PestLite: A Novel YOLO-Based Deep Learning Technique for Crop Pest Detection

Timely and effective pest detection is essential for agricultural production, facing challenges such as complex backgrounds and a vast number of parameters. Seeking solutions has become a pressing matter. This paper, based on the YOLOv5 algorithm, developed the PestLite model. The model surpasses pr...

Full description

Saved in:
Bibliographic Details
Published inAgriculture (Basel) Vol. 14; no. 2; p. 228
Main Authors Dong, Qing, Sun, Lina, Han, Tianxin, Cai, Minqi, Gao, Ce
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Timely and effective pest detection is essential for agricultural production, facing challenges such as complex backgrounds and a vast number of parameters. Seeking solutions has become a pressing matter. This paper, based on the YOLOv5 algorithm, developed the PestLite model. The model surpasses previous spatial pooling methods with our uniquely designed Multi-Level Spatial Pyramid Pooling (MTSPPF). Using a lightweight unit, it integrates convolution, normalization, and activation operations. It excels in capturing multi-scale features, ensuring rich extraction of key information at various scales. Notably, MTSPPF not only enhances detection accuracy but also reduces the parameter size, making it ideal for lightweight pest detection models. Additionally, we introduced the Involution and Efficient Channel Attention (ECA) attention mechanisms to enhance contextual understanding. We also replaced traditional upsampling with Content-Aware ReAssembly of FEatures (CARAFE), which enable the model to achieve higher mean average precision in detection. Testing on a pest dataset showed improved accuracy while reducing parameter size. The mAP50 increased from 87.9% to 90.7%, and the parameter count decreased from 7.03 M to 6.09 M. We further validated the PestLite model using the IP102 dataset, and on the other hand, we conducted comparisons with mainstream models. Furthermore, we visualized the detection targets. The results indicate that the PestLite model provides an effective solution for real-time target detection in agricultural pests.
AbstractList Timely and effective pest detection is essential for agricultural production, facing challenges such as complex backgrounds and a vast number of parameters. Seeking solutions has become a pressing matter. This paper, based on the YOLOv5 algorithm, developed the PestLite model. The model surpasses previous spatial pooling methods with our uniquely designed Multi-Level Spatial Pyramid Pooling (MTSPPF). Using a lightweight unit, it integrates convolution, normalization, and activation operations. It excels in capturing multi-scale features, ensuring rich extraction of key information at various scales. Notably, MTSPPF not only enhances detection accuracy but also reduces the parameter size, making it ideal for lightweight pest detection models. Additionally, we introduced the Involution and Efficient Channel Attention (ECA) attention mechanisms to enhance contextual understanding. We also replaced traditional upsampling with Content-Aware ReAssembly of FEatures (CARAFE), which enable the model to achieve higher mean average precision in detection. Testing on a pest dataset showed improved accuracy while reducing parameter size. The mAP50 increased from 87.9% to 90.7%, and the parameter count decreased from 7.03 M to 6.09 M. We further validated the PestLite model using the IP102 dataset, and on the other hand, we conducted comparisons with mainstream models. Furthermore, we visualized the detection targets. The results indicate that the PestLite model provides an effective solution for real-time target detection in agricultural pests.
Audience Academic
Author Han, Tianxin
Gao, Ce
Sun, Lina
Dong, Qing
Cai, Minqi
Author_xml – sequence: 1
  givenname: Qing
  orcidid: 0009-0003-4753-3488
  surname: Dong
  fullname: Dong, Qing
– sequence: 2
  givenname: Lina
  surname: Sun
  fullname: Sun, Lina
– sequence: 3
  givenname: Tianxin
  orcidid: 0009-0002-3979-383X
  surname: Han
  fullname: Han, Tianxin
– sequence: 4
  givenname: Minqi
  orcidid: 0009-0007-3319-7742
  surname: Cai
  fullname: Cai, Minqi
– sequence: 5
  givenname: Ce
  surname: Gao
  fullname: Gao, Ce
BookMark eNp9kcFu1DAQhi3USpS2T8DFEhcuKePYiR1uy7aFShHLoRw4WY49WbzKxovtIPH2eFmQUIWwDx6P_--3ZuYFOZvDjIS8ZHDDeQdvzDZ6u0x5icgE1FDX6hm5qEHKCoSsz_6Kn5PrlHZQVse4gvaC9J8w5d5nfEtX9GP4jhP9suk31TuT0NFbxAPt0cTZz1v6iPbr7L8tSMcQ6TqGAz3SRZXRZh_mK3I-minh9e_zkny-v3tcf6j6zfuH9aqvrGghV9yqxkppjRjFIJ2BVrGmEbJpmJGAKABYeQBUZqjRCmVG6AZmhZOcD07xS_Jw8nXB7PQh-r2JP3QwXv9KhLjVJmZvJ9R1K0WjuELHnRBuGMoNlLCKS7CS2eL1-uR1iKGUlrLe-2RxmsyMYUmagwAuhWp4kb56It2FJc6lUl13RSe7FqCobk6qrSn_-3kMORpbtsO9t2V0oy_5lVTFt2G8LUB3AmwMKUUctfXZHPtZQD9pBvo4Z_2POReWP2H_dON_1E9ypK3b
CitedBy_id crossref_primary_10_1002_ps_8790
crossref_primary_10_3390_agriculture15020180
crossref_primary_10_3390_agronomy14071586
crossref_primary_10_3389_fpls_2024_1411510
crossref_primary_10_3390_agriculture14101798
crossref_primary_10_3390_agriculture14122244
crossref_primary_10_3390_plants13050653
crossref_primary_10_1186_s12870_024_05797_9
crossref_primary_10_1016_j_ecoinf_2024_102809
crossref_primary_10_21015_vtse_v12i3_1874
crossref_primary_10_3390_f15111875
crossref_primary_10_1038_s41598_024_67526_4
crossref_primary_10_3390_agronomy15030693
crossref_primary_10_3390_agronomy14122887
crossref_primary_10_1017_S0007485324000919
crossref_primary_10_3390_agriculture14071052
crossref_primary_10_3390_agriculture14091472
Cites_doi 10.1109/TITS.2017.2784093
10.1109/ISCA.2018.00060
10.1109/ICCV.2019.00140
10.3390/agronomy13061583
10.1109/ICICI.2017.8365226
10.3390/electronics11244147
10.3390/insects14030278
10.3390/s23063221
10.3390/rs15153790
10.3390/app13158754
10.1109/CVPR.2018.00745
10.3390/rs15184459
10.3390/app121910167
10.1016/j.ecoinf.2021.101460
10.1109/ACCESS.2023.3282309
10.3390/rs15020539
10.1109/CVPR.2016.91
10.3390/rs9080848
10.1016/j.compag.2018.02.016
10.1109/CVPR46437.2021.01214
10.1109/CISES58720.2023.10183545
10.1109/TKDE.2021.3126456
10.1007/s11263-019-01247-4
10.1109/CVPR42600.2020.01155
10.1109/TPAMI.2020.3045007
10.1109/IJCNN55064.2022.9892242
10.1109/ACCESS.2019.2909522
10.1109/WACV.2018.00117
10.1109/CVPR.2018.00813
10.3390/rs13234851
10.1109/ICPR48806.2021.9413042
10.1109/ICCV.2019.00310
10.1109/CVPR.2019.00899
10.1109/ICCV48922.2021.00082
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
DOA
DOI 10.3390/agriculture14020228
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Natural Science Collection Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest SciTech Premium Collection
Agriculture Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals (ODIN)
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef

Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_26745838ed3d44dbb458084c8370c71c
A784035136
10_3390_agriculture14020228
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
PMFND
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c460t-3c85c77ca4f4b7da06815547551a70ee40014b70e8ab2ec48af09b1c4d733bd83
IEDL.DBID BENPR
ISSN 2077-0472
IngestDate Wed Aug 27 01:29:26 EDT 2025
Thu Jul 10 19:26:34 EDT 2025
Mon Jun 30 12:31:53 EDT 2025
Tue Jun 10 21:15:26 EDT 2025
Tue Jul 01 03:04:05 EDT 2025
Thu Apr 24 22:51:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-3c85c77ca4f4b7da06815547551a70ee40014b70e8ab2ec48af09b1c4d733bd83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0003-4753-3488
0009-0002-3979-383X
0009-0007-3319-7742
OpenAccessLink https://www.proquest.com/docview/2930479600?pq-origsite=%requestingapplication%
PQID 2930479600
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_26745838ed3d44dbb458084c8370c71c
proquest_miscellaneous_3040374853
proquest_journals_2930479600
gale_infotracacademiconefile_A784035136
crossref_citationtrail_10_3390_agriculture14020228
crossref_primary_10_3390_agriculture14020228
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 20240101
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Liu (ref_10) 2019; 7
Zhang (ref_5) 2018; 2
ref_14
ref_36
ref_13
ref_35
ref_12
ref_34
ref_11
ref_33
ref_32
ref_31
Li (ref_2) 2021; 66
ref_19
ref_17
ref_16
ref_15
Kamilaris (ref_1) 2018; 147
ref_25
Liu (ref_8) 2018; 128
ref_24
ref_22
ref_21
Chen (ref_23) 2023; 11
ref_20
Brauwers (ref_30) 2023; 35
Vogt (ref_3) 2015; 6
ref_29
Oprea (ref_7) 2022; 44
ref_28
ref_27
ref_26
ref_9
Xie (ref_18) 2018; 19
ref_4
ref_6
References_xml – volume: 19
  start-page: 507
  year: 2018
  ident: ref_18
  article-title: A New CNN-Based Method for Multi-Directional Car License Plate Detection
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2784093
– ident: ref_22
  doi: 10.1109/ISCA.2018.00060
– ident: ref_26
  doi: 10.1109/ICCV.2019.00140
– ident: ref_25
  doi: 10.3390/agronomy13061583
– ident: ref_4
  doi: 10.1109/ICICI.2017.8365226
– ident: ref_12
  doi: 10.3390/electronics11244147
– ident: ref_32
  doi: 10.3390/insects14030278
– ident: ref_17
  doi: 10.3390/s23063221
– ident: ref_35
  doi: 10.3390/rs15153790
– ident: ref_19
  doi: 10.3390/app13158754
– ident: ref_29
  doi: 10.1109/CVPR.2018.00745
– ident: ref_31
  doi: 10.3390/rs15184459
– ident: ref_36
  doi: 10.3390/app121910167
– volume: 66
  start-page: 101460
  year: 2021
  ident: ref_2
  article-title: Classification and detection of insects from field images using deep learning for smart pest management: A systematic review
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2021.101460
– volume: 11
  start-page: 54080
  year: 2023
  ident: ref_23
  article-title: An Improved Lightweight YOLOv5 Algorithm for Detecting Strawberry Diseases
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3282309
– ident: ref_34
  doi: 10.3390/rs15020539
– ident: ref_13
  doi: 10.1109/CVPR.2016.91
– ident: ref_24
  doi: 10.3390/rs9080848
– volume: 147
  start-page: 70
  year: 2018
  ident: ref_1
  article-title: Deep learning in agriculture: A survey
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.02.016
– ident: ref_14
  doi: 10.1109/CVPR46437.2021.01214
– ident: ref_6
  doi: 10.1109/CISES58720.2023.10183545
– volume: 35
  start-page: 3279
  year: 2023
  ident: ref_30
  article-title: A General Survey on Attention Mechanisms in Deep Learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3126456
– volume: 128
  start-page: 261
  year: 2018
  ident: ref_8
  article-title: Deep Learning for Generic Object Detection: A Survey
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01247-4
– ident: ref_15
  doi: 10.1109/CVPR42600.2020.01155
– volume: 6
  start-page: 25
  year: 2015
  ident: ref_3
  article-title: Human Factors in Visual Quality Control
  publication-title: Manag. Prod. Eng. Rev.
– volume: 44
  start-page: 2806
  year: 2022
  ident: ref_7
  article-title: A Review on Deep Learning Techniques for Video Prediction
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3045007
– ident: ref_33
  doi: 10.1109/IJCNN55064.2022.9892242
– volume: 7
  start-page: 45301
  year: 2019
  ident: ref_10
  article-title: PestNet: An End-to-End Deep Learning Approach for Large-Scale Multi-Class Pest Detection and Classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909522
– ident: ref_27
  doi: 10.1109/WACV.2018.00117
– ident: ref_11
  doi: 10.1109/CVPR.2018.00813
– ident: ref_20
  doi: 10.3390/rs13234851
– ident: ref_28
  doi: 10.1109/ICPR48806.2021.9413042
– ident: ref_16
  doi: 10.1109/ICCV.2019.00310
– ident: ref_9
  doi: 10.1109/CVPR.2019.00899
– ident: ref_21
  doi: 10.1109/ICCV48922.2021.00082
– volume: 2
  start-page: 103
  year: 2018
  ident: ref_5
  article-title: Applications of inferential statistical methods in library and information science
  publication-title: Data Inf. Manag.
SSID ssj0000913806
Score 2.3987474
Snippet Timely and effective pest detection is essential for agricultural production, facing challenges such as complex backgrounds and a vast number of parameters....
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 228
SubjectTerms Accuracy
Agricultural pests
Agricultural production
Agriculture
Algorithms
Corn
Crops
data collection
Datasets
Deep learning
Design
ECA
Efficiency
involution
Kitchenware
Mathematical models
Methods
Morphology
MTSPPF
Neural networks
Object recognition
Parameters
pest detection
Pests
plant pests
real-time target detection
Rice
Target detection
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (ODIN)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QJzggnqK8FCQkLlRrm7RpuW08NCHYOIA0TlFe5YK6aSv8fuy0GzvwuHDrw6kSx47tJv5MyFmhcHMPNM1injIvSx1qbXWYKibAHGeR9uliD4Os_8zvRuloqdQXnglr4IEbxnWSTPitPWeZ5dxqDXdRzg2CthgRG1x9weYtBVN-DS5ilkdZAzPEIK7vqNdpC2bhYoyZEqy_vmSKPGL_T-uyNza3m2Sj9RJpt-ndFllx1TZZ7359fIfcP_pIsnaXtEsH4w_3Rl-G98OwB2bJ0mvnJrTFTn2lT3OgVgouKr2ajicUWwNV7U9iVbvk-fbm6aoftqURQsOzqA6ZyVMjhFG85FpYFWU5OgYC_B8lIuc4hj4arnKlE2d4rsqo0LHhVjCmbc72yGo1rtw-oaVLDE8sK1SRYpqsKksWuzj3SPGRUAFJ5lySpsUNx_IVbxLiB2St_Ia1AblYNJo0sBm_k_eQ_QtSxLz2D0ASZCsJ8i9JCMg5Tp5EzYQOGtUmGMAwEeNKdgUEsyyNWRaQo_n8ylZlZxL8HoTbBwcwIKeL16BsuIOiKjd-n0mg8Hg9KTv4jx4fkjUYPm_-6ByR1Xr67o7Bx6n1iRfnT6m-9v8
  priority: 102
  providerName: Directory of Open Access Journals
Title PestLite: A Novel YOLO-Based Deep Learning Technique for Crop Pest Detection
URI https://www.proquest.com/docview/2930479600
https://www.proquest.com/docview/3040374853
https://doaj.org/article/26745838ed3d44dbb458084c8370c71c
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61cGkPqPShplDkSpV6aUQSO7G3l2qXglBFF1SBRE-WX9kLSra7gd_PjNe79FC45TGO4sd4Xp5vAD6PDAX3kNM85SmLtrW5td7mteESxXFT2Jgu9mvanF6Jn9f1dXK4LdOxyvWeGDdq3zvykR-iWCI0dJTP3-d_c6oaRdHVVELjOWzjFqzQ-NqeHE8vfm-8LIR6qYpmBTfE0b4_NLNFArUIJdlOFdVh_0ckReT-x_bnKHROXsFO0hbZeDW9u_AsdK_h5fjh42_g7CJalEP4xsZs2t-FG_bn_Ow8n6B48uxHCHOWMFRn7HIN2MpQVWVHi37OqDVSDfFEVvcWrk6OL49O81QiIXeiKYacO1U7KZ0RrbDSm6JRpCBI1IOMLEIQZAJZvFLGVsEJZdpiZEsnvOTcesXfwVbXd-E9sDZUTlSej8yopnRZ07a8DKWKiPGFNBlU61HSLuGHUxmLG412BA2t_s_QZvB102i-gs94mnxCw78hJezr-KBfzHRiJV01MgZ7g-deCG8t3hVKOILxcbJ0GXyhydPEofiDzqREA-wmYV3psUSjltclbzLYX8-vTqy71A8LLYNPm9fIdBRJMV3ob5caKSJuT80_PP2JPXiBHRMrn80-bA2L2_ARtZjBHqSlehC9APdhRvHL
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4VDzF0gJGAnEhahI7cYKE0G4f2tLttkJbqZyMX9lLlSy7WxB_it_ITB5bDtBbb3lMrHg89uexPd8AvMk1be5hT3MUpyyKwgTGOBMkmkuE4zQ0dbjYySQdnYvPF8nFBvzuYmHoWGU3JtYDtassrZHvIiwRGzri86f594CyRtHuapdCozGLY__rJ7psy49H-9i-b-P48GC6NwrarAKBFWm4CrjNEiul1aIQRjodphlhqsSpg5ah94K8BoNXmTaxtyLTRZibyAonOTcu41juHdgUHF2ZHmwODyZnX9arOsSymYVpQ2_EeR7u6tmiJdHwEflqMeV9_wsC60wB_8ODGuQOH8BWOztlg8acHsKGLx_B_cF14Y9hfFZ7sCv_gQ3YpPrhL9nX0_FpMEQ4dGzf-zlrOVtnbNoRxDKcGrO9RTVn9DVKreoTYOUTOL8V5T2FXlmV_hmwwsdWxI7nOk8oPFcXBY98lNUM9aHUfYg7LSnb8pVT2oxLhX4LqVb9Q7V9eL_-aN7QddwsPiT1r0WJa7t-UC1mqu26Kk5lvbnsHXdCOGPwLsyEJdogKyPbh3fUeIpGBPxBq9vABqwmcWupgUQnmicRT_uw07WvaoeKpbo27D68Xr_GTk47N7r01dVSoUTNE5Tw5zcX8QrujqYnYzU-mhxvwz2spGjWi3agt1pc-Rc4g1qZl63ZMvh22z3lD9iSLWY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFaIFFAnHBiu1dex0khJKmUUtDGqFWak_LvpxLZadJCuKv8euY8SPlAL315sd65Z2d5-7ONwBv-5o291DSHOUpizw3gTHOBInmEs1xGpoqXezrND04FV_OkrMt-N3mwtCxylYnVoralZbWyHtolggNHe1zL2-ORcxG48-Ly4AqSNFOa1tOo2aRI__rJ4Zvq0-HI5zrd3E83j_ZOwiaCgOBFWm4DrjNEiul1SIXRjodphnZV4luhJah94IiCINXmTaxtyLTedg3kRVOcm5cxrHfO7AtMSoKO7A93J_Ovm1WeAhxMwvTGuqI837Y0_NlA6jhI4rbYqoB_5c5rKoG_M82VAZv_BAeNJ4qG9Ss9Qi2fPEY7g-uO38Ck1kVza79RzZg0_KHv2Dnx5PjYIim0bGR9wvW4LfO2UkLFsvQTWZ7y3LB6Gtsta5OgxVP4fRWiPcMOkVZ-OfAch9bETve1_2EUnV1nvPIR1mFVh9K3YW4pZKyDXY5ldC4UBjDEGnVP0jbhQ-bjxY1dMfNzYdE_k1Twt2uHpTLuWrEWMWprDaaveNOCGcM3oWZsAQhZGVku_CeJk-RdsAftLpJcsBhEs6WGkgMqHkS8bQLu-38qkZtrNQ1k3fhzeY1Cjzt4ujCl1crhS0qzKCEv7i5i9dwFyVETQ6nRztwD8co6qWjXeisl1f-JTpTa_Oq4VoG329bUP4Aydoxmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PestLite%3A+A+Novel+YOLO-Based+Deep+Learning+Technique+for+Crop+Pest+Detection&rft.jtitle=Agriculture+%28Basel%29&rft.au=Dong%2C+Qing&rft.au=Sun%2C+Lina&rft.au=Han%2C+Tianxin&rft.au=Cai%2C+Minqi&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=14&rft.issue=2&rft.spage=228&rft_id=info:doi/10.3390%2Fagriculture14020228&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon