Neural Processing of Gravitoinertial Cues in Humans. III. Modeling Tilt and Translation Responses
Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02114 Merfeld, D. M. and L. H. Zupan. Neural Processing of Gravitoinertial Cues in Humans. III. Modeling Tilt and Translation Responses. J...
Saved in:
Published in | Journal of neurophysiology Vol. 87; no. 2; pp. 819 - 833 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Am Phys Soc
01.02.2002
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear
Infirmary, Department of Otology and Laryngology, Harvard Medical
School, Boston, Massachusetts 02114
Merfeld, D. M. and
L. H. Zupan.
Neural Processing of Gravitoinertial Cues in Humans. III.
Modeling Tilt and Translation Responses. J. Neurophysiol. 87: 819-833, 2002. All linear accelerometers measure
gravitoinertial force, which is the sum of gravitational force (tilt)
and inertial force due to linear acceleration (translation). Neural
strategies must exist to elicit tilt and translation responses from
this ambiguous cue. To investigate these neural processes, we developed
a model of human responses and simulated a number of motion paradigms used to investigate this tilt/translation ambiguity. In this model, the
separation of GIF into neural estimates of gravity and linear acceleration is accomplished via an internal model made up of three
principal components: 1 ) the influence of rotational
cues (e.g., semicircular canals) on the neural representation of
gravity, 2 ) the resolution of gravitoinertial force into
neural representations of gravity and linear acceleration, and
3 ) the neural representation of the dynamics of the
semicircular canals. By combining these simple hypotheses within the
internal model framework, the model mimics human responses to a number
of different paradigms, ranging from simple paradigms, like roll tilt,
to complex paradigms, like postrotational tilt and centrifugation. It
is important to note that the exact same mechanisms can explain
responses induced by simple movements as well as by more complex
paradigms; no additional elements or hypotheses are needed to match the
data obtained during more complex paradigms. Therefore these modeled
response characteristics are consistent with available data and with
the hypothesis that the nervous system uses internal models to estimate
tilt and translation in the presence of ambiguous sensory cues. |
---|---|
AbstractList | All linear accelerometers measure gravitoinertial force, which is the sum of gravitational force (tilt) and inertial force due to linear acceleration (translation). Neural strategies must exist to elicit tilt and translation responses from this ambiguous cue. To investigate these neural processes, we developed a model of human responses and simulated a number of motion paradigms used to investigate this tilt/translation ambiguity. In this model, the separation of GIF into neural estimates of gravity and linear acceleration is accomplished via an internal model made up of three principal components: 1) the influence of rotational cues (e.g., semicircular canals) on the neural representation of gravity, 2) the resolution of gravitoinertial force into neural representations of gravity and linear acceleration, and 3) the neural representation of the dynamics of the semicircular canals. By combining these simple hypotheses within the internal model framework, the model mimics human responses to a number of different paradigms, ranging from simple paradigms, like roll tilt, to complex paradigms, like postrotational tilt and centrifugation. It is important to note that the exact same mechanisms can explain responses induced by simple movements as well as by more complex paradigms; no additional elements or hypotheses are needed to match the data obtained during more complex paradigms. Therefore these modeled response characteristics are consistent with available data and with the hypothesis that the nervous system uses internal models to estimate tilt and translation in the presence of ambiguous sensory cues. Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02114 Merfeld, D. M. and L. H. Zupan. Neural Processing of Gravitoinertial Cues in Humans. III. Modeling Tilt and Translation Responses. J. Neurophysiol. 87: 819-833, 2002. All linear accelerometers measure gravitoinertial force, which is the sum of gravitational force (tilt) and inertial force due to linear acceleration (translation). Neural strategies must exist to elicit tilt and translation responses from this ambiguous cue. To investigate these neural processes, we developed a model of human responses and simulated a number of motion paradigms used to investigate this tilt/translation ambiguity. In this model, the separation of GIF into neural estimates of gravity and linear acceleration is accomplished via an internal model made up of three principal components: 1 ) the influence of rotational cues (e.g., semicircular canals) on the neural representation of gravity, 2 ) the resolution of gravitoinertial force into neural representations of gravity and linear acceleration, and 3 ) the neural representation of the dynamics of the semicircular canals. By combining these simple hypotheses within the internal model framework, the model mimics human responses to a number of different paradigms, ranging from simple paradigms, like roll tilt, to complex paradigms, like postrotational tilt and centrifugation. It is important to note that the exact same mechanisms can explain responses induced by simple movements as well as by more complex paradigms; no additional elements or hypotheses are needed to match the data obtained during more complex paradigms. Therefore these modeled response characteristics are consistent with available data and with the hypothesis that the nervous system uses internal models to estimate tilt and translation in the presence of ambiguous sensory cues. All linear accelerometers measure gravitoinertial force, which is the sum of gravitational force (tilt) and intertial force due to linear acceleration (translation). Neural strategies must exist to elicit tilt and translation responses from this ambiguous cue. To investigate these neural processes, we developed a model of human responses and simulated a number of motion paradigms used to investigate this tilt/translation ambiguity. In this model, the separation of GIF into neural estimates of gravity and linear acceleration is accomplished via an internal model made up of three principal components: 1) the influence of rotational cues (e.g., semicircular canals) on the neural representation of gravity, 2) the resolution of gravitoinertial force into neural representations of gravity and linear acceleration, and 3) the neural representation of the dynamics of the semicircular canals. By combining these simple hypotheses within the internal model framework, the model mimics human responses to a number of different paradigms, ranging from simple paradigms, like roll tilt, to complex paradigms, like postrotational tilt and centrifugation. It is important to note that the exact same mechanisms can explain responses induced by simple movements as well as by more complex paradigms; no additional elements or hypotheses are needed to match the data obtained during more complex paradigms. Therefore these modeled response characteristics are consistent with available data and with the hypothesis that the nervous system uses internal models to estimate tilt and translation in the presence of ambiguous sensory cues. |
Author | Zupan, L. H Merfeld, D. M |
Author_xml | – sequence: 1 fullname: Merfeld, D. M – sequence: 2 fullname: Zupan, L. H |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11826049$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtv2zAQhIkiQeOkPfYa8JSblCX1IHUMjDwMJGlQuGeCklY2DZpUSamt_32lxEVORU8kON_MLuecnDjvkJAvDFLGCn69cylALouUA7APZDG98YQVlTwhC4DpnoEQZ-Q8xh0AiAL4R3LGmOQl5NWC6Gccg7b0JfgGYzRuQ31H74P-aQZvHIbBTOpyxEiNow_jXruY0tVqldIn36KdDWtjB6pdS9dhUq0ejHf0G8beu4jxEznttI34-XhekO93t-vlQ_L49X61vHlMmryEIeGl4LrkmEkhmOZ1W3W6q3MudS5EziADkIKXbV2xmqGsm4x3VdlgXXQgEHh2Qa7ecvvgf0z7DmpvYoPWaod-jEqwPCunX_8XZDIrpcjnxOQNbIKPMWCn-mD2OhwUAzWXr3ZOvZav5vIn_vIYPNZ7bN_pY9vvk7dms_1lAqp-e4jGW785zFlSKK4km0H-b_ButHaNv4fJ8deg-rbL_gC146B8 |
CitedBy_id | crossref_primary_10_1152_jn_00116_2009 crossref_primary_10_1523_JNEUROSCI_1148_22_2023 crossref_primary_10_4236_jtts_2017_73022 crossref_primary_10_1177_1071181319631027 crossref_primary_10_1113_EP091817 crossref_primary_10_1016_j_visres_2003_11_016 crossref_primary_10_3389_fneur_2017_00578 crossref_primary_10_1016_j_actaastro_2018_09_010 crossref_primary_10_1098_rspa_2018_0010 crossref_primary_10_1371_journal_pone_0136925 crossref_primary_10_1146_annurev_neuro_31_060407_125555 crossref_primary_10_1007_s00221_005_2323_9 crossref_primary_10_3389_fnins_2023_1274949 crossref_primary_10_1155_2014_615854 crossref_primary_10_1111_cgf_13377 crossref_primary_10_1152_jn_00513_2001 crossref_primary_10_1152_jn_00516_2003 crossref_primary_10_1371_journal_pone_0154528 crossref_primary_10_1007_s00422_009_0347_0 crossref_primary_10_1152_jn_00047_2004 crossref_primary_10_1152_jn_91247_2008 crossref_primary_10_1007_s00221_007_1072_3 crossref_primary_10_3182_20100831_4_FR_2021_00045 crossref_primary_10_1113_JP278642 crossref_primary_10_1152_jn_00704_2007 crossref_primary_10_1152_jn_01338_2006 crossref_primary_10_1038_nrn1804 crossref_primary_10_1016_j_neures_2006_10_010 crossref_primary_10_1007_s00405_009_0927_6 crossref_primary_10_1523_JNEUROSCI_2116_17_2018 crossref_primary_10_1152_jn_00383_2004 crossref_primary_10_1152_jn_00118_2009 crossref_primary_10_7210_jrsj_27_1123 crossref_primary_10_1152_jn_00856_2005 crossref_primary_10_1152_jn_00518_2002 crossref_primary_10_1177_1071181320641176 crossref_primary_10_1007_s00221_021_06123_7 crossref_primary_10_1007_s00221_011_2612_4 crossref_primary_10_1038_nature02754 crossref_primary_10_1007_s00221_006_0434_6 crossref_primary_10_1016_j_jphysparis_2009_08_001 crossref_primary_10_1152_jn_00613_2005 crossref_primary_10_1152_jn_00147_2005 crossref_primary_10_3389_fncir_2021_757817 crossref_primary_10_1007_s00415_015_7914_1 crossref_primary_10_1007_s00422_006_0099_z crossref_primary_10_1016_j_mehy_2005_01_033 crossref_primary_10_1152_jn_00274_2021 crossref_primary_10_3389_fnint_2021_773008 crossref_primary_10_1016_j_jsse_2022_05_001 crossref_primary_10_3233_VES_180636 crossref_primary_10_1007_s00221_008_1540_4 crossref_primary_10_1152_jn_00710_2017 crossref_primary_10_1152_jn_01234_2003 crossref_primary_10_1073_pnas_2025061118 crossref_primary_10_1016_j_trf_2018_02_019 crossref_primary_10_4271_2021_01_0104 crossref_primary_10_1007_s00221_009_2054_4 crossref_primary_10_1111_j_1749_6632_2009_03939_x crossref_primary_10_20485_jsaeijae_8_2_37 crossref_primary_10_1088_1741_2560_2_3_S03 crossref_primary_10_1088_1741_2560_2_3_S02 crossref_primary_10_1088_1741_2560_2_3_S01 crossref_primary_10_1007_s00221_014_3973_2 crossref_primary_10_3389_fneur_2023_1265889 crossref_primary_10_1109_ACCESS_2023_3326809 crossref_primary_10_1152_jn_00655_2006 crossref_primary_10_1016_j_neuron_2007_06_003 crossref_primary_10_1152_jn_00905_2004 crossref_primary_10_1016_j_visres_2003_10_009 crossref_primary_10_1007_s00221_011_2588_0 crossref_primary_10_1152_jn_00013_2006 crossref_primary_10_1152_jn_00904_2009 crossref_primary_10_1152_jn_01163_2005 crossref_primary_10_1007_s12311_009_0147_z crossref_primary_10_1152_jn_00224_2023 crossref_primary_10_3389_fncir_2023_1190582 crossref_primary_10_1152_jn_00883_2011 crossref_primary_10_1152_jn_00904_2004 crossref_primary_10_1016_j_cub_2005_08_009 crossref_primary_10_1016_j_displa_2019_03_004 crossref_primary_10_20485_jsaeijae_9_1_1 crossref_primary_10_3389_fneur_2022_880714 crossref_primary_10_1523_JNEUROSCI_2232_08_2008 crossref_primary_10_1152_jn_01333_2006 crossref_primary_10_1196_annals_1325_030 crossref_primary_10_1152_jn_00879_2004 crossref_primary_10_1152_jn_00451_2011 crossref_primary_10_1007_s00221_007_1137_3 crossref_primary_10_1152_jn_00406_2022 crossref_primary_10_1017_S0140525X12002476 crossref_primary_10_1007_s00221_007_1058_1 crossref_primary_10_1371_journal_pone_0227040 crossref_primary_10_1152_jn_01012_2007 crossref_primary_10_1007_s00221_006_0761_7 crossref_primary_10_1007_s00221_006_0387_9 crossref_primary_10_1152_jn_00095_2014 crossref_primary_10_1196_annals_1325_043 crossref_primary_10_3389_fneur_2018_00892 crossref_primary_10_1016_j_mechmachtheory_2019_04_003 crossref_primary_10_1523_JNEUROSCI_23_28_09265_2003 crossref_primary_10_1152_jn_00174_2004 |
Cites_doi | 10.1152/jn.1994.71.3.1222 10.1007/BF02738407 10.1016/S0959-4388(99)00029-X 10.1152/jn.1997.78.4.1775 10.1111/j.1749-6632.1992.tb25257.x 10.1152/jn.1983.49.1.134 10.1109/10.362914 10.1152/jn.1991.65.5.1170 10.3109/00016489509125269 10.1016/0361-9230(96)00134-7 10.1152/jn.1984.51.2.210 10.1007/BF00228508 10.2307/1419995 10.1152/jn.1971.34.4.635 10.1152/jn.2001.85.4.1648 10.1159/000113352 10.1007/978-3-642-65920-1_14 10.1016/S0079-6123(08)61209-1 10.1126/science.178.4066.1217 10.1152/jn.1986.56.2.439 10.1152/jn.1999.81.5.2175 10.1007/s004220050285 10.1523/JNEUROSCI.19-01-00316.1999 10.1152/jn.1976.39.5.970 10.1007/s002210050456 10.1111/j.1749-6632.1992.tb25212.x 10.1007/s002210050587 10.1007/BF00589914 10.1007/BF00230020 10.1152/jn.1991.66.4.1410 10.1159/000113822 10.1152/jn.1976.39.5.996 10.3109/00016487709128843 10.1016/0361-9230(96)00122-0 10.3109/00016487009181874 10.1007/s002210050346 10.1037/h0055479 10.1038/19303 10.1007/BF00231789 10.1007/s002210000364 10.1111/j.1749-6632.1981.tb30859.x 10.1111/j.1749-6632.2001.tb03739.x 10.1016/0025-5564(77)90032-3 10.2307/1420878 10.1152/jn.2000.84.4.2001 10.1152/jn.1971.34.4.661 10.1016/S0957-4271(97)00040-2 10.1038/32648 10.1152/jn.1991.66.3.851 10.1126/science.2506641 10.1007/BF00236613 10.1152/jn.1998.80.4.2222 10.1126/science.1188373 10.1152/jn.1988.60.6.2091 10.1152/jn.1993.70.6.2647 10.1007/BF00622503 10.1152/jn.1999.82.4.2010 10.1126/science.7569931 10.1111/j.1749-6632.1992.tb25272.x 10.1080/00221309.1951.9918275 10.1007/BF00318429 10.1152/jn.1999.81.1.394 10.1007/BF00227269 10.1162/neco.1997.9.4.721 10.1007/BF00249611 10.1007/s004220050543 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 |
DOI | 10.1152/jn.00485.2001 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 833 |
ExternalDocumentID | 10_1152_jn_00485_2001 11826049 jn_87_2_819 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIDCD NIH HHS grantid: DC 03066 – fundername: NIDCD NIH HHS grantid: DC 04158 |
GroupedDBID | - 08R 0VX 1Z7 2WC 39C 3O- 41 53G 55 5GY 5VS AALRV ABFLS ABIVO ABPTK ABUFD ABZEH ACGFS ACNCT ADACO ADBBV ADBIT ADKLL AENEX AETEA AFFNX ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FH7 FRP GJ GX1 H~9 KQ8 L7B MVM NEJ O0- OHT OK1 P2P RAP RHF RHI RPL SJN UHB UPT UQL VH1 WH7 WOQ WOW X X7M ZA5 ZGI ZXP ZY4 --- -DZ -~X .55 .GJ 18M 1CY 29L 4.4 41~ 476 8M5 ABCQX ABJNI ABKWE ABTAH ACGFO ADFNX ADIYS AFOSN AI. AIZAD BKKCC BTFSW CGR CUY CVF ECM EIF EMOBN H13 ITBOX NPM RPRKH TR2 W8F XJT XOL XSW YBH YQT YSK AAYXX CITATION 7TK 7X8 |
ID | FETCH-LOGICAL-c460t-2672a62e38771a2bd9fafb428a4774103008726db91b1e8bc32f96ceb5f07e023 |
ISSN | 0022-3077 |
IngestDate | Fri Oct 25 06:28:03 EDT 2024 Fri Oct 25 11:09:55 EDT 2024 Thu Sep 26 15:46:19 EDT 2024 Sat Sep 28 08:46:57 EDT 2024 Tue Jan 05 17:53:13 EST 2021 Mon May 06 11:51:48 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Non-programmatic |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c460t-2672a62e38771a2bd9fafb428a4774103008726db91b1e8bc32f96ceb5f07e023 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 11826049 |
PQID | 18368742 |
PQPubID | 23462 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_71436260 pubmed_primary_11826049 crossref_primary_10_1152_jn_00485_2001 highwire_physiology_jn_87_2_819 proquest_miscellaneous_18368742 |
PublicationCentury | 2000 |
PublicationDate | 2002-02-01 |
PublicationDateYYYYMMDD | 2002-02-01 |
PublicationDate_xml | – month: 02 year: 2002 text: 2002-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2002 |
Publisher | Am Phys Soc |
Publisher_xml | – name: Am Phys Soc |
References | B20 B21 B65 B22 B66 B23 B67 B24 Holly JE (B36) 2000; 10 B68 B25 B69 B26 B27 B29 Mayne R (B40) 1974 Zhou W (B83) 2000; 26 B70 B71 B72 B73 B30 B74 B31 B75 B32 B76 B33 B77 B34 B78 B35 B79 B37 B39 B1 B2 B3 Merfeld DM (B48) 1995; 106 B4 B5 B9 B80 B41 B42 B86 B44 B49 Benson A (B8) 1966; 37 Merfeld DM (B47) 1993; 3 B50 B51 Lansberg M (B38) 1965; 36 B53 B54 B11 Droulez J (B19) 1989 B55 B12 B56 B13 B57 B14 B58 B15 B59 B16 Merfeld DM (B46) 1993; 3 B17 Zhou W (B82) 1998; 24 B18 B60 B62 Merfeld DM (B45) 1995; 106 B63 |
References_xml | – ident: B1 doi: 10.1152/jn.1994.71.3.1222 – ident: B11 doi: 10.1007/BF02738407 – ident: B51 doi: 10.1016/S0959-4388(99)00029-X – ident: B71 doi: 10.1152/jn.1997.78.4.1775 – ident: B41 doi: 10.1111/j.1749-6632.1992.tb25257.x – volume: 37 start-page: 889 year: 1966 ident: B8 publication-title: Aerospace Med contributor: fullname: Benson A – ident: B57 doi: 10.1152/jn.1983.49.1.134 – ident: B37 doi: 10.1109/10.362914 – ident: B56 doi: 10.1152/jn.1991.65.5.1170 – ident: B44 doi: 10.3109/00016489509125269 – volume: 26 start-page: 1491 year: 2000 ident: B83 publication-title: Soc Neurosci Abstr contributor: fullname: Zhou W – ident: B14 doi: 10.1016/0361-9230(96)00134-7 – ident: B26 doi: 10.1152/jn.1984.51.2.210 – ident: B65 doi: 10.1007/BF00228508 – ident: B12 doi: 10.2307/1419995 – ident: B29 doi: 10.1152/jn.1971.34.4.635 – ident: B49 doi: 10.1152/jn.2001.85.4.1648 – ident: B5 doi: 10.1159/000113352 – start-page: 493 year: 1974 ident: B40 publication-title: Handbook of Sensory Physiology, Vestibular System, Part 2: Psychophysics, Applied Aspects and General Interpretation doi: 10.1007/978-3-642-65920-1_14 contributor: fullname: Mayne R – volume: 106 start-page: 123 year: 1995 ident: B45 publication-title: Exp Brain Res doi: 10.1016/S0079-6123(08)61209-1 contributor: fullname: Merfeld DM – volume: 3 start-page: 141 year: 1993 ident: B46 publication-title: J Vestib Res contributor: fullname: Merfeld DM – ident: B18 doi: 10.1126/science.178.4066.1217 – ident: B73 doi: 10.1152/jn.1986.56.2.439 – volume: 10 start-page: 163 year: 2000 ident: B36 publication-title: J Vestib Res contributor: fullname: Holly JE – ident: B76 doi: 10.1152/jn.1999.81.5.2175 – ident: B17 doi: 10.1007/s004220050285 – ident: B2 doi: 10.1523/JNEUROSCI.19-01-00316.1999 – ident: B21 doi: 10.1152/jn.1976.39.5.970 – ident: B39 doi: 10.1007/s002210050456 – ident: B72 doi: 10.1111/j.1749-6632.1992.tb25212.x – ident: B16 doi: 10.1007/s002210050587 – ident: B74 doi: 10.1007/BF00589914 – volume: 24 start-page: 1744 year: 1998 ident: B82 publication-title: Soc Neurosci Abstr contributor: fullname: Zhou W – ident: B25 doi: 10.1007/BF00230020 – ident: B63 doi: 10.1152/jn.1991.66.4.1410 – ident: B58 doi: 10.1159/000113822 – start-page: 495 year: 1989 ident: B19 publication-title: Attention and Performance contributor: fullname: Droulez J – ident: B22 doi: 10.1152/jn.1976.39.5.996 – ident: B15 doi: 10.3109/00016487709128843 – ident: B23 doi: 10.1016/0361-9230(96)00122-0 – ident: B70 doi: 10.3109/00016487009181874 – ident: B68 doi: 10.1007/s002210050346 – ident: B69 doi: 10.1037/h0055479 – ident: B42 doi: 10.1038/19303 – ident: B34 doi: 10.1007/BF00231789 – ident: B3 doi: 10.1007/s002210000364 – volume: 36 start-page: 456 year: 1965 ident: B38 publication-title: Aerospace Med contributor: fullname: Lansberg M – ident: B60 doi: 10.1111/j.1749-6632.1981.tb30859.x – ident: B4 doi: 10.1111/j.1749-6632.2001.tb03739.x – ident: B54 doi: 10.1016/0025-5564(77)90032-3 – ident: B13 doi: 10.2307/1420878 – ident: B86 doi: 10.1152/jn.2000.84.4.2001 – ident: B20 doi: 10.1152/jn.1971.34.4.661 – ident: B53 doi: 10.1016/S0957-4271(97)00040-2 – ident: B78 doi: 10.1038/32648 – ident: B67 doi: 10.1152/jn.1991.66.3.851 – ident: B66 doi: 10.1126/science.2506641 – volume: 106 start-page: 111 year: 1995 ident: B48 publication-title: Exp Brain Res contributor: fullname: Merfeld DM – ident: B62 doi: 10.1007/BF00236613 – ident: B32 doi: 10.1152/jn.1998.80.4.2222 – volume: 3 start-page: 123 year: 1993 ident: B47 publication-title: J Vestib Res contributor: fullname: Merfeld DM – ident: B80 doi: 10.1126/science.1188373 – ident: B30 doi: 10.1152/jn.1988.60.6.2091 – ident: B79 doi: 10.1152/jn.1993.70.6.2647 – ident: B75 doi: 10.1007/BF00622503 – ident: B50 doi: 10.1152/jn.1999.82.4.2010 – ident: B77 doi: 10.1126/science.7569931 – ident: B27 doi: 10.1111/j.1749-6632.1992.tb25272.x – ident: B31 doi: 10.1080/00221309.1951.9918275 – ident: B33 doi: 10.1007/BF00318429 – ident: B35 doi: 10.1152/jn.1999.81.1.394 – ident: B24 doi: 10.1007/BF00227269 – ident: B59 doi: 10.1162/neco.1997.9.4.721 – ident: B55 doi: 10.1007/BF00249611 – ident: B9 doi: 10.1007/s004220050543 |
SSID | ssj0007502 |
Score | 2.1517854 |
Snippet | Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear
Infirmary, Department of Otology and Laryngology, Harvard Medical
School, Boston,... All linear accelerometers measure gravitoinertial force, which is the sum of gravitational force (tilt) and inertial force due to linear acceleration... All linear accelerometers measure gravitoinertial force, which is the sum of gravitational force (tilt) and intertial force due to linear acceleration... |
SourceID | proquest crossref pubmed highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 819 |
SubjectTerms | Acceleration Animals Brain - physiology Centrifugation Computer Simulation Gravity Sensing - physiology Haplorhini Humans Models, Neurological Semicircular Canals - physiology Space life sciences |
Title | Neural Processing of Gravitoinertial Cues in Humans. III. Modeling Tilt and Translation Responses |
URI | http://jn.physiology.org/cgi/content/abstract/87/2/819 https://www.ncbi.nlm.nih.gov/pubmed/11826049 https://search.proquest.com/docview/18368742 https://search.proquest.com/docview/71436260 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBaje9nLWNddsqseRl-CPVv1RXks3SXZ6Ngghb4JSZYgZXNC6hS2X79zZMmO2xS6vZhgFNnW9_ncfHQOIe8KlWrUm5Hkhkeg8ZMIrJAkKiuWAZ9A57g-ZKffiulZ9uU8P-_zdN3ukkbF-s_OfSX_gyqcA1xxl-w_INtNCifgN-ALR0AYjnfCGCtrwBL7ZH-fv_x5La_gNcVNfQ2Gw082LueqDddfxuPZbBa7FmhuI_p88bPNMXdKq02Mw5g-Js769MKbpqsrguliIoOg_KlZW9_w-gNcIu6C0puV3-EQj6fxIM7AQmqyHeT9J77pivHiEs6BQcS35alXoIstt7YVjtwLR69n2wIYN0V4jiVhL-oYhUuOHnza66rwff6aCusSC51LkzNxUQv3d-yyCb7xfQZiCOXf1x99LXmwlfpa8vBcoQJrzt4Prj60WEIV6ds9EmeZzB-Rhx4XetzyY5_cM_VjcnBcy2b56zc9pN87oA6IbClDe8rQpaXXKEORMnRRU08ZipShgTIUKUOBMnSLMrSjzBNy9unj_GQa-S4bkc6KpIlYUTJZMHPEyzKVTFUTK60Cr1Rm4BpgF7qEl6yo1CRVqeFKHzE7KbRRuU1KAybfU7JXL2vznFButbVg9CmNbRlyMIW5tUyqgvFUV9qOyGFYSbFqi6mInYiNyDiss-jZLDAqMwfAYTAvBRNAKLGqYNq3u0bDjGEUjAhgCRCf-E1M1ma5uRSg0QpeZuz2ESV4FOj1j8izFuX-1tE3Bw_7xV0f6yV50L9Zr8hes96Y12DTNuqNo-ZfVWmfWw |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Processing+of+Gravitoinertial+Cues+in+Humans.+III.+Modeling+Tilt+and+Translation+Responses&rft.jtitle=Journal+of+neurophysiology&rft.au=Merfeld%2C+D.+M.&rft.au=Zupan%2C+L.+H.&rft.date=2002-02-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=87&rft.issue=2&rft.spage=819&rft.epage=833&rft_id=info:doi/10.1152%2Fjn.00485.2001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_00485_2001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |