Neural Processing of Gravitoinertial Cues in Humans. III. Modeling Tilt and Translation Responses

Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02114 Merfeld, D. M. and L. H. Zupan. Neural Processing of Gravitoinertial Cues in Humans. III. Modeling Tilt and Translation Responses. J...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 87; no. 2; pp. 819 - 833
Main Authors Merfeld, D. M, Zupan, L. H
Format Journal Article
LanguageEnglish
Published United States Am Phys Soc 01.02.2002
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02114 Merfeld, D. M. and L. H. Zupan. Neural Processing of Gravitoinertial Cues in Humans. III. Modeling Tilt and Translation Responses. J. Neurophysiol. 87: 819-833, 2002. All linear accelerometers measure gravitoinertial force, which is the sum of gravitational force (tilt) and inertial force due to linear acceleration (translation). Neural strategies must exist to elicit tilt and translation responses from this ambiguous cue. To investigate these neural processes, we developed a model of human responses and simulated a number of motion paradigms used to investigate this tilt/translation ambiguity. In this model, the separation of GIF into neural estimates of gravity and linear acceleration is accomplished via an internal model made up of three principal components: 1 ) the influence of rotational cues (e.g., semicircular canals) on the neural representation of gravity, 2 ) the resolution of gravitoinertial force into neural representations of gravity and linear acceleration, and 3 ) the neural representation of the dynamics of the semicircular canals. By combining these simple hypotheses within the internal model framework, the model mimics human responses to a number of different paradigms, ranging from simple paradigms, like roll tilt, to complex paradigms, like postrotational tilt and centrifugation. It is important to note that the exact same mechanisms can explain responses induced by simple movements as well as by more complex paradigms; no additional elements or hypotheses are needed to match the data obtained during more complex paradigms. Therefore these modeled response characteristics are consistent with available data and with the hypothesis that the nervous system uses internal models to estimate tilt and translation in the presence of ambiguous sensory cues.
AbstractList All linear accelerometers measure gravitoinertial force, which is the sum of gravitational force (tilt) and inertial force due to linear acceleration (translation). Neural strategies must exist to elicit tilt and translation responses from this ambiguous cue. To investigate these neural processes, we developed a model of human responses and simulated a number of motion paradigms used to investigate this tilt/translation ambiguity. In this model, the separation of GIF into neural estimates of gravity and linear acceleration is accomplished via an internal model made up of three principal components: 1) the influence of rotational cues (e.g., semicircular canals) on the neural representation of gravity, 2) the resolution of gravitoinertial force into neural representations of gravity and linear acceleration, and 3) the neural representation of the dynamics of the semicircular canals. By combining these simple hypotheses within the internal model framework, the model mimics human responses to a number of different paradigms, ranging from simple paradigms, like roll tilt, to complex paradigms, like postrotational tilt and centrifugation. It is important to note that the exact same mechanisms can explain responses induced by simple movements as well as by more complex paradigms; no additional elements or hypotheses are needed to match the data obtained during more complex paradigms. Therefore these modeled response characteristics are consistent with available data and with the hypothesis that the nervous system uses internal models to estimate tilt and translation in the presence of ambiguous sensory cues.
Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02114 Merfeld, D. M. and L. H. Zupan. Neural Processing of Gravitoinertial Cues in Humans. III. Modeling Tilt and Translation Responses. J. Neurophysiol. 87: 819-833, 2002. All linear accelerometers measure gravitoinertial force, which is the sum of gravitational force (tilt) and inertial force due to linear acceleration (translation). Neural strategies must exist to elicit tilt and translation responses from this ambiguous cue. To investigate these neural processes, we developed a model of human responses and simulated a number of motion paradigms used to investigate this tilt/translation ambiguity. In this model, the separation of GIF into neural estimates of gravity and linear acceleration is accomplished via an internal model made up of three principal components: 1 ) the influence of rotational cues (e.g., semicircular canals) on the neural representation of gravity, 2 ) the resolution of gravitoinertial force into neural representations of gravity and linear acceleration, and 3 ) the neural representation of the dynamics of the semicircular canals. By combining these simple hypotheses within the internal model framework, the model mimics human responses to a number of different paradigms, ranging from simple paradigms, like roll tilt, to complex paradigms, like postrotational tilt and centrifugation. It is important to note that the exact same mechanisms can explain responses induced by simple movements as well as by more complex paradigms; no additional elements or hypotheses are needed to match the data obtained during more complex paradigms. Therefore these modeled response characteristics are consistent with available data and with the hypothesis that the nervous system uses internal models to estimate tilt and translation in the presence of ambiguous sensory cues.
All linear accelerometers measure gravitoinertial force, which is the sum of gravitational force (tilt) and intertial force due to linear acceleration (translation). Neural strategies must exist to elicit tilt and translation responses from this ambiguous cue. To investigate these neural processes, we developed a model of human responses and simulated a number of motion paradigms used to investigate this tilt/translation ambiguity. In this model, the separation of GIF into neural estimates of gravity and linear acceleration is accomplished via an internal model made up of three principal components: 1) the influence of rotational cues (e.g., semicircular canals) on the neural representation of gravity, 2) the resolution of gravitoinertial force into neural representations of gravity and linear acceleration, and 3) the neural representation of the dynamics of the semicircular canals. By combining these simple hypotheses within the internal model framework, the model mimics human responses to a number of different paradigms, ranging from simple paradigms, like roll tilt, to complex paradigms, like postrotational tilt and centrifugation. It is important to note that the exact same mechanisms can explain responses induced by simple movements as well as by more complex paradigms; no additional elements or hypotheses are needed to match the data obtained during more complex paradigms. Therefore these modeled response characteristics are consistent with available data and with the hypothesis that the nervous system uses internal models to estimate tilt and translation in the presence of ambiguous sensory cues.
Author Zupan, L. H
Merfeld, D. M
Author_xml – sequence: 1
  fullname: Merfeld, D. M
– sequence: 2
  fullname: Zupan, L. H
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11826049$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtv2zAQhIkiQeOkPfYa8JSblCX1IHUMjDwMJGlQuGeCklY2DZpUSamt_32lxEVORU8kON_MLuecnDjvkJAvDFLGCn69cylALouUA7APZDG98YQVlTwhC4DpnoEQZ-Q8xh0AiAL4R3LGmOQl5NWC6Gccg7b0JfgGYzRuQ31H74P-aQZvHIbBTOpyxEiNow_jXruY0tVqldIn36KdDWtjB6pdS9dhUq0ejHf0G8beu4jxEznttI34-XhekO93t-vlQ_L49X61vHlMmryEIeGl4LrkmEkhmOZ1W3W6q3MudS5EziADkIKXbV2xmqGsm4x3VdlgXXQgEHh2Qa7ecvvgf0z7DmpvYoPWaod-jEqwPCunX_8XZDIrpcjnxOQNbIKPMWCn-mD2OhwUAzWXr3ZOvZav5vIn_vIYPNZ7bN_pY9vvk7dms_1lAqp-e4jGW785zFlSKK4km0H-b_ButHaNv4fJ8deg-rbL_gC146B8
CitedBy_id crossref_primary_10_1152_jn_00116_2009
crossref_primary_10_1523_JNEUROSCI_1148_22_2023
crossref_primary_10_4236_jtts_2017_73022
crossref_primary_10_1177_1071181319631027
crossref_primary_10_1113_EP091817
crossref_primary_10_1016_j_visres_2003_11_016
crossref_primary_10_3389_fneur_2017_00578
crossref_primary_10_1016_j_actaastro_2018_09_010
crossref_primary_10_1098_rspa_2018_0010
crossref_primary_10_1371_journal_pone_0136925
crossref_primary_10_1146_annurev_neuro_31_060407_125555
crossref_primary_10_1007_s00221_005_2323_9
crossref_primary_10_3389_fnins_2023_1274949
crossref_primary_10_1155_2014_615854
crossref_primary_10_1111_cgf_13377
crossref_primary_10_1152_jn_00513_2001
crossref_primary_10_1152_jn_00516_2003
crossref_primary_10_1371_journal_pone_0154528
crossref_primary_10_1007_s00422_009_0347_0
crossref_primary_10_1152_jn_00047_2004
crossref_primary_10_1152_jn_91247_2008
crossref_primary_10_1007_s00221_007_1072_3
crossref_primary_10_3182_20100831_4_FR_2021_00045
crossref_primary_10_1113_JP278642
crossref_primary_10_1152_jn_00704_2007
crossref_primary_10_1152_jn_01338_2006
crossref_primary_10_1038_nrn1804
crossref_primary_10_1016_j_neures_2006_10_010
crossref_primary_10_1007_s00405_009_0927_6
crossref_primary_10_1523_JNEUROSCI_2116_17_2018
crossref_primary_10_1152_jn_00383_2004
crossref_primary_10_1152_jn_00118_2009
crossref_primary_10_7210_jrsj_27_1123
crossref_primary_10_1152_jn_00856_2005
crossref_primary_10_1152_jn_00518_2002
crossref_primary_10_1177_1071181320641176
crossref_primary_10_1007_s00221_021_06123_7
crossref_primary_10_1007_s00221_011_2612_4
crossref_primary_10_1038_nature02754
crossref_primary_10_1007_s00221_006_0434_6
crossref_primary_10_1016_j_jphysparis_2009_08_001
crossref_primary_10_1152_jn_00613_2005
crossref_primary_10_1152_jn_00147_2005
crossref_primary_10_3389_fncir_2021_757817
crossref_primary_10_1007_s00415_015_7914_1
crossref_primary_10_1007_s00422_006_0099_z
crossref_primary_10_1016_j_mehy_2005_01_033
crossref_primary_10_1152_jn_00274_2021
crossref_primary_10_3389_fnint_2021_773008
crossref_primary_10_1016_j_jsse_2022_05_001
crossref_primary_10_3233_VES_180636
crossref_primary_10_1007_s00221_008_1540_4
crossref_primary_10_1152_jn_00710_2017
crossref_primary_10_1152_jn_01234_2003
crossref_primary_10_1073_pnas_2025061118
crossref_primary_10_1016_j_trf_2018_02_019
crossref_primary_10_4271_2021_01_0104
crossref_primary_10_1007_s00221_009_2054_4
crossref_primary_10_1111_j_1749_6632_2009_03939_x
crossref_primary_10_20485_jsaeijae_8_2_37
crossref_primary_10_1088_1741_2560_2_3_S03
crossref_primary_10_1088_1741_2560_2_3_S02
crossref_primary_10_1088_1741_2560_2_3_S01
crossref_primary_10_1007_s00221_014_3973_2
crossref_primary_10_3389_fneur_2023_1265889
crossref_primary_10_1109_ACCESS_2023_3326809
crossref_primary_10_1152_jn_00655_2006
crossref_primary_10_1016_j_neuron_2007_06_003
crossref_primary_10_1152_jn_00905_2004
crossref_primary_10_1016_j_visres_2003_10_009
crossref_primary_10_1007_s00221_011_2588_0
crossref_primary_10_1152_jn_00013_2006
crossref_primary_10_1152_jn_00904_2009
crossref_primary_10_1152_jn_01163_2005
crossref_primary_10_1007_s12311_009_0147_z
crossref_primary_10_1152_jn_00224_2023
crossref_primary_10_3389_fncir_2023_1190582
crossref_primary_10_1152_jn_00883_2011
crossref_primary_10_1152_jn_00904_2004
crossref_primary_10_1016_j_cub_2005_08_009
crossref_primary_10_1016_j_displa_2019_03_004
crossref_primary_10_20485_jsaeijae_9_1_1
crossref_primary_10_3389_fneur_2022_880714
crossref_primary_10_1523_JNEUROSCI_2232_08_2008
crossref_primary_10_1152_jn_01333_2006
crossref_primary_10_1196_annals_1325_030
crossref_primary_10_1152_jn_00879_2004
crossref_primary_10_1152_jn_00451_2011
crossref_primary_10_1007_s00221_007_1137_3
crossref_primary_10_1152_jn_00406_2022
crossref_primary_10_1017_S0140525X12002476
crossref_primary_10_1007_s00221_007_1058_1
crossref_primary_10_1371_journal_pone_0227040
crossref_primary_10_1152_jn_01012_2007
crossref_primary_10_1007_s00221_006_0761_7
crossref_primary_10_1007_s00221_006_0387_9
crossref_primary_10_1152_jn_00095_2014
crossref_primary_10_1196_annals_1325_043
crossref_primary_10_3389_fneur_2018_00892
crossref_primary_10_1016_j_mechmachtheory_2019_04_003
crossref_primary_10_1523_JNEUROSCI_23_28_09265_2003
crossref_primary_10_1152_jn_00174_2004
Cites_doi 10.1152/jn.1994.71.3.1222
10.1007/BF02738407
10.1016/S0959-4388(99)00029-X
10.1152/jn.1997.78.4.1775
10.1111/j.1749-6632.1992.tb25257.x
10.1152/jn.1983.49.1.134
10.1109/10.362914
10.1152/jn.1991.65.5.1170
10.3109/00016489509125269
10.1016/0361-9230(96)00134-7
10.1152/jn.1984.51.2.210
10.1007/BF00228508
10.2307/1419995
10.1152/jn.1971.34.4.635
10.1152/jn.2001.85.4.1648
10.1159/000113352
10.1007/978-3-642-65920-1_14
10.1016/S0079-6123(08)61209-1
10.1126/science.178.4066.1217
10.1152/jn.1986.56.2.439
10.1152/jn.1999.81.5.2175
10.1007/s004220050285
10.1523/JNEUROSCI.19-01-00316.1999
10.1152/jn.1976.39.5.970
10.1007/s002210050456
10.1111/j.1749-6632.1992.tb25212.x
10.1007/s002210050587
10.1007/BF00589914
10.1007/BF00230020
10.1152/jn.1991.66.4.1410
10.1159/000113822
10.1152/jn.1976.39.5.996
10.3109/00016487709128843
10.1016/0361-9230(96)00122-0
10.3109/00016487009181874
10.1007/s002210050346
10.1037/h0055479
10.1038/19303
10.1007/BF00231789
10.1007/s002210000364
10.1111/j.1749-6632.1981.tb30859.x
10.1111/j.1749-6632.2001.tb03739.x
10.1016/0025-5564(77)90032-3
10.2307/1420878
10.1152/jn.2000.84.4.2001
10.1152/jn.1971.34.4.661
10.1016/S0957-4271(97)00040-2
10.1038/32648
10.1152/jn.1991.66.3.851
10.1126/science.2506641
10.1007/BF00236613
10.1152/jn.1998.80.4.2222
10.1126/science.1188373
10.1152/jn.1988.60.6.2091
10.1152/jn.1993.70.6.2647
10.1007/BF00622503
10.1152/jn.1999.82.4.2010
10.1126/science.7569931
10.1111/j.1749-6632.1992.tb25272.x
10.1080/00221309.1951.9918275
10.1007/BF00318429
10.1152/jn.1999.81.1.394
10.1007/BF00227269
10.1162/neco.1997.9.4.721
10.1007/BF00249611
10.1007/s004220050543
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
DOI 10.1152/jn.00485.2001
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic

Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 833
ExternalDocumentID 10_1152_jn_00485_2001
11826049
jn_87_2_819
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: DC 03066
– fundername: NIDCD NIH HHS
  grantid: DC 04158
GroupedDBID -
08R
0VX
1Z7
2WC
39C
3O-
41
53G
55
5GY
5VS
AALRV
ABFLS
ABIVO
ABPTK
ABUFD
ABZEH
ACGFS
ACNCT
ADACO
ADBBV
ADBIT
ADKLL
AENEX
AETEA
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FH7
FRP
GJ
GX1
H~9
KQ8
L7B
MVM
NEJ
O0-
OHT
OK1
P2P
RAP
RHF
RHI
RPL
SJN
UHB
UPT
UQL
VH1
WH7
WOQ
WOW
X
X7M
ZA5
ZGI
ZXP
ZY4
---
-DZ
-~X
.55
.GJ
18M
1CY
29L
4.4
41~
476
8M5
ABCQX
ABJNI
ABKWE
ABTAH
ACGFO
ADFNX
ADIYS
AFOSN
AI.
AIZAD
BKKCC
BTFSW
CGR
CUY
CVF
ECM
EIF
EMOBN
H13
ITBOX
NPM
RPRKH
TR2
W8F
XJT
XOL
XSW
YBH
YQT
YSK
AAYXX
CITATION
7TK
7X8
ID FETCH-LOGICAL-c460t-2672a62e38771a2bd9fafb428a4774103008726db91b1e8bc32f96ceb5f07e023
ISSN 0022-3077
IngestDate Fri Oct 25 06:28:03 EDT 2024
Fri Oct 25 11:09:55 EDT 2024
Thu Sep 26 15:46:19 EDT 2024
Sat Sep 28 08:46:57 EDT 2024
Tue Jan 05 17:53:13 EST 2021
Mon May 06 11:51:48 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Non-programmatic
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c460t-2672a62e38771a2bd9fafb428a4774103008726db91b1e8bc32f96ceb5f07e023
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 11826049
PQID 18368742
PQPubID 23462
PageCount 15
ParticipantIDs proquest_miscellaneous_71436260
pubmed_primary_11826049
crossref_primary_10_1152_jn_00485_2001
highwire_physiology_jn_87_2_819
proquest_miscellaneous_18368742
PublicationCentury 2000
PublicationDate 2002-02-01
PublicationDateYYYYMMDD 2002-02-01
PublicationDate_xml – month: 02
  year: 2002
  text: 2002-02-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2002
Publisher Am Phys Soc
Publisher_xml – name: Am Phys Soc
References B20
B21
B65
B22
B66
B23
B67
B24
Holly JE (B36) 2000; 10
B68
B25
B69
B26
B27
B29
Mayne R (B40) 1974
Zhou W (B83) 2000; 26
B70
B71
B72
B73
B30
B74
B31
B75
B32
B76
B33
B77
B34
B78
B35
B79
B37
B39
B1
B2
B3
Merfeld DM (B48) 1995; 106
B4
B5
B9
B80
B41
B42
B86
B44
B49
Benson A (B8) 1966; 37
Merfeld DM (B47) 1993; 3
B50
B51
Lansberg M (B38) 1965; 36
B53
B54
B11
Droulez J (B19) 1989
B55
B12
B56
B13
B57
B14
B58
B15
B59
B16
Merfeld DM (B46) 1993; 3
B17
Zhou W (B82) 1998; 24
B18
B60
B62
Merfeld DM (B45) 1995; 106
B63
References_xml – ident: B1
  doi: 10.1152/jn.1994.71.3.1222
– ident: B11
  doi: 10.1007/BF02738407
– ident: B51
  doi: 10.1016/S0959-4388(99)00029-X
– ident: B71
  doi: 10.1152/jn.1997.78.4.1775
– ident: B41
  doi: 10.1111/j.1749-6632.1992.tb25257.x
– volume: 37
  start-page: 889
  year: 1966
  ident: B8
  publication-title: Aerospace Med
  contributor:
    fullname: Benson A
– ident: B57
  doi: 10.1152/jn.1983.49.1.134
– ident: B37
  doi: 10.1109/10.362914
– ident: B56
  doi: 10.1152/jn.1991.65.5.1170
– ident: B44
  doi: 10.3109/00016489509125269
– volume: 26
  start-page: 1491
  year: 2000
  ident: B83
  publication-title: Soc Neurosci Abstr
  contributor:
    fullname: Zhou W
– ident: B14
  doi: 10.1016/0361-9230(96)00134-7
– ident: B26
  doi: 10.1152/jn.1984.51.2.210
– ident: B65
  doi: 10.1007/BF00228508
– ident: B12
  doi: 10.2307/1419995
– ident: B29
  doi: 10.1152/jn.1971.34.4.635
– ident: B49
  doi: 10.1152/jn.2001.85.4.1648
– ident: B5
  doi: 10.1159/000113352
– start-page: 493
  year: 1974
  ident: B40
  publication-title: Handbook of Sensory Physiology, Vestibular System, Part 2: Psychophysics, Applied Aspects and General Interpretation
  doi: 10.1007/978-3-642-65920-1_14
  contributor:
    fullname: Mayne R
– volume: 106
  start-page: 123
  year: 1995
  ident: B45
  publication-title: Exp Brain Res
  doi: 10.1016/S0079-6123(08)61209-1
  contributor:
    fullname: Merfeld DM
– volume: 3
  start-page: 141
  year: 1993
  ident: B46
  publication-title: J Vestib Res
  contributor:
    fullname: Merfeld DM
– ident: B18
  doi: 10.1126/science.178.4066.1217
– ident: B73
  doi: 10.1152/jn.1986.56.2.439
– volume: 10
  start-page: 163
  year: 2000
  ident: B36
  publication-title: J Vestib Res
  contributor:
    fullname: Holly JE
– ident: B76
  doi: 10.1152/jn.1999.81.5.2175
– ident: B17
  doi: 10.1007/s004220050285
– ident: B2
  doi: 10.1523/JNEUROSCI.19-01-00316.1999
– ident: B21
  doi: 10.1152/jn.1976.39.5.970
– ident: B39
  doi: 10.1007/s002210050456
– ident: B72
  doi: 10.1111/j.1749-6632.1992.tb25212.x
– ident: B16
  doi: 10.1007/s002210050587
– ident: B74
  doi: 10.1007/BF00589914
– volume: 24
  start-page: 1744
  year: 1998
  ident: B82
  publication-title: Soc Neurosci Abstr
  contributor:
    fullname: Zhou W
– ident: B25
  doi: 10.1007/BF00230020
– ident: B63
  doi: 10.1152/jn.1991.66.4.1410
– ident: B58
  doi: 10.1159/000113822
– start-page: 495
  year: 1989
  ident: B19
  publication-title: Attention and Performance
  contributor:
    fullname: Droulez J
– ident: B22
  doi: 10.1152/jn.1976.39.5.996
– ident: B15
  doi: 10.3109/00016487709128843
– ident: B23
  doi: 10.1016/0361-9230(96)00122-0
– ident: B70
  doi: 10.3109/00016487009181874
– ident: B68
  doi: 10.1007/s002210050346
– ident: B69
  doi: 10.1037/h0055479
– ident: B42
  doi: 10.1038/19303
– ident: B34
  doi: 10.1007/BF00231789
– ident: B3
  doi: 10.1007/s002210000364
– volume: 36
  start-page: 456
  year: 1965
  ident: B38
  publication-title: Aerospace Med
  contributor:
    fullname: Lansberg M
– ident: B60
  doi: 10.1111/j.1749-6632.1981.tb30859.x
– ident: B4
  doi: 10.1111/j.1749-6632.2001.tb03739.x
– ident: B54
  doi: 10.1016/0025-5564(77)90032-3
– ident: B13
  doi: 10.2307/1420878
– ident: B86
  doi: 10.1152/jn.2000.84.4.2001
– ident: B20
  doi: 10.1152/jn.1971.34.4.661
– ident: B53
  doi: 10.1016/S0957-4271(97)00040-2
– ident: B78
  doi: 10.1038/32648
– ident: B67
  doi: 10.1152/jn.1991.66.3.851
– ident: B66
  doi: 10.1126/science.2506641
– volume: 106
  start-page: 111
  year: 1995
  ident: B48
  publication-title: Exp Brain Res
  contributor:
    fullname: Merfeld DM
– ident: B62
  doi: 10.1007/BF00236613
– ident: B32
  doi: 10.1152/jn.1998.80.4.2222
– volume: 3
  start-page: 123
  year: 1993
  ident: B47
  publication-title: J Vestib Res
  contributor:
    fullname: Merfeld DM
– ident: B80
  doi: 10.1126/science.1188373
– ident: B30
  doi: 10.1152/jn.1988.60.6.2091
– ident: B79
  doi: 10.1152/jn.1993.70.6.2647
– ident: B75
  doi: 10.1007/BF00622503
– ident: B50
  doi: 10.1152/jn.1999.82.4.2010
– ident: B77
  doi: 10.1126/science.7569931
– ident: B27
  doi: 10.1111/j.1749-6632.1992.tb25272.x
– ident: B31
  doi: 10.1080/00221309.1951.9918275
– ident: B33
  doi: 10.1007/BF00318429
– ident: B35
  doi: 10.1152/jn.1999.81.1.394
– ident: B24
  doi: 10.1007/BF00227269
– ident: B59
  doi: 10.1162/neco.1997.9.4.721
– ident: B55
  doi: 10.1007/BF00249611
– ident: B9
  doi: 10.1007/s004220050543
SSID ssj0007502
Score 2.1517854
Snippet Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston,...
All linear accelerometers measure gravitoinertial force, which is the sum of gravitational force (tilt) and inertial force due to linear acceleration...
All linear accelerometers measure gravitoinertial force, which is the sum of gravitational force (tilt) and intertial force due to linear acceleration...
SourceID proquest
crossref
pubmed
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 819
SubjectTerms Acceleration
Animals
Brain - physiology
Centrifugation
Computer Simulation
Gravity Sensing - physiology
Haplorhini
Humans
Models, Neurological
Semicircular Canals - physiology
Space life sciences
Title Neural Processing of Gravitoinertial Cues in Humans. III. Modeling Tilt and Translation Responses
URI http://jn.physiology.org/cgi/content/abstract/87/2/819
https://www.ncbi.nlm.nih.gov/pubmed/11826049
https://search.proquest.com/docview/18368742
https://search.proquest.com/docview/71436260
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBaje9nLWNddsqseRl-CPVv1RXks3SXZ6Ngghb4JSZYgZXNC6hS2X79zZMmO2xS6vZhgFNnW9_ncfHQOIe8KlWrUm5Hkhkeg8ZMIrJAkKiuWAZ9A57g-ZKffiulZ9uU8P-_zdN3ukkbF-s_OfSX_gyqcA1xxl-w_INtNCifgN-ALR0AYjnfCGCtrwBL7ZH-fv_x5La_gNcVNfQ2Gw082LueqDddfxuPZbBa7FmhuI_p88bPNMXdKq02Mw5g-Js769MKbpqsrguliIoOg_KlZW9_w-gNcIu6C0puV3-EQj6fxIM7AQmqyHeT9J77pivHiEs6BQcS35alXoIstt7YVjtwLR69n2wIYN0V4jiVhL-oYhUuOHnza66rwff6aCusSC51LkzNxUQv3d-yyCb7xfQZiCOXf1x99LXmwlfpa8vBcoQJrzt4Prj60WEIV6ds9EmeZzB-Rhx4XetzyY5_cM_VjcnBcy2b56zc9pN87oA6IbClDe8rQpaXXKEORMnRRU08ZipShgTIUKUOBMnSLMrSjzBNy9unj_GQa-S4bkc6KpIlYUTJZMHPEyzKVTFUTK60Cr1Rm4BpgF7qEl6yo1CRVqeFKHzE7KbRRuU1KAybfU7JXL2vznFButbVg9CmNbRlyMIW5tUyqgvFUV9qOyGFYSbFqi6mInYiNyDiss-jZLDAqMwfAYTAvBRNAKLGqYNq3u0bDjGEUjAhgCRCf-E1M1ma5uRSg0QpeZuz2ESV4FOj1j8izFuX-1tE3Bw_7xV0f6yV50L9Zr8hes96Y12DTNuqNo-ZfVWmfWw
link.rule.ids 315,783,787,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Processing+of+Gravitoinertial+Cues+in+Humans.+III.+Modeling+Tilt+and+Translation+Responses&rft.jtitle=Journal+of+neurophysiology&rft.au=Merfeld%2C+D.+M.&rft.au=Zupan%2C+L.+H.&rft.date=2002-02-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=87&rft.issue=2&rft.spage=819&rft.epage=833&rft_id=info:doi/10.1152%2Fjn.00485.2001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_00485_2001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon