Applications of Electronic Nose Coupled with Statistical and Intelligent Pattern Recognition Techniques for Monitoring Tea Quality: A Review
Tea is the most widely consumed non-alcoholic beverage worldwide. In the tea sector, the high demand for tea has led to an increase in the adulteration of superior tea grades. The procedure of evaluating tea quality is difficult to assure the highest degree of tea safety in the context of consumer p...
Saved in:
Published in | Agriculture (Basel) Vol. 12; no. 9; p. 1359 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tea is the most widely consumed non-alcoholic beverage worldwide. In the tea sector, the high demand for tea has led to an increase in the adulteration of superior tea grades. The procedure of evaluating tea quality is difficult to assure the highest degree of tea safety in the context of consumer preferences. In recent years, the advancement in sensor technology has replaced the human olfaction system with an artificial olfaction system, i.e., electronic noses (E-noses) for quality control of teas to differentiate the distinct aromas. Therefore, in this review, the potential applications of E-nose as a monitoring device for different teas have been investigated. The instrumentation, working principles, and different gas sensor types employed for E-nose applications have been introduced. The widely used statistical and intelligent pattern recognition methods, namely, PCA, LDA, PLS-DA, KNN, ANN, CNN, SVM, etc., have been discussed in detail. The challenges and the future trends for E-nose devices have also been highlighted. Overall, this review provides the insight that E-nose combined with an appropriate pattern recognition method is a powerful non-destructive tool for monitoring tea quality. In future, E-noses will undoubtedly reduce their shortcomings with improved detection accuracy and consistency by employing food quality testing. |
---|---|
AbstractList | Tea is the most widely consumed non-alcoholic beverage worldwide. In the tea sector, the high demand for tea has led to an increase in the adulteration of superior tea grades. The procedure of evaluating tea quality is difficult to assure the highest degree of tea safety in the context of consumer preferences. In recent years, the advancement in sensor technology has replaced the human olfaction system with an artificial olfaction system, i.e., electronic noses (E-noses) for quality control of teas to differentiate the distinct aromas. Therefore, in this review, the potential applications of E-nose as a monitoring device for different teas have been investigated. The instrumentation, working principles, and different gas sensor types employed for E-nose applications have been introduced. The widely used statistical and intelligent pattern recognition methods, namely, PCA, LDA, PLS-DA, KNN, ANN, CNN, SVM, etc., have been discussed in detail. The challenges and the future trends for E-nose devices have also been highlighted. Overall, this review provides the insight that E-nose combined with an appropriate pattern recognition method is a powerful non-destructive tool for monitoring tea quality. In future, E-noses will undoubtedly reduce their shortcomings with improved detection accuracy and consistency by employing food quality testing. |
Audience | Academic |
Author | Rahadian, Didit Kaushal, Sushant Nayi, Pratik Chen, Ho-Hsien |
Author_xml | – sequence: 1 givenname: Sushant orcidid: 0000-0003-3984-078X surname: Kaushal fullname: Kaushal, Sushant – sequence: 2 givenname: Pratik orcidid: 0000-0001-6667-2940 surname: Nayi fullname: Nayi, Pratik – sequence: 3 givenname: Didit surname: Rahadian fullname: Rahadian, Didit – sequence: 4 givenname: Ho-Hsien orcidid: 0000-0002-2756-0804 surname: Chen fullname: Chen, Ho-Hsien |
BookMark | eNp9ks9u1DAQxiNUJErpE3CxxIXLFsd2nITbalVgpfK_nKOJM0m98trBdqj6Djw0s12EUIWwZdka_75vNPY8LU588FgUz0t-IWXLX8EUrVlcXiKWgrelrNpHxangdb3iqhYnf52fFOcp7TgNwhquT4uf63l21kC2wScWRnbp0OQYvDXsQ0jINmGZHQ7s1uYb9jUTmDLxjoEf2NZndM5O6DP7BDlj9OwLmjB5ezBk12huvP2-YGJjiOw92eYQrZ_oBtjnBZzNd6_ZmkQ_LN4-Kx6P4BKe_97Pim9vLq8371ZXH99uN-urlVGa55WolAIFQgHvERql5SirQdDSoDiMlQaNUqJRopRQc4FSD7Idm0bKoeVGnhXbo-8QYNfN0e4h3nUBbHcfCHHqIFKVDjvBeS1Fj7JpjBp73TayL2uy6_ueG63J6-XRa47hUGju9jYZehXwGJbUiVrIUuhSVYS-eIDuwhI9VUpUqVXNm5oTdXGkJqD81o8hRzA0B9xbQ18_Woqva1XxVvJSkkAeBSaGlCKOfyoqeXfokO4fHUKq9oHK2HzfBpTOuv9qfwGrgceK |
CitedBy_id | crossref_primary_10_1007_s11694_024_02410_3 crossref_primary_10_1109_ACCESS_2023_3295210 crossref_primary_10_3390_chemosensors11040229 crossref_primary_10_1016_j_tifs_2024_104408 crossref_primary_10_3390_s23084017 crossref_primary_10_3390_pr11010090 crossref_primary_10_3390_foods13223580 crossref_primary_10_1016_j_foodcont_2025_111291 crossref_primary_10_3390_chemosensors10100421 crossref_primary_10_1007_s12598_024_02776_9 crossref_primary_10_3390_s24103152 crossref_primary_10_1002_ffj_3826 crossref_primary_10_1007_s11694_024_02847_6 crossref_primary_10_1016_j_foodchem_2023_138242 crossref_primary_10_1186_s43014_023_00157_w crossref_primary_10_3390_horticulturae9080930 crossref_primary_10_1016_j_measurement_2024_116452 crossref_primary_10_1016_j_sciaf_2024_e02153 crossref_primary_10_3390_toxins15020146 |
Cites_doi | 10.1016/j.chemolab.2015.03.010 10.3390/s17051073 10.1111/1750-3841.15723 10.1016/j.tifs.2017.12.006 10.1016/j.lwt.2021.112691 10.1016/j.tifs.2020.02.028 10.1016/j.snb.2007.12.031 10.3390/mi12010093 10.3390/bios12050356 10.1007/s13197-020-04667-0 10.3390/s18020550 10.1016/j.tifs.2021.10.016 10.1016/S0169-7439(01)00155-1 10.1016/j.snb.2011.07.009 10.1109/ACCESS.2019.2957112 10.1007/s00604-004-0291-6 10.1080/08839514.2016.1169048 10.1002/wics.51 10.1186/s40064-016-2941-7 10.1080/10408398.2020.1858398 10.3390/molecules25020380 10.1016/j.foodchem.2017.03.011 10.1111/1750-3841.14917 10.1016/j.foodhyd.2020.106001 10.1111/ijfs.13326 10.3390/s140712233 10.1016/j.tifs.2015.01.009 10.1186/s12859-019-3310-7 10.1155/2020/3073104 10.1016/j.fbio.2020.100593 10.1016/j.foodchem.2019.04.073 10.12719/KSIA.2019.31.1.1 10.3390/s18082674 10.1007/s00217-021-03930-8 10.3390/s100403882 10.3390/s17122715 10.1109/ICICS.2015.7459865 10.1111/jfpp.13721 10.1016/j.talanta.2015.06.050 10.3390/s17051007 10.1149/1.1539051 10.1371/journal.pone.0206517 10.3390/foods9020193 10.1016/j.lwt.2021.112496 10.1016/j.foodres.2020.109656 10.3390/s19102359 10.1016/j.biosystemseng.2021.08.016 10.3390/s20010050 10.3390/s90705099 10.1007/s12161-016-0739-4 10.1039/C8AN00599K 10.1016/j.jfoodeng.2018.07.020 10.3390/chemosensors7030029 10.1007/s11633-019-1212-9 10.1007/s12161-019-01552-1 10.1039/C5AY02652K 10.1109/JSEN.2020.3048534 10.1016/j.jfoodeng.2014.07.019 10.1039/C5RA17978E 10.3390/s20236875 10.1109/QRS.2018.00047 10.3390/s18103256 10.1016/j.foodchem.2019.03.080 10.1016/j.iot.2021.100359 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI SOI 7S9 L.6 DOA |
DOI | 10.3390/agriculture12091359 |
DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest SciTech Premium Collection Agriculture Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Statistics |
EISSN | 2077-0472 |
ExternalDocumentID | oai_doaj_org_article_200732be388c4fb6983b176d3bbb0c66 A745093013 10_3390_agriculture12091359 |
GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC KQ8 M0K MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC PMFND 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c460t-2544a4a24a0bea8463f35d235d6a40af56a6e33ec4213a702e36d39f8833d90c3 |
IEDL.DBID | DOA |
ISSN | 2077-0472 |
IngestDate | Wed Aug 27 01:30:24 EDT 2025 Fri Jul 11 05:27:38 EDT 2025 Mon Jun 30 11:14:27 EDT 2025 Tue Jun 10 20:26:18 EDT 2025 Tue Jul 01 02:12:50 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-2544a4a24a0bea8463f35d235d6a40af56a6e33ec4213a702e36d39f8833d90c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2756-0804 0000-0003-3984-078X 0000-0001-6667-2940 |
OpenAccessLink | https://doaj.org/article/200732be388c4fb6983b176d3bbb0c66 |
PQID | 2716470870 |
PQPubID | 2032441 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_200732be388c4fb6983b176d3bbb0c66 proquest_miscellaneous_2723126145 proquest_journals_2716470870 gale_infotracacademiconefile_A745093013 crossref_primary_10_3390_agriculture12091359 crossref_citationtrail_10_3390_agriculture12091359 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agriculture (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wang (ref_64) 2015; 5 Khollam (ref_45) 2019; 6 Deshmukh (ref_17) 2015; 144 Xu (ref_1) 2021; 58 ref_14 Dai (ref_55) 2015; 144 ref_57 Hu (ref_47) 2016; 5 ref_11 ref_10 Liu (ref_60) 2019; 7 Liang (ref_6) 2021; 118 Zhu (ref_46) 2021; 4 Xu (ref_2) 2019; 289 Ruengdech (ref_66) 2020; 36 ref_59 Sanaeifar (ref_67) 2021; 210 Berna (ref_19) 2010; 10 Ali (ref_75) 2020; 99 Wang (ref_72) 2021; 33 Luo (ref_5) 2017; 52 Sharmilan (ref_30) 2020; 2020 ref_61 James (ref_24) 2005; 149 ref_25 Yang (ref_69) 2022; 154 ref_20 Chen (ref_54) 2015; 43 Wang (ref_62) 2021; 21 Han (ref_29) 2020; 28 ref_28 Jia (ref_74) 2019; 12 ref_27 Ye (ref_56) 2016; 8 ref_71 Zhu (ref_52) 2021; 13 Karakaya (ref_23) 2020; 17 Chen (ref_9) 2011; 159 Kiani (ref_12) 2016; 3 Chmielewski (ref_21) 2017; 10 ref_34 ref_33 ref_32 Yuan (ref_7) 2019; 84 ref_31 Barbosa (ref_53) 2016; 30 ref_73 Yang (ref_58) 2018; 42 Lam (ref_51) 2020; 108 Bayaga (ref_39) 2010; 5 Ali (ref_37) 2019; 31 Tan (ref_13) 2020; 4 Yang (ref_65) 2021; 86 Wold (ref_43) 2001; 58 Dash (ref_49) 2022; 62 Loutfi (ref_15) 2015; 144 Lee (ref_40) 2018; 143 Qiu (ref_35) 2017; 230 Yan (ref_68) 2022; 248 Granato (ref_36) 2018; 72 ref_44 Zakaria (ref_18) 2014; 14 Stetter (ref_26) 2003; 150 Bhattacharya (ref_16) 2008; 131 ref_41 Wilson (ref_22) 2009; 9 ref_3 Yang (ref_63) 2020; 137 Poppi (ref_50) 2019; 293 ref_48 ref_8 Xu (ref_38) 2019; 241 ref_4 Abdi (ref_42) 2010; 2 Chen (ref_70) 2022; 153 |
References_xml | – volume: 33 start-page: 2095 year: 2021 ident: ref_72 article-title: Feature reduction method coupled with electronic nose for quality control of tea publication-title: Sens. Mater. – volume: 144 start-page: 63 year: 2015 ident: ref_55 article-title: Longjing tea quality classification by fusion of features collected from E-nose publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.03.010 – ident: ref_14 doi: 10.3390/s17051073 – volume: 86 start-page: 2358 year: 2021 ident: ref_65 article-title: Rapid characterization of the volatile profiles in Pu-erh tea by gas phase electronic nose and microchamber/thermal extractor combined with TD-GC-MS publication-title: J. Food Sci. doi: 10.1111/1750-3841.15723 – volume: 72 start-page: 83 year: 2018 ident: ref_36 article-title: Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2017.12.006 – volume: 154 start-page: 112691 year: 2022 ident: ref_69 article-title: Aroma dynamic characteristics during the drying process of green tea by gas phase electronic nose and gas chromatography-ion mobility spectrometry publication-title: LWT doi: 10.1016/j.lwt.2021.112691 – volume: 99 start-page: 1 year: 2020 ident: ref_75 article-title: Principles and recent advances in electronic nose for quality inspection of agricultural and food products publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2020.02.028 – volume: 131 start-page: 37 year: 2008 ident: ref_16 article-title: Illumination heating and physical raking for increasing sensitivity of electronic nose measurements with black tea publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2007.12.031 – ident: ref_71 doi: 10.3390/mi12010093 – ident: ref_20 doi: 10.3390/bios12050356 – volume: 58 start-page: 1549 year: 2021 ident: ref_1 article-title: Tea quality evaluation by applying E-nose combined with chemometrics methods publication-title: J. Food Sci. Technol. doi: 10.1007/s13197-020-04667-0 – ident: ref_73 doi: 10.3390/s18020550 – volume: 118 start-page: 431 year: 2021 ident: ref_6 article-title: Processing technologies for manufacturing tea beverages: From traditional to advanced hybrid processes publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2021.10.016 – volume: 58 start-page: 109 year: 2001 ident: ref_43 article-title: PLS-regression: A basic tool of chemometrics publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(01)00155-1 – ident: ref_4 – volume: 159 start-page: 294 year: 2011 ident: ref_9 article-title: Discrimination of green tea quality using the electronic nose technique and the human panel test, comparison of linear and nonlinear classification tools publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2011.07.009 – ident: ref_31 – volume: 7 start-page: 172965 year: 2019 ident: ref_60 article-title: Classification and evaluation of quality grades of organic green teas using an electronic nose based on machine learning algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2957112 – volume: 149 start-page: 1 year: 2005 ident: ref_24 article-title: Chemical sensors for electronic nose systems publication-title: Microchim. Acta doi: 10.1007/s00604-004-0291-6 – volume: 30 start-page: 318 year: 2016 ident: ref_53 article-title: The use of support vector machine to analyze food security in a region of Brazil publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2016.1169048 – volume: 2 start-page: 97 year: 2010 ident: ref_42 article-title: Partial least squares regression and projection on latent structure regression (PLS Regression) publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.51 – volume: 5 start-page: 1304 year: 2016 ident: ref_47 article-title: The distance function effect on k-nearest neighbor classification for medical datasets publication-title: SpringerPlus doi: 10.1186/s40064-016-2941-7 – volume: 62 start-page: 2756 year: 2022 ident: ref_49 article-title: Comprehensive study on applications of artificial neural network in food process modeling publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2020.1858398 – ident: ref_61 doi: 10.3390/molecules25020380 – volume: 4 start-page: 104 year: 2020 ident: ref_13 article-title: Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review publication-title: Artif. Intell. Agric. – volume: 230 start-page: 208 year: 2017 ident: ref_35 article-title: The prediction of food additives in the fruit juice based on electronic nose with chemometrics publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.03.011 – volume: 84 start-page: 3411 year: 2019 ident: ref_7 article-title: Quality evaluation of green and dark tea grade using electronic nose and multivariate statistical analysis publication-title: J. Food Sci. doi: 10.1111/1750-3841.14917 – volume: 108 start-page: 106001 year: 2020 ident: ref_51 article-title: Use of random forest analysis to quantify the importance of the structural characteristics of beta-glucans for prebiotic development publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2020.106001 – volume: 52 start-page: 714 year: 2017 ident: ref_5 article-title: Geographical origin identification and quality control of Chinese chrysanthemum flower teas using gas chromatography–mass spectrometry and olfactometry and electronic nose combined with principal component analysis publication-title: Int. J. Food Sci. Technol. doi: 10.1111/ijfs.13326 – volume: 14 start-page: 12233 year: 2014 ident: ref_18 article-title: A bio-inspired herbal tea flavour assessment technique publication-title: Sensors doi: 10.3390/s140712233 – volume: 43 start-page: 63 year: 2015 ident: ref_54 article-title: Recent developments of green analytical techniques in analysis of tea’s quality and nutrition publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2015.01.009 – ident: ref_41 doi: 10.1186/s12859-019-3310-7 – volume: 2020 start-page: 3073104 year: 2020 ident: ref_30 article-title: Electronic nose technologies in monitoring black tea manufacturing process publication-title: J. Sens. doi: 10.1155/2020/3073104 – volume: 36 start-page: 100593 year: 2020 ident: ref_66 article-title: Visualization of mulberry tea quality using an electronic sensor array, SPME-GC/MS, and sensory evaluation publication-title: Food Biosci. doi: 10.1016/j.fbio.2020.100593 – volume: 293 start-page: 323 year: 2019 ident: ref_50 article-title: Random forest as one-class classifier and infrared spectroscopy for food adulteration detection publication-title: Food Chem. doi: 10.1016/j.foodchem.2019.04.073 – volume: 5 start-page: 288 year: 2010 ident: ref_39 article-title: Multinomial logistic regression: Usage and application in risk analysis publication-title: J. Appl. Quant. Methods – volume: 28 start-page: 486 year: 2020 ident: ref_29 article-title: Perspective on recent developments of nanomaterial based fluorescent sensors: Applications in safety and quality control of food and beverages publication-title: J. Food Drug Anal. – volume: 31 start-page: 1 year: 2019 ident: ref_37 article-title: A Study on consumption and consumer preference for halal meat among Pakistani community in South Korea publication-title: J. Korean Soc. Int. Agric. doi: 10.12719/KSIA.2019.31.1.1 – ident: ref_34 – ident: ref_48 doi: 10.3390/s18082674 – volume: 248 start-page: 947 year: 2022 ident: ref_68 article-title: Aroma analysis of Fuyun 6 and Jinguanyin black tea in the Fu’an area based on E-nose and GC–MS publication-title: Eur. Food Res. Technol. doi: 10.1007/s00217-021-03930-8 – volume: 10 start-page: 3882 year: 2010 ident: ref_19 article-title: Metal oxide sensors for electronic noses and their application to food analysis publication-title: Sensors doi: 10.3390/s100403882 – ident: ref_25 doi: 10.3390/s17122715 – ident: ref_33 doi: 10.1109/ICICS.2015.7459865 – volume: 42 start-page: e13721 year: 2018 ident: ref_58 article-title: Discriminant research for identifying aromas of non-fermented Pu-erh tea from different storage years using an electronic nose publication-title: J. Food Process. Preserv. doi: 10.1111/jfpp.13721 – volume: 144 start-page: 329 year: 2015 ident: ref_17 article-title: Application of electronic nose for industrial odors and gaseous emissions measurement and monitoring–An overview publication-title: Talanta doi: 10.1016/j.talanta.2015.06.050 – ident: ref_8 doi: 10.3390/s17051007 – volume: 150 start-page: S11 year: 2003 ident: ref_26 article-title: Sensors, chemical sensors, electrochemical sensors, and ECS publication-title: J. Electrochem. Soc. doi: 10.1149/1.1539051 – ident: ref_57 doi: 10.1371/journal.pone.0206517 – ident: ref_44 – ident: ref_28 doi: 10.3390/foods9020193 – volume: 153 start-page: 112496 year: 2022 ident: ref_70 article-title: Aroma quality evaluation of Dianhong black tea infusions by the combination of rapid gas phase electronic nose and multivariate statistical analysis publication-title: LWT doi: 10.1016/j.lwt.2021.112496 – volume: 137 start-page: 109656 year: 2020 ident: ref_63 article-title: Aroma dynamic characteristics during the process of variable-temperature final firing of Congou black tea by electronic nose and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry publication-title: Food Res. Int. doi: 10.1016/j.foodres.2020.109656 – ident: ref_59 doi: 10.3390/s19102359 – volume: 210 start-page: 206 year: 2021 ident: ref_67 article-title: A data fusion approach on confocal Raman microspectroscopy and electronic nose for quantitative evaluation of pesticide residue in tea publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2021.08.016 – ident: ref_3 doi: 10.3390/s20010050 – volume: 9 start-page: 5099 year: 2009 ident: ref_22 article-title: Applications and advances in electronic-nose technologies publication-title: Sensors doi: 10.3390/s90705099 – volume: 10 start-page: 1800 year: 2017 ident: ref_21 article-title: Electronic nose as a tool for monitoring the authenticity of food. A review publication-title: Food Anal. Methods doi: 10.1007/s12161-016-0739-4 – volume: 6 start-page: 107 year: 2019 ident: ref_45 article-title: Review on food categorization techniques in machine learning publication-title: Int. J. Res. Anal. Rev. – volume: 143 start-page: 3526 year: 2018 ident: ref_40 article-title: Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: A review of contemporary practice strategies and knowledge gaps publication-title: Analyst doi: 10.1039/C8AN00599K – volume: 241 start-page: 10 year: 2019 ident: ref_38 article-title: Rapid identification of tea quality by E-nose and computer vision combining with a synergetic data fusion strategy publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2018.07.020 – ident: ref_10 doi: 10.3390/chemosensors7030029 – volume: 4 start-page: 233 year: 2021 ident: ref_46 article-title: Deep learning and machine vision for food processing: A survey publication-title: Curr. Res. Nutr. Food Sci. – volume: 17 start-page: 179 year: 2020 ident: ref_23 article-title: Electronic nose and its applications: A survey publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-019-1212-9 – volume: 12 start-page: 2226 year: 2019 ident: ref_74 article-title: Advances in electronic nose development for application to agricultural products publication-title: Food Anal. Methods doi: 10.1007/s12161-019-01552-1 – volume: 8 start-page: 593 year: 2016 ident: ref_56 article-title: Differentiation of two types of pu-erh teas by using an electronic nose and ultrasound-assisted extraction-dispersive liquid–liquid microextraction-gas chromatography-mass spectrometry publication-title: Anal. Methods doi: 10.1039/C5AY02652K – volume: 21 start-page: 8065 year: 2021 ident: ref_62 article-title: A transfer learning method for the protection of geographical indication in China using an electronic nose for the identification of Xihu Longjing tea publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3048534 – volume: 144 start-page: 103 year: 2015 ident: ref_15 article-title: Electronic noses for food quality: A review publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2014.07.019 – volume: 5 start-page: 106959 year: 2015 ident: ref_64 article-title: The classification and prediction of green teas by electrochemical response data extraction and fusion approaches based on the combination of e-nose and e-tongue publication-title: RSC Adv. doi: 10.1039/C5RA17978E – ident: ref_27 doi: 10.3390/s20236875 – ident: ref_32 doi: 10.1109/QRS.2018.00047 – ident: ref_11 doi: 10.3390/s18103256 – volume: 289 start-page: 482 year: 2019 ident: ref_2 article-title: The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics publication-title: Food Chem. doi: 10.1016/j.foodchem.2019.03.080 – volume: 3 start-page: 1 year: 2016 ident: ref_12 article-title: Application of electronic nose systems for assessing quality of medicinal and aromatic plant products: A review publication-title: J. Appl. Res. Med. Aromat. Plants – volume: 13 start-page: 100359 year: 2021 ident: ref_52 article-title: Support vector machine and YOLO for a mobile food grading system publication-title: Internet Things doi: 10.1016/j.iot.2021.100359 |
SSID | ssj0000913806 |
Score | 2.3878322 |
SecondaryResourceType | review_article |
Snippet | Tea is the most widely consumed non-alcoholic beverage worldwide. In the tea sector, the high demand for tea has led to an increase in the adulteration of... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1359 |
SubjectTerms | adulterated products agriculture Alcoholic beverages Algorithms aroma Chromatography Consumer behavior Consumer preferences Consumers electronic nose Electronic noses Fermentation Food Food quality Gas sensors Gases humans Instrumentation intelligent pattern recognition Mass spectrometry Monitoring non-alcoholic beverages Nondestructive testing Odors Olfaction Pattern recognition Polyphenols Quality assurance Quality control Quality management Scientific imaging Sensors smell Statistics Supply and demand Tea tea quality Volatility |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9lIOCAqIQEFGQuJC1MR2vA4XlFZbFSRWVdVKvUV2MumlSrb7ceA_8KOZSZy0B-ghl8R24sx4_DxjvwH4bDOvnFY6RosY61SamKYhFye6yazPPaaKTyP_WpqzK_3zOrsODrdN2FY52sTeUNddxT7yI8nAfp6Qen1f3cWcNYqjqyGFxlPYIxNs7Qz2jhfL84vJy8KslzYxA92QovX9kbtZB1IL5GOjqWKW0gdTUs_c_z_73E86py_geUCLohjE-xKeYHsAz4r7xg9gn-HiwLb8Cv4UD-LRomvEYspyI5bdBsVJt1vdYi3Y_SqmmvQK19bix0TPuRXnPe9mKy7GDUZdKy5HvteNIKgrBnPAfkF64sTAxvH7myjEEHB4DVeni8uTszjkW4grbZJtzGxlTjupXeLRETBRjcpqSZdxOnFNZpxBpbDSMlVunkhUplZ5w_mK6zyp1BuYtV2Lb0GkzjmCTjar80YbXeda1tKizKRvEFOMQI6_vKwCGTnnxLgtaVHCcir_IacIvk6VVgMXx-PFj1mWU1Em0u5vdOubMoxLzsI5V9KjsrbSjTe5VT6dU7e890llTARfWBNKHu70gZULpxaom0ycVRZzTZCLrKSK4HBUljLYgU15r7URfJoe0wjmsIxrsdtxGcLYtJDV2bvHm3gP-5IPX_Q73A5htl3v8ANBoq3_GPT-L337D4Q priority: 102 providerName: ProQuest |
Title | Applications of Electronic Nose Coupled with Statistical and Intelligent Pattern Recognition Techniques for Monitoring Tea Quality: A Review |
URI | https://www.proquest.com/docview/2716470870 https://www.proquest.com/docview/2723126145 https://doaj.org/article/200732be388c4fb6983b176d3bbb0c66 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQucABlQIibalcCYkLUROP43W4pdVWbSVWVdVKvVl2MuFSJVV398B_4Ecz42TDHnhcOOQSO5bjedueb4T4aIsAXoNO0SKmOlcmJTPk00y3hQ1lwBw4G_nrwlzc6av74n6r1BffCRvggYeFO-G9NFABwdpat8GUFkI-Mw2EELLaRLBtsnlbwVTUwWUONjMDzBBQXH_ivz2NYBbI6aI5MDrplimKiP1_0svR2JzvilejlyirYXavxTPs9sTL6tfgb8SPauvoWfatnE8FbeSiX6I869ePD9hI3mmV7FNGSGYa1XeNvJyQOFfyOkJsdvJmc5eo7-TtBtp1KcmrlYPk8xYgtXg5AG98_yIrOZwtvBV35_Pbs4t0LK2Q1tpkq5SBybz2SvssoCcfBFooGkWP8TrzbWG8QQCstcrBzzKFQEtetlyauCmzGt6Jna7v8L2QufeevCRbNGWrjW5KrRplURUqtIg5JkJtVtnVI-44l794cBR_MGncb0iTiM_TR48D7Mbfu58y-aaujJkdXxAnuZGT3L84KRGfmPiOJZsmWPsxQYF-kzGyXDXT5F2RQoREHG74w40iv3SKI89ZRvovEcdTMwkrn8D4Dvs19yF3mmJWXez_jxkfiBeKszHilbdDsbN6WuMH8pFW4Ug8P50vrm-Oolj8BEkpE54 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7YFyQFBABAoYCcSFqI7tOAkSQtuy1S5tV1W1lXpL7cTppUqW_RHqO_AsPCMz-WsP0FsPuSS2E2fGM-MZzzcAH-LQSqOk8l3snK8CoX1UQ8bnqghjm1gXSMpGPp7q8Zn6cR6eb8CfLheGjlV2MrEW1HmVkY98V5BhH3Fkr2_znz5VjaLoaldCo2GLQ3f9C7dsy6-T70jfj0IcjGb7Y7-tKuBnSvOVT5hcRhmhDLfOoPqVhQxzgZc2ipsi1EY7KV2mRCBNxIWTOpdJQVV584RnEsd9AJtKai4GsLk3mp6c9l4dQtmMuW7gjaRM-K65XLQgGo7SVANJqKi3VGBdKeB_-qBWcgdP4HFrnbJhw05PYcOV2_BoeDP4NmyRedqgOz-D38Nb8W9WFWzUV9Vh02rp2H61nl-5nJG7l_U98RWmzNmkhwNdsZMa57Nkp92Bpqpksw5fdsnQtGaN-CE_JD4xrEH_uP7ChqwJcDyHs3uhxAsYlFXpXgILjDFoqsVhnhRKqzxRIhexE6GwhXOB80B0vzzNWvBzqsFxleImiOiU_oNOHnzuO80b7I-7m-8RLfumBNxd36gWl2krB6jqZySFdTKOM1VYncTSBhFOy1rLM609-ESckJJ4wQ_MTJslgdMkoK50GCk08VAqSw92OmZJW7mzTG9WiQfv-8coMSgMZEpXrakN2vS4cVbhq7uHeAcPx7Pjo_RoMj18DVuCEj_q03U7MFgt1u4NmmMr-7ZdAwwu7nvZ_QUKXks1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTKAUEBEShgJBAXonVsx0mQENq2u-pSWK2qVuot2InTS5Us-yPUd-CJeDpm8tceoLcecklsJ86MZ8bjmW8A3sWhlUZJ5bvYOV8FQvuohozPVRHGNrEukJSN_H2mj87U1_PwfAv-dLkwFFbZycRaUOdVRj7yoSDDPuLIXsOiDYuYH06-LH76VEGKTlq7choNixy7q1-4fVt9nh4ird8LMRmfHhz5bYUBP1Oar33C5zLKCGW4dQZVsSxkmAu8tFHcFKE22knpMiUCaSIunNS5TAqq0JsnPJM47j3YjmhXNIDt_fFsftJ7eAhxM-a6gTqSMuFDc7FsATUcpawGkhBSb6jDumrA_3RDrfAmj-Bha6myUcNaj2HLlbvwYHQ9-C7skKnaID0_gd-jG2fhrCrYuK-ww2bVyrGDarO4dDkj1y_re-IrTJmzaQ8NumbzGvOzZCddcFNVstMOa3bF0MxmjSginyQ-MaxBArn6xEasOex4Cmd3QolnMCir0j0HFhhj0GyLwzwplFZ5okQuYidCYQvnAueB6H55mrVA6FSP4zLFDRHRKf0HnTz42HdaNDggtzffJ1r2TQnEu75RLS_SViZQBdBICutkHGeqsDqJpQ0inJa1lmdae_CBOCElUYMfmJk2YwKnSaBd6ShSaO6hhJYe7HXMkrYyaJVerxgP3vaPUXrQkZApXbWhNmjf4yZahS9uH-IN3Mflln6bzo5fwo6gHJA60G4PBuvlxr1Cy2xtX7dLgMGPu151fwE9-U9q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+Electronic+Nose+Coupled+with+Statistical+and+Intelligent+Pattern+Recognition+Techniques+for+Monitoring+Tea+Quality%3A+A+Review&rft.jtitle=Agriculture+%28Basel%29&rft.au=Kaushal%2C+Sushant&rft.au=Nayi%2C+Pratik&rft.au=Rahadian%2C+Didit&rft.au=Chen%2C+Ho-Hsien&rft.date=2022-09-01&rft.issn=2077-0472&rft.eissn=2077-0472&rft.volume=12&rft.issue=9&rft_id=info:doi/10.3390%2Fagriculture12091359&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |