Applications of Electronic Nose Coupled with Statistical and Intelligent Pattern Recognition Techniques for Monitoring Tea Quality: A Review

Tea is the most widely consumed non-alcoholic beverage worldwide. In the tea sector, the high demand for tea has led to an increase in the adulteration of superior tea grades. The procedure of evaluating tea quality is difficult to assure the highest degree of tea safety in the context of consumer p...

Full description

Saved in:
Bibliographic Details
Published inAgriculture (Basel) Vol. 12; no. 9; p. 1359
Main Authors Kaushal, Sushant, Nayi, Pratik, Rahadian, Didit, Chen, Ho-Hsien
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tea is the most widely consumed non-alcoholic beverage worldwide. In the tea sector, the high demand for tea has led to an increase in the adulteration of superior tea grades. The procedure of evaluating tea quality is difficult to assure the highest degree of tea safety in the context of consumer preferences. In recent years, the advancement in sensor technology has replaced the human olfaction system with an artificial olfaction system, i.e., electronic noses (E-noses) for quality control of teas to differentiate the distinct aromas. Therefore, in this review, the potential applications of E-nose as a monitoring device for different teas have been investigated. The instrumentation, working principles, and different gas sensor types employed for E-nose applications have been introduced. The widely used statistical and intelligent pattern recognition methods, namely, PCA, LDA, PLS-DA, KNN, ANN, CNN, SVM, etc., have been discussed in detail. The challenges and the future trends for E-nose devices have also been highlighted. Overall, this review provides the insight that E-nose combined with an appropriate pattern recognition method is a powerful non-destructive tool for monitoring tea quality. In future, E-noses will undoubtedly reduce their shortcomings with improved detection accuracy and consistency by employing food quality testing.
AbstractList Tea is the most widely consumed non-alcoholic beverage worldwide. In the tea sector, the high demand for tea has led to an increase in the adulteration of superior tea grades. The procedure of evaluating tea quality is difficult to assure the highest degree of tea safety in the context of consumer preferences. In recent years, the advancement in sensor technology has replaced the human olfaction system with an artificial olfaction system, i.e., electronic noses (E-noses) for quality control of teas to differentiate the distinct aromas. Therefore, in this review, the potential applications of E-nose as a monitoring device for different teas have been investigated. The instrumentation, working principles, and different gas sensor types employed for E-nose applications have been introduced. The widely used statistical and intelligent pattern recognition methods, namely, PCA, LDA, PLS-DA, KNN, ANN, CNN, SVM, etc., have been discussed in detail. The challenges and the future trends for E-nose devices have also been highlighted. Overall, this review provides the insight that E-nose combined with an appropriate pattern recognition method is a powerful non-destructive tool for monitoring tea quality. In future, E-noses will undoubtedly reduce their shortcomings with improved detection accuracy and consistency by employing food quality testing.
Audience Academic
Author Rahadian, Didit
Kaushal, Sushant
Nayi, Pratik
Chen, Ho-Hsien
Author_xml – sequence: 1
  givenname: Sushant
  orcidid: 0000-0003-3984-078X
  surname: Kaushal
  fullname: Kaushal, Sushant
– sequence: 2
  givenname: Pratik
  orcidid: 0000-0001-6667-2940
  surname: Nayi
  fullname: Nayi, Pratik
– sequence: 3
  givenname: Didit
  surname: Rahadian
  fullname: Rahadian, Didit
– sequence: 4
  givenname: Ho-Hsien
  orcidid: 0000-0002-2756-0804
  surname: Chen
  fullname: Chen, Ho-Hsien
BookMark eNp9ks9u1DAQxiNUJErpE3CxxIXLFsd2nITbalVgpfK_nKOJM0m98trBdqj6Djw0s12EUIWwZdka_75vNPY8LU588FgUz0t-IWXLX8EUrVlcXiKWgrelrNpHxangdb3iqhYnf52fFOcp7TgNwhquT4uf63l21kC2wScWRnbp0OQYvDXsQ0jINmGZHQ7s1uYb9jUTmDLxjoEf2NZndM5O6DP7BDlj9OwLmjB5ezBk12huvP2-YGJjiOw92eYQrZ_oBtjnBZzNd6_ZmkQ_LN4-Kx6P4BKe_97Pim9vLq8371ZXH99uN-urlVGa55WolAIFQgHvERql5SirQdDSoDiMlQaNUqJRopRQc4FSD7Idm0bKoeVGnhXbo-8QYNfN0e4h3nUBbHcfCHHqIFKVDjvBeS1Fj7JpjBp73TayL2uy6_ueG63J6-XRa47hUGju9jYZehXwGJbUiVrIUuhSVYS-eIDuwhI9VUpUqVXNm5oTdXGkJqD81o8hRzA0B9xbQ18_Woqva1XxVvJSkkAeBSaGlCKOfyoqeXfokO4fHUKq9oHK2HzfBpTOuv9qfwGrgceK
CitedBy_id crossref_primary_10_1007_s11694_024_02410_3
crossref_primary_10_1109_ACCESS_2023_3295210
crossref_primary_10_3390_chemosensors11040229
crossref_primary_10_1016_j_tifs_2024_104408
crossref_primary_10_3390_s23084017
crossref_primary_10_3390_pr11010090
crossref_primary_10_3390_foods13223580
crossref_primary_10_1016_j_foodcont_2025_111291
crossref_primary_10_3390_chemosensors10100421
crossref_primary_10_1007_s12598_024_02776_9
crossref_primary_10_3390_s24103152
crossref_primary_10_1002_ffj_3826
crossref_primary_10_1007_s11694_024_02847_6
crossref_primary_10_1016_j_foodchem_2023_138242
crossref_primary_10_1186_s43014_023_00157_w
crossref_primary_10_3390_horticulturae9080930
crossref_primary_10_1016_j_measurement_2024_116452
crossref_primary_10_1016_j_sciaf_2024_e02153
crossref_primary_10_3390_toxins15020146
Cites_doi 10.1016/j.chemolab.2015.03.010
10.3390/s17051073
10.1111/1750-3841.15723
10.1016/j.tifs.2017.12.006
10.1016/j.lwt.2021.112691
10.1016/j.tifs.2020.02.028
10.1016/j.snb.2007.12.031
10.3390/mi12010093
10.3390/bios12050356
10.1007/s13197-020-04667-0
10.3390/s18020550
10.1016/j.tifs.2021.10.016
10.1016/S0169-7439(01)00155-1
10.1016/j.snb.2011.07.009
10.1109/ACCESS.2019.2957112
10.1007/s00604-004-0291-6
10.1080/08839514.2016.1169048
10.1002/wics.51
10.1186/s40064-016-2941-7
10.1080/10408398.2020.1858398
10.3390/molecules25020380
10.1016/j.foodchem.2017.03.011
10.1111/1750-3841.14917
10.1016/j.foodhyd.2020.106001
10.1111/ijfs.13326
10.3390/s140712233
10.1016/j.tifs.2015.01.009
10.1186/s12859-019-3310-7
10.1155/2020/3073104
10.1016/j.fbio.2020.100593
10.1016/j.foodchem.2019.04.073
10.12719/KSIA.2019.31.1.1
10.3390/s18082674
10.1007/s00217-021-03930-8
10.3390/s100403882
10.3390/s17122715
10.1109/ICICS.2015.7459865
10.1111/jfpp.13721
10.1016/j.talanta.2015.06.050
10.3390/s17051007
10.1149/1.1539051
10.1371/journal.pone.0206517
10.3390/foods9020193
10.1016/j.lwt.2021.112496
10.1016/j.foodres.2020.109656
10.3390/s19102359
10.1016/j.biosystemseng.2021.08.016
10.3390/s20010050
10.3390/s90705099
10.1007/s12161-016-0739-4
10.1039/C8AN00599K
10.1016/j.jfoodeng.2018.07.020
10.3390/chemosensors7030029
10.1007/s11633-019-1212-9
10.1007/s12161-019-01552-1
10.1039/C5AY02652K
10.1109/JSEN.2020.3048534
10.1016/j.jfoodeng.2014.07.019
10.1039/C5RA17978E
10.3390/s20236875
10.1109/QRS.2018.00047
10.3390/s18103256
10.1016/j.foodchem.2019.03.080
10.1016/j.iot.2021.100359
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
SOI
7S9
L.6
DOA
DOI 10.3390/agriculture12091359
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest SciTech Premium Collection
Agriculture Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Agricultural Science Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Statistics
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_200732be388c4fb6983b176d3bbb0c66
A745093013
10_3390_agriculture12091359
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
PMFND
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c460t-2544a4a24a0bea8463f35d235d6a40af56a6e33ec4213a702e36d39f8833d90c3
IEDL.DBID DOA
ISSN 2077-0472
IngestDate Wed Aug 27 01:30:24 EDT 2025
Fri Jul 11 05:27:38 EDT 2025
Mon Jun 30 11:14:27 EDT 2025
Tue Jun 10 20:26:18 EDT 2025
Tue Jul 01 02:12:50 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-2544a4a24a0bea8463f35d235d6a40af56a6e33ec4213a702e36d39f8833d90c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2756-0804
0000-0003-3984-078X
0000-0001-6667-2940
OpenAccessLink https://doaj.org/article/200732be388c4fb6983b176d3bbb0c66
PQID 2716470870
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_200732be388c4fb6983b176d3bbb0c66
proquest_miscellaneous_2723126145
proquest_journals_2716470870
gale_infotracacademiconefile_A745093013
crossref_primary_10_3390_agriculture12091359
crossref_citationtrail_10_3390_agriculture12091359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_64) 2015; 5
Khollam (ref_45) 2019; 6
Deshmukh (ref_17) 2015; 144
Xu (ref_1) 2021; 58
ref_14
Dai (ref_55) 2015; 144
ref_57
Hu (ref_47) 2016; 5
ref_11
ref_10
Liu (ref_60) 2019; 7
Liang (ref_6) 2021; 118
Zhu (ref_46) 2021; 4
Xu (ref_2) 2019; 289
Ruengdech (ref_66) 2020; 36
ref_59
Sanaeifar (ref_67) 2021; 210
Berna (ref_19) 2010; 10
Ali (ref_75) 2020; 99
Wang (ref_72) 2021; 33
Luo (ref_5) 2017; 52
Sharmilan (ref_30) 2020; 2020
ref_61
James (ref_24) 2005; 149
ref_25
Yang (ref_69) 2022; 154
ref_20
Chen (ref_54) 2015; 43
Wang (ref_62) 2021; 21
Han (ref_29) 2020; 28
ref_28
Jia (ref_74) 2019; 12
ref_27
Ye (ref_56) 2016; 8
ref_71
Zhu (ref_52) 2021; 13
Karakaya (ref_23) 2020; 17
Chen (ref_9) 2011; 159
Kiani (ref_12) 2016; 3
Chmielewski (ref_21) 2017; 10
ref_34
ref_33
ref_32
Yuan (ref_7) 2019; 84
ref_31
Barbosa (ref_53) 2016; 30
ref_73
Yang (ref_58) 2018; 42
Lam (ref_51) 2020; 108
Bayaga (ref_39) 2010; 5
Ali (ref_37) 2019; 31
Tan (ref_13) 2020; 4
Yang (ref_65) 2021; 86
Wold (ref_43) 2001; 58
Dash (ref_49) 2022; 62
Loutfi (ref_15) 2015; 144
Lee (ref_40) 2018; 143
Qiu (ref_35) 2017; 230
Yan (ref_68) 2022; 248
Granato (ref_36) 2018; 72
ref_44
Zakaria (ref_18) 2014; 14
Stetter (ref_26) 2003; 150
Bhattacharya (ref_16) 2008; 131
ref_41
Wilson (ref_22) 2009; 9
ref_3
Yang (ref_63) 2020; 137
Poppi (ref_50) 2019; 293
ref_48
ref_8
Xu (ref_38) 2019; 241
ref_4
Abdi (ref_42) 2010; 2
Chen (ref_70) 2022; 153
References_xml – volume: 33
  start-page: 2095
  year: 2021
  ident: ref_72
  article-title: Feature reduction method coupled with electronic nose for quality control of tea
  publication-title: Sens. Mater.
– volume: 144
  start-page: 63
  year: 2015
  ident: ref_55
  article-title: Longjing tea quality classification by fusion of features collected from E-nose
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.03.010
– ident: ref_14
  doi: 10.3390/s17051073
– volume: 86
  start-page: 2358
  year: 2021
  ident: ref_65
  article-title: Rapid characterization of the volatile profiles in Pu-erh tea by gas phase electronic nose and microchamber/thermal extractor combined with TD-GC-MS
  publication-title: J. Food Sci.
  doi: 10.1111/1750-3841.15723
– volume: 72
  start-page: 83
  year: 2018
  ident: ref_36
  article-title: Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2017.12.006
– volume: 154
  start-page: 112691
  year: 2022
  ident: ref_69
  article-title: Aroma dynamic characteristics during the drying process of green tea by gas phase electronic nose and gas chromatography-ion mobility spectrometry
  publication-title: LWT
  doi: 10.1016/j.lwt.2021.112691
– volume: 99
  start-page: 1
  year: 2020
  ident: ref_75
  article-title: Principles and recent advances in electronic nose for quality inspection of agricultural and food products
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2020.02.028
– volume: 131
  start-page: 37
  year: 2008
  ident: ref_16
  article-title: Illumination heating and physical raking for increasing sensitivity of electronic nose measurements with black tea
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2007.12.031
– ident: ref_71
  doi: 10.3390/mi12010093
– ident: ref_20
  doi: 10.3390/bios12050356
– volume: 58
  start-page: 1549
  year: 2021
  ident: ref_1
  article-title: Tea quality evaluation by applying E-nose combined with chemometrics methods
  publication-title: J. Food Sci. Technol.
  doi: 10.1007/s13197-020-04667-0
– ident: ref_73
  doi: 10.3390/s18020550
– volume: 118
  start-page: 431
  year: 2021
  ident: ref_6
  article-title: Processing technologies for manufacturing tea beverages: From traditional to advanced hybrid processes
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2021.10.016
– volume: 58
  start-page: 109
  year: 2001
  ident: ref_43
  article-title: PLS-regression: A basic tool of chemometrics
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(01)00155-1
– ident: ref_4
– volume: 159
  start-page: 294
  year: 2011
  ident: ref_9
  article-title: Discrimination of green tea quality using the electronic nose technique and the human panel test, comparison of linear and nonlinear classification tools
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2011.07.009
– ident: ref_31
– volume: 7
  start-page: 172965
  year: 2019
  ident: ref_60
  article-title: Classification and evaluation of quality grades of organic green teas using an electronic nose based on machine learning algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2957112
– volume: 149
  start-page: 1
  year: 2005
  ident: ref_24
  article-title: Chemical sensors for electronic nose systems
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-004-0291-6
– volume: 30
  start-page: 318
  year: 2016
  ident: ref_53
  article-title: The use of support vector machine to analyze food security in a region of Brazil
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2016.1169048
– volume: 2
  start-page: 97
  year: 2010
  ident: ref_42
  article-title: Partial least squares regression and projection on latent structure regression (PLS Regression)
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.51
– volume: 5
  start-page: 1304
  year: 2016
  ident: ref_47
  article-title: The distance function effect on k-nearest neighbor classification for medical datasets
  publication-title: SpringerPlus
  doi: 10.1186/s40064-016-2941-7
– volume: 62
  start-page: 2756
  year: 2022
  ident: ref_49
  article-title: Comprehensive study on applications of artificial neural network in food process modeling
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2020.1858398
– ident: ref_61
  doi: 10.3390/molecules25020380
– volume: 4
  start-page: 104
  year: 2020
  ident: ref_13
  article-title: Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review
  publication-title: Artif. Intell. Agric.
– volume: 230
  start-page: 208
  year: 2017
  ident: ref_35
  article-title: The prediction of food additives in the fruit juice based on electronic nose with chemometrics
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2017.03.011
– volume: 84
  start-page: 3411
  year: 2019
  ident: ref_7
  article-title: Quality evaluation of green and dark tea grade using electronic nose and multivariate statistical analysis
  publication-title: J. Food Sci.
  doi: 10.1111/1750-3841.14917
– volume: 108
  start-page: 106001
  year: 2020
  ident: ref_51
  article-title: Use of random forest analysis to quantify the importance of the structural characteristics of beta-glucans for prebiotic development
  publication-title: Food Hydrocoll.
  doi: 10.1016/j.foodhyd.2020.106001
– volume: 52
  start-page: 714
  year: 2017
  ident: ref_5
  article-title: Geographical origin identification and quality control of Chinese chrysanthemum flower teas using gas chromatography–mass spectrometry and olfactometry and electronic nose combined with principal component analysis
  publication-title: Int. J. Food Sci. Technol.
  doi: 10.1111/ijfs.13326
– volume: 14
  start-page: 12233
  year: 2014
  ident: ref_18
  article-title: A bio-inspired herbal tea flavour assessment technique
  publication-title: Sensors
  doi: 10.3390/s140712233
– volume: 43
  start-page: 63
  year: 2015
  ident: ref_54
  article-title: Recent developments of green analytical techniques in analysis of tea’s quality and nutrition
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2015.01.009
– ident: ref_41
  doi: 10.1186/s12859-019-3310-7
– volume: 2020
  start-page: 3073104
  year: 2020
  ident: ref_30
  article-title: Electronic nose technologies in monitoring black tea manufacturing process
  publication-title: J. Sens.
  doi: 10.1155/2020/3073104
– volume: 36
  start-page: 100593
  year: 2020
  ident: ref_66
  article-title: Visualization of mulberry tea quality using an electronic sensor array, SPME-GC/MS, and sensory evaluation
  publication-title: Food Biosci.
  doi: 10.1016/j.fbio.2020.100593
– volume: 293
  start-page: 323
  year: 2019
  ident: ref_50
  article-title: Random forest as one-class classifier and infrared spectroscopy for food adulteration detection
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2019.04.073
– volume: 5
  start-page: 288
  year: 2010
  ident: ref_39
  article-title: Multinomial logistic regression: Usage and application in risk analysis
  publication-title: J. Appl. Quant. Methods
– volume: 28
  start-page: 486
  year: 2020
  ident: ref_29
  article-title: Perspective on recent developments of nanomaterial based fluorescent sensors: Applications in safety and quality control of food and beverages
  publication-title: J. Food Drug Anal.
– volume: 31
  start-page: 1
  year: 2019
  ident: ref_37
  article-title: A Study on consumption and consumer preference for halal meat among Pakistani community in South Korea
  publication-title: J. Korean Soc. Int. Agric.
  doi: 10.12719/KSIA.2019.31.1.1
– ident: ref_34
– ident: ref_48
  doi: 10.3390/s18082674
– volume: 248
  start-page: 947
  year: 2022
  ident: ref_68
  article-title: Aroma analysis of Fuyun 6 and Jinguanyin black tea in the Fu’an area based on E-nose and GC–MS
  publication-title: Eur. Food Res. Technol.
  doi: 10.1007/s00217-021-03930-8
– volume: 10
  start-page: 3882
  year: 2010
  ident: ref_19
  article-title: Metal oxide sensors for electronic noses and their application to food analysis
  publication-title: Sensors
  doi: 10.3390/s100403882
– ident: ref_25
  doi: 10.3390/s17122715
– ident: ref_33
  doi: 10.1109/ICICS.2015.7459865
– volume: 42
  start-page: e13721
  year: 2018
  ident: ref_58
  article-title: Discriminant research for identifying aromas of non-fermented Pu-erh tea from different storage years using an electronic nose
  publication-title: J. Food Process. Preserv.
  doi: 10.1111/jfpp.13721
– volume: 144
  start-page: 329
  year: 2015
  ident: ref_17
  article-title: Application of electronic nose for industrial odors and gaseous emissions measurement and monitoring–An overview
  publication-title: Talanta
  doi: 10.1016/j.talanta.2015.06.050
– ident: ref_8
  doi: 10.3390/s17051007
– volume: 150
  start-page: S11
  year: 2003
  ident: ref_26
  article-title: Sensors, chemical sensors, electrochemical sensors, and ECS
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1539051
– ident: ref_57
  doi: 10.1371/journal.pone.0206517
– ident: ref_44
– ident: ref_28
  doi: 10.3390/foods9020193
– volume: 153
  start-page: 112496
  year: 2022
  ident: ref_70
  article-title: Aroma quality evaluation of Dianhong black tea infusions by the combination of rapid gas phase electronic nose and multivariate statistical analysis
  publication-title: LWT
  doi: 10.1016/j.lwt.2021.112496
– volume: 137
  start-page: 109656
  year: 2020
  ident: ref_63
  article-title: Aroma dynamic characteristics during the process of variable-temperature final firing of Congou black tea by electronic nose and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2020.109656
– ident: ref_59
  doi: 10.3390/s19102359
– volume: 210
  start-page: 206
  year: 2021
  ident: ref_67
  article-title: A data fusion approach on confocal Raman microspectroscopy and electronic nose for quantitative evaluation of pesticide residue in tea
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2021.08.016
– ident: ref_3
  doi: 10.3390/s20010050
– volume: 9
  start-page: 5099
  year: 2009
  ident: ref_22
  article-title: Applications and advances in electronic-nose technologies
  publication-title: Sensors
  doi: 10.3390/s90705099
– volume: 10
  start-page: 1800
  year: 2017
  ident: ref_21
  article-title: Electronic nose as a tool for monitoring the authenticity of food. A review
  publication-title: Food Anal. Methods
  doi: 10.1007/s12161-016-0739-4
– volume: 6
  start-page: 107
  year: 2019
  ident: ref_45
  article-title: Review on food categorization techniques in machine learning
  publication-title: Int. J. Res. Anal. Rev.
– volume: 143
  start-page: 3526
  year: 2018
  ident: ref_40
  article-title: Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: A review of contemporary practice strategies and knowledge gaps
  publication-title: Analyst
  doi: 10.1039/C8AN00599K
– volume: 241
  start-page: 10
  year: 2019
  ident: ref_38
  article-title: Rapid identification of tea quality by E-nose and computer vision combining with a synergetic data fusion strategy
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2018.07.020
– ident: ref_10
  doi: 10.3390/chemosensors7030029
– volume: 4
  start-page: 233
  year: 2021
  ident: ref_46
  article-title: Deep learning and machine vision for food processing: A survey
  publication-title: Curr. Res. Nutr. Food Sci.
– volume: 17
  start-page: 179
  year: 2020
  ident: ref_23
  article-title: Electronic nose and its applications: A survey
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-019-1212-9
– volume: 12
  start-page: 2226
  year: 2019
  ident: ref_74
  article-title: Advances in electronic nose development for application to agricultural products
  publication-title: Food Anal. Methods
  doi: 10.1007/s12161-019-01552-1
– volume: 8
  start-page: 593
  year: 2016
  ident: ref_56
  article-title: Differentiation of two types of pu-erh teas by using an electronic nose and ultrasound-assisted extraction-dispersive liquid–liquid microextraction-gas chromatography-mass spectrometry
  publication-title: Anal. Methods
  doi: 10.1039/C5AY02652K
– volume: 21
  start-page: 8065
  year: 2021
  ident: ref_62
  article-title: A transfer learning method for the protection of geographical indication in China using an electronic nose for the identification of Xihu Longjing tea
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3048534
– volume: 144
  start-page: 103
  year: 2015
  ident: ref_15
  article-title: Electronic noses for food quality: A review
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2014.07.019
– volume: 5
  start-page: 106959
  year: 2015
  ident: ref_64
  article-title: The classification and prediction of green teas by electrochemical response data extraction and fusion approaches based on the combination of e-nose and e-tongue
  publication-title: RSC Adv.
  doi: 10.1039/C5RA17978E
– ident: ref_27
  doi: 10.3390/s20236875
– ident: ref_32
  doi: 10.1109/QRS.2018.00047
– ident: ref_11
  doi: 10.3390/s18103256
– volume: 289
  start-page: 482
  year: 2019
  ident: ref_2
  article-title: The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2019.03.080
– volume: 3
  start-page: 1
  year: 2016
  ident: ref_12
  article-title: Application of electronic nose systems for assessing quality of medicinal and aromatic plant products: A review
  publication-title: J. Appl. Res. Med. Aromat. Plants
– volume: 13
  start-page: 100359
  year: 2021
  ident: ref_52
  article-title: Support vector machine and YOLO for a mobile food grading system
  publication-title: Internet Things
  doi: 10.1016/j.iot.2021.100359
SSID ssj0000913806
Score 2.3878322
SecondaryResourceType review_article
Snippet Tea is the most widely consumed non-alcoholic beverage worldwide. In the tea sector, the high demand for tea has led to an increase in the adulteration of...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1359
SubjectTerms adulterated products
agriculture
Alcoholic beverages
Algorithms
aroma
Chromatography
Consumer behavior
Consumer preferences
Consumers
electronic nose
Electronic noses
Fermentation
Food
Food quality
Gas sensors
Gases
humans
Instrumentation
intelligent pattern recognition
Mass spectrometry
Monitoring
non-alcoholic beverages
Nondestructive testing
Odors
Olfaction
Pattern recognition
Polyphenols
Quality assurance
Quality control
Quality management
Scientific imaging
Sensors
smell
Statistics
Supply and demand
Tea
tea quality
Volatility
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9lIOCAqIQEFGQuJC1MR2vA4XlFZbFSRWVdVKvUV2MumlSrb7ceA_8KOZSZy0B-ghl8R24sx4_DxjvwH4bDOvnFY6RosY61SamKYhFye6yazPPaaKTyP_WpqzK_3zOrsODrdN2FY52sTeUNddxT7yI8nAfp6Qen1f3cWcNYqjqyGFxlPYIxNs7Qz2jhfL84vJy8KslzYxA92QovX9kbtZB1IL5GOjqWKW0gdTUs_c_z_73E86py_geUCLohjE-xKeYHsAz4r7xg9gn-HiwLb8Cv4UD-LRomvEYspyI5bdBsVJt1vdYi3Y_SqmmvQK19bix0TPuRXnPe9mKy7GDUZdKy5HvteNIKgrBnPAfkF64sTAxvH7myjEEHB4DVeni8uTszjkW4grbZJtzGxlTjupXeLRETBRjcpqSZdxOnFNZpxBpbDSMlVunkhUplZ5w_mK6zyp1BuYtV2Lb0GkzjmCTjar80YbXeda1tKizKRvEFOMQI6_vKwCGTnnxLgtaVHCcir_IacIvk6VVgMXx-PFj1mWU1Em0u5vdOubMoxLzsI5V9KjsrbSjTe5VT6dU7e890llTARfWBNKHu70gZULpxaom0ycVRZzTZCLrKSK4HBUljLYgU15r7URfJoe0wjmsIxrsdtxGcLYtJDV2bvHm3gP-5IPX_Q73A5htl3v8ANBoq3_GPT-L337D4Q
  priority: 102
  providerName: ProQuest
Title Applications of Electronic Nose Coupled with Statistical and Intelligent Pattern Recognition Techniques for Monitoring Tea Quality: A Review
URI https://www.proquest.com/docview/2716470870
https://www.proquest.com/docview/2723126145
https://doaj.org/article/200732be388c4fb6983b176d3bbb0c66
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQucABlQIibalcCYkLUROP43W4pdVWbSVWVdVKvVl2MuFSJVV398B_4Ecz42TDHnhcOOQSO5bjedueb4T4aIsAXoNO0SKmOlcmJTPk00y3hQ1lwBw4G_nrwlzc6av74n6r1BffCRvggYeFO-G9NFABwdpat8GUFkI-Mw2EELLaRLBtsnlbwVTUwWUONjMDzBBQXH_ivz2NYBbI6aI5MDrplimKiP1_0svR2JzvilejlyirYXavxTPs9sTL6tfgb8SPauvoWfatnE8FbeSiX6I869ePD9hI3mmV7FNGSGYa1XeNvJyQOFfyOkJsdvJmc5eo7-TtBtp1KcmrlYPk8xYgtXg5AG98_yIrOZwtvBV35_Pbs4t0LK2Q1tpkq5SBybz2SvssoCcfBFooGkWP8TrzbWG8QQCstcrBzzKFQEtetlyauCmzGt6Jna7v8L2QufeevCRbNGWrjW5KrRplURUqtIg5JkJtVtnVI-44l794cBR_MGncb0iTiM_TR48D7Mbfu58y-aaujJkdXxAnuZGT3L84KRGfmPiOJZsmWPsxQYF-kzGyXDXT5F2RQoREHG74w40iv3SKI89ZRvovEcdTMwkrn8D4Dvs19yF3mmJWXez_jxkfiBeKszHilbdDsbN6WuMH8pFW4Ug8P50vrm-Oolj8BEkpE54
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7YFyQFBABAoYCcSFqI7tOAkSQtuy1S5tV1W1lXpL7cTppUqW_RHqO_AsPCMz-WsP0FsPuSS2E2fGM-MZzzcAH-LQSqOk8l3snK8CoX1UQ8bnqghjm1gXSMpGPp7q8Zn6cR6eb8CfLheGjlV2MrEW1HmVkY98V5BhH3Fkr2_znz5VjaLoaldCo2GLQ3f9C7dsy6-T70jfj0IcjGb7Y7-tKuBnSvOVT5hcRhmhDLfOoPqVhQxzgZc2ipsi1EY7KV2mRCBNxIWTOpdJQVV584RnEsd9AJtKai4GsLk3mp6c9l4dQtmMuW7gjaRM-K65XLQgGo7SVANJqKi3VGBdKeB_-qBWcgdP4HFrnbJhw05PYcOV2_BoeDP4NmyRedqgOz-D38Nb8W9WFWzUV9Vh02rp2H61nl-5nJG7l_U98RWmzNmkhwNdsZMa57Nkp92Bpqpksw5fdsnQtGaN-CE_JD4xrEH_uP7ChqwJcDyHs3uhxAsYlFXpXgILjDFoqsVhnhRKqzxRIhexE6GwhXOB80B0vzzNWvBzqsFxleImiOiU_oNOHnzuO80b7I-7m-8RLfumBNxd36gWl2krB6jqZySFdTKOM1VYncTSBhFOy1rLM609-ESckJJ4wQ_MTJslgdMkoK50GCk08VAqSw92OmZJW7mzTG9WiQfv-8coMSgMZEpXrakN2vS4cVbhq7uHeAcPx7Pjo_RoMj18DVuCEj_q03U7MFgt1u4NmmMr-7ZdAwwu7nvZ_QUKXks1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTKAUEBEShgJBAXonVsx0mQENq2u-pSWK2qVuot2InTS5Us-yPUd-CJeDpm8tceoLcecklsJ86MZ8bjmW8A3sWhlUZJ5bvYOV8FQvuohozPVRHGNrEukJSN_H2mj87U1_PwfAv-dLkwFFbZycRaUOdVRj7yoSDDPuLIXsOiDYuYH06-LH76VEGKTlq7choNixy7q1-4fVt9nh4ird8LMRmfHhz5bYUBP1Oar33C5zLKCGW4dQZVsSxkmAu8tFHcFKE22knpMiUCaSIunNS5TAqq0JsnPJM47j3YjmhXNIDt_fFsftJ7eAhxM-a6gTqSMuFDc7FsATUcpawGkhBSb6jDumrA_3RDrfAmj-Bha6myUcNaj2HLlbvwYHQ9-C7skKnaID0_gd-jG2fhrCrYuK-ww2bVyrGDarO4dDkj1y_re-IrTJmzaQ8NumbzGvOzZCddcFNVstMOa3bF0MxmjSginyQ-MaxBArn6xEasOex4Cmd3QolnMCir0j0HFhhj0GyLwzwplFZ5okQuYidCYQvnAueB6H55mrVA6FSP4zLFDRHRKf0HnTz42HdaNDggtzffJ1r2TQnEu75RLS_SViZQBdBICutkHGeqsDqJpQ0inJa1lmdae_CBOCElUYMfmJk2YwKnSaBd6ShSaO6hhJYe7HXMkrYyaJVerxgP3vaPUXrQkZApXbWhNmjf4yZahS9uH-IN3Mflln6bzo5fwo6gHJA60G4PBuvlxr1Cy2xtX7dLgMGPu151fwE9-U9q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+Electronic+Nose+Coupled+with+Statistical+and+Intelligent+Pattern+Recognition+Techniques+for+Monitoring+Tea+Quality%3A+A+Review&rft.jtitle=Agriculture+%28Basel%29&rft.au=Kaushal%2C+Sushant&rft.au=Nayi%2C+Pratik&rft.au=Rahadian%2C+Didit&rft.au=Chen%2C+Ho-Hsien&rft.date=2022-09-01&rft.issn=2077-0472&rft.eissn=2077-0472&rft.volume=12&rft.issue=9&rft_id=info:doi/10.3390%2Fagriculture12091359&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon