Differential Modulation of CA1 and Dentate Gyrus Interneurons During Exploration of Novel Environments
Department of Neural Systems, Memory, and Aging, University of Arizona, Tucson, Arizona 85724 Submitted 27 June 2003; accepted in final form 29 September 2003 Parallel recordings of hippocampal principal cells and interneurons were obtained as rats foraged in familiar and adjacent, novel environment...
Saved in:
Published in | Journal of neurophysiology Vol. 91; no. 2; pp. 863 - 872 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Am Phys Soc
01.02.2004
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-3077 1522-1598 |
DOI | 10.1152/jn.00614.2003 |
Cover
Loading…
Abstract | Department of Neural Systems, Memory, and Aging, University of Arizona, Tucson, Arizona 85724
Submitted 27 June 2003;
accepted in final form 29 September 2003
Parallel recordings of hippocampal principal cells and interneurons were obtained as rats foraged in familiar and adjacent, novel environments. Firing rates of each cell type were assessed as a function of spatial location. Many CA1 interneurons exhibited large decreases in activity in the novel compared with the familiar environment. Dentate gyrus interneurons, however, were much more likely to exhibit large increases in firing in the novel environment. Neither effect was correlated with basic interneuron discharge properties such as degree of theta modulation, baseline firing rate or degree of spatially modulated discharge. Both CA1 and dentate gyrus interneuron rate changes extended into regions of the familiar environment bordering the novel environment. Principal cells in CA1 and dentate gyrus exhibited similar patterns of place specific activity each being indicative of incorporation of novel spatial information into the spatial representation of the familiar environment. The data indicate that inhibitory networks in the CA1 and dentate gyrus areas are modulated in a divergent fashion during the acquisition of novel spatial information and that interneuron activities can be used to detect those regions of an environment subject to redistribution of principal cell spatial activity patterns.
Present address and address for reprint requests and other correspondence: D. A. Nitz, 10640 John J. Hopkins Dr., San Diego, CA 92121 (E-mail: nitz{at}nsi.edu ). |
---|---|
AbstractList | Parallel recordings of hippocampal principal cells and interneurons were obtained as rats foraged in familiar and adjacent, novel environments. Firing rates of each cell type were assessed as a function of spatial location. Many CA1 interneurons exhibited large decreases in activity in the novel compared with the familiar environment. Dentate gyrus interneurons, however, were much more likely to exhibit large increases in firing in the novel environment. Neither effect was correlated with basic interneuron discharge properties such as degree of theta modulation, baseline firing rate or degree of spatially modulated discharge. Both CA1 and dentate gyrus interneuron rate changes extended into regions of the familiar environment bordering the novel environment. Principal cells in CA1 and dentate gyrus exhibited similar patterns of place specific activity each being indicative of incorporation of novel spatial information into the spatial representation of the familiar environment. The data indicate that inhibitory networks in the CA1 and dentate gyrus areas are modulated in a divergent fashion during the acquisition of novel spatial information and that interneuron activities can be used to detect those regions of an environment subject to redistribution of principal cell spatial activity patterns. Parallel recordings of hippocampal principal cells and interneurons were obtained as rats foraged in familiar and adjacent, novel environments. Firing rates of each cell type were assessed as a function of spatial location. Many CA1 interneurons exhibited large decreases in activity in the novel compared with the familiar environment. Dentate gyrus interneurons, however, were much more likely to exhibit large increases in firing in the novel environment. Neither effect was correlated with basic interneuron discharge properties such as degree of theta modulation, baseline firing rate or degree of spatially modulated discharge. Both CA1 and dentate gyrus interneuron rate changes extended into regions of the familiar environment bordering the novel environment. Principal cells in CA1 and dentate gyrus exhibited similar patterns of place specific activity each being indicative of incorporation of novel spatial information into the spatial representation of the familiar environment. The data indicate that inhibitory networks in the CA1 and dentate gyrus areas are modulated in a divergent fashion during the acquisition of novel spatial information and that interneuron activities can be used to detect those regions of an environment subject to redistribution of principal cell spatial activity patterns.Parallel recordings of hippocampal principal cells and interneurons were obtained as rats foraged in familiar and adjacent, novel environments. Firing rates of each cell type were assessed as a function of spatial location. Many CA1 interneurons exhibited large decreases in activity in the novel compared with the familiar environment. Dentate gyrus interneurons, however, were much more likely to exhibit large increases in firing in the novel environment. Neither effect was correlated with basic interneuron discharge properties such as degree of theta modulation, baseline firing rate or degree of spatially modulated discharge. Both CA1 and dentate gyrus interneuron rate changes extended into regions of the familiar environment bordering the novel environment. Principal cells in CA1 and dentate gyrus exhibited similar patterns of place specific activity each being indicative of incorporation of novel spatial information into the spatial representation of the familiar environment. The data indicate that inhibitory networks in the CA1 and dentate gyrus areas are modulated in a divergent fashion during the acquisition of novel spatial information and that interneuron activities can be used to detect those regions of an environment subject to redistribution of principal cell spatial activity patterns. Department of Neural Systems, Memory, and Aging, University of Arizona, Tucson, Arizona 85724 Submitted 27 June 2003; accepted in final form 29 September 2003 Parallel recordings of hippocampal principal cells and interneurons were obtained as rats foraged in familiar and adjacent, novel environments. Firing rates of each cell type were assessed as a function of spatial location. Many CA1 interneurons exhibited large decreases in activity in the novel compared with the familiar environment. Dentate gyrus interneurons, however, were much more likely to exhibit large increases in firing in the novel environment. Neither effect was correlated with basic interneuron discharge properties such as degree of theta modulation, baseline firing rate or degree of spatially modulated discharge. Both CA1 and dentate gyrus interneuron rate changes extended into regions of the familiar environment bordering the novel environment. Principal cells in CA1 and dentate gyrus exhibited similar patterns of place specific activity each being indicative of incorporation of novel spatial information into the spatial representation of the familiar environment. The data indicate that inhibitory networks in the CA1 and dentate gyrus areas are modulated in a divergent fashion during the acquisition of novel spatial information and that interneuron activities can be used to detect those regions of an environment subject to redistribution of principal cell spatial activity patterns. Present address and address for reprint requests and other correspondence: D. A. Nitz, 10640 John J. Hopkins Dr., San Diego, CA 92121 (E-mail: nitz{at}nsi.edu ). |
Author | Nitz, Douglas McNaughton, Bruce |
Author_xml | – sequence: 1 fullname: Nitz, Douglas – sequence: 2 fullname: McNaughton, Bruce |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/14523073$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c9P2zAUB3BrYhqF7bjr5NNu6fwjcZIjagtDgu3CzpaTPLeuXDuzHaD__VwomzQJcbL1_PlaT--doRPnHSD0mZI5pRX7tnVzQgQt54wQ_g7Nco0VtGqbEzQjJN85qetTdBbjlhBSV4R9QKe0rFiu8xnSS6M1BHDJKItv_TBZlYx32Gu8uKBYuQEv86tKgK_2YYr42iUIDqbgXcTLKRi3xqvH0frwN_jD34PFK3dvMtrldPyI3mtlI3w6nufo1-XqbvG9uPl5db24uCn6UpBUlBWvSKeqTuha6JIB1IqWHTAole4G3ndctYNmTIhWAWMtbRsxNLofetGWXcPP0dfnf8fgf08Qk9yZ2IO1yoGfomwILQlv6JuQtkzUoiIZfjnCqdvBIMdgdirs5csIMyieQR98jAH0P0LkYUVy6-TTiuRhRdnz_3xv0tPoUlDGvpo69rsx682DCSDHzT4ab_16f6AtlUw24gDZ6_BysvYOHlNOvATkOGj-B5B-tPs |
CitedBy_id | crossref_primary_10_1016_j_nlm_2019_107042 crossref_primary_10_1016_j_celrep_2018_02_079 crossref_primary_10_1002_cne_24156 crossref_primary_10_1103_PhysRevE_78_041905 crossref_primary_10_1002_hipo_22268 crossref_primary_10_1016_j_neuropharm_2010_12_017 crossref_primary_10_1002_hipo_20241 crossref_primary_10_1523_JNEUROSCI_4040_10_2010 crossref_primary_10_7554_eLife_47611 crossref_primary_10_7554_eLife_21105 crossref_primary_10_1523_JNEUROSCI_4261_08_2008 crossref_primary_10_1016_j_neubiorev_2019_11_013 crossref_primary_10_1016_j_neuroscience_2021_06_037 crossref_primary_10_1111_j_1460_9568_2010_07497_x crossref_primary_10_1089_neu_2019_6766 crossref_primary_10_1111_epi_13605 crossref_primary_10_1523_JNEUROSCI_2614_14_2015 crossref_primary_10_1038_s41467_022_34039_5 crossref_primary_10_1007_s11071_024_09730_5 crossref_primary_10_1038_s41467_024_44882_3 crossref_primary_10_1523_JNEUROSCI_4607_07_2008 crossref_primary_10_1016_j_bbr_2011_08_039 crossref_primary_10_1038_s41467_021_23260_3 crossref_primary_10_1016_j_nlm_2015_08_010 crossref_primary_10_1152_jn_01200_2006 crossref_primary_10_1016_j_neuron_2020_05_022 crossref_primary_10_7554_eLife_61106 crossref_primary_10_1038_s41593_019_0484_2 crossref_primary_10_3389_fnsys_2022_998116 crossref_primary_10_1124_jpet_115_229021 crossref_primary_10_1002_hipo_22803 crossref_primary_10_1111_j_1460_9568_2006_05079_x crossref_primary_10_1523_JNEUROSCI_5110_11_2012 crossref_primary_10_1007_s00429_018_1681_6 crossref_primary_10_1016_j_bpsc_2017_02_005 crossref_primary_10_1002_hipo_20143 crossref_primary_10_1038_s41586_021_04070_5 crossref_primary_10_3389_fncel_2024_1379438 crossref_primary_10_1016_j_conb_2018_07_004 crossref_primary_10_1016_j_neuroscience_2015_07_083 crossref_primary_10_1017_S0140525X15001818 crossref_primary_10_1038_s41467_017_00936_3 crossref_primary_10_1016_j_tins_2010_01_006 crossref_primary_10_1038_s41586_018_0191_2 crossref_primary_10_1016_j_conb_2022_102604 crossref_primary_10_1159_000520279 crossref_primary_10_1523_JNEUROSCI_2882_06_2006 crossref_primary_10_1007_s00521_019_04670_3 crossref_primary_10_1371_journal_pone_0021408 crossref_primary_10_1016_j_cub_2020_06_077 crossref_primary_10_3389_fncel_2018_00138 crossref_primary_10_1016_j_tins_2011_07_007 crossref_primary_10_1523_JNEUROSCI_0781_13_2013 crossref_primary_10_1002_hipo_22675 crossref_primary_10_1016_j_neuron_2006_01_037 crossref_primary_10_1002_hipo_22557 crossref_primary_10_1002_hipo_22711 crossref_primary_10_1016_j_neuron_2013_01_033 crossref_primary_10_1038_srep36885 crossref_primary_10_1016_j_isci_2023_106703 crossref_primary_10_1016_j_neuroscience_2006_05_052 crossref_primary_10_1002_hipo_20524 crossref_primary_10_1002_hipo_20766 crossref_primary_10_1007_s11571_021_09728_4 crossref_primary_10_3389_fncir_2020_00026 crossref_primary_10_1162_NECO_a_00826 crossref_primary_10_1016_j_tins_2015_07_004 crossref_primary_10_1016_j_neures_2018_11_003 crossref_primary_10_1016_j_neuron_2016_12_011 crossref_primary_10_1016_j_tics_2023_05_011 crossref_primary_10_7554_eLife_23040 crossref_primary_10_1038_s41583_019_0260_z crossref_primary_10_1016_j_mcn_2011_05_008 crossref_primary_10_1038_emm_2014_124 crossref_primary_10_1016_j_celrep_2021_109572 crossref_primary_10_1016_j_nbd_2016_08_002 crossref_primary_10_1037_0735_7044_119_1_164 crossref_primary_10_1523_JNEUROSCI_0194_23_2023 crossref_primary_10_1002_hipo_22348 crossref_primary_10_1038_s41598_022_05004_5 crossref_primary_10_1016_j_cell_2008_09_060 crossref_primary_10_1016_j_cogsys_2021_07_008 crossref_primary_10_1186_s13229_022_00528_z crossref_primary_10_1016_j_neuron_2007_11_035 crossref_primary_10_1523_JNEUROSCI_2012_10_2010 crossref_primary_10_1016_j_cell_2020_09_024 crossref_primary_10_1155_2018_6392986 crossref_primary_10_1113_JP276256 crossref_primary_10_1038_s41598_020_58194_1 crossref_primary_10_1016_j_celrep_2021_109324 crossref_primary_10_1101_lm_1196508 crossref_primary_10_1038_s41598_022_13799_6 crossref_primary_10_1038_s41593_022_01212_4 crossref_primary_10_1016_j_nlm_2018_04_018 crossref_primary_10_1152_jn_00573_2010 crossref_primary_10_1038_s41467_019_13533_3 crossref_primary_10_1523_ENEURO_0195_19_2020 crossref_primary_10_1007_s11571_022_09797_z crossref_primary_10_1007_s11571_023_09985_5 crossref_primary_10_1038_s41467_022_31775_6 crossref_primary_10_1523_ENEURO_0017_16_2016 crossref_primary_10_1016_j_bpsc_2021_09_008 crossref_primary_10_1038_nn_4310 crossref_primary_10_1523_JNEUROSCI_1868_12_2013 crossref_primary_10_1523_JNEUROSCI_3573_11_2011 crossref_primary_10_1016_j_celrep_2018_10_054 crossref_primary_10_1038_s41583_023_00710_z crossref_primary_10_3389_fncir_2014_00074 crossref_primary_10_1523_ENEURO_0205_16_2016 crossref_primary_10_3389_fnsys_2015_00042 crossref_primary_10_1371_journal_pbio_0040207 crossref_primary_10_1038_nn2037 crossref_primary_10_1007_s11571_024_10089_x crossref_primary_10_1523_JNEUROSCI_3813_13_2014 crossref_primary_10_1002_hipo_23162 crossref_primary_10_1038_mp_2011_31 crossref_primary_10_1523_JNEUROSCI_2992_05_2005 crossref_primary_10_1002_hipo_22474 crossref_primary_10_1038_ncomms6547 crossref_primary_10_1016_j_neuron_2008_01_034 crossref_primary_10_1002_hipo_20964 crossref_primary_10_1016_j_nlm_2022_107597 crossref_primary_10_1007_s10827_022_00828_6 crossref_primary_10_1038_s41467_024_48374_2 crossref_primary_10_1002_cne_21003 crossref_primary_10_1523_JNEUROSCI_5295_09_2010 crossref_primary_10_1016_j_celrep_2018_11_016 crossref_primary_10_1016_j_mcn_2006_10_006 crossref_primary_10_1111_j_1460_9568_2007_05684_x crossref_primary_10_1523_JNEUROSCI_1663_23_2024 crossref_primary_10_1016_j_celrep_2024_114115 |
Cites_doi | 10.1007/BF00570289 10.1152/jn.1993.69.6.1918 10.1016/0014-4886(73)90290-2 10.1152/jn.2000.84.1.401 10.1523/JNEUROSCI.19-01-00274.1999 10.1016/0006-8993(83)90665-0 10.1016/0165-0173(83)90037-1 10.1038/nature01374 10.1016/0306-4522(95)00610-9 10.1038/336170a0 10.1016/S0896-6273(02)00784-5 10.1126/science.8351520 10.1073/pnas.90.24.11578 10.1002/cne.902610104 10.1523/JNEUROSCI.16-02-00823.1996 10.1016/0006-8993(89)90936-0 10.1523/JNEUROSCI.15-01-00030.1995 10.1016/0896-6273(91)90229-S 10.1016/0006-8993(87)90493-8 10.1007/BF00237147 10.1111/j.1460-9568.1995.tb01108.x 10.1098/rstb.1971.0078 10.1523/JNEUROSCI.17-11-04382.1997 10.1073/pnas.87.21.8501 10.1523/JNEUROSCI.16-02-00572.1996 10.1016/0006-8993(87)90934-6 10.1111/j.1460-9568.1997.tb01351.x 10.1002/cne.903070308 10.1002/cne.901690306 10.1002/cne.901890406 10.1111/j.1749-6632.2000.tb06721.x 10.1016/0165-0270(95)00085-2 10.1523/JNEUROSCI.09-11-03803.1989 10.1523/JNEUROSCI.09-11-03915.1989 10.1016/0165-0270(83)90097-3 10.1046/j.1460-9568.1999.00446.x 10.1016/0959-4388(93)90214-J 10.1073/pnas.93.18.9921 10.1126/science.451605 10.1113/jphysiol.1994.sp020420 10.1111/j.1460-9568.1993.tb00507.x 10.1523/JNEUROSCI.10-04-01110.1990 10.1523/JNEUROSCI.22-02-j0001.2002 10.1002/syn.890150407 10.1523/JNEUROSCI.01-08-00887.1981 10.1016/0006-8993(71)90358-1 10.1016/0006-8993(89)90303-X 10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K 10.1016/0301-0082(84)90023-6 10.1007/BF00228163 10.1002/hipo.450030209 10.1523/JNEUROSCI.15-01-00047.1995 10.1101/lm.6.2.153 10.1016/0006-8993(77)90158-5 10.1016/S0896-6273(00)80101-4 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 |
DOI | 10.1152/jn.00614.2003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Neurosciences Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 872 |
ExternalDocumentID | 14523073 10_1152_jn_00614_2003 jn_91_2_863 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article Comparative Study |
GrantInformation_xml | – fundername: PHS HHS grantid: 10046 – fundername: NINDS NIH HHS grantid: NS-20331 |
GroupedDBID | - 0VX 1Z7 2WC 39C 3O- 41 53G 55 5GY 5VS AALRV ABFLS ABIVO ABPTK ABUFD ABZEH ACGFS ACNCT ADACO ADBBV ADBIT ADKLL AENEX AETEA AFFNX ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FH7 FRP GJ GX1 H~9 KQ8 L7B MVM NEJ O0- OHT OK1 P2P RAP RHF RHI RPL SJN UHB UPT UQL WH7 WOQ WOW X X7M ZA5 ZGI ZXP ZY4 --- -DZ -~X .55 .GJ 18M 1CY 29L 4.4 41~ 8M5 AAYXX ABCQX ABHWK ABJNI ABKWE ACGFO ADFNX ADHGD ADIYS AFOSN AI. AIZAD BKKCC BTFSW CITATION EMOBN H13 ITBOX RPRKH TR2 VH1 W8F XJT XOL XSW YBH YQT YSK ABTAH CGR CUY CVF ECM EIF NPM VXZ 7TK 7X8 |
ID | FETCH-LOGICAL-c460t-45350ba5b6f76f42ee7a14be2e4afbd3cb3a9df22669ae2291986d8fcdc694b83 |
ISSN | 0022-3077 |
IngestDate | Thu Jul 10 19:12:53 EDT 2025 Fri Jul 11 08:31:18 EDT 2025 Wed Feb 19 01:51:01 EST 2025 Tue Jul 01 01:16:44 EDT 2025 Thu Apr 24 23:07:16 EDT 2025 Mon May 06 12:25:04 EDT 2019 Tue Jan 05 17:53:14 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c460t-45350ba5b6f76f42ee7a14be2e4afbd3cb3a9df22669ae2291986d8fcdc694b83 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 14523073 |
PQID | 19267650 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_80140381 pubmed_primary_14523073 proquest_miscellaneous_19267650 crossref_primary_10_1152_jn_00614_2003 highwire_physiology_jn_91_2_863 crossref_citationtrail_10_1152_jn_00614_2003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20040201 2004-02-00 2004-Feb |
PublicationDateYYYYMMDD | 2004-02-01 |
PublicationDate_xml | – month: 02 year: 2004 text: 20040201 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2004 |
Publisher | Am Phys Soc |
Publisher_xml | – name: Am Phys Soc |
References | REF9 REF7 REF8 REF5 REF6 REF3 REF4 REF44 REF43 REF42 REF48 REF47 REF46 REF45 REF49 REF33 REF32 REF31 REF30 REF37 REF36 REF35 REF34 REF1 atypb1 REF2 REF39 REF38 atypb2 REF62 REF61 REF60 REF22 REF21 REF20 REF26 REF25 REF24 REF23 REF29 REF28 REF27 REF51 REF50 REF11 REF55 REF10 REF54 REF53 REF52 REF15 REF59 REF14 REF58 REF13 REF57 REF12 REF56 REF19 REF18 REF17 REF16 |
References_xml | – ident: REF17 doi: 10.1007/BF00570289 – ident: REF29 doi: 10.1152/jn.1993.69.6.1918 – ident: REF49 doi: 10.1016/0014-4886(73)90290-2 – ident: REF22 doi: 10.1152/jn.2000.84.1.401 – ident: REF11 doi: 10.1523/JNEUROSCI.19-01-00274.1999 – ident: REF15 – ident: REF7 doi: 10.1016/0006-8993(83)90665-0 – ident: REF8 doi: 10.1016/0165-0173(83)90037-1 – ident: REF25 doi: 10.1038/nature01374 – ident: REF1 doi: 10.1016/0306-4522(95)00610-9 – ident: REF14 doi: 10.1038/336170a0 – ident: REF18 doi: 10.1016/S0896-6273(02)00784-5 – ident: REF60 doi: 10.1126/science.8351520 – ident: REF56 doi: 10.1073/pnas.90.24.11578 – ident: REF28 doi: 10.1002/cne.902610104 – ident: REF19 doi: 10.1523/JNEUROSCI.16-02-00823.1996 – ident: REF26 doi: 10.1016/0006-8993(89)90936-0 – ident: REF62 doi: 10.1523/JNEUROSCI.15-01-00030.1995 – ident: REF13 doi: 10.1016/0896-6273(91)90229-S – ident: REF47 doi: 10.1016/0006-8993(87)90493-8 – ident: REF45 – ident: REF35 doi: 10.1007/BF00237147 – ident: REF51 – ident: REF59 doi: 10.1111/j.1460-9568.1995.tb01108.x – ident: REF33 doi: 10.1098/rstb.1971.0078 – ident: REF58 doi: 10.1523/JNEUROSCI.17-11-04382.1997 – ident: REF16 doi: 10.1073/pnas.87.21.8501 – ident: REF4 doi: 10.1523/JNEUROSCI.16-02-00572.1996 – ident: REF10 doi: 10.1016/0006-8993(87)90934-6 – ident: REF24 doi: 10.1111/j.1460-9568.1997.tb01351.x – ident: REF61 doi: 10.1002/cne.903070308 – ident: REF55 – ident: REF54 doi: 10.1002/cne.901690306 – ident: REF30 – ident: REF32 doi: 10.1002/cne.901890406 – ident: REF31 doi: 10.1111/j.1749-6632.2000.tb06721.x – ident: REF48 – ident: REF20 doi: 10.1016/0165-0270(95)00085-2 – ident: REF46 doi: 10.1523/JNEUROSCI.09-11-03803.1989 – ident: atypb1 doi: 10.1523/JNEUROSCI.09-11-03915.1989 – ident: REF36 doi: 10.1016/0165-0270(83)90097-3 – ident: REF12 doi: 10.1046/j.1460-9568.1999.00446.x – ident: REF2 doi: 10.1016/0959-4388(93)90214-J – ident: REF9 doi: 10.1073/pnas.93.18.9921 – ident: atypb2 doi: 10.1126/science.451605 – ident: REF57 doi: 10.1113/jphysiol.1994.sp020420 – ident: REF21 doi: 10.1111/j.1460-9568.1993.tb00507.x – ident: REF27 doi: 10.1523/JNEUROSCI.10-04-01110.1990 – ident: REF34 doi: 10.1523/JNEUROSCI.22-02-j0001.2002 – ident: REF42 doi: 10.1002/syn.890150407 – ident: REF3 doi: 10.1523/JNEUROSCI.01-08-00887.1981 – ident: REF44 doi: 10.1016/0006-8993(71)90358-1 – ident: REF38 doi: 10.1016/0006-8993(89)90303-X – ident: REF52 doi: 10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K – ident: REF6 doi: 10.1016/0301-0082(84)90023-6 – ident: REF39 doi: 10.1007/BF00228163 – ident: REF23 doi: 10.1002/hipo.450030209 – ident: REF5 doi: 10.1523/JNEUROSCI.15-01-00047.1995 – ident: REF53 – ident: REF43 doi: 10.1101/lm.6.2.153 – ident: REF50 doi: 10.1016/0006-8993(77)90158-5 – ident: REF37 doi: 10.1016/S0896-6273(00)80101-4 |
SSID | ssj0007502 |
Score | 2.2001338 |
Snippet | Department of Neural Systems, Memory, and Aging, University of Arizona, Tucson, Arizona 85724
Submitted 27 June 2003;
accepted in final form 29 September 2003... Parallel recordings of hippocampal principal cells and interneurons were obtained as rats foraged in familiar and adjacent, novel environments. Firing rates of... |
SourceID | proquest pubmed crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 863 |
SubjectTerms | Action Potentials - physiology Animals Dentate Gyrus - physiology Environment Exploratory Behavior - physiology Interneurons - physiology Rats Rats, Inbred F344 |
Title | Differential Modulation of CA1 and Dentate Gyrus Interneurons During Exploration of Novel Environments |
URI | http://jn.physiology.org/cgi/content/abstract/91/2/863 https://www.ncbi.nlm.nih.gov/pubmed/14523073 https://www.proquest.com/docview/19267650 https://www.proquest.com/docview/80140381 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXLigQnlsefmAelkCeTgPHxe6VQVtACkr7c2yExuoSlJ1s0jl1zN27E0i7YrHJcpGY8vyNzueGc8DoVcxjeIyEcKjqeIenNeBJ9ISfpKIw_legc6uE5zP8-R0QT4s46XrVW6zS1rxpvy1Na_kf1CFb4CrzpL9B2Q3k8IHeAd84QkIw_OvMD623U1ak2HbVLYVlwmxmAU2yljnFgEr3FyvV9b_p-tx1KvpcZeh2EXhbQbmzU95OZ0P8t926K9mGuMYGXnm8--mQ2wfSXxe5nz99ZsN0383cjMQF5msRmH_vu25YkUnDQYsEg7kYGalljtSw-3SOtbVXy9qHVwXGAdX1B9L7io-_8ROFmdnrJgvi9voTgjmgBbAH7_0VeFB6-mrwsMSXS3VOHw7mnyse7h60LttC6NjFPvont1cPOuQvo9uyfoBOpjVvG1-3OAj_Hmz2wdIDcHHPfi4URjAxwA-tuBjAz4ego878PEAfD3QgI-H4D9Ei5N58f7Us00zvJIkfuuROIp9wWORqDRRJJQy5QERMpSEK1FFpYg4rRRo3QnlMgxpQLOkylRZlQklIoseob26qeUThHmZgXjXrVgEJxkNMgUjfCEDn_tUVmqCXrvtZKWtKK8bm1wyY1nGIbuomdl93ew0mqCjDflVV0plF-HUYcN6NmbaJ1MAawAxDVjIgMfYlV7Fy23UMKOjAgoHMAPhqW_EeC2b9YqBeZOkYKPsptDFlfRl-gQ97jijXzrRFyppdPjH2Z-iu_0_6hnaa6_X8jmosq14Yfj4NyV_o-A |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+Modulation+of+CA1+and+Dentate+Gyrus+Interneurons+During+Exploration+of+Novel+Environments&rft.jtitle=Journal+of+neurophysiology&rft.au=Nitz%2C+D&rft.au=McNaughton%2C+B&rft.date=2004-02-01&rft.issn=0022-3077&rft.volume=91&rft.issue=2&rft.spage=863&rft.epage=872&rft_id=info:doi/10.1152%2Fjn.00614.2003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |