Comparison of atmospheric particle concentration measurements using different optical detectors: Potentiality and limits for air quality applications

•An inter-comparison of performances of optical aerosol detectors was done.•Differences in counting of coarse particles independent on humidity was observed.•Fine particle counting was influenced by humidity even using conditioned inlets.•Performances for mass concentrations were lower than those fo...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 106; pp. 274 - 282
Main Authors Dinoi, A., Donateo, A., Belosi, F., Conte, M., Contini, D.
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 01.08.2017
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An inter-comparison of performances of optical aerosol detectors was done.•Differences in counting of coarse particles independent on humidity was observed.•Fine particle counting was influenced by humidity even using conditioned inlets.•Performances for mass concentrations were lower than those for number concentrations.•Cautions is needed using optical detectors fir air quality in high humidity conditions. Optical detectors for atmospheric aerosol concentration measurements are often used in air quality applications given their potentialities for online measurements of air quality parameters at high temporal resolution. In this work the performances of different optical aerosol detectors used in air quality applications have been tested and compared for urban background aerosol conditions. Simultaneous measurements of aerosol number concentrations, size distributions and mass concentrations were taken in two different periods: November 2013 – February 2014 and May–June 2014 at an urban background site in Lecce (Southeastern Italy). Measurements were carried out using an OPC Grimm (mod. 1.109), an OPC FAI (Multichannel Monitor) and an optical photometer Mie pDR-1200. Good correlation, with determination coefficients R2 larger than 0.93 were found between particle number concentrations measured by the two OPCs both in accumulation (0.28–0.90μm for FAI and 0.29–0.90μm for Grimm) and coarse modes (1.10–10μm for FAI and 1.15–11.25μm for Grimm). Absolute counting for the accumulation fraction shows that Grimm OPC detects more particles (about 10%) than FAI OPC at concentration higher than 200,000particles/L in condition of high RH. This could be due to the changes of the optical properties of particles in high RH conditions visible even if the inlets of the two instruments are conditioned for lowering RH in sampled air. The differences in the absolute counting of the coarse fraction does not seems to be related to RH effects. The performances in evaluating mass concentrations PM10, and PM2.5 were evaluated comparing OPCs and pDR-1200 outputs with reference gravimetric and β-ray methods (that appeared to be essentially equivalent). Good agreement between Grimm OPC and SWAM is found both in PM10 and PM2.5 fractions while FAI OPC revealed greater discrepancy and scatter with respect to reference measurements. The performances of the pDR-1200 photometer were lower with respect to the OPCs with a larger influence of RH and optical properties of particles. The analysis of diurnal average trends in number and mass concentrations as well as the high temporal resolution responses of the instruments showed that optical detectors could be very useful to investigate atmospheric aerosol for air quality applications and to individuate and investigate specific pollution events. However, especially if they are used for evaluating mass concentrations (PM1, PM2.5 or PM10), it is necessary to take into account RH effects (even if the inlet are conditioned) and, possibly, use optical detectors together with reference gravimetric or β-ray methods to check their response in the effective operative conditions.
AbstractList •An inter-comparison of performances of optical aerosol detectors was done.•Differences in counting of coarse particles independent on humidity was observed.•Fine particle counting was influenced by humidity even using conditioned inlets.•Performances for mass concentrations were lower than those for number concentrations.•Cautions is needed using optical detectors fir air quality in high humidity conditions. Optical detectors for atmospheric aerosol concentration measurements are often used in air quality applications given their potentialities for online measurements of air quality parameters at high temporal resolution. In this work the performances of different optical aerosol detectors used in air quality applications have been tested and compared for urban background aerosol conditions. Simultaneous measurements of aerosol number concentrations, size distributions and mass concentrations were taken in two different periods: November 2013 – February 2014 and May–June 2014 at an urban background site in Lecce (Southeastern Italy). Measurements were carried out using an OPC Grimm (mod. 1.109), an OPC FAI (Multichannel Monitor) and an optical photometer Mie pDR-1200. Good correlation, with determination coefficients R2 larger than 0.93 were found between particle number concentrations measured by the two OPCs both in accumulation (0.28–0.90μm for FAI and 0.29–0.90μm for Grimm) and coarse modes (1.10–10μm for FAI and 1.15–11.25μm for Grimm). Absolute counting for the accumulation fraction shows that Grimm OPC detects more particles (about 10%) than FAI OPC at concentration higher than 200,000particles/L in condition of high RH. This could be due to the changes of the optical properties of particles in high RH conditions visible even if the inlets of the two instruments are conditioned for lowering RH in sampled air. The differences in the absolute counting of the coarse fraction does not seems to be related to RH effects. The performances in evaluating mass concentrations PM10, and PM2.5 were evaluated comparing OPCs and pDR-1200 outputs with reference gravimetric and β-ray methods (that appeared to be essentially equivalent). Good agreement between Grimm OPC and SWAM is found both in PM10 and PM2.5 fractions while FAI OPC revealed greater discrepancy and scatter with respect to reference measurements. The performances of the pDR-1200 photometer were lower with respect to the OPCs with a larger influence of RH and optical properties of particles. The analysis of diurnal average trends in number and mass concentrations as well as the high temporal resolution responses of the instruments showed that optical detectors could be very useful to investigate atmospheric aerosol for air quality applications and to individuate and investigate specific pollution events. However, especially if they are used for evaluating mass concentrations (PM1, PM2.5 or PM10), it is necessary to take into account RH effects (even if the inlet are conditioned) and, possibly, use optical detectors together with reference gravimetric or β-ray methods to check their response in the effective operative conditions.
Optical detectors for atmospheric aerosol concentration measurements are often used in air quality applications given their potentialities for online measurements of air quality parameters at high temporal resolution. In this work the performances of different optical aerosol detectors used in air quality applications have been tested and compared for urban background aerosol conditions. Simultaneous measurements of aerosol number concentrations, size distributions and mass concentrations were taken in two different periods: November 2013 – February 2014 and May–June 2014 at an urban background site in Lecce (Southeastern Italy). Measurements were carried out using an OPC Grimm (mod. 1.109), an OPC FAI (Multichannel Monitor) and an optical photometer Mie pDR-1200. Good correlation, with determination coefficients R2 larger than 0.93 were found between particle number concentrations measured by the two OPCs both in accumulation (0.28–0.90 μm for FAI and 0.29–0.90 μm for Grimm) and coarse modes (1.10–10 μm for FAI and 1.15–11.25 μm for Grimm). Absolute counting for the accumulation fraction shows that Grimm OPC detects more particles (about 10%) than FAI OPC at concentration higher than 200,000 particles/L in condition of high RH. This could be due to the changes of the optical properties of particles in high RH conditions visible even if the inlets of the two instruments are conditioned for lowering RH in sampled air. The differences in the absolute counting of the coarse fraction does not seems to be related to RH effects. The performances in evaluating mass concentrations PM10, and PM2.5 were evaluated comparing OPCs and pDR-1200 outputs with reference gravimetric and β-ray methods (that appeared to be essentially equivalent). Good agreement between Grimm OPC and SWAM is found both in PM10 and PM2.5 fractions while FAI OPC revealed greater discrepancy and scatter with respect to reference measurements. The performances of the pDR-1200 photometer were lower with respect to the OPCs with a larger influence of RH and optical properties of particles. The analysis of diurnal average trends in number and mass concentrations as well as the high temporal resolution responses of the instruments showed that optical detectors could be very useful to investigate atmospheric aerosol for air quality applications and to individuate and investigate specific pollution events. However, especially if they are used for evaluating mass concentrations (PM1, PM2.5 or PM10), it is necessary to take into account RH effects (even if the inlet are conditioned) and, possibly, use optical detectors together with reference gravimetric or β-ray methods to check their response in the effective operative conditions.
Author Dinoi, A.
Contini, D.
Belosi, F.
Conte, M.
Donateo, A.
Author_xml – sequence: 1
  givenname: A.
  orcidid: 0000-0002-9214-1067
  surname: Dinoi
  fullname: Dinoi, A.
  email: a.dinoi@le.isac.cnr.it
  organization: Istituto di Scienze dell’Atmosfera e del Clima, ISAC-CNR, Str, Prv. Lecce-Monteroni km 1.2, 73100 Lecce, Italy
– sequence: 2
  givenname: A.
  surname: Donateo
  fullname: Donateo, A.
  organization: Istituto di Scienze dell’Atmosfera e del Clima, ISAC-CNR, Str, Prv. Lecce-Monteroni km 1.2, 73100 Lecce, Italy
– sequence: 3
  givenname: F.
  orcidid: 0000-0002-1770-8561
  surname: Belosi
  fullname: Belosi, F.
  organization: Istituto di Scienze dell’Atmosfera e del Clima, ISAC-CNR, via P. Gobetti, 101, 40129 Bologna, Italy
– sequence: 4
  givenname: M.
  orcidid: 0000-0003-4454-0642
  surname: Conte
  fullname: Conte, M.
  organization: Istituto di Scienze dell’Atmosfera e del Clima, ISAC-CNR, Str, Prv. Lecce-Monteroni km 1.2, 73100 Lecce, Italy
– sequence: 5
  givenname: D.
  surname: Contini
  fullname: Contini, D.
  organization: Istituto di Scienze dell’Atmosfera e del Clima, ISAC-CNR, Str, Prv. Lecce-Monteroni km 1.2, 73100 Lecce, Italy
BookMark eNqNUU1r3DAUFCWFbrb9Dyo925VkW7vqpZSlXxBoDwnkJmT5qX2LbTmSXMgP6f_N224OoafoIMG8NzNo5pJdzHEGxt5KUUsh9ftjPYHLa4IJ5lIrgmqhaiHNC7aR-11TtVLdXrCNULqplGrlK3aZ81EIoRujN-zvIU6LS5jjzGPgrkwxL78hoecEF_QjcB9nT-rJFaStJ36ZrxnnX3zAECARwONCFDfyAQr4ElP-wH_GQhN0I5Z77uaBjzghUUNM3GHid-vjaFlG4p488mv2Mrgxw5vHd8tuvny-Pnyrrn58_X74dFX5VotSqd470L3oG6_UznRdq4egpO_aToMzTvW625lAl9M96NC2oHy_904bUPtGNVv27qy7pHi3Qi72GNc0k6VVojM7aRo6W2bOWz7FnBMEuyScXLq3UthTC_Zon6RiTy1YoSy1QNyP_3E9ln-fpDxxfJbC4awAFMQfhGSzR6BGBkyUsR0iPkPlAX9dtA8
CitedBy_id crossref_primary_10_1016_j_measurement_2023_114104
crossref_primary_10_3390_ijerph14050471
crossref_primary_10_1016_j_measurement_2017_09_046
crossref_primary_10_1111_ina_12546
crossref_primary_10_1109_JSEN_2022_3172861
crossref_primary_10_3390_atmos8120243
crossref_primary_10_5194_acp_22_4047_2022
crossref_primary_10_1364_AO_58_000308
crossref_primary_10_1007_s11869_022_01267_z
crossref_primary_10_3390_atmos10120733
crossref_primary_10_1016_j_chemosphere_2024_142949
crossref_primary_10_1109_MIM_2020_9126077
crossref_primary_10_1016_j_chemosphere_2020_128239
crossref_primary_10_1016_j_atmosres_2017_10_004
crossref_primary_10_1007_s11356_019_06117_7
crossref_primary_10_1016_j_trd_2018_04_021
crossref_primary_10_1016_j_envres_2021_111131
crossref_primary_10_1007_s11869_019_00768_8
crossref_primary_10_1016_j_optlastec_2025_112559
crossref_primary_10_3390_s25030692
crossref_primary_10_1016_j_apr_2021_101135
crossref_primary_10_1016_j_envpol_2019_05_029
crossref_primary_10_1371_journal_pone_0210754
crossref_primary_10_1016_j_measurement_2021_110446
crossref_primary_10_1016_j_atmosres_2019_104690
crossref_primary_10_1080_15275922_2021_1907818
crossref_primary_10_1007_s13762_023_04853_5
crossref_primary_10_1007_s10668_021_01816_z
crossref_primary_10_1016_j_measurement_2022_111375
crossref_primary_10_1016_j_apr_2018_01_010
crossref_primary_10_1007_s41810_024_00281_1
crossref_primary_10_1016_j_atmosenv_2025_121034
crossref_primary_10_1364_AO_404801
crossref_primary_10_1016_j_apr_2023_101753
crossref_primary_10_1016_j_envres_2020_110653
crossref_primary_10_1007_s42452_019_1262_1
crossref_primary_10_3390_mi11121085
crossref_primary_10_3390_mi12040416
crossref_primary_10_1016_j_scitotenv_2017_08_230
crossref_primary_10_1016_j_measurement_2022_111761
crossref_primary_10_1039_C7EM00336F
crossref_primary_10_1007_s10874_019_09392_3
crossref_primary_10_3390_atmos11040334
crossref_primary_10_1007_s10653_022_01390_x
crossref_primary_10_3390_ijerph17010018
crossref_primary_10_1016_j_scitotenv_2020_137220
crossref_primary_10_1016_j_trac_2023_117426
crossref_primary_10_1016_j_envpol_2020_115175
crossref_primary_10_1016_j_atmosenv_2023_119772
crossref_primary_10_1016_j_scitotenv_2017_12_040
crossref_primary_10_1016_j_envpol_2018_11_065
crossref_primary_10_1007_s11356_016_7134_y
crossref_primary_10_1016_j_measurement_2025_117177
crossref_primary_10_1016_j_atmosenv_2022_119559
Cites_doi 10.1080/00028899908984471
10.1127/0941-2948/2012/0354
10.1016/j.atmosenv.2004.02.039
10.1016/j.aeolia.2012.07.004
10.1016/j.jenvman.2011.01.016
10.1016/0004-6981(84)90273-7
10.5194/acp-4-391-2004
10.1111/j.1600-0889.2011.00551.x
10.1007/s12040-008-0041-y
10.1080/10473289.2006.10464519
10.1016/j.atmosenv.2008.07.056
10.1016/j.atmosenv.2004.03.007
10.1080/15428110308984822
10.1016/j.scitotenv.2013.10.127
10.1016/j.measurement.2013.11.045
10.1371/journal.pone.0105769
10.1039/c000642d
10.1016/j.atmosres.2009.07.010
10.1016/S1352-2310(99)00455-0
10.1080/02786820802662939
10.1016/j.atmosenv.2005.10.026
10.1039/c2cs35076a
10.1016/S1352-2310(00)00373-3
10.1080/02786820120056
10.1016/j.jaerosci.2008.07.006
10.1016/j.jaerosci.2010.07.007
10.1016/S1352-2310(00)00244-2
10.1007/978-1-4020-8690-8_5
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright Elsevier Science Ltd. Aug 2017
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Aug 2017
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2016.02.019
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
EndPage 282
ExternalDocumentID 10_1016_j_measurement_2016_02_019
S0263224116000968
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
ID FETCH-LOGICAL-c460t-2bcae6b0b3c22795546df21c5456ea9a2b6579f657a6be6f44e2cb8ca69e28323
IEDL.DBID .~1
ISSN 0263-2241
IngestDate Wed Aug 13 06:51:12 EDT 2025
Tue Jul 01 04:37:07 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
Fri Feb 23 02:27:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Photometer
Aerosol size distributions
β-ray attenuation
PM1
Optical particle counter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-2bcae6b0b3c22795546df21c5456ea9a2b6579f657a6be6f44e2cb8ca69e28323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9214-1067
0000-0002-1770-8561
0000-0003-4454-0642
PQID 2059719333
PQPubID 2047460
PageCount 9
ParticipantIDs proquest_journals_2059719333
crossref_primary_10_1016_j_measurement_2016_02_019
crossref_citationtrail_10_1016_j_measurement_2016_02_019
elsevier_sciencedirect_doi_10_1016_j_measurement_2016_02_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Contini, Cesari, Genga, Siciliano, Ielpo, Guascito, Conte (b0145) 2014; 472
Castellini, Moroni, Cappelletti (b0075) 2014; 49
Middendorf, Lehocky, Williams (b0110) 1999; 60
Gebhart (b0055) 1993
Ruuskanen, Tuch, Ten Brink, Peters, Khlystov, Mirme, Kos, Brunekreef, Wichmann, Buzorius, Vallius, Kreyling, Pekkanen (b0015) 2001; 35
Heim, Mullins, Umhauer, Kasper (b0050) 2008; 39
Contini, Gambaro, Belosi, De Pieri, Cairns, Donateo, Zanotto, Citron (b0070) 2011; 92
Heal, Kumar, Harrison (b0010) 2012; 41
Peters, Ott, O’Shaughnessy (b0120) 2006; 50
Liu, Beaucham, Pearce, Ziqing (b0090) 2014; 9
Rodriguez, Alastuey, Querol (b0155) 2012; 6
Burkart, Steiner, Reischl, Moshammer, Neuberger, Hitzenberger (b0115) 2010; 41
Woo, Chen, Pui, McMurry (b0025) 2001; 34
Jeong, Evans (b0040) 2009; 43
Tanrè, Artaxo, Yuter, Kaufman (b0045) 2009
Belosi, Santachiara, Prodi (b0125) 2013; 3
Hussein, Puustinen, Aalto, Makela, Hameri, Kulmala (b0030) 2004; 4
Tittarelli, Borgini, Bertoldi, De Saeger, Ruprecht, Stefanoni, Tagliabue, Contiero, Crosignani (b0020) 2008; 42
Thorpe (b0105) 2007; 51
McMurry (b0005) 2000; 34
Donateo, Contini, Belosi (b0140) 2006; 40
Sloane (b0165) 1984; 18
Gouriou, Morin, Weill (b0060) 2004; 38
Sioutas, Kim, Chang, Terrell, Gong (b0135) 2000; 34
Teikari, Linnainmaa, Laitinen, Kalliokoski, Vincent J, Tiitta, Raunemaa (b0095) 2003; 64
Thorpe, Walsh (b0100) 2002; 46
Jeong, Evans, Hopke, Chalupa, Utell (b0035) 2006; 56
Contini, Genga, Cesari, Siciliano, Donateo, Bove, Guascito (b0130) 2010; 95
Chakrabarti, Fine, Delfino, Sioutas (b0170) 2004; 38
Contini, Donateo, Cesari, Belosi, Francioso (b0065) 2010; 12
Vogt, Nilsson, Ahlm, Martensson, Johansson (b0080) 2011; 63
Donateo, Contini, Belosi, Gambaro, Santachiara, Cesari, Prodi (b0085) 2012; 21
Hinds (b0160) 1999
Dumka, Moorthy, Pant, Hegde, Sagar, Pandey (b0150) 2008; 117
Jeong (10.1016/j.measurement.2016.02.019_b0035) 2006; 56
Tanrè (10.1016/j.measurement.2016.02.019_b0045) 2009
Ruuskanen (10.1016/j.measurement.2016.02.019_b0015) 2001; 35
Belosi (10.1016/j.measurement.2016.02.019_b0125) 2013; 3
Tittarelli (10.1016/j.measurement.2016.02.019_b0020) 2008; 42
Middendorf (10.1016/j.measurement.2016.02.019_b0110) 1999; 60
Peters (10.1016/j.measurement.2016.02.019_b0120) 2006; 50
Hussein (10.1016/j.measurement.2016.02.019_b0030) 2004; 4
Gebhart (10.1016/j.measurement.2016.02.019_b0055) 1993
Thorpe (10.1016/j.measurement.2016.02.019_b0100) 2002; 46
Donateo (10.1016/j.measurement.2016.02.019_b0140) 2006; 40
Sloane (10.1016/j.measurement.2016.02.019_b0165) 1984; 18
Dumka (10.1016/j.measurement.2016.02.019_b0150) 2008; 117
Chakrabarti (10.1016/j.measurement.2016.02.019_b0170) 2004; 38
Teikari (10.1016/j.measurement.2016.02.019_b0095) 2003; 64
Castellini (10.1016/j.measurement.2016.02.019_b0075) 2014; 49
Contini (10.1016/j.measurement.2016.02.019_b0145) 2014; 472
Jeong (10.1016/j.measurement.2016.02.019_b0040) 2009; 43
Contini (10.1016/j.measurement.2016.02.019_b0070) 2011; 92
Heal (10.1016/j.measurement.2016.02.019_b0010) 2012; 41
Gouriou (10.1016/j.measurement.2016.02.019_b0060) 2004; 38
Vogt (10.1016/j.measurement.2016.02.019_b0080) 2011; 63
Liu (10.1016/j.measurement.2016.02.019_b0090) 2014; 9
Contini (10.1016/j.measurement.2016.02.019_b0065) 2010; 12
Donateo (10.1016/j.measurement.2016.02.019_b0085) 2012; 21
Thorpe (10.1016/j.measurement.2016.02.019_b0105) 2007; 51
Heim (10.1016/j.measurement.2016.02.019_b0050) 2008; 39
Rodriguez (10.1016/j.measurement.2016.02.019_b0155) 2012; 6
Woo (10.1016/j.measurement.2016.02.019_b0025) 2001; 34
McMurry (10.1016/j.measurement.2016.02.019_b0005) 2000; 34
Burkart (10.1016/j.measurement.2016.02.019_b0115) 2010; 41
Sioutas (10.1016/j.measurement.2016.02.019_b0135) 2000; 34
Contini (10.1016/j.measurement.2016.02.019_b0130) 2010; 95
Hinds (10.1016/j.measurement.2016.02.019_b0160) 1999
References_xml – volume: 21
  start-page: 385
  year: 2012
  end-page: 398
  ident: b0085
  article-title: Characterization of PM2.5 concentrations and turbulent fluxes on an island in the Venice lagoon using high temporal resolution measurements
  publication-title: Meteorol. Z.
– volume: 9
  start-page: p1
  year: 2014
  ident: b0090
  article-title: Assessment of two portable real-time particle monitors used in nanomaterial workplace exposure evaluations
  publication-title: PLoS ONE
– volume: 51
  start-page: 97
  year: 2007
  end-page: 112
  ident: b0105
  article-title: Assessment of personal direct-reading dust monitors for the measurement of airborne inhalable dust
  publication-title: Ann. Occup. Hyg.
– volume: 95
  start-page: 40
  year: 2010
  end-page: 54
  ident: b0130
  article-title: Characterization and source apportionment of PM10 in an urban background site in Lecce
  publication-title: Atmos. Res.
– volume: 38
  start-page: 2831
  year: 2004
  end-page: 2840
  ident: b0060
  article-title: On-road measurements of particle number concentrations and size distributions in urban and tunnel environments
  publication-title: Atmos. Environ.
– volume: 50
  start-page: 843
  year: 2006
  end-page: 850
  ident: b0120
  article-title: Comparison of the Grimm 1.108 and 1.109 portable aerosol spectrometer to the TSI aerodynamic particle sizer for dry particles
  publication-title: Ann. Occup. Hyg.
– volume: 63
  start-page: 935
  year: 2011
  end-page: 951
  ident: b0080
  article-title: Seasonal and diurnal cycles of 0.25–2.5
  publication-title: Tellus B
– volume: 6
  start-page: 55
  year: 2012
  end-page: 74
  ident: b0155
  article-title: A review of methods for long term in situ characterization of aerosol dust
  publication-title: Aeolian Research
– volume: 41
  start-page: 953
  year: 2010
  end-page: 962
  ident: b0115
  article-title: Characterizing the performance of two optical particle counters (GRIMM OPC1.108 and OPC1.109) under urban aerosol conditions
  publication-title: J. Aerosol Sci.
– volume: 18
  start-page: 871
  year: 1984
  end-page: 878
  ident: b0165
  article-title: Optical properties of aerosols of mixed composition
  publication-title: Atmos. Environ.
– volume: 38
  start-page: 3329
  year: 2004
  end-page: 3340
  ident: b0170
  article-title: Performance evaluation of the active-flow personal DataRAM PM2.5 mass monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure measurements
  publication-title: Atmos. Environ.
– volume: 56
  start-page: 431
  year: 2006
  end-page: 443
  ident: b0035
  article-title: Influence of atmospheric dispersion and new particle formation events on ambient particle number concentration in Rochester, USA and Toronto, Canada
  publication-title: J. Air Waste Manage
– volume: 43
  year: 2009
  ident: b0040
  article-title: Inter-comparison of a fast mobility particle sizer and a scanning mobility particle sizer incorporating an ultrafine water-based condensation particle counter
  publication-title: Aerosol Sci. Technol.
– volume: 64
  start-page: 312
  year: 2003
  end-page: 318
  ident: b0095
  article-title: Laboratory and field testing of particle size-selective sampling methods for mineral dusts
  publication-title: AIHA J (Fairfax, Va)
– volume: 42
  start-page: 8543
  year: 2008
  end-page: 8548
  ident: b0020
  article-title: Estimation of particle mass concentration in ambient air using a particle counter
  publication-title: Atmos. Environ.
– volume: 40
  start-page: 1346
  year: 2006
  end-page: 1360
  ident: b0140
  article-title: Real time measurements of PM2.5 concentrations and vertical turbulent fluxes using an optical detector
  publication-title: Atmos. Environ.
– start-page: 242
  year: 1999
  end-page: 248
  ident: b0160
  article-title: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
– volume: 39
  start-page: 1019
  year: 2008
  end-page: 1031
  ident: b0050
  article-title: Performance evaluation of three optical particle counters with an efficient “multimodal” calibration method
  publication-title: Aerosol Sci.
– volume: 12
  start-page: 1709
  year: 2010
  end-page: 1721
  ident: b0065
  article-title: Identification and characterisation of local aerosol sources using high temporal resolution measurements
  publication-title: J. Environ. Monit.
– start-page: 143
  year: 2009
  end-page: 203
  ident: b0045
  article-title: In situ and remote sensing techniques for measuring aerosols, clouds an precipitations
  publication-title: Aerosol Pollut. Impact Precipitation
– volume: 4
  start-page: 391
  year: 2004
  end-page: 411
  ident: b0030
  article-title: Urban aerosol number size distributions
  publication-title: Atmos. Chem. Phys.
– volume: 34
  start-page: 75
  year: 2001
  end-page: 87
  ident: b0025
  article-title: Measurement of atlanta aerosol size distributions: observation of ultrafine particle events
  publication-title: Aerosol Sci. Technol.
– volume: 472
  start-page: 248
  year: 2014
  end-page: 261
  ident: b0145
  article-title: Source apportionment of size-segregated atmospheric particles based on the major water-soluble components in Lecce
  publication-title: Sci. Total Environ.
– volume: 46
  start-page: 197
  year: 2002
  end-page: 207
  ident: b0100
  article-title: Performance testing of three portable, direct-reading dust monitors
  publication-title: Ann. Occup. Hyg.
– volume: 117
  start-page: 399
  year: 2008
  end-page: 405
  ident: b0150
  article-title: Physical and optical characteristics of atmospheric aerosols during ICARB at Manora Peak, Nainital: a sparsely inhabited, high-altitude location in the Himalayas
  publication-title: J. Earth Syst. Sci.
– volume: 92
  start-page: 2119
  year: 2011
  end-page: 2129
  ident: b0070
  article-title: Direct influence of ship traffic on atmospheric PM2.5, PM10 and PAHs in Venice
  publication-title: J. Environ. Manage.
– start-page: 313
  year: 1993
  end-page: 344
  ident: b0055
  article-title: Optical direct-reading techniques: light intensity systems
  publication-title: Aerosol Measurement
– volume: 34
  start-page: 1959
  year: 2000
  end-page: 1999
  ident: b0005
  article-title: A review of atmospheric aerosol measurements
  publication-title: Atmos. Environ.
– volume: 35
  start-page: 3729
  year: 2001
  end-page: 3738
  ident: b0015
  article-title: Concentrations of ultrafine, fine and PM2.5 particles in three European cities
  publication-title: Atmos. Environ.
– volume: 49
  start-page: 99
  year: 2014
  end-page: 106
  ident: b0075
  article-title: PMetro: Measurement of urban aerosols on a mobile platform
  publication-title: Measurement
– volume: 34
  start-page: 4829
  year: 2000
  end-page: 4838
  ident: b0135
  article-title: Field evaluation of a modified DataRAM MIE scattering monitor for real-time PM2.5 mass concentration measurements
  publication-title: Atmos. Environ.
– volume: 41
  start-page: 6606
  year: 2012
  end-page: 6630
  ident: b0010
  article-title: Particles, air quality, policy and health
  publication-title: Chem. Soc. Rev.
– volume: 60
  start-page: 502
  year: 1999
  end-page: 511
  ident: b0110
  article-title: Evaluation and field calibration of the Miniram PDM-3 aerosol monitor for measuring respirable and total coal dust
  publication-title: Am. Ind. Hyg. Assoc. J.
– volume: 3
  start-page: 41
  year: 2013
  end-page: 46
  ident: b0125
  article-title: Performance evaluation of four commercial optical particle counters
  publication-title: Atmos. Climate Sci.
– volume: 60
  start-page: 502
  year: 1999
  ident: 10.1016/j.measurement.2016.02.019_b0110
  article-title: Evaluation and field calibration of the Miniram PDM-3 aerosol monitor for measuring respirable and total coal dust
  publication-title: Am. Ind. Hyg. Assoc. J.
  doi: 10.1080/00028899908984471
– volume: 21
  start-page: 385
  issue: 4
  year: 2012
  ident: 10.1016/j.measurement.2016.02.019_b0085
  article-title: Characterization of PM2.5 concentrations and turbulent fluxes on an island in the Venice lagoon using high temporal resolution measurements
  publication-title: Meteorol. Z.
  doi: 10.1127/0941-2948/2012/0354
– volume: 38
  start-page: 2831
  year: 2004
  ident: 10.1016/j.measurement.2016.02.019_b0060
  article-title: On-road measurements of particle number concentrations and size distributions in urban and tunnel environments
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2004.02.039
– volume: 46
  start-page: 197
  year: 2002
  ident: 10.1016/j.measurement.2016.02.019_b0100
  article-title: Performance testing of three portable, direct-reading dust monitors
  publication-title: Ann. Occup. Hyg.
– volume: 6
  start-page: 55
  year: 2012
  ident: 10.1016/j.measurement.2016.02.019_b0155
  article-title: A review of methods for long term in situ characterization of aerosol dust
  publication-title: Aeolian Research
  doi: 10.1016/j.aeolia.2012.07.004
– volume: 92
  start-page: 2119
  year: 2011
  ident: 10.1016/j.measurement.2016.02.019_b0070
  article-title: Direct influence of ship traffic on atmospheric PM2.5, PM10 and PAHs in Venice
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2011.01.016
– volume: 18
  start-page: 871
  year: 1984
  ident: 10.1016/j.measurement.2016.02.019_b0165
  article-title: Optical properties of aerosols of mixed composition
  publication-title: Atmos. Environ.
  doi: 10.1016/0004-6981(84)90273-7
– volume: 4
  start-page: 391
  year: 2004
  ident: 10.1016/j.measurement.2016.02.019_b0030
  article-title: Urban aerosol number size distributions
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-4-391-2004
– volume: 50
  start-page: 843
  year: 2006
  ident: 10.1016/j.measurement.2016.02.019_b0120
  article-title: Comparison of the Grimm 1.108 and 1.109 portable aerosol spectrometer to the TSI aerodynamic particle sizer for dry particles
  publication-title: Ann. Occup. Hyg.
– start-page: 313
  year: 1993
  ident: 10.1016/j.measurement.2016.02.019_b0055
  article-title: Optical direct-reading techniques: light intensity systems
– volume: 63
  start-page: 935
  year: 2011
  ident: 10.1016/j.measurement.2016.02.019_b0080
  article-title: Seasonal and diurnal cycles of 0.25–2.5μm aerosol fluxes over urban Stockholm Sweden
  publication-title: Tellus B
  doi: 10.1111/j.1600-0889.2011.00551.x
– volume: 117
  start-page: 399
  year: 2008
  ident: 10.1016/j.measurement.2016.02.019_b0150
  article-title: Physical and optical characteristics of atmospheric aerosols during ICARB at Manora Peak, Nainital: a sparsely inhabited, high-altitude location in the Himalayas
  publication-title: J. Earth Syst. Sci.
  doi: 10.1007/s12040-008-0041-y
– volume: 56
  start-page: 431
  year: 2006
  ident: 10.1016/j.measurement.2016.02.019_b0035
  article-title: Influence of atmospheric dispersion and new particle formation events on ambient particle number concentration in Rochester, USA and Toronto, Canada
  publication-title: J. Air Waste Manage.
  doi: 10.1080/10473289.2006.10464519
– volume: 42
  start-page: 8543
  year: 2008
  ident: 10.1016/j.measurement.2016.02.019_b0020
  article-title: Estimation of particle mass concentration in ambient air using a particle counter
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.07.056
– volume: 38
  start-page: 3329
  year: 2004
  ident: 10.1016/j.measurement.2016.02.019_b0170
  article-title: Performance evaluation of the active-flow personal DataRAM PM2.5 mass monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure measurements
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2004.03.007
– volume: 64
  start-page: 312
  year: 2003
  ident: 10.1016/j.measurement.2016.02.019_b0095
  article-title: Laboratory and field testing of particle size-selective sampling methods for mineral dusts
  publication-title: AIHA J (Fairfax, Va)
  doi: 10.1080/15428110308984822
– volume: 472
  start-page: 248
  year: 2014
  ident: 10.1016/j.measurement.2016.02.019_b0145
  article-title: Source apportionment of size-segregated atmospheric particles based on the major water-soluble components in Lecce
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.10.127
– start-page: 242
  year: 1999
  ident: 10.1016/j.measurement.2016.02.019_b0160
– volume: 49
  start-page: 99
  year: 2014
  ident: 10.1016/j.measurement.2016.02.019_b0075
  article-title: PMetro: Measurement of urban aerosols on a mobile platform
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.11.045
– volume: 9
  start-page: p1
  issue: 8
  year: 2014
  ident: 10.1016/j.measurement.2016.02.019_b0090
  article-title: Assessment of two portable real-time particle monitors used in nanomaterial workplace exposure evaluations
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0105769
– volume: 12
  start-page: 1709
  year: 2010
  ident: 10.1016/j.measurement.2016.02.019_b0065
  article-title: Identification and characterisation of local aerosol sources using high temporal resolution measurements
  publication-title: J. Environ. Monit.
  doi: 10.1039/c000642d
– volume: 95
  start-page: 40
  year: 2010
  ident: 10.1016/j.measurement.2016.02.019_b0130
  article-title: Characterization and source apportionment of PM10 in an urban background site in Lecce
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2009.07.010
– volume: 34
  start-page: 1959
  issue: 12–14
  year: 2000
  ident: 10.1016/j.measurement.2016.02.019_b0005
  article-title: A review of atmospheric aerosol measurements
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(99)00455-0
– volume: 43
  issue: 4
  year: 2009
  ident: 10.1016/j.measurement.2016.02.019_b0040
  article-title: Inter-comparison of a fast mobility particle sizer and a scanning mobility particle sizer incorporating an ultrafine water-based condensation particle counter
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786820802662939
– volume: 40
  start-page: 1346
  year: 2006
  ident: 10.1016/j.measurement.2016.02.019_b0140
  article-title: Real time measurements of PM2.5 concentrations and vertical turbulent fluxes using an optical detector
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2005.10.026
– volume: 41
  start-page: 6606
  issue: 19
  year: 2012
  ident: 10.1016/j.measurement.2016.02.019_b0010
  article-title: Particles, air quality, policy and health
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35076a
– volume: 51
  start-page: 97
  year: 2007
  ident: 10.1016/j.measurement.2016.02.019_b0105
  article-title: Assessment of personal direct-reading dust monitors for the measurement of airborne inhalable dust
  publication-title: Ann. Occup. Hyg.
– volume: 35
  start-page: 3729
  year: 2001
  ident: 10.1016/j.measurement.2016.02.019_b0015
  article-title: Concentrations of ultrafine, fine and PM2.5 particles in three European cities
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(00)00373-3
– volume: 34
  start-page: 75
  year: 2001
  ident: 10.1016/j.measurement.2016.02.019_b0025
  article-title: Measurement of atlanta aerosol size distributions: observation of ultrafine particle events
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786820120056
– volume: 3
  start-page: 41
  year: 2013
  ident: 10.1016/j.measurement.2016.02.019_b0125
  article-title: Performance evaluation of four commercial optical particle counters
  publication-title: Atmos. Climate Sci.
– volume: 39
  start-page: 1019
  year: 2008
  ident: 10.1016/j.measurement.2016.02.019_b0050
  article-title: Performance evaluation of three optical particle counters with an efficient “multimodal” calibration method
  publication-title: Aerosol Sci.
  doi: 10.1016/j.jaerosci.2008.07.006
– volume: 41
  start-page: 953
  year: 2010
  ident: 10.1016/j.measurement.2016.02.019_b0115
  article-title: Characterizing the performance of two optical particle counters (GRIMM OPC1.108 and OPC1.109) under urban aerosol conditions
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2010.07.007
– volume: 34
  start-page: 4829
  year: 2000
  ident: 10.1016/j.measurement.2016.02.019_b0135
  article-title: Field evaluation of a modified DataRAM MIE scattering monitor for real-time PM2.5 mass concentration measurements
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(00)00244-2
– start-page: 143
  year: 2009
  ident: 10.1016/j.measurement.2016.02.019_b0045
  article-title: In situ and remote sensing techniques for measuring aerosols, clouds an precipitations
  publication-title: Aerosol Pollut. Impact Precipitation
  doi: 10.1007/978-1-4020-8690-8_5
SSID ssj0006396
Score 2.3931887
Snippet •An inter-comparison of performances of optical aerosol detectors was done.•Differences in counting of coarse particles independent on humidity was...
Optical detectors for atmospheric aerosol concentration measurements are often used in air quality applications given their potentialities for online...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 274
SubjectTerms Accumulation
Aerosol size distributions
Aerosols
Air conditioners
Air quality
Airborne particulates
Detectors
Gravimetry
Inlets (topography)
Optical measuring instruments
Optical particle counter
Optical properties
Outdoor air quality
Particle size
Photometer
Photometers
PM1
Sensors
Temporal resolution
β-ray attenuation
Title Comparison of atmospheric particle concentration measurements using different optical detectors: Potentiality and limits for air quality applications
URI https://dx.doi.org/10.1016/j.measurement.2016.02.019
https://www.proquest.com/docview/2059719333
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hEBUcUKFFfGzRVOo13ayd9SaIy2oFWqiKKrVI3CzbcapFkKxIuPIv-L94HIfdVhyQuOQQx5HjcTwvkzdvAL7ZwVDneRZHNlVplLBREaUp15E12uQqtloUFIf8eSmmV8nF9fB6BSZdLgzRKsPe3-7pfrcOZ_phNvvz2az_OyapceeABsIDcUr4TZIRrfLvjwuah_PAoo2z8Iiu_gBfFxyvu0Ucjlhewst3kujO6z7qv93au6Czj7AVsCOO2-Ftw4otd2BzSVFwB9Y9o9PUn-Bp8lJhEKsCVXNX1SQhMDM4Dw-IhnIWyyCci0vDrJH48H-xK5_SYDX3QW_MbePj_PUx_qoaohp5II-qzPGWkqVqdDAY1ewe23xN17T0j_wzXJ2d_plMo1CDITKJiJuIaaOs0LHmhrQGidOWF2xgCHhZlSmmxXCUFe6ghLbOsIllRqdGicxSFSS-C6tlVdo9wGHGHRrRinHtXGKm1CBWJnOuM9VK57zYh7SbdWmCQDnVybiVHRPtRi7NhCSDyZhJZ7B9YC9d561Kx1s6nXSmlf8sOem8yVu697rlIMN7X7t294HmMDHnB--7-yFsMAIQnmrYg9Xm_sF-cfCn0Ud-fR_B2vj8x_TyGRFoDOU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIigcEBQqCgUGCY5hs07WTRAcUKHa0h8h0Uq9Gdtxqq3aZNUEIS59iz4JL8iM43QXxKES6iWHRLasGWdmPP7mG4BXbjgyRZHHkct0FqVivYyyLDGRs8YWOnZGlpyH3N2T44P08-HocAF-9bUwDKsMtr-z6d5ahzeDIM3BdDIZfI2Zapwc0FD6QDwLyMpt9_MHndua91sfScmvhdj8tL8xjkJrgcimMm4jYax20sQmsUyhx1CtohRDy_GE07kWRo7W85IeWhpH602dsCazWuaOm_skNO8NuJmSueC2CW_OZ7gScvmyS-wkES_vNrycgcpOZ4k_hpVJzxfKLD__dop_uQfv8zbvw70QrOKHTh4PYMFVy3B3jsJwGW55CKltHsLFxmVLQ6xL1O1p3TBnwcTiNEgULRdJVoGpF-eW2SAD8I-w79fSYj31WXYsXOsvFpq3-KVuGdvkTw6oqwJPuDqrQYq7UU_OsCsQpU9zl_KP4OBaNLMCi1VduceAo5y0I4wWiSEfnGs9jLXNyVdnRpsiKVch66WubGBE58YcJ6qHvh2rOUkoVpiKhSKFrYK4HDrtaEGuMuhdr1r1xx5X5L6uMnyt3w4qGJqGvtOJkILwJHnyf7O_gKXx_u6O2tna234KdwRHLx7nuAaL7dl394xir9Y893sd4dt1_1y_AZngSLc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+atmospheric+particle+concentration+measurements+using+different+optical+detectors%3A+Potentiality+and+limits+for+air+quality+applications&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Dinoi%2C+A.&rft.au=Donateo%2C+A.&rft.au=Belosi%2C+F.&rft.au=Conte%2C+M.&rft.date=2017-08-01&rft.issn=0263-2241&rft.volume=106&rft.spage=274&rft.epage=282&rft_id=info:doi/10.1016%2Fj.measurement.2016.02.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2016_02_019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon