primary_10_1016_j_jallcom_2023_173346 crossref_primary_10_3390_coatings13122020 crossref_primary_10_1016_j_jmatprotec_2023_117887 crossref_primary_10_1016_j_jallcom_2024_175765 crossref_primary_10_1016_j_addma_2024_104170 crossref_primary_10_3390_alloys2030014 crossref_primary_10_1016_j_actamat_2023_118842 crossref_primary_10_1016_j_addma_2023_103444 crossref_primary_10_1016_j_scriptamat_2023_115392 crossref_primary_10_1016_j_matchar_2024_114624 crossref_primary_10_1016_j_jallcom_2021_162517 crossref_primary_10_1016_j_jallcom_2024_174394 crossref_primary_10_1063_5_0073228 crossref_primary_10_1016_j_matdes_2025_113709 crossref_primary_10_1016_j_actamat_2023_119082 crossref_primary_10_1016_j_msea_2024_147548 crossref_primary_10_1016_j_ijmecsci_2024_109426 crossref_primary_10_1016_j_scriptamat_2022_115236 crossref_primary_10_1016_j_scriptamat_2024_116402 crossref_primary_10_4028_p_1vn56i crossref_primary_10_1016_S1003_6326_23_66389_7 crossref_primary_10_1007_s12540_023_01558_9 crossref_primary_10_1002_adma_202408286 crossref_primary_10_1016_j_engfracmech_2024_110214 crossref_primary_10_3389_fsens_2021_826403 crossref_primary_10_1016_j_ijplas_2025_104288 crossref_primary_10_1016_j_jmrt_2024_09_077 crossref_primary_10_1126_sciadv_ads7083 crossref_primary_10_1038_s41467_021_26374_w crossref_primary_10_1016_j_matchar_2024_113844 crossref_primary_10_1016_j_corsci_2023_111677 crossref_primary_10_1016_j_ijplas_2022_103333 crossref_primary_10_1016_j_actamat_2022_118411 crossref_primary_10_1016_j_actamat_2023_118674 crossref_primary_10_1016_j_addma_2024_104168 crossref_primary_10_1016_j_jmst_2022_07_042 crossref_primary_10_1016_j_actamat_2023_119165 |
Cites_doi | 10.1016/j.commatsci.2016.07.039 10.1103/PhysRevLett.80.5568 10.1016/j.scriptamat.2011.05.025 10.1179/imr.1996.41.1.1 10.1103/PhysRevB.78.054121 10.1088/0965-0393/20/4/045021 10.1038/nmat1292 10.1016/j.msea.2005.03.019 10.1080/01418619608244386 10.1080/0141861021000051109 10.1006/jcph.1995.1039 10.1016/0025-5416(74)90181-5 10.1016/S1359-6454(99)00426-7 10.1016/0927-0256(96)00008-0 10.1103/PhysRevB.54.11169 10.1002/3527602119.ch1 10.1016/j.actamat.2014.05.025 10.1007/978-3-540-71398-2 10.1103/PhysRevB.93.155109 10.1126/science.1260485 10.1098/rspa.1950.0133 10.1007/BF02652870 10.1103/PhysRevB.40.3616 10.1016/j.actamat.2020.01.066 10.1080/01418610208243202 10.1016/S0921-5093(01)01045-0 10.1016/j.scriptamat.2014.11.008 10.1088/0965-0393/18/1/015012 10.1007/BF02646644 10.1016/j.actamat.2012.10.043 10.1016/j.scriptamat.2018.11.025 10.1103/PhysRevB.46.2727 10.1088/0965-0393/18/8/085001 10.1016/0956-7151(94)00434-X 10.1103/PhysRevLett.107.045504 10.1103/PhysRevB.62.3099 10.1016/0079-6425(81)90001-3 10.1016/0036-9748(73)90104-X 10.1126/sciadv.aax2799 10.1016/j.actamat.2015.09.048 10.1080/14786436608244762 10.1016/j.actamat.2018.05.076 10.1016/j.msea.2012.02.021 10.1088/1361-651X/aa9ba9 10.1007/BF02648350 10.2320/jinstmet1952.54.9_976 10.1007/s11661-002-0139-9 10.1080/14786435.2015.1051157 10.1016/j.commatsci.2006.02.009 |
ContentType | Journal Article |
Copyright | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors |
Copyright_xml | – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors |
CorporateAuthor | Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
DBID | AAYXX CITATION 7X8 OIOZB OTOTI 5PM |
DOI | 10.1126/sciadv.abc4060 |
DatabaseName | CrossRef MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2375-2548 |
ExternalDocumentID | PMC7608824 1765578 10_1126_sciadv_abc4060 |
GrantInformation_xml | – fundername: ; |
GroupedDBID | 53G 5VS AAFWJ AAYXX ACGFS ADAXU ADBBV AENVI AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BKF CITATION EBS FRP GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 OVD RHI RPM TEORI 7X8 BBORY OIOZB OTOTI RHF 5PM |
ID | FETCH-LOGICAL-c460t-4d99cc835aa6fe17bf48fa5afd51fc0ca13571fc03a81a85ae6a95765ae96d1e3 |
IEDL.DBID | M48 |
ISSN | 2375-2548 |
IngestDate | Thu Aug 21 18:10:53 EDT 2025 Thu May 18 22:43:28 EDT 2023 Fri Jul 11 16:09:24 EDT 2025 Tue Jul 01 03:52:57 EDT 2025 Thu Apr 24 23:08:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
License | https://creativecommons.org/licenses/by-nc/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-4d99cc835aa6fe17bf48fa5afd51fc0ca13571fc03a81a85ae6a95765ae96d1e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AC02-05CH11231 USDOE Office of Science (SC), Basic Energy Sciences (BES) These authors contributed equally to this work. |
ORCID | 0000-0001-7677-4051 0000-0003-2897-5099 0000-0003-4828-9651 0000-0002-4955-6259 0000-0002-5909-3761 0000-0003-3606-8309 0000-0001-6957-2240 0000-0002-8968-321X 000000028968321X 0000000348289651 0000000176774051 0000000328975099 0000000259093761 0000000336068309 0000000169572240 0000000249556259 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.abc4060 |
PMID | 33097543 |
PQID | 2454104734 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7608824 osti_scitechconnect_1765578 proquest_miscellaneous_2454104734 crossref_primary_10_1126_sciadv_abc4060 crossref_citationtrail_10_1126_sciadv_abc4060 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-23 |
PublicationDateYYYYMMDD | 2020-10-23 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Science advances |
PublicationYear | 2020 |
Publisher | AAAS American Association for the Advancement of Science |
Publisher_xml | – name: AAAS – name: American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_24_2 e_1_3_2_47_2 Blackburn M. J. (e_1_3_2_15_2) 1969; 62 Britton T. B. (e_1_3_2_12_2) 2015; 471 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 Perdew J. P. (e_1_3_2_45_2) 1997; 77 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 Bilby B. A. (e_1_3_2_28_2) 1965; 288 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_57_2 – ident: e_1_3_2_51_2 doi: 10.1016/j.commatsci.2016.07.039 – ident: e_1_3_2_41_2 doi: 10.1103/PhysRevLett.80.5568 – ident: e_1_3_2_11_2 doi: 10.1016/j.scriptamat.2011.05.025 – ident: e_1_3_2_7_2 doi: 10.1179/imr.1996.41.1.1 – ident: e_1_3_2_50_2 doi: 10.1103/PhysRevB.78.054121 – ident: e_1_3_2_56_2 doi: 10.1088/0965-0393/20/4/045021 – ident: e_1_3_2_24_2 doi: 10.1038/nmat1292 – ident: e_1_3_2_29_2 doi: 10.1016/j.msea.2005.03.019 – ident: e_1_3_2_30_2 doi: 10.1080/01418619608244386 – ident: e_1_3_2_42_2 doi: 10.1080/0141861021000051109 – ident: e_1_3_2_49_2 doi: 10.1006/jcph.1995.1039 – ident: e_1_3_2_14_2 doi: 10.1016/0025-5416(74)90181-5 – ident: e_1_3_2_17_2 doi: 10.1016/S1359-6454(99)00426-7 – ident: e_1_3_2_43_2 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_3_2_44_2 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_3_2_5_2 doi: 10.1002/3527602119.ch1 – volume: 471 start-page: 20140881 year: 2015 ident: e_1_3_2_12_2 article-title: On the mechanistic basis of deformation at the microscale in hexagonal close-packed metals publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – ident: e_1_3_2_26_2 doi: 10.1016/j.actamat.2014.05.025 – ident: e_1_3_2_8_2 – ident: e_1_3_2_3_2 doi: 10.1007/978-3-540-71398-2 – ident: e_1_3_2_47_2 doi: 10.1103/PhysRevB.93.155109 – ident: e_1_3_2_9_2 doi: 10.1126/science.1260485 – ident: e_1_3_2_58_2 doi: 10.1098/rspa.1950.0133 – ident: e_1_3_2_10_2 doi: 10.1007/BF02652870 – ident: e_1_3_2_46_2 doi: 10.1103/PhysRevB.40.3616 – ident: e_1_3_2_38_2 doi: 10.1016/j.actamat.2020.01.066 – ident: e_1_3_2_19_2 doi: 10.1080/01418610208243202 – ident: e_1_3_2_18_2 doi: 10.1016/S0921-5093(01)01045-0 – ident: e_1_3_2_25_2 doi: 10.1016/j.scriptamat.2014.11.008 – volume: 62 start-page: 398 year: 1969 ident: e_1_3_2_15_2 article-title: Strength, deformation modes and fracture in titanium-aluminum alloys (Yield strength, deformation modes and fracture characteristics of Ti-Al alloys, examining strength and fracture characteristics as function of structure and chemical composition) publication-title: Asm. Trans. Quart. – ident: e_1_3_2_55_2 doi: 10.1088/0965-0393/18/1/015012 – ident: e_1_3_2_36_2 doi: 10.1007/BF02646644 – ident: e_1_3_2_2_2 doi: 10.1016/j.actamat.2012.10.043 – ident: e_1_3_2_52_2 doi: 10.1016/j.scriptamat.2018.11.025 – ident: e_1_3_2_27_2 doi: 10.1103/PhysRevB.46.2727 – ident: e_1_3_2_59_2 – ident: e_1_3_2_4_2 – ident: e_1_3_2_54_2 doi: 10.1088/0965-0393/18/8/085001 – ident: e_1_3_2_31_2 doi: 10.1016/0956-7151(94)00434-X – ident: e_1_3_2_23_2 doi: 10.1103/PhysRevLett.107.045504 – ident: e_1_3_2_39_2 doi: 10.1103/PhysRevB.62.3099 – ident: e_1_3_2_6_2 doi: 10.1016/0079-6425(81)90001-3 – ident: e_1_3_2_16_2 doi: 10.1016/0036-9748(73)90104-X – ident: e_1_3_2_21_2 doi: 10.1126/sciadv.aax2799 – ident: e_1_3_2_20_2 doi: 10.1016/j.actamat.2015.09.048 – volume: 288 start-page: 240 year: 1965 ident: e_1_3_2_28_2 article-title: The theory of the crystallography of deformation twinning publication-title: Proc. R. Soc. London. Ser. A Math. Phys. Sci. – ident: e_1_3_2_53_2 doi: 10.1080/14786436608244762 – ident: e_1_3_2_37_2 doi: 10.1016/j.actamat.2018.05.076 – ident: e_1_3_2_32_2 doi: 10.1016/j.msea.2012.02.021 – ident: e_1_3_2_48_2 doi: 10.1088/1361-651X/aa9ba9 – ident: e_1_3_2_34_2 doi: 10.1007/BF02648350 – volume: 77 start-page: 3965 year: 1997 ident: e_1_3_2_45_2 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – ident: e_1_3_2_35_2 doi: 10.2320/jinstmet1952.54.9_976 – ident: e_1_3_2_22_2 doi: 10.1007/s11661-002-0139-9 – ident: e_1_3_2_33_2 doi: 10.1080/14786435.2015.1051157 – ident: e_1_3_2_40_2 doi: 10.1016/j.commatsci.2006.02.009 – ident: e_1_3_2_13_2 |
SSID | ssj0001466519 |
Score | 2.4723177 |
Snippet | A systematic study of Ti-O alloys reveals the mechanism behind acute oxygen sensitivity in titanium.
One of the most potent examples of interstitial solute... One of the most potent examples of interstitial solute strengthening in metal alloys is the extreme sensitivity of titanium to small amounts of oxygen.... |
SourceID | pubmedcentral osti proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
SubjectTerms | MATERIALS SCIENCE SciAdv r-articles |
Title | Mechanistic basis of oxygen sensitivity in titanium |
URI | https://www.proquest.com/docview/2454104734 https://www.osti.gov/servlets/purl/1765578 https://pubmed.ncbi.nlm.nih.gov/PMC7608824 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8yL17ET6zTEUFQD5GmSZP2ICLiFEFPDnYraZrgYLa6buL-e1-6-FFU8FJCEtLwkpf3fu3L7yF0mChooFoRKXhBOLWMpEZSQhW3eWpjqGmifO_FzYDfDuPhV_yTF2D9K7Rz-aQGk_Hp28v8HBT-7NsFGFW8nqpcg3UC-L4MVkm6bAZ33tVvvrdwIeImz0fEZEwAFyWew_HnEC0b1alA11r-Zzt68ps56q-hVe9H4ovFwq-jJVNuoHWvqTU-9nTSJ5uI3Rl3u7chZMZgtEY1riyu3uawdXDt4tcXCSTwqMTuxlk5mj1toUH_6uHyhvhUCURzEU4JL9JUa_CmlBLWUJlbnlgVK1vE1OpQK8pi6UpMJVQlsTJCpQA1oJCKghq2jTplVZodhBUgIAtuh5WR4VLaHM4hBiNECYXRQxYg8iGcTHsecZfOYpw1eCIS2UKYmRdmgI4--z8vGDT-7Nl1sna1jsBWu0gfPc0oTBPOlQAdfCxBBirg_muo0lSzOos4bKmQS8YDJFtr8_lCR6LdbilHjw2ZthQOZPDdf8-yi1Yih7nBfkVsD3Wmk5nZB8dkmvcaQA_P6yHtNbvvHXPv6EI |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+basis+of+oxygen+sensitivity+in+titanium&rft.jtitle=Science+advances&rft.au=Chong%2C+Yan&rft.au=Poschmann%2C+Max&rft.au=Zhang%2C+Ruopeng&rft.au=Zhao%2C+Shiteng&rft.date=2020-10-23&rft.issn=2375-2548&rft.eissn=2375-2548&rft.volume=6&rft.issue=43&rft_id=info:doi/10.1126%2Fsciadv.abc4060&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_sciadv_abc4060 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon |