Study of various diameter and functionality of TEMPO-oxidized cellulose nanofibers on paraquat adsorptions

The adsorption of paraquat was examined in the presence of renewable nanomaterials of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) oxidized cellulose nanofibers (TOCNs) with different oxidation time (i.e. TOCN-1h, TOCN-4h, TOCN-8h, and TOCN-24h). First, we monitored the relationships among TEMPO-med...

Full description

Saved in:
Bibliographic Details
Published inPolymer degradation and stability Vol. 161; pp. 206 - 212
Main Authors Huang, Chih-Feng, Tu, Cheng-Wei, Lee, Rong-Ho, Yang, Cheng-Han, Hung, Wei-Chen, Andrew Lin, Kun-Yi
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 01.03.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The adsorption of paraquat was examined in the presence of renewable nanomaterials of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) oxidized cellulose nanofibers (TOCNs) with different oxidation time (i.e. TOCN-1h, TOCN-4h, TOCN-8h, and TOCN-24h). First, we monitored the relationships among TEMPO-mediated oxidation times, cellulose surface functional groups, and fiber diameters. We observed the oxidation and the carboxylate contents of cellulose were promptly increased in an hour, leading to the formation of nano-sized cellulose fibers (ca. 20 nm). These cellulose nanofibers were characterized by Fourier-transform infrared (FT-IR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) method, and wide angle X-ray diffraction (WAXRD). Accordingly, the TOCNs with enlarged specific surface area (ca. 180 m2/g) performed high adsorption efficiency for paraquat (>90%), contributing from the strong attraction force between carboxylate anion on TOCNs and parquet cation. The adsorption behaviors were revealed by intra-particle diffusion (IPD) model. For TOCN-24 h, IPD of adsorbate from the surface to the active sites within the hemicellulose or disorder region was observed, resulting in the increase of the adsorption equilibrium time. We then comprehended the absorption performance was sensitive under different pH environments. The adsorption capacity over 100 mg/g can be reached at a pH value greater or equal to 7. Furthermore, Langmuir isotherm model was fitted to the adsorption behaviors at various temperatures, indicating a single layer adsorption mechanism. [Display omitted] •Highly efficient to obtain TEMPO-oxidation cellulose nanofibers (TOCNs) that obtain high carboxylate content and degree of oxidation.•Controllable diameters and functionality of nanocelluloses and largest specific surface area of and remain high crystallinity index.•High maximum adsorption property compared to ZSM-5 and active carbon adsorbents were achieved. TOCNs can effectively adsorb paraquat cations when the pH value is greater or equal to 7.0.•Importantly, we found Langmuir model (i.e. a single layer adsorption) was fitted to explain the adsorption behaviors.
AbstractList The adsorption of paraquat was examined in the presence of renewable nanomaterials of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) oxidized cellulose nanofibers (TOCNs) with different oxidation time (i.e. TOCN-1h, TOCN-4h, TOCN-8h, and TOCN-24h). First, we monitored the relationships among TEMPO-mediated oxidation times, cellulose surface functional groups, and fiber diameters. We observed the oxidation and the carboxylate contents of cellulose were promptly increased in an hour, leading to the formation of nano-sized cellulose fibers (ca. 20 nm). These cellulose nanofibers were characterized by Fourier-transform infrared (FT-IR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) method, and wide angle X-ray diffraction (WAXRD). Accordingly, the TOCNs with enlarged specific surface area (ca. 180 m2/g) performed high adsorption efficiency for paraquat (>90%), contributing from the strong attraction force between carboxylate anion on TOCNs and parquet cation. The adsorption behaviors were revealed by intra-particle diffusion (IPD) model. For TOCN-24 h, IPD of adsorbate from the surface to the active sites within the hemicellulose or disorder region was observed, resulting in the increase of the adsorption equilibrium time. We then comprehended the absorption performance was sensitive under different pH environments. The adsorption capacity over 100 mg/g can be reached at a pH value greater or equal to 7. Furthermore, Langmuir isotherm model was fitted to the adsorption behaviors at various temperatures, indicating a single layer adsorption mechanism. [Display omitted] •Highly efficient to obtain TEMPO-oxidation cellulose nanofibers (TOCNs) that obtain high carboxylate content and degree of oxidation.•Controllable diameters and functionality of nanocelluloses and largest specific surface area of and remain high crystallinity index.•High maximum adsorption property compared to ZSM-5 and active carbon adsorbents were achieved. TOCNs can effectively adsorb paraquat cations when the pH value is greater or equal to 7.0.•Importantly, we found Langmuir model (i.e. a single layer adsorption) was fitted to explain the adsorption behaviors.
The adsorption of paraquat was examined in the presence of renewable nanomaterials of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) oxidized cellulose nanofibers (TOCNs) with different oxidation time (i.e. TOCN-1h, TOCN-4h, TOCN-8h, and TOCN-24h). First, we monitored the relationships among TEMPO-mediated oxidation times, cellulose surface functional groups, and fiber diameters. We observed the oxidation and the carboxylate contents of cellulose were promptly increased in an hour, leading to the formation of nano-sized cellulose fibers (ca. 20 nm). These cellulose nanofibers were characterized by Fourier-transform infrared (FT-IR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) method, and wide angle X-ray diffraction (WAXRD). Accordingly, the TOCNs with enlarged specific surface area (ca. 180 m2/g) performed high adsorption efficiency for paraquat (>90%), contributing from the strong attraction force between carboxylate anion on TOCNs and parquet cation. The adsorption behaviors were revealed by intra-particle diffusion (IPD) model. For TOCN-24 h, IPD of adsorbate from the surface to the active sites within the hemicellulose or disorder region was observed, resulting in the increase of the adsorption equilibrium time. We then comprehended the absorption performance was sensitive under different pH environments. The adsorption capacity over 100 mg/g can be reached at a pH value greater or equal to 7. Furthermore, Langmuir isotherm model was fitted to the adsorption behaviors at various temperatures, indicating a single layer adsorption mechanism.
Author Andrew Lin, Kun-Yi
Tu, Cheng-Wei
Hung, Wei-Chen
Lee, Rong-Ho
Huang, Chih-Feng
Yang, Cheng-Han
Author_xml – sequence: 1
  givenname: Chih-Feng
  orcidid: 0000-0002-8062-8708
  surname: Huang
  fullname: Huang, Chih-Feng
  email: HuangCF@dragon.nchu.edu.tw
  organization: Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City, 40227, Taiwan
– sequence: 2
  givenname: Cheng-Wei
  orcidid: 0000-0003-3054-4546
  surname: Tu
  fullname: Tu, Cheng-Wei
  organization: Industrial Technology Research Institute, 195, Sec. 4, Chung Hsing Road, Chutung, Hsinchu, Taiwan
– sequence: 3
  givenname: Rong-Ho
  surname: Lee
  fullname: Lee, Rong-Ho
  organization: Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City, 40227, Taiwan
– sequence: 4
  givenname: Cheng-Han
  surname: Yang
  fullname: Yang, Cheng-Han
  organization: Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City, 40227, Taiwan
– sequence: 5
  givenname: Wei-Chen
  surname: Hung
  fullname: Hung, Wei-Chen
  organization: Industrial Technology Research Institute, 195, Sec. 4, Chung Hsing Road, Chutung, Hsinchu, Taiwan
– sequence: 6
  givenname: Kun-Yi
  surname: Andrew Lin
  fullname: Andrew Lin, Kun-Yi
  email: linky@nchu.edu.tw
  organization: Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City, 40227, Taiwan
BookMark eNqNkU9r3DAQxUVJoZs030FQCr3Y0T-v5UMPZUnTQEoKTc5ClsZFxis5khy6-fSRuz3tKXOZy5vfzJt3js588IDQZ0pqSuj2aqznMB32Fv5EbVPWfc0I7WpCa8L4O7ShsuUV44yeoQ2hgla8o-QDOk9pJKVEQzdo_J0Xe8BhwM86urAkbJ3eQ4aItbd4WLzJLng9ufxP9XD989d9Ff46617AYgPTtEwhAfbah8H1EBMOHs866qdFZ1wOC3FeEekjej_oKcHl_36BHr9fP-x-VHf3N7e7b3eVEVuSKwZWWt0Ia3jfgWwl49RQoMxKKVouZEObTg6N6dveNs3QDUJbtiVWNG2n5ZZfoC9H7hzD0wIpq71L66HaQzGoGGO0PIjwtkg_nUjHsMTidlWRthNNx1bg7qgyMaQUYVDGZb16ylG7SVGi1jzUqE7yUGseilBV1hXK1xPKHN1ex8Ob52-O81B-9-wgqmQceAPWRTBZ2eDeSHoFSV21_Q
CitedBy_id crossref_primary_10_1016_j_biortech_2019_121510
crossref_primary_10_1007_s10965_021_02785_7
crossref_primary_10_1016_j_carbpol_2022_119670
crossref_primary_10_1007_s12649_023_02254_w
crossref_primary_10_1016_j_molliq_2024_126228
crossref_primary_10_3390_polym14122312
crossref_primary_10_1007_s42247_021_00300_8
crossref_primary_10_1016_j_electacta_2023_142355
crossref_primary_10_1021_acsomega_4c08188
crossref_primary_10_1007_s10735_024_10249_7
crossref_primary_10_3390_ma15145076
crossref_primary_10_1007_s10570_022_04851_9
crossref_primary_10_1039_D4RA02099E
crossref_primary_10_1007_s10965_021_02750_4
crossref_primary_10_1016_j_compscitech_2020_108384
crossref_primary_10_1016_j_chemosphere_2021_133002
crossref_primary_10_1016_j_progpolymsci_2021_101418
crossref_primary_10_1016_j_surfin_2022_102192
crossref_primary_10_3390_polym14112199
crossref_primary_10_1016_j_arabjc_2023_104959
crossref_primary_10_1016_j_msec_2020_111358
crossref_primary_10_1016_j_carbpol_2019_115042
crossref_primary_10_1016_j_seppur_2025_132285
crossref_primary_10_1007_s12221_022_4643_9
crossref_primary_10_1007_s10934_021_01065_5
crossref_primary_10_1080_15440478_2021_1993483
crossref_primary_10_3390_polym14020342
crossref_primary_10_1039_D0TA08642H
crossref_primary_10_1016_j_cclet_2022_07_041
crossref_primary_10_1039_D1TC03886A
crossref_primary_10_1007_s10965_021_02689_6
crossref_primary_10_1016_j_apsusc_2023_158996
crossref_primary_10_1021_acsabm_4c00213
crossref_primary_10_1016_j_carbpol_2019_115471
crossref_primary_10_1155_2023_5512881
crossref_primary_10_1002_fpf2_12001
crossref_primary_10_1007_s10570_019_02849_4
crossref_primary_10_1016_j_cej_2021_128502
crossref_primary_10_1039_D3RA06933H
crossref_primary_10_3390_polym12122835
crossref_primary_10_1016_j_jwpe_2022_102988
crossref_primary_10_1016_j_scp_2022_100837
crossref_primary_10_3390_polym13234110
crossref_primary_10_1039_C9RA05240B
crossref_primary_10_1007_s11356_024_34837_y
crossref_primary_10_1016_j_ijbiomac_2024_135925
crossref_primary_10_1016_j_carbpol_2021_118471
crossref_primary_10_3390_molecules27165309
crossref_primary_10_3390_polym14050946
crossref_primary_10_1007_s41101_024_00251_1
crossref_primary_10_3390_su141811446
crossref_primary_10_3390_polym11101631
crossref_primary_10_1016_j_ijbiomac_2022_09_077
Cites_doi 10.1007/s002449900391
10.1016/j.biortech.2007.05.072
10.1128/AEM.49.5.1290-1294.1985
10.2225/vol5-issue2-fulltext-1
10.1002/polb.20938
10.1007/s10570-015-0703-2
10.1016/j.polymdegradstab.2010.01.017
10.1006/jsbi.1997.3866
10.1016/j.polymer.2015.02.056
10.1016/j.chemosphere.2003.11.043
10.1039/b809212e
10.2166/wst.2013.311
10.1021/bm060154s
10.1021/la001070m
10.1016/j.biortech.2004.06.023
10.1016/j.jhazmat.2010.02.058
10.1039/c2sm27344f
10.1021/bm0497769
10.1002/(SICI)1096-9063(199905)55:5<596::AID-PS961>3.0.CO;2-S
10.1002/app.1993.070490817
10.1093/aje/kwp006
10.1002/jps.20459
10.1007/s10570-010-9482-y
10.1021/jf103054h
10.1016/j.biortech.2008.01.036
10.1016/j.jhazmat.2013.05.024
10.1016/j.cej.2011.09.106
10.1002/app.30339
10.1080/09593339309385340
10.1046/j.1460-9568.2003.02781.x
10.1016/j.jhazmat.2005.12.032
10.1016/j.jhazmat.2004.04.011
10.1021/ma00009a050
10.1016/S0043-1354(98)00475-8
10.1016/S0021-9797(03)00213-3
10.1016/j.polymdegradstab.2010.06.015
10.1016/j.biortech.2006.11.060
10.1039/c4ay00121d
10.1016/j.seppur.2005.02.004
10.1021/bm0703970
10.1016/j.jcis.2004.01.072
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Mar 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 2019
DBID AAYXX
CITATION
7SR
8FD
JG9
7S9
L.6
DOI 10.1016/j.polymdegradstab.2019.01.023
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-2321
EndPage 212
ExternalDocumentID 10_1016_j_polymdegradstab_2019_01_023
S0141391019300308
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSK
SSM
SSZ
T5K
WH7
WUQ
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
8FD
EFKBS
JG9
7S9
L.6
ID FETCH-LOGICAL-c460t-2ed8da54dc3b9e878231c1e12d884734851598f5cb7bd55f9f4ad260d4579a863
IEDL.DBID .~1
ISSN 0141-3910
IngestDate Fri Jul 11 15:35:51 EDT 2025
Mon Jul 14 10:36:19 EDT 2025
Tue Jul 01 02:29:48 EDT 2025
Thu Apr 24 23:01:47 EDT 2025
Fri Feb 23 02:32:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Adsorbent
Paraquat
TEMPO-Oxidized cellulose nanofiber (TOCN)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-2ed8da54dc3b9e878231c1e12d884734851598f5cb7bd55f9f4ad260d4579a863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3054-4546
0000-0002-8062-8708
PQID 2207945926
PQPubID 2045418
PageCount 7
ParticipantIDs proquest_miscellaneous_2221023037
proquest_journals_2207945926
crossref_citationtrail_10_1016_j_polymdegradstab_2019_01_023
crossref_primary_10_1016_j_polymdegradstab_2019_01_023
elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2019_01_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Polymer degradation and stability
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ricketts (bib8) 1999; 55
Aouada, Pan, Orts, Mattoso (bib11) 2009; 114
Tsai, Chang, Ing, Chang (bib17) 2004; 275
Pei, Butchosa, Berglund, Zhou (bib30) 2013; 9
Xhanari, Syverud, Chinga-Carrasco, Paso, Stenius (bib31) 2011; 18
Santos, Madeira, Alves (bib3) 2014; 6
O'Connell, Birkinshaw, O'Dwyer (bib24) 2008; 99
Thiruchelvam, McCormack, Richfield, Baggs, Tank, Di Monte, Cory-Slechta (bib5) 2003; 18
Hsu, Pan (bib21) 2007; 98
Hamadi, Swaminathan, Chen (bib16) 2004; 112
Diaz Kirmser, Martire, Gonzalez, Rosso (bib12) 2010; 58
Saeed, Akhter, Iqbal (bib28) 2005; 45
W.H.O. (WHO) (bib4) 1984; 39
Tsai, Lai, Hsien (bib15) 2003; 263
Tsai, Lai, Hsien (bib18) 2004; 55
Nanseu-Njiki, Dedzo, Ngameni (bib20) 2010; 179
Fernández, Ibáñez, Pico, Manes (bib2) 1998; 35
Fukuzumi, Saito, Okita, Isogai (bib35) 2010; 95
Baker, Helbert, Sugiyama, Miles (bib43) 1997; 119
Tsai, Hsien, Chang, Lo (bib19) 2005; 96
Rashed (bib14) 2013
King, Srinivas, Kumar, Prasad (bib27) 2006; 136
Isobe, Chen, Kim, Kimura, Wada, Saito, Isogai (bib29) 2013; 260
Summers (bib1) 1980
Babarinde, Babalola, Sanni (bib26) 2006; 1
Cai, Liu, Zhang (bib41) 2006; 44
Andreozzi, Insola, Caprio, D'Amore (bib10) 1993; 14
Araki, Wada, Kuga (bib38) 2001; 17
Sun (bib42) 2005; 94
Iwamoto, Kai, Isogai, Saito, Isogai, Iwata (bib39) 2010; 95
Bailey, Olin, Bricka, Adrian (bib23) 1999; 33
Saito, Isogai (bib32) 2004; 5
Costello, Cockburn, Bronstein, Zhang, Ritz (bib6) 2009; 169
Wada, Sugiyama, Okano (bib44) 1993; 49
Carr, Bilton, Atkinson (bib7) 1985; 49
Lin, Heish, Tsai, Huang (bib36) 2015; 22
Kopytko, Chalela, Zauscher (bib9) 2002; 5
Saito, Nishiyama, Putaux, Vignon, Isogai (bib34) 2006; 7
Rongchapo, Sophiphun, Rintramee, Prayoonpokarach, Wittayakun (bib22) 2013; 68
Gurgel, Júnior, de Freitas Gil, Gil (bib25) 2008; 99
Sugiyama, Persson, Chanzy (bib45) 1991; 24
Santos, Alves, Madeira (bib13) 2011; 175
Saito, Kimura, Nishiyama, Isogai (bib33) 2007; 8
Habibi, Goffin, Schiltz, Duquesne, Dubois, Dufresne (bib40) 2008; 18
Huang, Chen, Tsai, Hsieh, Lin (bib37) 2015; 72
Rashed (10.1016/j.polymdegradstab.2019.01.023_bib14) 2013
Kopytko (10.1016/j.polymdegradstab.2019.01.023_bib9) 2002; 5
Xhanari (10.1016/j.polymdegradstab.2019.01.023_bib31) 2011; 18
Saito (10.1016/j.polymdegradstab.2019.01.023_bib32) 2004; 5
Rongchapo (10.1016/j.polymdegradstab.2019.01.023_bib22) 2013; 68
Fernández (10.1016/j.polymdegradstab.2019.01.023_bib2) 1998; 35
O'Connell (10.1016/j.polymdegradstab.2019.01.023_bib24) 2008; 99
Huang (10.1016/j.polymdegradstab.2019.01.023_bib37) 2015; 72
Costello (10.1016/j.polymdegradstab.2019.01.023_bib6) 2009; 169
Babarinde (10.1016/j.polymdegradstab.2019.01.023_bib26) 2006; 1
King (10.1016/j.polymdegradstab.2019.01.023_bib27) 2006; 136
Saito (10.1016/j.polymdegradstab.2019.01.023_bib33) 2007; 8
Cai (10.1016/j.polymdegradstab.2019.01.023_bib41) 2006; 44
W.H.O. (WHO) (10.1016/j.polymdegradstab.2019.01.023_bib4) 1984; 39
Pei (10.1016/j.polymdegradstab.2019.01.023_bib30) 2013; 9
Hamadi (10.1016/j.polymdegradstab.2019.01.023_bib16) 2004; 112
Wada (10.1016/j.polymdegradstab.2019.01.023_bib44) 1993; 49
Aouada (10.1016/j.polymdegradstab.2019.01.023_bib11) 2009; 114
Araki (10.1016/j.polymdegradstab.2019.01.023_bib38) 2001; 17
Fukuzumi (10.1016/j.polymdegradstab.2019.01.023_bib35) 2010; 95
Andreozzi (10.1016/j.polymdegradstab.2019.01.023_bib10) 1993; 14
Sun (10.1016/j.polymdegradstab.2019.01.023_bib42) 2005; 94
Hsu (10.1016/j.polymdegradstab.2019.01.023_bib21) 2007; 98
Santos (10.1016/j.polymdegradstab.2019.01.023_bib13) 2011; 175
Santos (10.1016/j.polymdegradstab.2019.01.023_bib3) 2014; 6
Tsai (10.1016/j.polymdegradstab.2019.01.023_bib19) 2005; 96
Habibi (10.1016/j.polymdegradstab.2019.01.023_bib40) 2008; 18
Saeed (10.1016/j.polymdegradstab.2019.01.023_bib28) 2005; 45
Sugiyama (10.1016/j.polymdegradstab.2019.01.023_bib45) 1991; 24
Saito (10.1016/j.polymdegradstab.2019.01.023_bib34) 2006; 7
Lin (10.1016/j.polymdegradstab.2019.01.023_bib36) 2015; 22
Ricketts (10.1016/j.polymdegradstab.2019.01.023_bib8) 1999; 55
Thiruchelvam (10.1016/j.polymdegradstab.2019.01.023_bib5) 2003; 18
Tsai (10.1016/j.polymdegradstab.2019.01.023_bib17) 2004; 275
Isobe (10.1016/j.polymdegradstab.2019.01.023_bib29) 2013; 260
Baker (10.1016/j.polymdegradstab.2019.01.023_bib43) 1997; 119
Summers (10.1016/j.polymdegradstab.2019.01.023_bib1) 1980
Tsai (10.1016/j.polymdegradstab.2019.01.023_bib18) 2004; 55
Gurgel (10.1016/j.polymdegradstab.2019.01.023_bib25) 2008; 99
Tsai (10.1016/j.polymdegradstab.2019.01.023_bib15) 2003; 263
Bailey (10.1016/j.polymdegradstab.2019.01.023_bib23) 1999; 33
Nanseu-Njiki (10.1016/j.polymdegradstab.2019.01.023_bib20) 2010; 179
Carr (10.1016/j.polymdegradstab.2019.01.023_bib7) 1985; 49
Diaz Kirmser (10.1016/j.polymdegradstab.2019.01.023_bib12) 2010; 58
Iwamoto (10.1016/j.polymdegradstab.2019.01.023_bib39) 2010; 95
References_xml – volume: 33
  start-page: 2469
  year: 1999
  end-page: 2479
  ident: bib23
  article-title: A review of potentially low-cost sorbents for heavy metals
  publication-title: Water Res.
– volume: 45
  start-page: 25
  year: 2005
  end-page: 31
  ident: bib28
  article-title: Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent
  publication-title: Separ. Purif. Technol.
– volume: 18
  start-page: 257
  year: 2011
  end-page: 270
  ident: bib31
  article-title: Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants
  publication-title: Cellulose
– volume: 14
  start-page: 695
  year: 1993
  end-page: 700
  ident: bib10
  article-title: Ozonation of 1, 1'dimethyl, 4, 4'bipyridinium dichloride (Paraquat) in aqueous solution
  publication-title: Environ. Technol.
– volume: 112
  start-page: 133
  year: 2004
  end-page: 141
  ident: bib16
  article-title: Adsorption of paraquat dichloride from aqueous solution by activated carbon derived from used tires
  publication-title: J. Hazard Mater.
– volume: 263
  start-page: 29
  year: 2003
  end-page: 34
  ident: bib15
  article-title: Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution
  publication-title: J. Colloid Interface Sci.
– volume: 136
  start-page: 560
  year: 2006
  end-page: 566
  ident: bib27
  article-title: Sorption of copper (II) ion from aqueous solution by Tectona grandis lf (teak leaves powder)
  publication-title: J. Hazard Mater.
– volume: 5
  start-page: 1983
  year: 2004
  end-page: 1989
  ident: bib32
  article-title: TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions
  publication-title: Biomacromolecules
– volume: 39
  year: 1984
  ident: bib4
  article-title: Paraquat and diquat: environmental health criteria
  publication-title: Int. Program. Chem. Saf.
– volume: 49
  start-page: 1290
  year: 1985
  end-page: 1294
  ident: bib7
  article-title: Mechanism of biodegradation of paraquat by Lipomyces starkeyi
  publication-title: Appl. Environ. Microbiol.
– volume: 1
  start-page: 23
  year: 2006
  end-page: 26
  ident: bib26
  article-title: Biosorption of lead ions from aqueous solution by maize leaf
  publication-title: Int. J. Phys. Sci.
– volume: 8
  start-page: 2485
  year: 2007
  end-page: 2491
  ident: bib33
  article-title: Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose
  publication-title: Biomacromolecules
– volume: 99
  start-page: 3077
  year: 2008
  end-page: 3083
  ident: bib25
  article-title: Adsorption of Cu (II), Cd (II), and Pb (II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride
  publication-title: Bioresour. Technol.
– volume: 7
  start-page: 1687
  year: 2006
  end-page: 1691
  ident: bib34
  article-title: Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose
  publication-title: Biomacromolecules
– volume: 58
  start-page: 12858
  year: 2010
  end-page: 12862
  ident: bib12
  article-title: Degradation of the herbicides clomazone, paraquat, and glyphosate by thermally activated peroxydisulfate
  publication-title: J. Agric. Food Chem.
– volume: 175
  start-page: 279
  year: 2011
  end-page: 290
  ident: bib13
  article-title: Paraquat removal from water by oxidation with Fenton's reagent
  publication-title: Chem. Eng. J.
– volume: 72
  start-page: 395
  year: 2015
  end-page: 405
  ident: bib37
  article-title: Dual-functionalized cellulose nanofibrils prepared through TEMPO-mediated oxidation and surface-initiated ATRP
  publication-title: Polymer
– volume: 35
  start-page: 377
  year: 1998
  end-page: 384
  ident: bib2
  article-title: Spatial and temporal trends of paraquat, diquat, and difenzoquat contamination in water from marsh areas of the Valencian community (Spain)
  publication-title: Arch. Environ. Contam. Toxicol.
– volume: 6
  start-page: 3791
  year: 2014
  end-page: 3798
  ident: bib3
  article-title: Paraquat quantification in deposits from drinking water networks
  publication-title: Anal. Methods
– volume: 94
  start-page: 2132
  year: 2005
  end-page: 2134
  ident: bib42
  article-title: True density of microcrystalline cellulose
  publication-title: J. Pharmaceut. Sci.
– volume: 17
  start-page: 21
  year: 2001
  end-page: 27
  ident: bib38
  article-title: Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting
  publication-title: Langmuir
– volume: 9
  start-page: 2047
  year: 2013
  end-page: 2055
  ident: bib30
  article-title: Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes
  publication-title: Soft Matter
– volume: 5
  start-page: 0
  year: 2002
  end-page: 1
  ident: bib9
  article-title: Biodegradation of two commercial herbicides (Gramoxone and Matancha) by the bacteria Pseudomonas putida
  publication-title: Electron. J. Biotechnol.
– volume: 55
  start-page: 829
  year: 2004
  end-page: 837
  ident: bib18
  article-title: Adsorption kinetics of herbicide paraquat from aqueous solution onto activated bleaching earth
  publication-title: Chemosphere
– volume: 68
  start-page: 863
  year: 2013
  end-page: 869
  ident: bib22
  article-title: Paraquat adsorption on porous materials synthesized from rice husk silica
  publication-title: Water Sci. Technol.
– volume: 119
  start-page: 129
  year: 1997
  end-page: 138
  ident: bib43
  article-title: High-resolution atomic force microscopy of nativeValoniacellulose I microcrystals
  publication-title: J. Struct. Biol.
– volume: 95
  start-page: 1394
  year: 2010
  end-page: 1398
  ident: bib39
  article-title: Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils
  publication-title: Polym. Degrad. Stabil.
– volume: 179
  start-page: 63
  year: 2010
  end-page: 71
  ident: bib20
  article-title: Study of the removal of paraquat from aqueous solution by biosorption onto Ayous (Triplochiton schleroxylon) sawdust
  publication-title: J. Hazard Mater.
– volume: 55
  start-page: 596
  year: 1999
  end-page: 598
  ident: bib8
  article-title: The microbial biodegradation of paraquat in soil
  publication-title: Pestic. Sci.
– year: 1980
  ident: bib1
  article-title: The Bipyridinium Herbicides
– volume: 49
  start-page: 1491
  year: 1993
  end-page: 1496
  ident: bib44
  article-title: Native celluloses on the basis of 2 crystalline phase (I-alpha/I-beta) system
  publication-title: J. Appl. Polym. Sci.
– volume: 95
  start-page: 1502
  year: 2010
  end-page: 1508
  ident: bib35
  article-title: Thermal stabilization of TEMPO-oxidized cellulose
  publication-title: Polym. Degrad. Stabil.
– volume: 169
  start-page: 919
  year: 2009
  end-page: 926
  ident: bib6
  article-title: Parkinson's disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California
  publication-title: Am. J. Epidemiol.
– volume: 24
  start-page: 2461
  year: 1991
  end-page: 2466
  ident: bib45
  article-title: Combined infrared and electron-diffraction study of the polymorphism of native celluloses
  publication-title: Macromolecules
– year: 2013
  ident: bib14
  article-title: Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater, Organic Pollutants-Monitoring, Risk and Treatment
– volume: 99
  start-page: 6709
  year: 2008
  end-page: 6724
  ident: bib24
  article-title: Heavy metal adsorbents prepared from the modification of cellulose: a review
  publication-title: Bioresour. Technol.
– volume: 18
  start-page: 589
  year: 2003
  end-page: 600
  ident: bib5
  article-title: Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson's disease phenotype
  publication-title: Eur. J. Neurosci.
– volume: 260
  start-page: 195
  year: 2013
  end-page: 201
  ident: bib29
  article-title: TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent
  publication-title: J. Hazard Mater.
– volume: 275
  start-page: 72
  year: 2004
  end-page: 78
  ident: bib17
  article-title: Adsorption of acid dyes from aqueous solution on activated bleaching earth
  publication-title: J. Colloid Interface Sci.
– volume: 22
  start-page: 3261
  year: 2015
  end-page: 3274
  ident: bib36
  article-title: TEMPO-oxidized pulp as an efficient and recyclable sorbent to remove paraquat from water
  publication-title: Cellulose
– volume: 18
  start-page: 5002
  year: 2008
  end-page: 5010
  ident: bib40
  article-title: Bionanocomposites based on poly([varepsilon]-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization
  publication-title: J. Mater. Chem.
– volume: 114
  start-page: 2139
  year: 2009
  end-page: 2148
  ident: bib11
  article-title: Removal of paraquat pesticide from aqueous solutions using a novel adsorbent material based on polyacrylamide and methylcellulose hydrogels
  publication-title: J. Appl. Polym. Sci.
– volume: 98
  start-page: 3617
  year: 2007
  end-page: 3621
  ident: bib21
  article-title: Adsorption of paraquat using methacrylic acid-modified rice husk
  publication-title: Bioresour. Technol.
– volume: 44
  start-page: 3093
  year: 2006
  end-page: 3101
  ident: bib41
  article-title: Dilute solution properties of cellulose in LiOH/urea aqueous system
  publication-title: J. Polym. Sci. B Polym. Phys.
– volume: 96
  start-page: 657
  year: 2005
  end-page: 663
  ident: bib19
  article-title: Removal of herbicide paraquat from an aqueous solution by adsorption onto spent and treated diatomaceous earth
  publication-title: Bioresour. Technol.
– volume: 35
  start-page: 377
  issue: 3
  year: 1998
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib2
  article-title: Spatial and temporal trends of paraquat, diquat, and difenzoquat contamination in water from marsh areas of the Valencian community (Spain)
  publication-title: Arch. Environ. Contam. Toxicol.
  doi: 10.1007/s002449900391
– volume: 99
  start-page: 3077
  issue: 8
  year: 2008
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib25
  article-title: Adsorption of Cu (II), Cd (II), and Pb (II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.05.072
– volume: 49
  start-page: 1290
  issue: 5
  year: 1985
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib7
  article-title: Mechanism of biodegradation of paraquat by Lipomyces starkeyi
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.49.5.1290-1294.1985
– volume: 5
  start-page: 0
  issue: 2
  year: 2002
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib9
  article-title: Biodegradation of two commercial herbicides (Gramoxone and Matancha) by the bacteria Pseudomonas putida
  publication-title: Electron. J. Biotechnol.
  doi: 10.2225/vol5-issue2-fulltext-1
– volume: 44
  start-page: 3093
  issue: 21
  year: 2006
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib41
  article-title: Dilute solution properties of cellulose in LiOH/urea aqueous system
  publication-title: J. Polym. Sci. B Polym. Phys.
  doi: 10.1002/polb.20938
– volume: 22
  start-page: 3261
  issue: 5
  year: 2015
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib36
  article-title: TEMPO-oxidized pulp as an efficient and recyclable sorbent to remove paraquat from water
  publication-title: Cellulose
  doi: 10.1007/s10570-015-0703-2
– volume: 95
  start-page: 1394
  issue: 8
  year: 2010
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib39
  article-title: Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2010.01.017
– volume: 119
  start-page: 129
  issue: 2
  year: 1997
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib43
  article-title: High-resolution atomic force microscopy of nativeValoniacellulose I microcrystals
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.1997.3866
– volume: 72
  start-page: 395
  year: 2015
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib37
  article-title: Dual-functionalized cellulose nanofibrils prepared through TEMPO-mediated oxidation and surface-initiated ATRP
  publication-title: Polymer
  doi: 10.1016/j.polymer.2015.02.056
– volume: 55
  start-page: 829
  issue: 6
  year: 2004
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib18
  article-title: Adsorption kinetics of herbicide paraquat from aqueous solution onto activated bleaching earth
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2003.11.043
– year: 1980
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib1
– volume: 18
  start-page: 5002
  issue: 41
  year: 2008
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib40
  article-title: Bionanocomposites based on poly([varepsilon]-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization
  publication-title: J. Mater. Chem.
  doi: 10.1039/b809212e
– volume: 68
  start-page: 863
  issue: 4
  year: 2013
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib22
  article-title: Paraquat adsorption on porous materials synthesized from rice husk silica
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2013.311
– volume: 7
  start-page: 1687
  issue: 6
  year: 2006
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib34
  article-title: Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose
  publication-title: Biomacromolecules
  doi: 10.1021/bm060154s
– volume: 17
  start-page: 21
  issue: 1
  year: 2001
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib38
  article-title: Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting
  publication-title: Langmuir
  doi: 10.1021/la001070m
– volume: 96
  start-page: 657
  issue: 6
  year: 2005
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib19
  article-title: Removal of herbicide paraquat from an aqueous solution by adsorption onto spent and treated diatomaceous earth
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2004.06.023
– volume: 179
  start-page: 63
  issue: 1–3
  year: 2010
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib20
  article-title: Study of the removal of paraquat from aqueous solution by biosorption onto Ayous (Triplochiton schleroxylon) sawdust
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2010.02.058
– volume: 9
  start-page: 2047
  issue: 6
  year: 2013
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib30
  article-title: Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes
  publication-title: Soft Matter
  doi: 10.1039/c2sm27344f
– volume: 5
  start-page: 1983
  issue: 5
  year: 2004
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib32
  article-title: TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions
  publication-title: Biomacromolecules
  doi: 10.1021/bm0497769
– volume: 55
  start-page: 596
  issue: 5
  year: 1999
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib8
  article-title: The microbial biodegradation of paraquat in soil
  publication-title: Pestic. Sci.
  doi: 10.1002/(SICI)1096-9063(199905)55:5<596::AID-PS961>3.0.CO;2-S
– year: 2013
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib14
– volume: 49
  start-page: 1491
  issue: 8
  year: 1993
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib44
  article-title: Native celluloses on the basis of 2 crystalline phase (I-alpha/I-beta) system
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1993.070490817
– volume: 169
  start-page: 919
  issue: 8
  year: 2009
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib6
  article-title: Parkinson's disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwp006
– volume: 94
  start-page: 2132
  issue: 10
  year: 2005
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib42
  article-title: True density of microcrystalline cellulose
  publication-title: J. Pharmaceut. Sci.
  doi: 10.1002/jps.20459
– volume: 18
  start-page: 257
  issue: 2
  year: 2011
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib31
  article-title: Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants
  publication-title: Cellulose
  doi: 10.1007/s10570-010-9482-y
– volume: 1
  start-page: 23
  issue: 1
  year: 2006
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib26
  article-title: Biosorption of lead ions from aqueous solution by maize leaf
  publication-title: Int. J. Phys. Sci.
– volume: 58
  start-page: 12858
  issue: 24
  year: 2010
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib12
  article-title: Degradation of the herbicides clomazone, paraquat, and glyphosate by thermally activated peroxydisulfate
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf103054h
– volume: 99
  start-page: 6709
  issue: 15
  year: 2008
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib24
  article-title: Heavy metal adsorbents prepared from the modification of cellulose: a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.01.036
– volume: 260
  start-page: 195
  year: 2013
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib29
  article-title: TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2013.05.024
– volume: 175
  start-page: 279
  year: 2011
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib13
  article-title: Paraquat removal from water by oxidation with Fenton's reagent
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.09.106
– volume: 114
  start-page: 2139
  issue: 4
  year: 2009
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib11
  article-title: Removal of paraquat pesticide from aqueous solutions using a novel adsorbent material based on polyacrylamide and methylcellulose hydrogels
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.30339
– volume: 14
  start-page: 695
  issue: 7
  year: 1993
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib10
  article-title: Ozonation of 1, 1'dimethyl, 4, 4'bipyridinium dichloride (Paraquat) in aqueous solution
  publication-title: Environ. Technol.
  doi: 10.1080/09593339309385340
– volume: 18
  start-page: 589
  issue: 3
  year: 2003
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib5
  article-title: Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson's disease phenotype
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.1460-9568.2003.02781.x
– volume: 136
  start-page: 560
  issue: 3
  year: 2006
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib27
  article-title: Sorption of copper (II) ion from aqueous solution by Tectona grandis lf (teak leaves powder)
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2005.12.032
– volume: 112
  start-page: 133
  issue: 1–2
  year: 2004
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib16
  article-title: Adsorption of paraquat dichloride from aqueous solution by activated carbon derived from used tires
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2004.04.011
– volume: 24
  start-page: 2461
  issue: 9
  year: 1991
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib45
  article-title: Combined infrared and electron-diffraction study of the polymorphism of native celluloses
  publication-title: Macromolecules
  doi: 10.1021/ma00009a050
– volume: 33
  start-page: 2469
  issue: 11
  year: 1999
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib23
  article-title: A review of potentially low-cost sorbents for heavy metals
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(98)00475-8
– volume: 263
  start-page: 29
  issue: 1
  year: 2003
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib15
  article-title: Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/S0021-9797(03)00213-3
– volume: 95
  start-page: 1502
  issue: 9
  year: 2010
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib35
  article-title: Thermal stabilization of TEMPO-oxidized cellulose
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2010.06.015
– volume: 98
  start-page: 3617
  issue: 18
  year: 2007
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib21
  article-title: Adsorption of paraquat using methacrylic acid-modified rice husk
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2006.11.060
– volume: 6
  start-page: 3791
  issue: 11
  year: 2014
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib3
  article-title: Paraquat quantification in deposits from drinking water networks
  publication-title: Anal. Methods
  doi: 10.1039/c4ay00121d
– volume: 39
  year: 1984
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib4
  article-title: Paraquat and diquat: environmental health criteria
  publication-title: Int. Program. Chem. Saf.
– volume: 45
  start-page: 25
  issue: 1
  year: 2005
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib28
  article-title: Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2005.02.004
– volume: 8
  start-page: 2485
  issue: 8
  year: 2007
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib33
  article-title: Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose
  publication-title: Biomacromolecules
  doi: 10.1021/bm0703970
– volume: 275
  start-page: 72
  issue: 1
  year: 2004
  ident: 10.1016/j.polymdegradstab.2019.01.023_bib17
  article-title: Adsorption of acid dyes from aqueous solution on activated bleaching earth
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.01.072
SSID ssj0000451
Score 2.4962027
Snippet The adsorption of paraquat was examined in the presence of renewable nanomaterials of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) oxidized cellulose...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 206
SubjectTerms absorption
active sites
Adsorbates
Adsorbent
Adsorption
cations
Cellulose
Cellulose fibers
cellulose nanofibers
cellulosic fibers
Fourier transform infrared spectroscopy
Fourier transforms
Functional groups
hemicellulose
Herbicides
moieties
Nanofibers
Nanomaterials
Nanoparticles
Oxidation
Paraquat
Particle diffusion
Scanning electron microscopy
sorption isotherms
surface area
Surface chemistry
temperature
TEMPO-Oxidized cellulose nanofiber (TOCN)
wide-angle X-ray scattering
X-ray diffraction
Title Study of various diameter and functionality of TEMPO-oxidized cellulose nanofibers on paraquat adsorptions
URI https://dx.doi.org/10.1016/j.polymdegradstab.2019.01.023
https://www.proquest.com/docview/2207945926
https://www.proquest.com/docview/2221023037
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB5KBX88iFbF01pW0Mf1LsnuZgM-WI6WU2n1oYW-LfsTrlyTs3dXWh_82525JK0WhIKPSXZDst9k5pvNt7MA72xJQUB6HlOVuFBW8MoqzV2yCfm581rQauSDQzU5Fl9O5MkGjPu1MCSr7Hx_69PX3ro7M-xGczifTockS0L6giZVFeuqK7SCXZRk5R9-3cg8qH5KK2PMOLW-D-9vNF7zZnZ1FqgqQ1jQCgWMhlVbxbP4V5y65bHXYWj_CTzu-CPbbR_xKWzEegsejPtt27bg0R8VBp_BKekEr1iT2AUmxZjlM7SHM5LAMFsHRlGtnQxEMk6tjvYOvn_jzeU0TH_GwGhafzVrFpHVtkYzdEgWWVMzKhj-Y2WXDN-oOW91Mc_heH_vaDzh3fYK3As1WvI8Bh2sFMEXroq6pB-CPotZHjSGrEJoojo6Se9KF6RELIUNmP4EIcvKalW8gM26qeNLYJmXyatQlikmgRzBSpXy3OuRcxFTzDCAj_1gGt_VHqctMGamF5mdmltYGMLCjDKDWAxAXXeft0U47trxU4-c-cuqDAaMu95iu0fcdJ_3wuT5CP2YrHI1gLfXlxFogsXWEeHENpRNI0MoX_3_U7yGh3TUit-2YXN5vopvkA0t3c7a3Hfg3u7nr5PD380dD4s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIlE4IChULBQwEj2G3SR2PiSQQKXVlnYLh63Um_GntNU2WZpdYHvon-of7MwmaaESUiXUaxxbtt9k5jl-HgO8VSkFAWEC53Mf8ETxIFdJFmivPPJzbTJOp5EH-0n_gH85FIdLcN6ehSFZZeP7a5--8NbNk24zm93JaNQlWRLSFzSpPF5kXWmUlbtu_gvXbdWHnc8I8kYUbW8NN_tBc7VAYHjSmwaRs5lVglsT69xlKW2GmdCFkc3QXcc8ozCfeWF0qq0QOA6uLFJ_y0WaqyyJsd07cJeju6BrE96dXelKKGFLrZsMA-rePdi4EpVNyvH82FIaCFvRkQgMv3mdNjT-V2C8FiIWcW_7ETxsCCv7VM_JY1hyxSqsbLb3xK3Cgz9SGj6BIxImzlnp2U9chZeziqEBHpPmhqnCMgqj9d9HZP_01nBr8O1rUP4e2dGps4z2EWbjsnKsUAXavUZ2ysqCUYbyHzM1ZTii8qQW4jyFg1uZ9DVYLsrCPQMWGuFNYtPUO8-RlCiR-CgyWU9rh2ta24H37WRK0yQ7pzs3xrJVtR3Ja1hIwkL2QolYdCC5rD6ps37ctOLHFjn5lxlLjFA3bWK9RVw2_qSSUdRDxynyKOnAm8tiBJpgUYVDOPEdWr4jJUmf_38vXsNKfzjYk3s7-7sv4D6V1Mq7dVienszcS6RiU_1qYfoMvt_2t3YBZbZKcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+various+diameter+and+functionality+of+TEMPO-oxidized+cellulose+nanofibers+on+paraquat+adsorptions&rft.jtitle=Polymer+degradation+and+stability&rft.au=Huang%2C+Chih-Feng&rft.au=Tu%2C+Cheng-Wei&rft.au=Lee%2C+Rong-Ho&rft.au=Yang%2C+Cheng-Han&rft.date=2019-03-01&rft.issn=0141-3910&rft.volume=161+p.206-212&rft.spage=206&rft.epage=212&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2019.01.023&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon