PestLite: A Novel YOLO-Based Deep Learning Technique for Crop Pest Detection
Timely and effective pest detection is essential for agricultural production, facing challenges such as complex backgrounds and a vast number of parameters. Seeking solutions has become a pressing matter. This paper, based on the YOLOv5 algorithm, developed the PestLite model. The model surpasses pr...
Saved in:
Published in | Agriculture (Basel) Vol. 14; no. 2; p. 228 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Timely and effective pest detection is essential for agricultural production, facing challenges such as complex backgrounds and a vast number of parameters. Seeking solutions has become a pressing matter. This paper, based on the YOLOv5 algorithm, developed the PestLite model. The model surpasses previous spatial pooling methods with our uniquely designed Multi-Level Spatial Pyramid Pooling (MTSPPF). Using a lightweight unit, it integrates convolution, normalization, and activation operations. It excels in capturing multi-scale features, ensuring rich extraction of key information at various scales. Notably, MTSPPF not only enhances detection accuracy but also reduces the parameter size, making it ideal for lightweight pest detection models. Additionally, we introduced the Involution and Efficient Channel Attention (ECA) attention mechanisms to enhance contextual understanding. We also replaced traditional upsampling with Content-Aware ReAssembly of FEatures (CARAFE), which enable the model to achieve higher mean average precision in detection. Testing on a pest dataset showed improved accuracy while reducing parameter size. The mAP50 increased from 87.9% to 90.7%, and the parameter count decreased from 7.03 M to 6.09 M. We further validated the PestLite model using the IP102 dataset, and on the other hand, we conducted comparisons with mainstream models. Furthermore, we visualized the detection targets. The results indicate that the PestLite model provides an effective solution for real-time target detection in agricultural pests. |
---|---|
AbstractList | Timely and effective pest detection is essential for agricultural production, facing challenges such as complex backgrounds and a vast number of parameters. Seeking solutions has become a pressing matter. This paper, based on the YOLOv5 algorithm, developed the PestLite model. The model surpasses previous spatial pooling methods with our uniquely designed Multi-Level Spatial Pyramid Pooling (MTSPPF). Using a lightweight unit, it integrates convolution, normalization, and activation operations. It excels in capturing multi-scale features, ensuring rich extraction of key information at various scales. Notably, MTSPPF not only enhances detection accuracy but also reduces the parameter size, making it ideal for lightweight pest detection models. Additionally, we introduced the Involution and Efficient Channel Attention (ECA) attention mechanisms to enhance contextual understanding. We also replaced traditional upsampling with Content-Aware ReAssembly of FEatures (CARAFE), which enable the model to achieve higher mean average precision in detection. Testing on a pest dataset showed improved accuracy while reducing parameter size. The mAP50 increased from 87.9% to 90.7%, and the parameter count decreased from 7.03 M to 6.09 M. We further validated the PestLite model using the IP102 dataset, and on the other hand, we conducted comparisons with mainstream models. Furthermore, we visualized the detection targets. The results indicate that the PestLite model provides an effective solution for real-time target detection in agricultural pests. |
Audience | Academic |
Author | Han, Tianxin Gao, Ce Sun, Lina Dong, Qing Cai, Minqi |
Author_xml | – sequence: 1 givenname: Qing orcidid: 0009-0003-4753-3488 surname: Dong fullname: Dong, Qing – sequence: 2 givenname: Lina surname: Sun fullname: Sun, Lina – sequence: 3 givenname: Tianxin orcidid: 0009-0002-3979-383X surname: Han fullname: Han, Tianxin – sequence: 4 givenname: Minqi orcidid: 0009-0007-3319-7742 surname: Cai fullname: Cai, Minqi – sequence: 5 givenname: Ce surname: Gao fullname: Gao, Ce |
BookMark | eNp9kcFu1DAQhi3USpS2T8DFEhcuKePYiR1uy7aFShHLoRw4WY49WbzKxovtIPH2eFmQUIWwDx6P_--3ZuYFOZvDjIS8ZHDDeQdvzDZ6u0x5icgE1FDX6hm5qEHKCoSsz_6Kn5PrlHZQVse4gvaC9J8w5d5nfEtX9GP4jhP9suk31TuT0NFbxAPt0cTZz1v6iPbr7L8tSMcQ6TqGAz3SRZXRZh_mK3I-minh9e_zkny-v3tcf6j6zfuH9aqvrGghV9yqxkppjRjFIJ2BVrGmEbJpmJGAKABYeQBUZqjRCmVG6AZmhZOcD07xS_Jw8nXB7PQh-r2JP3QwXv9KhLjVJmZvJ9R1K0WjuELHnRBuGMoNlLCKS7CS2eL1-uR1iKGUlrLe-2RxmsyMYUmagwAuhWp4kb56It2FJc6lUl13RSe7FqCobk6qrSn_-3kMORpbtsO9t2V0oy_5lVTFt2G8LUB3AmwMKUUctfXZHPtZQD9pBvo4Z_2POReWP2H_dON_1E9ypK3b |
CitedBy_id | crossref_primary_10_1002_ps_8790 crossref_primary_10_3390_agriculture15020180 crossref_primary_10_3390_agronomy14071586 crossref_primary_10_3389_fpls_2024_1411510 crossref_primary_10_3390_agriculture14101798 crossref_primary_10_3390_agriculture14122244 crossref_primary_10_3390_plants13050653 crossref_primary_10_1186_s12870_024_05797_9 crossref_primary_10_1016_j_ecoinf_2024_102809 crossref_primary_10_21015_vtse_v12i3_1874 crossref_primary_10_3390_f15111875 crossref_primary_10_1038_s41598_024_67526_4 crossref_primary_10_3390_agronomy15030693 crossref_primary_10_3390_agronomy14122887 crossref_primary_10_1017_S0007485324000919 crossref_primary_10_3390_agriculture14071052 crossref_primary_10_3390_agriculture14091472 |
Cites_doi | 10.1109/TITS.2017.2784093 10.1109/ISCA.2018.00060 10.1109/ICCV.2019.00140 10.3390/agronomy13061583 10.1109/ICICI.2017.8365226 10.3390/electronics11244147 10.3390/insects14030278 10.3390/s23063221 10.3390/rs15153790 10.3390/app13158754 10.1109/CVPR.2018.00745 10.3390/rs15184459 10.3390/app121910167 10.1016/j.ecoinf.2021.101460 10.1109/ACCESS.2023.3282309 10.3390/rs15020539 10.1109/CVPR.2016.91 10.3390/rs9080848 10.1016/j.compag.2018.02.016 10.1109/CVPR46437.2021.01214 10.1109/CISES58720.2023.10183545 10.1109/TKDE.2021.3126456 10.1007/s11263-019-01247-4 10.1109/CVPR42600.2020.01155 10.1109/TPAMI.2020.3045007 10.1109/IJCNN55064.2022.9892242 10.1109/ACCESS.2019.2909522 10.1109/WACV.2018.00117 10.1109/CVPR.2018.00813 10.3390/rs13234851 10.1109/ICPR48806.2021.9413042 10.1109/ICCV.2019.00310 10.1109/CVPR.2019.00899 10.1109/ICCV48922.2021.00082 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 DOA |
DOI | 10.3390/agriculture14020228 |
DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Natural Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest SciTech Premium Collection Agriculture Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals (ODIN) |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2077-0472 |
ExternalDocumentID | oai_doaj_org_article_26745838ed3d44dbb458084c8370c71c A784035136 10_3390_agriculture14020228 |
GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC KQ8 M0K MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC PMFND 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c460t-3c85c77ca4f4b7da06815547551a70ee40014b70e8ab2ec48af09b1c4d733bd83 |
IEDL.DBID | BENPR |
ISSN | 2077-0472 |
IngestDate | Wed Aug 27 01:29:26 EDT 2025 Thu Jul 10 19:26:34 EDT 2025 Mon Jun 30 12:31:53 EDT 2025 Tue Jun 10 21:15:26 EDT 2025 Tue Jul 01 03:04:05 EDT 2025 Thu Apr 24 22:51:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-3c85c77ca4f4b7da06815547551a70ee40014b70e8ab2ec48af09b1c4d733bd83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0003-4753-3488 0009-0002-3979-383X 0009-0007-3319-7742 |
OpenAccessLink | https://www.proquest.com/docview/2930479600?pq-origsite=%requestingapplication% |
PQID | 2930479600 |
PQPubID | 2032441 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_26745838ed3d44dbb458084c8370c71c proquest_miscellaneous_3040374853 proquest_journals_2930479600 gale_infotracacademiconefile_A784035136 crossref_citationtrail_10_3390_agriculture14020228 crossref_primary_10_3390_agriculture14020228 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 20240101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agriculture (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Liu (ref_10) 2019; 7 Zhang (ref_5) 2018; 2 ref_14 ref_36 ref_13 ref_35 ref_12 ref_34 ref_11 ref_33 ref_32 ref_31 Li (ref_2) 2021; 66 ref_19 ref_17 ref_16 ref_15 Kamilaris (ref_1) 2018; 147 ref_25 Liu (ref_8) 2018; 128 ref_24 ref_22 ref_21 Chen (ref_23) 2023; 11 ref_20 Brauwers (ref_30) 2023; 35 Vogt (ref_3) 2015; 6 ref_29 Oprea (ref_7) 2022; 44 ref_28 ref_27 ref_26 ref_9 Xie (ref_18) 2018; 19 ref_4 ref_6 |
References_xml | – volume: 19 start-page: 507 year: 2018 ident: ref_18 article-title: A New CNN-Based Method for Multi-Directional Car License Plate Detection publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2784093 – ident: ref_22 doi: 10.1109/ISCA.2018.00060 – ident: ref_26 doi: 10.1109/ICCV.2019.00140 – ident: ref_25 doi: 10.3390/agronomy13061583 – ident: ref_4 doi: 10.1109/ICICI.2017.8365226 – ident: ref_12 doi: 10.3390/electronics11244147 – ident: ref_32 doi: 10.3390/insects14030278 – ident: ref_17 doi: 10.3390/s23063221 – ident: ref_35 doi: 10.3390/rs15153790 – ident: ref_19 doi: 10.3390/app13158754 – ident: ref_29 doi: 10.1109/CVPR.2018.00745 – ident: ref_31 doi: 10.3390/rs15184459 – ident: ref_36 doi: 10.3390/app121910167 – volume: 66 start-page: 101460 year: 2021 ident: ref_2 article-title: Classification and detection of insects from field images using deep learning for smart pest management: A systematic review publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2021.101460 – volume: 11 start-page: 54080 year: 2023 ident: ref_23 article-title: An Improved Lightweight YOLOv5 Algorithm for Detecting Strawberry Diseases publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3282309 – ident: ref_34 doi: 10.3390/rs15020539 – ident: ref_13 doi: 10.1109/CVPR.2016.91 – ident: ref_24 doi: 10.3390/rs9080848 – volume: 147 start-page: 70 year: 2018 ident: ref_1 article-title: Deep learning in agriculture: A survey publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.02.016 – ident: ref_14 doi: 10.1109/CVPR46437.2021.01214 – ident: ref_6 doi: 10.1109/CISES58720.2023.10183545 – volume: 35 start-page: 3279 year: 2023 ident: ref_30 article-title: A General Survey on Attention Mechanisms in Deep Learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2021.3126456 – volume: 128 start-page: 261 year: 2018 ident: ref_8 article-title: Deep Learning for Generic Object Detection: A Survey publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01247-4 – ident: ref_15 doi: 10.1109/CVPR42600.2020.01155 – volume: 6 start-page: 25 year: 2015 ident: ref_3 article-title: Human Factors in Visual Quality Control publication-title: Manag. Prod. Eng. Rev. – volume: 44 start-page: 2806 year: 2022 ident: ref_7 article-title: A Review on Deep Learning Techniques for Video Prediction publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3045007 – ident: ref_33 doi: 10.1109/IJCNN55064.2022.9892242 – volume: 7 start-page: 45301 year: 2019 ident: ref_10 article-title: PestNet: An End-to-End Deep Learning Approach for Large-Scale Multi-Class Pest Detection and Classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909522 – ident: ref_27 doi: 10.1109/WACV.2018.00117 – ident: ref_11 doi: 10.1109/CVPR.2018.00813 – ident: ref_20 doi: 10.3390/rs13234851 – ident: ref_28 doi: 10.1109/ICPR48806.2021.9413042 – ident: ref_16 doi: 10.1109/ICCV.2019.00310 – ident: ref_9 doi: 10.1109/CVPR.2019.00899 – ident: ref_21 doi: 10.1109/ICCV48922.2021.00082 – volume: 2 start-page: 103 year: 2018 ident: ref_5 article-title: Applications of inferential statistical methods in library and information science publication-title: Data Inf. Manag. |
SSID | ssj0000913806 |
Score | 2.3987474 |
Snippet | Timely and effective pest detection is essential for agricultural production, facing challenges such as complex backgrounds and a vast number of parameters.... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 228 |
SubjectTerms | Accuracy Agricultural pests Agricultural production Agriculture Algorithms Corn Crops data collection Datasets Deep learning Design ECA Efficiency involution Kitchenware Mathematical models Methods Morphology MTSPPF Neural networks Object recognition Parameters pest detection Pests plant pests real-time target detection Rice Target detection |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (ODIN) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QJzggnqK8FCQkLlRrm7RpuW08NCHYOIA0TlFe5YK6aSv8fuy0GzvwuHDrw6kSx47tJv5MyFmhcHMPNM1injIvSx1qbXWYKibAHGeR9uliD4Os_8zvRuloqdQXnglr4IEbxnWSTPitPWeZ5dxqDXdRzg2CthgRG1x9weYtBVN-DS5ilkdZAzPEIK7vqNdpC2bhYoyZEqy_vmSKPGL_T-uyNza3m2Sj9RJpt-ndFllx1TZZ7359fIfcP_pIsnaXtEsH4w_3Rl-G98OwB2bJ0mvnJrTFTn2lT3OgVgouKr2ajicUWwNV7U9iVbvk-fbm6aoftqURQsOzqA6ZyVMjhFG85FpYFWU5OgYC_B8lIuc4hj4arnKlE2d4rsqo0LHhVjCmbc72yGo1rtw-oaVLDE8sK1SRYpqsKksWuzj3SPGRUAFJ5lySpsUNx_IVbxLiB2St_Ia1AblYNJo0sBm_k_eQ_QtSxLz2D0ASZCsJ8i9JCMg5Tp5EzYQOGtUmGMAwEeNKdgUEsyyNWRaQo_n8ylZlZxL8HoTbBwcwIKeL16BsuIOiKjd-n0mg8Hg9KTv4jx4fkjUYPm_-6ByR1Xr67o7Bx6n1iRfnT6m-9v8 priority: 102 providerName: Directory of Open Access Journals |
Title | PestLite: A Novel YOLO-Based Deep Learning Technique for Crop Pest Detection |
URI | https://www.proquest.com/docview/2930479600 https://www.proquest.com/docview/3040374853 https://doaj.org/article/26745838ed3d44dbb458084c8370c71c |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61cGkPqPShplDkSpV6aUQSO7G3l2qXglBFF1SBRE-WX9kLSra7gd_PjNe79FC45TGO4sd4Xp5vAD6PDAX3kNM85SmLtrW5td7mteESxXFT2Jgu9mvanF6Jn9f1dXK4LdOxyvWeGDdq3zvykR-iWCI0dJTP3-d_c6oaRdHVVELjOWzjFqzQ-NqeHE8vfm-8LIR6qYpmBTfE0b4_NLNFArUIJdlOFdVh_0ckReT-x_bnKHROXsFO0hbZeDW9u_AsdK_h5fjh42_g7CJalEP4xsZs2t-FG_bn_Ow8n6B48uxHCHOWMFRn7HIN2MpQVWVHi37OqDVSDfFEVvcWrk6OL49O81QiIXeiKYacO1U7KZ0RrbDSm6JRpCBI1IOMLEIQZAJZvFLGVsEJZdpiZEsnvOTcesXfwVbXd-E9sDZUTlSej8yopnRZ07a8DKWKiPGFNBlU61HSLuGHUxmLG412BA2t_s_QZvB102i-gs94mnxCw78hJezr-KBfzHRiJV01MgZ7g-deCG8t3hVKOILxcbJ0GXyhydPEofiDzqREA-wmYV3psUSjltclbzLYX8-vTqy71A8LLYNPm9fIdBRJMV3ob5caKSJuT80_PP2JPXiBHRMrn80-bA2L2_ARtZjBHqSlehC9APdhRvHL |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4VDzF0gJGAnEhahI7cYKE0G4f2tLttkJbqZyMX9lLlSy7WxB_it_ITB5bDtBbb3lMrHg89uexPd8AvMk1be5hT3MUpyyKwgTGOBMkmkuE4zQ0dbjYySQdnYvPF8nFBvzuYmHoWGU3JtYDtassrZHvIiwRGzri86f594CyRtHuapdCozGLY__rJ7psy49H-9i-b-P48GC6NwrarAKBFWm4CrjNEiul1aIQRjodphlhqsSpg5ah94K8BoNXmTaxtyLTRZibyAonOTcu41juHdgUHF2ZHmwODyZnX9arOsSymYVpQ2_EeR7u6tmiJdHwEflqMeV9_wsC60wB_8ODGuQOH8BWOztlg8acHsKGLx_B_cF14Y9hfFZ7sCv_gQ3YpPrhL9nX0_FpMEQ4dGzf-zlrOVtnbNoRxDKcGrO9RTVn9DVKreoTYOUTOL8V5T2FXlmV_hmwwsdWxI7nOk8oPFcXBY98lNUM9aHUfYg7LSnb8pVT2oxLhX4LqVb9Q7V9eL_-aN7QddwsPiT1r0WJa7t-UC1mqu26Kk5lvbnsHXdCOGPwLsyEJdogKyPbh3fUeIpGBPxBq9vABqwmcWupgUQnmicRT_uw07WvaoeKpbo27D68Xr_GTk47N7r01dVSoUTNE5Tw5zcX8QrujqYnYzU-mhxvwz2spGjWi3agt1pc-Rc4g1qZl63ZMvh22z3lD9iSLWY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFaIFFAnHBiu1dex0khJKmUUtDGqFWak_LvpxLZadJCuKv8euY8SPlAL315sd65Z2d5-7ONwBv-5o291DSHOUpizw3gTHOBInmEs1xGpoqXezrND04FV_OkrMt-N3mwtCxylYnVoralZbWyHtolggNHe1zL2-ORcxG48-Ly4AqSNFOa1tOo2aRI__rJ4Zvq0-HI5zrd3E83j_ZOwiaCgOBFWm4DrjNEiul1SIXRjodphnZV4luhJah94IiCINXmTaxtyLTedg3kRVOcm5cxrHfO7AtMSoKO7A93J_Ovm1WeAhxMwvTGuqI837Y0_NlA6jhI4rbYqoB_5c5rKoG_M82VAZv_BAeNJ4qG9Ss9Qi2fPEY7g-uO38Ck1kVza79RzZg0_KHv2Dnx5PjYIim0bGR9wvW4LfO2UkLFsvQTWZ7y3LB6Gtsta5OgxVP4fRWiPcMOkVZ-OfAch9bETve1_2EUnV1nvPIR1mFVh9K3YW4pZKyDXY5ldC4UBjDEGnVP0jbhQ-bjxY1dMfNzYdE_k1Twt2uHpTLuWrEWMWprDaaveNOCGcM3oWZsAQhZGVku_CeJk-RdsAftLpJcsBhEs6WGkgMqHkS8bQLu-38qkZtrNQ1k3fhzeY1Cjzt4ujCl1crhS0qzKCEv7i5i9dwFyVETQ6nRztwD8co6qWjXeisl1f-JTpTa_Oq4VoG329bUP4Aydoxmw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PestLite%3A+A+Novel+YOLO-Based+Deep+Learning+Technique+for+Crop+Pest+Detection&rft.jtitle=Agriculture+%28Basel%29&rft.au=Dong%2C+Qing&rft.au=Sun%2C+Lina&rft.au=Han%2C+Tianxin&rft.au=Cai%2C+Minqi&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=14&rft.issue=2&rft.spage=228&rft_id=info:doi/10.3390%2Fagriculture14020228&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |