Deriving a genetic regulatory network from an optimization principle

Many biological systems operate near the physical limits to their performance, suggesting that aspects of their behavior and underlying mechanisms could be derived from optimization principles. However, such principles have often been applied only in simplified models. Here, we explore a detailed me...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 122; no. 1; p. e2402925121
Main Authors Sokolowski, Thomas R., Gregor, Thomas, Bialek, William, Tkačik, Gašper
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 07.01.2025
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2402925121

Cover

Loading…
Abstract Many biological systems operate near the physical limits to their performance, suggesting that aspects of their behavior and underlying mechanisms could be derived from optimization principles. However, such principles have often been applied only in simplified models. Here, we explore a detailed mechanistic model of the gap gene network in the Drosophila embryo, optimizing its 50+ parameters to maximize the information that gene expression levels provide about nuclear positions. This optimization is conducted under realistic constraints, such as limits on the number of available molecules. Remarkably, the optimal networks we derive closely match the architecture and spatial gene expression profiles observed in the real organism. Our framework quantifies the tradeoffs involved in maximizing functional performance and allows for the exploration of alternative network configurations, addressing the question of which features are necessary and which are contingent. Our results suggest that multiple solutions to the optimization problem might exist across closely related organisms, offering insights into the evolution of gene regulatory networks.
AbstractList Many biological systems operate near the physical limits to their performance, suggesting that aspects of their behavior and underlying mechanisms could be derived from optimization principles. However, such principles have often been applied only in simplified models. Here, we explore a detailed mechanistic model of the gap gene network in the Drosophila embryo, optimizing its 50+ parameters to maximize the information that gene expression levels provide about nuclear positions. This optimization is conducted under realistic constraints, such as limits on the number of available molecules. Remarkably, the optimal networks we derive closely match the architecture and spatial gene expression profiles observed in the real organism. Our framework quantifies the tradeoffs involved in maximizing functional performance and allows for the exploration of alternative network configurations, addressing the question of which features are necessary and which are contingent. Our results suggest that multiple solutions to the optimization problem might exist across closely related organisms, offering insights into the evolution of gene regulatory networks.
Many biological systems operate near the physical limits to their performance, suggesting that aspects of their behavior and underlying mechanisms could be derived from optimization principles. However, such principles have often been applied only in simplified models. Here, we explore a detailed mechanistic model of the gap gene network in the embryo, optimizing its 50+ parameters to maximize the information that gene expression levels provide about nuclear positions. This optimization is conducted under realistic constraints, such as limits on the number of available molecules. Remarkably, the optimal networks we derive closely match the architecture and spatial gene expression profiles observed in the real organism. Our framework quantifies the tradeoffs involved in maximizing functional performance and allows for the exploration of alternative network configurations, addressing the question of which features are necessary and which are contingent. Our results suggest that multiple solutions to the optimization problem might exist across closely related organisms, offering insights into the evolution of gene regulatory networks.
Many biological systems operate near the physical limits to their performance, suggesting that aspects of their behavior and underlying mechanisms could be derived from optimization principles. However, such principles have often been applied only in simplified models. Here, we explore a detailed mechanistic model of the gap gene network in the Drosophila embryo, optimizing its 50+ parameters to maximize the information that gene expression levels provide about nuclear positions. This optimization is conducted under realistic constraints, such as limits on the number of available molecules. Remarkably, the optimal networks we derive closely match the architecture and spatial gene expression profiles observed in the real organism. Our framework quantifies the tradeoffs involved in maximizing functional performance and allows for the exploration of alternative network configurations, addressing the question of which features are necessary and which are contingent. Our results suggest that multiple solutions to the optimization problem might exist across closely related organisms, offering insights into the evolution of gene regulatory networks.Many biological systems operate near the physical limits to their performance, suggesting that aspects of their behavior and underlying mechanisms could be derived from optimization principles. However, such principles have often been applied only in simplified models. Here, we explore a detailed mechanistic model of the gap gene network in the Drosophila embryo, optimizing its 50+ parameters to maximize the information that gene expression levels provide about nuclear positions. This optimization is conducted under realistic constraints, such as limits on the number of available molecules. Remarkably, the optimal networks we derive closely match the architecture and spatial gene expression profiles observed in the real organism. Our framework quantifies the tradeoffs involved in maximizing functional performance and allows for the exploration of alternative network configurations, addressing the question of which features are necessary and which are contingent. Our results suggest that multiple solutions to the optimization problem might exist across closely related organisms, offering insights into the evolution of gene regulatory networks.
Many biological systems approach physical limits to their performance, motivating the idea that their behavior and underlying mechanisms could be determined by such optimality. Nevertheless, optimization as a predictive principle has only been applied in very simplified setups. Here, in contrast, we explore a mechanisticallydetailed class of models for the gap gene network of the Drosophila embryo, and determine its 50+ parameters by optimizing the information that gene expression levels convey about nuclear positions, subject to physical constraints on the number of available molecules. Optimal networks recapitulate the architecture and spatial gene expression profiles of the real organism. Our framework makes precise the many tradeoffs involved in maximizing functional performance, and allows us to explore alternative networks to address the questions of necessity vs contingency. Multiple solutions to the optimization problem may be realized in closely related organisms.
Many biological systems operate near the physical limits to their performance, suggesting that aspects of their behavior and underlying mechanisms could be derived from optimization principles. However, such principles have often been applied only in simplified models. Here, we explore a detailed mechanistic model of the gap gene network in the Drosophila embryo, optimizing its 50+ parameters to maximize the information that gene expression levels provide about nuclear positions. This optimization is conducted under realistic constraints, such as limits on the number of available molecules. Remarkably, the optimal networks we derive closely match the architecture and spatial gene expression profiles observed in the real organism. Our framework quantifies the tradeoffs involved in maximizing functional performance and allows for the exploration of alternative network configurations, addressing the question of which features are necessary and which are contingent. Our results suggest that multiple solutions to the optimization problem might exist across closely related organisms, offering insights into the evolution of gene regulatory networks.
Information crucial for life is represented by surprisingly low concentrations of key molecules, yet cells use these small signals to make reliable decisions. Could the mechanisms of life have been tuned to extract as much information as possible from a limited number of molecules? We apply this physical principle to a genetic network that controls pattern formation in early development of the fruit fly embryo, searching for the settings of 50+ internal parameters that give each cell the maximum possible information about its position in the embryo. The resulting optimal networks recapitulate many features of the real network, quantitatively. This approach makes tradeoffs explicit, rationalizes the network architecture, and provides perspectives on the interplay of chance and necessity. Many biological systems operate near the physical limits to their performance, suggesting that aspects of their behavior and underlying mechanisms could be derived from optimization principles. However, such principles have often been applied only in simplified models. Here, we explore a detailed mechanistic model of the gap gene network in the Drosophila embryo, optimizing its 50+ parameters to maximize the information that gene expression levels provide about nuclear positions. This optimization is conducted under realistic constraints, such as limits on the number of available molecules. Remarkably, the optimal networks we derive closely match the architecture and spatial gene expression profiles observed in the real organism. Our framework quantifies the tradeoffs involved in maximizing functional performance and allows for the exploration of alternative network configurations, addressing the question of which features are necessary and which are contingent. Our results suggest that multiple solutions to the optimization problem might exist across closely related organisms, offering insights into the evolution of gene regulatory networks.
Author Tkačik, Gašper
Sokolowski, Thomas R.
Bialek, William
Gregor, Thomas
Author_xml – sequence: 1
  givenname: Thomas R.
  surname: Sokolowski
  fullname: Sokolowski, Thomas R.
– sequence: 2
  givenname: Thomas
  orcidid: 0000-0001-9460-139X
  surname: Gregor
  fullname: Gregor, Thomas
– sequence: 3
  givenname: William
  orcidid: 0000-0002-7823-3862
  surname: Bialek
  fullname: Bialek, William
– sequence: 4
  givenname: Gašper
  surname: Tkačik
  fullname: Tkačik, Gašper
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39752518$$D View this record in MEDLINE/PubMed
https://pasteur.hal.science/pasteur-03988951$$DView record in HAL
BookMark eNp1kc9PFDEcxRuDkQU9ezOTePEy8O2vaXsyBFRINuGC56bT6S7FmXZsZ9bAX0_XBcVNPDVpP-_1-77vCB2EGBxC7zGcYBD0dAwmnxAGRBGOCX6FFhgUrhum4AAtAIioJSPsEB3lfAcAikt4gw6pErwI5AJdXLjkNz6sK1OtXXCTt1Vy67k3U0z3Vbn4FdOPapXiUJlQxXHyg38wk4-hGpMP1o-9e4ter0yf3bun8xh9__rl5vyyXl5_uzo_W9aWNTDVeGWsbTumFLNOgFBOcGeoMJSAIh0VreVStpK0qm0s66wlnALvuGiASgP0GH3e-Y5zO7jOujAl0-syx2DSvY7G639fgr_V67jRGAvChaTFod453O7pLs-WejR5cnPSQJWUiuMNKfynpx9T_Dm7POnBZ-v63gQX56wp5phxIuUW_biH3sU5hbKPQpUApClcoT68jPBnhudGCsB3gE0x5-RW2vrp975LIt9rDHrbvN42r_82X3Sne7pn6_8pHgEgabCh
CitedBy_id crossref_primary_10_1103_PhysRevE_111_034406
Cites_doi 10.1371/journal.pone.0002774
10.1126/science.aam5979
10.1038/s41576-018-0069-z
10.1038/msb.2012.72
10.1073/pnas.1324186111
10.1038/nature04485
10.1242/dev.176065
10.1016/j.bpj.2011.05.060
10.1146/annurev-conmatphys-031214-014803
10.1371/journal.pcbi.0020051
10.1103/PhysRevLett.103.258101
10.1371/journal.pcbi.1000303
10.1103/PhysRevE.81.041905
10.7554/eLife.04785
10.1371/journal.pgen.1006052
10.1103/PhysRevE.85.041903
10.1242/dev.129452
10.1016/j.biosystems.2014.06.003
10.1371/journal.pbio.0020271
10.1016/j.cell.2019.01.007
10.1371/journal.pbio.2003174
10.1103/PhysRevE.91.062710
10.1371/journal.pcbi.1000548
10.1073/pnas.1903887116
10.1038/287795a0
10.1073/pnas.2006731117
10.1534/genetics.114.171850
10.1371/journal.pcbi.1005285
10.1103/PhysRevE.93.022404
10.1007/s00239-002-2335-z
10.1016/j.neuron.2021.01.020
10.1242/dev.048033
10.1093/molbev/mst170
10.1038/348027a0
10.1007/978-3-319-32979-6
10.1242/jeb.29.4.667
10.1093/genetics/iyae191
10.1371/journal.pbio.1000049
10.1016/j.cell.2013.07.025
10.1073/pnas.0501865102
10.1073/pnas.1315642110
10.1016/j.cell.2007.05.025
10.1073/pnas.0911663107
10.1016/j.ydbio.2004.08.021
10.1073/pnas.0509483102
10.1016/j.cell.2016.06.012
10.1073/pnas.2113651119
10.1016/S0022-5193(69)80016-0
10.1038/nature02678
10.1016/j.cell.2018.09.056
10.1103/RevModPhys.70.1027
10.1038/nature06496
10.1086/414425
10.1016/j.coisb.2022.100435
10.1038/s41587-019-0315-8
10.1007/s00018-010-0536-y
10.1103/PhysRevE.80.031920
10.1371/journal.pcbi.1002654
10.7554/eLife.64543
10.1038/nature01149
10.1073/pnas.0806077105
10.1016/j.tig.2014.06.002
10.1016/S0006-3495(77)85544-6
10.1093/oso/9780198830870.001.0001
10.1006/jtbi.2001.2335
10.1073/pnas.2123152119
10.1038/381607a0
10.1103/PhysRevLett.104.048704
10.1371/journal.pone.0163628
10.1038/msb4100192
10.1242/dev.170480
10.1126/science.1177894
10.1073/pnas.162041399
10.1534/genetics.104.027334
10.7554/eLife.42832
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jan 7, 2024
Attribution
Copyright © 2025 the Author(s). Published by PNAS. 2025
Copyright_xml – notice: Copyright National Academy of Sciences Jan 7, 2024
– notice: Attribution
– notice: Copyright © 2025 the Author(s). Published by PNAS. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
VOOES
5PM
DOI 10.1073/pnas.2402925121
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE
MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1091-6490
ExternalDocumentID PMC11725783
oai_HAL_pasteur_03988951v2
39752518
10_1073_pnas_2402925121
Genre Journal Article
GrantInformation_xml – fundername: Simons Foundation (SF)
  grantid: 821703
– fundername: NIDDK NIH HHS
  grantid: U01 DK127429
– fundername: John Simon Guggenheim Memorial Foundation (JSGMF)
  grantid: (none)
– fundername: Austrian Science Fund (FWF)
  grantid: FWF P28844
– fundername: HHS | National Institutes of Health (NIH)
  grantid: U01DA047730
– fundername: HHS | National Institutes of Health (NIH)
  grantid: U01DK127429
– fundername: Human Frontier Science Program (HFSP)
  grantid: (none_)
– fundername: NIGMS NIH HHS
  grantid: R01 GM097275
– fundername: NIDA NIH HHS
  grantid: U01 DA047730
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R01GM097275
– fundername: ;
  grantid: PHY-1734030
– fundername: ;
  grantid: 821703
– fundername: ;
  grantid: U01DK127429
– fundername: ;
  grantid: (none)
– fundername: ;
  grantid: FWF P28844
– fundername: ;
  grantid: R01GM097275
– fundername: ;
  grantid: U01DA047730
– fundername: ;
  grantid: (none_)
GroupedDBID ---
-DZ
-~X
.55
0R~
123
2FS
2WC
4.4
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYXX
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFHIN
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CITATION
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
JLS
JSG
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
WH7
WOQ
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
29P
CGR
CUY
CVF
ECM
EIF
HYE
NPM
W8F
WOW
53G
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
UMC
VOOES
5PM
ID FETCH-LOGICAL-c460t-1faccbd4994ce7079e75ea37a32092d37bc588b82b9b6c4dcc25305d576038a03
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:32:56 EDT 2025
Fri May 09 12:06:51 EDT 2025
Thu Jul 10 17:01:50 EDT 2025
Mon Jun 30 09:42:38 EDT 2025
Mon Jul 21 06:03:32 EDT 2025
Tue Jul 01 02:37:24 EDT 2025
Thu Apr 24 22:54:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords gene regulatory networks
evolution
optimization
Drosophila
Language English
License Attribution: http://creativecommons.org/licenses/by
This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c460t-1faccbd4994ce7079e75ea37a32092d37bc588b82b9b6c4dcc25305d576038a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Contributed by William Bialek; received February 13, 2024; accepted November 13, 2024; reviewed by Dmitri B. Chklovskii, Angela H. DePace, Michael M. Desai, and Jane Kondev
ORCID 0000-0002-7823-3862
0000-0001-9460-139X
OpenAccessLink https://pasteur.hal.science/pasteur-03988951
PMID 39752518
PQID 3160326528
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11725783
hal_primary_oai_HAL_pasteur_03988951v2
proquest_miscellaneous_3151452882
proquest_journals_3160326528
pubmed_primary_39752518
crossref_citationtrail_10_1073_pnas_2402925121
crossref_primary_10_1073_pnas_2402925121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-07
PublicationDateYYYYMMDD 2025-01-07
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2025
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
Lawrence P. A. (e_1_3_4_23_2) 1992
e_1_3_4_61_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_80_2
e_1_3_4_44_2
e_1_3_4_69_2
Bialek W. (e_1_3_4_6_2) 2012
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
Wilkins A. S. (e_1_3_4_81_2) 2002
e_1_3_4_72_2
e_1_3_4_74_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_62_2
e_1_3_4_41_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
Jacob F. (e_1_3_4_60_2) 1982
e_1_3_4_28_2
Karklin Y. (e_1_3_4_8_2) 2011; 24
e_1_3_4_71_2
e_1_3_4_73_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_79_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_75_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_77_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_45_2
  doi: 10.1371/journal.pone.0002774
– ident: e_1_3_4_19_2
  doi: 10.1126/science.aam5979
– ident: e_1_3_4_65_2
  doi: 10.1038/s41576-018-0069-z
– ident: e_1_3_4_47_2
  doi: 10.1038/msb.2012.72
– ident: e_1_3_4_55_2
  doi: 10.1073/pnas.1324186111
– ident: e_1_3_4_10_2
  doi: 10.1038/nature04485
– ident: e_1_3_4_27_2
  doi: 10.1242/dev.176065
– ident: e_1_3_4_74_2
  doi: 10.1016/j.bpj.2011.05.060
– ident: e_1_3_4_7_2
  doi: 10.1146/annurev-conmatphys-031214-014803
– ident: e_1_3_4_31_2
  doi: 10.1371/journal.pcbi.0020051
– ident: e_1_3_4_53_2
  doi: 10.1103/PhysRevLett.103.258101
– volume-title: The Evolution of Developmental Pathways
  year: 2002
  ident: e_1_3_4_81_2
– ident: e_1_3_4_32_2
  doi: 10.1371/journal.pcbi.1000303
– ident: e_1_3_4_43_2
  doi: 10.1103/PhysRevE.81.041905
– ident: e_1_3_4_63_2
  doi: 10.7554/eLife.04785
– ident: e_1_3_4_78_2
  doi: 10.1371/journal.pgen.1006052
– volume: 24
  start-page: 999
  year: 2011
  ident: e_1_3_4_8_2
  article-title: Efficient coding of natural images with a population of noisy linear-nonlinear neurons
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: e_1_3_4_49_2
  doi: 10.1103/PhysRevE.85.041903
– ident: e_1_3_4_22_2
  doi: 10.1242/dev.129452
– ident: e_1_3_4_62_2
  doi: 10.1016/j.biosystems.2014.06.003
– ident: e_1_3_4_72_2
  doi: 10.1371/journal.pbio.0020271
– ident: e_1_3_4_26_2
  doi: 10.1016/j.cell.2019.01.007
– ident: e_1_3_4_36_2
  doi: 10.1371/journal.pbio.2003174
– ident: e_1_3_4_42_2
  doi: 10.1103/PhysRevE.91.062710
– ident: e_1_3_4_34_2
  doi: 10.1371/journal.pcbi.1000548
– ident: e_1_3_4_11_2
  doi: 10.1073/pnas.1903887116
– ident: e_1_3_4_20_2
  doi: 10.1038/287795a0
– ident: e_1_3_4_44_2
  doi: 10.1073/pnas.2006731117
– ident: e_1_3_4_25_2
  doi: 10.1534/genetics.114.171850
– ident: e_1_3_4_35_2
  doi: 10.1371/journal.pcbi.1005285
– ident: e_1_3_4_51_2
  doi: 10.1103/PhysRevE.93.022404
– ident: e_1_3_4_67_2
  doi: 10.1007/s00239-002-2335-z
– ident: e_1_3_4_52_2
  doi: 10.1016/j.neuron.2021.01.020
– ident: e_1_3_4_77_2
  doi: 10.1242/dev.048033
– ident: e_1_3_4_75_2
  doi: 10.1093/molbev/mst170
– ident: e_1_3_4_1_2
  doi: 10.1038/348027a0
– ident: e_1_3_4_18_2
  doi: 10.1007/978-3-319-32979-6
– ident: e_1_3_4_4_2
  doi: 10.1242/jeb.29.4.667
– ident: e_1_3_4_57_2
  doi: 10.1093/genetics/iyae191
– ident: e_1_3_4_33_2
  doi: 10.1371/journal.pbio.1000049
– ident: e_1_3_4_39_2
  doi: 10.1016/j.cell.2013.07.025
– ident: e_1_3_4_61_2
  doi: 10.1073/pnas.0501865102
– ident: e_1_3_4_24_2
  doi: 10.1073/pnas.1315642110
– ident: e_1_3_4_41_2
  doi: 10.1016/j.cell.2007.05.025
– ident: e_1_3_4_16_2
  doi: 10.1073/pnas.0911663107
– ident: e_1_3_4_64_2
  doi: 10.1016/j.ydbio.2004.08.021
– ident: e_1_3_4_66_2
  doi: 10.1073/pnas.0509483102
– ident: e_1_3_4_68_2
  doi: 10.1016/j.cell.2016.06.012
– ident: e_1_3_4_37_2
  doi: 10.1073/pnas.2113651119
– ident: e_1_3_4_17_2
  doi: 10.1016/S0022-5193(69)80016-0
– ident: e_1_3_4_29_2
  doi: 10.1038/nature02678
– ident: e_1_3_4_40_2
  doi: 10.1016/j.cell.2018.09.056
– ident: e_1_3_4_3_2
  doi: 10.1103/RevModPhys.70.1027
– ident: e_1_3_4_73_2
  doi: 10.1038/nature06496
– ident: e_1_3_4_38_2
  doi: 10.1086/414425
– ident: e_1_3_4_69_2
  doi: 10.1016/j.coisb.2022.100435
– ident: e_1_3_4_58_2
  doi: 10.1038/s41587-019-0315-8
– ident: e_1_3_4_21_2
  doi: 10.1007/s00018-010-0536-y
– ident: e_1_3_4_48_2
  doi: 10.1103/PhysRevE.80.031920
– volume-title: The Possible and the Actual
  year: 1982
  ident: e_1_3_4_60_2
– ident: e_1_3_4_54_2
  doi: 10.1371/journal.pcbi.1002654
– ident: e_1_3_4_59_2
  doi: 10.7554/eLife.64543
– volume-title: Biophysics: Searching for Principles
  year: 2012
  ident: e_1_3_4_6_2
– ident: e_1_3_4_12_2
  doi: 10.1038/nature01149
– ident: e_1_3_4_15_2
  doi: 10.1073/pnas.0806077105
– ident: e_1_3_4_71_2
  doi: 10.1016/j.tig.2014.06.002
– ident: e_1_3_4_5_2
  doi: 10.1016/S0006-3495(77)85544-6
– ident: e_1_3_4_2_2
  doi: 10.1093/oso/9780198830870.001.0001
– volume-title: The Making of a Fly: The Genetics of Animal Design
  year: 1992
  ident: e_1_3_4_23_2
– ident: e_1_3_4_28_2
  doi: 10.1006/jtbi.2001.2335
– ident: e_1_3_4_56_2
  doi: 10.1073/pnas.2123152119
– ident: e_1_3_4_9_2
  doi: 10.1038/381607a0
– ident: e_1_3_4_14_2
  doi: 10.1103/PhysRevLett.104.048704
– ident: e_1_3_4_50_2
  doi: 10.1371/journal.pone.0163628
– ident: e_1_3_4_76_2
  doi: 10.1038/msb4100192
– ident: e_1_3_4_80_2
  doi: 10.1242/dev.170480
– ident: e_1_3_4_70_2
– ident: e_1_3_4_13_2
  doi: 10.1126/science.1177894
– ident: e_1_3_4_46_2
  doi: 10.1073/pnas.162041399
– ident: e_1_3_4_30_2
  doi: 10.1534/genetics.104.027334
– ident: e_1_3_4_79_2
  doi: 10.7554/eLife.42832
SSID ssj0009580
Score 2.4992785
Snippet Many biological systems operate near the physical limits to their performance, suggesting that aspects of their behavior and underlying mechanisms could be...
Many biological systems approach physical limits to their performance, motivating the idea that their behavior and underlying mechanisms could be determined by...
Information crucial for life is represented by surprisingly low concentrations of key molecules, yet cells use these small signals to make reliable decisions....
SourceID pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e2402925121
SubjectTerms Animals
Biological Physics
Configuration management
Drosophila - genetics
Drosophila melanogaster - genetics
Embryo, Nonmammalian - metabolism
Gene expression
Gene Expression Regulation, Developmental
Gene Regulatory Networks
Models, Genetic
Optimization
Physical Sciences
Physics
Title Deriving a genetic regulatory network from an optimization principle
URI https://www.ncbi.nlm.nih.gov/pubmed/39752518
https://www.proquest.com/docview/3160326528
https://www.proquest.com/docview/3151452882
https://pasteur.hal.science/pasteur-03988951
https://pubmed.ncbi.nlm.nih.gov/PMC11725783
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68cILYnwWBjISoKEqJXFsx3ms6LYKlTKJVupb5DgJmwZptbYg7a_n_JE02Yo0eIla27Et3-Xnu_P5DqG3XCgiAiY9VVBQUEJfeNJnhZfFrABULApuovN_mfDRjH6es3mnc928XbJO--p6572S_6EqlAFd9S3Zf6Bs3SkUwG-gLzyBwvC8E42HMIgxCEidCTm34ZhNbnl9cl5aD297g0RnoAB0-OmuXfaWlZG9KZ2e1bvZqvIdmFTGwsH26onDg1XP651NtomMvy0uAUl_u0TY1vOo13Tw-W5NAw2fJGOdhy3KQLIz_dS2hEtpJN3hhak9hX_s3SBYOndiZ6kgzFgqoga4gmzicWrTg_bzHWUVIhNyi_Usvub6MCjWMlmwE_8BsHTS4lKu-u2W7Ujbk6_JyWw8TqbH8-keukdAxdDZL07nQSNgs7CRLNz8qrBQUfjxRvctiWbvXPvT3lZWbvrcNoSY6UP0wGkfeGBZ6QB18vIROqjoiY9cEPIPj9Gw4i0sseMtvOUt7HgLa97CssRN3sI1bz1Bs5Pj6aeR5zJueIpyf-0FhVQqzUALpirXsRPziOUyjGRI_JhkYZQqJkQqSBqnXNFMKcJgw8hAafVDIf3wKdovF2X-HGHOC0ppHBGeKdgXijQVWUThfU5TEmdxF_WrVUuUC0evs6L8SIxbRBQmepmT7TJ30VH9wtJGYvl70_dAhrqVjqA-GoyTpQTg3FwlfhgLAZrFL9JFhxWlEvddr5JQZ14nnBHRRW_qakBdfZQmy3yx0W1A0YAWArp4ZglbDwcSPoNpwNuiRfLWfNo15cW5iewegDoBW2j44g4Dv0T3tx_ZIdpfX23yVyAgr9PXhpP_AODruww
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deriving+a+genetic+regulatory+network+from+an+optimization+principle&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Sokolowski%2C+Thomas+R&rft.au=Gregor%2C+Thomas&rft.au=Bialek%2C+William&rft.au=Tka%C4%8Dik%2C+Ga%C5%A1per&rft.date=2025-01-07&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=122&rft.issue=1&rft.spage=e2402925121&rft_id=info:doi/10.1073%2Fpnas.2402925121&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon