A facile assay for zDHHC palmitoyl transferase activation elucidates effects of mutation and modification

At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty S-acylation (prototypically, S-palmitoylation) operates across eukaryotic phylogeny and cell type. S-palmitoylation is carried out in mammal...

Full description

Saved in:
Bibliographic Details
Published inJournal of lipid research Vol. 66; no. 2; p. 100743
Main Authors Adachi, Naoko, Hess, Douglas T., Ueyama, Takehiko
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2025
Elsevier
Subjects
Online AccessGet full text
ISSN0022-2275
1539-7262
1539-7262
DOI10.1016/j.jlr.2025.100743

Cover

Loading…
Abstract At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty S-acylation (prototypically, S-palmitoylation) operates across eukaryotic phylogeny and cell type. S-palmitoylation is carried out in mammalian cells by a family of 23–24 dedicated zDHHC palmitoyl transferase enzymes, and mutation of zDHHCs is associated with a number of human pathophysiologies. Activation of the zDHHCs by auto-S-palmitoylation, the transthioesterification of the active site Cys by fatty acyl coenzyme A, is the necessary first step in zDHHC-mediated protein S-palmitoylation. Most prior in vitro assessments of zDHHC activation have utilized purified zDHHCs, a time- and effort-intensive approach, which removes zDHHCs from their native membrane environment. We describe here a facile assay for zDHHC activation in native membranes. We overexpressed hemagglutinin-tagged wild-type or mutant zDHHCs in cultured HEK293 cells and prepared a whole membrane fraction, which was incubated with fluorescent palmitoyl CoA (NBD-palmitoyl-CoA) followed by SDS-PAGE, fluorescence imaging, and Western blotting for hemagglutinin. We show by mutational analysis that, as assayed, zDHHC auto-S-palmitoylation by NBD-palmitoyl-CoA is limited to the active site Cys. Application of the assay revealed differential effects on zDHHC activation of posttranslational zDHHC modification and of zDHHC mutations associated with human disease, in particular cancer. Our assay provides a facile means of assessing zDHHC activation, and thus of differentiating the effects of zDHHC mutation and posttranslational modification on zDHHC activation versus secondary effects on zDHHC functionality including altered zDHHC interaction with substrate palmitoyl-proteins. [Display omitted]
AbstractList At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty S-acylation (prototypically, S-palmitoylation) operates across eukaryotic phylogeny and cell type. S-palmitoylation is carried out in mammalian cells by a family of 23–24 dedicated zDHHC palmitoyl transferase enzymes, and mutation of zDHHCs is associated with a number of human pathophysiologies. Activation of the zDHHCs by auto-S-palmitoylation, the transthioesterification of the active site Cys by fatty acyl coenzyme A, is the necessary first step in zDHHC-mediated protein S-palmitoylation. Most prior in vitro assessments of zDHHC activation have utilized purified zDHHCs, a time- and effort-intensive approach, which removes zDHHCs from their native membrane environment. We describe here a facile assay for zDHHC activation in native membranes. We overexpressed hemagglutinin-tagged wild-type or mutant zDHHCs in cultured HEK293 cells and prepared a whole membrane fraction, which was incubated with fluorescent palmitoyl CoA (NBD-palmitoyl-CoA) followed by SDS-PAGE, fluorescence imaging, and Western blotting for hemagglutinin. We show by mutational analysis that, as assayed, zDHHC auto-S-palmitoylation by NBD-palmitoyl-CoA is limited to the active site Cys. Application of the assay revealed differential effects on zDHHC activation of posttranslational zDHHC modification and of zDHHC mutations associated with human disease, in particular cancer. Our assay provides a facile means of assessing zDHHC activation, and thus of differentiating the effects of zDHHC mutation and posttranslational modification on zDHHC activation versus secondary effects on zDHHC functionality including altered zDHHC interaction with substrate palmitoyl-proteins.
At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty S-acylation (prototypically, S-palmitoylation) operates across eukaryotic phylogeny and cell type. S-palmitoylation is carried out in mammalian cells by a family of 23–24 dedicated zDHHC palmitoyl transferase enzymes, and mutation of zDHHCs is associated with a number of human pathophysiologies. Activation of the zDHHCs by auto-S-palmitoylation, the transthioesterification of the active site Cys by fatty acyl coenzyme A, is the necessary first step in zDHHC-mediated protein S-palmitoylation. Most prior in vitro assessments of zDHHC activation have utilized purified zDHHCs, a time- and effort-intensive approach, which removes zDHHCs from their native membrane environment. We describe here a facile assay for zDHHC activation in native membranes. We overexpressed hemagglutinin-tagged wild-type or mutant zDHHCs in cultured HEK293 cells and prepared a whole membrane fraction, which was incubated with fluorescent palmitoyl CoA (NBD-palmitoyl-CoA) followed by SDS-PAGE, fluorescence imaging, and Western blotting for hemagglutinin. We show by mutational analysis that, as assayed, zDHHC auto-S-palmitoylation by NBD-palmitoyl-CoA is limited to the active site Cys. Application of the assay revealed differential effects on zDHHC activation of posttranslational zDHHC modification and of zDHHC mutations associated with human disease, in particular cancer. Our assay provides a facile means of assessing zDHHC activation, and thus of differentiating the effects of zDHHC mutation and posttranslational modification on zDHHC activation versus secondary effects on zDHHC functionality including altered zDHHC interaction with substrate palmitoyl-proteins. [Display omitted]
At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty S-acylation (prototypically, S-palmitoylation) operates across eukaryotic phylogeny and cell type. S-palmitoylation is carried out in mammalian cells by a family of 23-24 dedicated zDHHC palmitoyl transferase enzymes, and mutation of zDHHCs is associated with a number of human pathophysiologies. Activation of the zDHHCs by auto-S-palmitoylation, the transthioesterification of the active site Cys by fatty acyl coenzyme A, is the necessary first step in zDHHC-mediated protein S-palmitoylation. Most prior in vitro assessments of zDHHC activation have utilized purified zDHHCs, a time- and effort-intensive approach, which removes zDHHCs from their native membrane environment. We describe here a facile assay for zDHHC activation in native membranes. We overexpressed hemagglutinin-tagged wild-type or mutant zDHHCs in cultured HEK293 cells and prepared a whole membrane fraction, which was incubated with fluorescent palmitoyl CoA (NBD-palmitoyl-CoA) followed by SDS-PAGE, fluorescence imaging, and Western blotting for hemagglutinin. We show by mutational analysis that, as assayed, zDHHC auto-S-palmitoylation by NBD-palmitoyl-CoA is limited to the active site Cys. Application of the assay revealed differential effects on zDHHC activation of posttranslational zDHHC modification and of zDHHC mutations associated with human disease, in particular cancer. Our assay provides a facile means of assessing zDHHC activation, and thus of differentiating the effects of zDHHC mutation and posttranslational modification on zDHHC activation versus secondary effects on zDHHC functionality including altered zDHHC interaction with substrate palmitoyl-proteins.At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty S-acylation (prototypically, S-palmitoylation) operates across eukaryotic phylogeny and cell type. S-palmitoylation is carried out in mammalian cells by a family of 23-24 dedicated zDHHC palmitoyl transferase enzymes, and mutation of zDHHCs is associated with a number of human pathophysiologies. Activation of the zDHHCs by auto-S-palmitoylation, the transthioesterification of the active site Cys by fatty acyl coenzyme A, is the necessary first step in zDHHC-mediated protein S-palmitoylation. Most prior in vitro assessments of zDHHC activation have utilized purified zDHHCs, a time- and effort-intensive approach, which removes zDHHCs from their native membrane environment. We describe here a facile assay for zDHHC activation in native membranes. We overexpressed hemagglutinin-tagged wild-type or mutant zDHHCs in cultured HEK293 cells and prepared a whole membrane fraction, which was incubated with fluorescent palmitoyl CoA (NBD-palmitoyl-CoA) followed by SDS-PAGE, fluorescence imaging, and Western blotting for hemagglutinin. We show by mutational analysis that, as assayed, zDHHC auto-S-palmitoylation by NBD-palmitoyl-CoA is limited to the active site Cys. Application of the assay revealed differential effects on zDHHC activation of posttranslational zDHHC modification and of zDHHC mutations associated with human disease, in particular cancer. Our assay provides a facile means of assessing zDHHC activation, and thus of differentiating the effects of zDHHC mutation and posttranslational modification on zDHHC activation versus secondary effects on zDHHC functionality including altered zDHHC interaction with substrate palmitoyl-proteins.
ArticleNumber 100743
Author Adachi, Naoko
Hess, Douglas T.
Ueyama, Takehiko
Author_xml – sequence: 1
  givenname: Naoko
  orcidid: 0000-0002-8797-0717
  surname: Adachi
  fullname: Adachi, Naoko
  email: na@gold.kobe-u.ac.jp
  organization: Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
– sequence: 2
  givenname: Douglas T.
  surname: Hess
  fullname: Hess, Douglas T.
  organization: Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
– sequence: 3
  givenname: Takehiko
  orcidid: 0000-0002-5647-3937
  surname: Ueyama
  fullname: Ueyama, Takehiko
  email: tueyama@kobe-u.ac.jp
  organization: Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39800157$$D View this record in MEDLINE/PubMed
BookMark eNp9kctuFDEQRS0URCaBD2CDvGTTg5_9EKtoeEykSGxgbbntMnLL3R5sd6TJ1-OkQ5asrCqfW2Xfe4UulrgAQu8p2VNC20_TfgppzwiTtSad4K_Qjko-NB1r2QXaEcJYw1gnL9FVzhMhVIiWvkGXfOhrIbsd8jfYaeMDYJ2zPmMXE374cjwe8EmH2Zd4DrgkvWQHSedKmeLvdfFxwRBW460ukDE4B6ZkHB2e17Jd68XiOVrvvHlqvEWvnQ4Z3j2f1-jXt68_D8fm7sf328PNXWNES0pDwXTDIIDRVlhNmeP1paBpDyDavnOtI9ZKMCMQR3oKXEjLRzkaYujIxoFfo9ttro16UqfkZ53OKmqvnhox_VY6FW8CqFYw6gYw1EkujJUjoVaPrR0BwDgGddbHbdYpxT8r5KJmnw2EoBeIa1acStH33cBJRT88o-s4g31Z_M_qCtANMCnmnMC9IJSoxzjVpGqc6jFOtcVZNZ83DVTD7j0klY2HxYD1qRpef-T_o_4LwDWotQ
Cites_doi 10.1186/s13045-021-01147-6
10.1038/nmeth.1293
10.1074/jbc.M116.725762
10.1194/jlr.D002790
10.1074/mcp.M800448-MCP200
10.1042/BST20180429
10.1074/jbc.M110.169102
10.1042/BJ20121693
10.1038/s42003-020-01145-3
10.1038/s41598-017-04580-1
10.1016/j.jid.2022.08.040
10.1074/jbc.M111.337246
10.1194/jlr.D011106
10.1126/science.aao6326
10.1073/pnas.1612254114
10.1016/j.jbc.2023.105088
10.15252/embr.201847472
10.1038/ncomms9200
10.1016/j.bbalip.2006.03.010
10.1002/1878-0261.13308
10.1002/1098-2264(2000)9999:9999<::AID-GCC1001>3.0.CO;2-#
10.1038/s41594-023-01183-5
10.1523/JNEUROSCI.0419-16.2016
10.1038/s41467-020-18565-8
10.15252/embr.201846666
10.1074/jbc.M206573200
10.1074/jbc.REV120.014717
10.1016/j.neuron.2004.12.005
10.1002/path.4327
10.1016/j.jbc.2022.102469
10.1074/jbc.RA118.004978
10.7554/eLife.27826
10.1126/science.1133427
ContentType Journal Article
Copyright 2025 The Authors
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2025 The Authors
– notice: Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.jlr.2025.100743
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1539-7262
ExternalDocumentID oai_doaj_org_article_6421f9ec1f534cd5b01dab6dbeeecf2e
39800157
10_1016_j_jlr_2025_100743
S0022227525000033
Genre Journal Article
GroupedDBID ---
-~X
.55
.GJ
0R~
0VX
18M
29K
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
6I.
AAEDW
AAFTH
AAFWJ
AALRI
AAXUO
AAYOK
ABCQX
ABOCM
ACCCW
ACGFO
ACKIV
ACNCT
ACPRK
ADBBV
ADVLN
AENEX
AEXQZ
AFFNX
AFOSN
AI.
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CS3
D-I
DIK
DU5
E3Z
EBS
EJD
F5P
FDB
FRP
GROUPED_DOAJ
GX1
H13
HH5
HYE
H~9
J5H
KQ8
L7B
MVM
OK1
P2P
RHI
ROL
RPM
TBC
TR2
TWZ
VH1
W8F
WH7
WOQ
X7M
YHG
YKV
ZGI
ZXP
~KM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPKN
AFPUW
AIGII
AKBMS
AKYEP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c460t-1ec7994e2164da12f3001ea18ee4687f6f0dd5ecbe0f081e345d3b5bc0c1b2b93
IEDL.DBID DOA
ISSN 0022-2275
1539-7262
IngestDate Wed Aug 27 01:24:11 EDT 2025
Thu Jul 10 18:53:47 EDT 2025
Fri May 02 01:41:54 EDT 2025
Tue Jul 01 05:25:41 EDT 2025
Sat Mar 08 15:47:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords acyl-CoA
cancer mutations
cell signaling
fatty acyl-CoA
tumor cell biology
zinc finger
enzymology-enzyme regulation
lipid signaling
palmitoylation
acyltransferase
Language English
License This is an open access article under the CC BY license.
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-1ec7994e2164da12f3001ea18ee4687f6f0dd5ecbe0f081e345d3b5bc0c1b2b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8797-0717
0000-0002-5647-3937
OpenAccessLink https://doaj.org/article/6421f9ec1f534cd5b01dab6dbeeecf2e
PMID 39800157
PQID 3154887930
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_6421f9ec1f534cd5b01dab6dbeeecf2e
proquest_miscellaneous_3154887930
pubmed_primary_39800157
crossref_primary_10_1016_j_jlr_2025_100743
elsevier_sciencedirect_doi_10_1016_j_jlr_2025_100743
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
2025-Feb
20250201
2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of lipid research
PublicationTitleAlternate J Lipid Res
PublicationYear 2025
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Adachi, Hess, McLaughlin, Stamler (bib2) 2016; 291
Greaves, Munro, Davidson, Riviere, Wojno, Smith (bib10) 2017; 114
Rana, Kumar, Lee, Verardi, Rajashankar, Banerjee (bib12) 2018; 359
Yeste-Velasco, Mao, Grose, Kudahetti, Lin, Marzec (bib31) 2014; 232
Yap, Kostiuk, Martin, Perinpanayagam, Hak, Siddam (bib27) 2010; 51
Mesquita, Abrami, Linder, Bamji, Dickinson, van der Goot (bib1) 2024
González Montoro, Quiroga, Valdez Taubas (bib24) 2013; 454
Plain, Howie, Kennedy, Brown, Shattock, Fraser (bib23) 2020; 3
Rana, Lee, Banerjee (bib13) 2019; 47
Fukata, Fukata, Adesnik, Nicoll, Bredt (bib8) 2004; 44
Oyama, Miyoshi, Koyama, Nakagawa, Yamori, Ito (bib29) 2000; 29
Ko, Dixon (bib5) 2018; 19
Ohno, Kihara, Sano, Igarashi (bib9) 2006; 1761
Yokoi, Fukata, Sekiya, Murakami, Kobayashi, Fukata (bib34) 2016; 36
Lobo, Greentree, Linder, Deschenes (bib7) 2002; 277
Sjöblom, Jones, Wood, Parsons, Lin, Barber (bib30) 2006; 314
Yang, Di Vizio, Kirchner, Steen, Freeman (bib15) 2010; 9
Forrester, Hess, Thompson, Hultman, Moseley, Stamler (bib25) 2011; 52
Mitchell, Mitchell, Ling, Budde, Deschenes (bib18) 2010; 285
Adachi, Hess, Kaku, Ueda, Numa, Saito (bib3) 2019; 294
Yang, Liu, Zhang, Chen, Fan, Wang (bib19) 2024; 31
Woodley, Collins (bib22) 2019; 20
Martin, Cravatt (bib26) 2009; 6
Lee, Hur, Kwon, Chae, Choi, Hwang (bib35) 2021; 14
Nůsková, Cortizo, Schwenker, Sachsenheimer, Diakonov, Tiebe (bib11) 2023; 299
Abrami, Dallavilla, Sandoz, Demir, Kunz, Savoglidis (bib33) 2017; 6
Zmuda, Chamberlain (bib16) 2020; 295
Faergeman, Knudsen (bib28) 1997; 323
Niki, Adachi, Fukata, Fukata, Oku, Makino-Okamura (bib4) 2023; 143
Brigidi, Santyr, Shimell, Jovellar, Bamji (bib20) 2015; 6
Zhou, Hao, Liang, Kong (bib6) 2023; 17
Salaun, Takizawa, Galindo, Munro, McLellan, Sugimoto (bib17) 2022; 298
Collins, Woodley, Choudhary (bib32) 2017; 7
Jennings, Linder (bib14) 2012; 287
Hao, Wang, Guo, Zhao, Sun, Li (bib21) 2020; 11
Abrami (10.1016/j.jlr.2025.100743_bib33) 2017; 6
Lobo (10.1016/j.jlr.2025.100743_bib7) 2002; 277
Sjöblom (10.1016/j.jlr.2025.100743_bib30) 2006; 314
Rana (10.1016/j.jlr.2025.100743_bib13) 2019; 47
Mesquita (10.1016/j.jlr.2025.100743_bib1) 2024
Jennings (10.1016/j.jlr.2025.100743_bib14) 2012; 287
González Montoro (10.1016/j.jlr.2025.100743_bib24) 2013; 454
Martin (10.1016/j.jlr.2025.100743_bib26) 2009; 6
Faergeman (10.1016/j.jlr.2025.100743_bib28) 1997; 323
Lee (10.1016/j.jlr.2025.100743_bib35) 2021; 14
Rana (10.1016/j.jlr.2025.100743_bib12) 2018; 359
Niki (10.1016/j.jlr.2025.100743_bib4) 2023; 143
Brigidi (10.1016/j.jlr.2025.100743_bib20) 2015; 6
Forrester (10.1016/j.jlr.2025.100743_bib25) 2011; 52
Mitchell (10.1016/j.jlr.2025.100743_bib18) 2010; 285
Zhou (10.1016/j.jlr.2025.100743_bib6) 2023; 17
Ohno (10.1016/j.jlr.2025.100743_bib9) 2006; 1761
Ko (10.1016/j.jlr.2025.100743_bib5) 2018; 19
Yap (10.1016/j.jlr.2025.100743_bib27) 2010; 51
Greaves (10.1016/j.jlr.2025.100743_bib10) 2017; 114
Plain (10.1016/j.jlr.2025.100743_bib23) 2020; 3
Oyama (10.1016/j.jlr.2025.100743_bib29) 2000; 29
Yokoi (10.1016/j.jlr.2025.100743_bib34) 2016; 36
Adachi (10.1016/j.jlr.2025.100743_bib3) 2019; 294
Collins (10.1016/j.jlr.2025.100743_bib32) 2017; 7
Fukata (10.1016/j.jlr.2025.100743_bib8) 2004; 44
Woodley (10.1016/j.jlr.2025.100743_bib22) 2019; 20
Zmuda (10.1016/j.jlr.2025.100743_bib16) 2020; 295
Salaun (10.1016/j.jlr.2025.100743_bib17) 2022; 298
Yang (10.1016/j.jlr.2025.100743_bib15) 2010; 9
Adachi (10.1016/j.jlr.2025.100743_bib2) 2016; 291
Hao (10.1016/j.jlr.2025.100743_bib21) 2020; 11
Nůsková (10.1016/j.jlr.2025.100743_bib11) 2023; 299
Yang (10.1016/j.jlr.2025.100743_bib19) 2024; 31
Yeste-Velasco (10.1016/j.jlr.2025.100743_bib31) 2014; 232
References_xml – volume: 6
  start-page: 8200
  year: 2015
  ident: bib20
  article-title: Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5
  publication-title: Nat. Commun.
– volume: 295
  start-page: 14640
  year: 2020
  end-page: 14652
  ident: bib16
  article-title: Regulatory effects of post-translational modifications on zDHHC S-acyltransferases
  publication-title: J. Biol. Chem.
– volume: 299
  year: 2023
  ident: bib11
  article-title: Competition for cysteine acylation by C16:0 and C18:0 derived lipids is a global phenomenon in the proteome
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: 135
  year: 2009
  end-page: 138
  ident: bib26
  article-title: Large-scale profiling of protein palmitoylation in mammalian cells
  publication-title: Nat. Methods
– volume: 323
  start-page: 1
  year: 1997
  end-page: 12
  ident: bib28
  article-title: Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling
  publication-title: Biochem. J.
– volume: 232
  start-page: 566
  year: 2014
  end-page: 577
  ident: bib31
  article-title: Identification of ZDHHC14 as a novel human tumour suppressor gene
  publication-title: J. Pathol.
– volume: 294
  start-page: 2569
  year: 2019
  end-page: 2578
  ident: bib3
  article-title: Differential S-palmitoylation of the human and rodent β
  publication-title: J. Biol. Chem.
– volume: 3
  start-page: 411
  year: 2020
  ident: bib23
  article-title: Control of protein palmitoylation by regulating substrate recruitment to a zDHHC-protein acyltransferase
  publication-title: Commun. Biol.
– volume: 6
  start-page: e27826
  year: 2017
  ident: bib33
  article-title: Identification and dynamics of the human ZDHHC16-ZDHHC6 palmitoylation cascade
  publication-title: eLife
– volume: 277
  start-page: 41268
  year: 2002
  end-page: 41273
  ident: bib7
  article-title: Identification of a ras palmitoyltransferase in Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
– volume: 44
  start-page: 987
  year: 2004
  end-page: 996
  ident: bib8
  article-title: Identification of PSD-95 palmitoylating enzymes
  publication-title: Neuron
– volume: 20
  year: 2019
  ident: bib22
  article-title: S-acylated Golga7b stabilises DHHC5 at the plasma membrane to regulate cell adhesion
  publication-title: EMBO Rep.
– volume: 9
  start-page: 54
  year: 2010
  end-page: 70
  ident: bib15
  article-title: Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes
  publication-title: Mol. Cell Proteomics
– volume: 51
  start-page: 1566
  year: 2010
  end-page: 1580
  ident: bib27
  article-title: Rapid and selective detection of fatty acylated proteins using omega-alkynyl-fatty acids and click chemistry
  publication-title: J. Lipid Res.
– volume: 285
  start-page: 38104
  year: 2010
  end-page: 38114
  ident: bib18
  article-title: Mutational analysis of Saccharomyces cerevisiae Erf2 reveals a two-step reaction mechanism for protein palmitoylation by DHHC enzymes
  publication-title: J. Biol. Chem.
– volume: 19
  start-page: e46666
  year: 2018
  ident: bib5
  article-title: Protein palmitoylation and cancer
  publication-title: EMBO Rep.
– volume: 359
  year: 2018
  ident: bib12
  article-title: Fatty acyl recognition and transfer by an integral membrane S-acyltransferase
  publication-title: Science (New York, NY)
– volume: 47
  start-page: 157
  year: 2019
  end-page: 167
  ident: bib13
  article-title: The molecular mechanism of DHHC protein acyltransferases
  publication-title: Biochem. Soc. Trans.
– volume: 454
  start-page: 427
  year: 2013
  end-page: 435
  ident: bib24
  article-title: Zinc co-ordination by the DHHC cysteine-rich domain of the palmitoyltransferase Swf1
  publication-title: Biochem. J.
– volume: 314
  start-page: 268
  year: 2006
  end-page: 274
  ident: bib30
  article-title: The consensus coding sequences of human breast and colorectal cancers
  publication-title: Science (New York, NY)
– volume: 11
  start-page: 4765
  year: 2020
  ident: bib21
  article-title: CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis
  publication-title: Nat. Commun.
– volume: 7
  start-page: 4683
  year: 2017
  ident: bib32
  article-title: Global, site-specific analysis of neuronal protein S-acylation
  publication-title: Sci. Rep.
– volume: 17
  start-page: 3
  year: 2023
  end-page: 26
  ident: bib6
  article-title: Protein palmitoylation in cancer: molecular functions and therapeutic potential
  publication-title: Mol. Oncol.
– volume: 29
  start-page: 9
  year: 2000
  end-page: 15
  ident: bib29
  article-title: Isolation of a novel gene on 8p21.3-22 whose expression is reduced significantly in human colorectal cancers with liver metastasis
  publication-title: Genes Chromosomes Cancer
– volume: 143
  start-page: 317
  year: 2023
  end-page: 327.e316
  ident: bib4
  article-title: S-palmitoylation of tyrosinase at cysteine 500 regulates melanogenesis
  publication-title: J. Invest. Dermatol.
– volume: 291
  start-page: 20232
  year: 2016
  end-page: 20246
  ident: bib2
  article-title: S-palmitoylation of a novel site in the β
  publication-title: J. Biol. Chem.
– volume: 1761
  start-page: 474
  year: 2006
  end-page: 483
  ident: bib9
  article-title: Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins
  publication-title: Biochim. Biophys. Acta
– volume: 298
  year: 2022
  ident: bib17
  article-title: Development of a novel high-throughput screen for the identification of new inhibitors of protein S-acylation
  publication-title: J. Biol. Chem.
– volume: 52
  start-page: 393
  year: 2011
  end-page: 398
  ident: bib25
  article-title: Site-specific analysis of protein S-acylation by resin-assisted capture
  publication-title: J. Lipid Res.
– volume: 36
  start-page: 6431
  year: 2016
  end-page: 6444
  ident: bib34
  article-title: Identification of PSD-95 depalmitoylating enzymes
  publication-title: J. Neurosci.
– volume: 287
  start-page: 7236
  year: 2012
  end-page: 7245
  ident: bib14
  article-title: DHHC protein S-acyltransferases use similar ping-pong kinetic mechanisms but display different acyl-CoA specificities
  publication-title: J. Biol. Chem.
– volume: 31
  start-page: 436
  year: 2024
  end-page: 446
  ident: bib19
  article-title: Regulation of RAS palmitoyltransferases by accessory proteins and palmitoylation
  publication-title: Nat. Struct. Mol. Biol.
– year: 2024
  ident: bib1
  article-title: Mechanisms and functions of protein S-acylation
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 114
  start-page: E1365
  year: 2017
  end-page: E1374
  ident: bib10
  article-title: Molecular basis of fatty acid selectivity in the zDHHC family of S-acyltransferases revealed by click chemistry
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 14
  start-page: 148
  year: 2021
  ident: bib35
  article-title: KAI1(CD82) is a key molecule to control angiogenesis and switch angiogenic milieu to quiescent state
  publication-title: J. Hematol. Oncol.
– volume: 14
  start-page: 148
  year: 2021
  ident: 10.1016/j.jlr.2025.100743_bib35
  article-title: KAI1(CD82) is a key molecule to control angiogenesis and switch angiogenic milieu to quiescent state
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-021-01147-6
– volume: 6
  start-page: 135
  year: 2009
  ident: 10.1016/j.jlr.2025.100743_bib26
  article-title: Large-scale profiling of protein palmitoylation in mammalian cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1293
– volume: 291
  start-page: 20232
  year: 2016
  ident: 10.1016/j.jlr.2025.100743_bib2
  article-title: S-palmitoylation of a novel site in the β2-adrenergic receptor associated with a novel intracellular itinerary
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.725762
– volume: 51
  start-page: 1566
  year: 2010
  ident: 10.1016/j.jlr.2025.100743_bib27
  article-title: Rapid and selective detection of fatty acylated proteins using omega-alkynyl-fatty acids and click chemistry
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.D002790
– volume: 9
  start-page: 54
  year: 2010
  ident: 10.1016/j.jlr.2025.100743_bib15
  article-title: Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes
  publication-title: Mol. Cell Proteomics
  doi: 10.1074/mcp.M800448-MCP200
– volume: 47
  start-page: 157
  year: 2019
  ident: 10.1016/j.jlr.2025.100743_bib13
  article-title: The molecular mechanism of DHHC protein acyltransferases
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20180429
– volume: 285
  start-page: 38104
  year: 2010
  ident: 10.1016/j.jlr.2025.100743_bib18
  article-title: Mutational analysis of Saccharomyces cerevisiae Erf2 reveals a two-step reaction mechanism for protein palmitoylation by DHHC enzymes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.169102
– volume: 454
  start-page: 427
  year: 2013
  ident: 10.1016/j.jlr.2025.100743_bib24
  article-title: Zinc co-ordination by the DHHC cysteine-rich domain of the palmitoyltransferase Swf1
  publication-title: Biochem. J.
  doi: 10.1042/BJ20121693
– volume: 3
  start-page: 411
  year: 2020
  ident: 10.1016/j.jlr.2025.100743_bib23
  article-title: Control of protein palmitoylation by regulating substrate recruitment to a zDHHC-protein acyltransferase
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-01145-3
– volume: 7
  start-page: 4683
  year: 2017
  ident: 10.1016/j.jlr.2025.100743_bib32
  article-title: Global, site-specific analysis of neuronal protein S-acylation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-04580-1
– volume: 143
  start-page: 317
  year: 2023
  ident: 10.1016/j.jlr.2025.100743_bib4
  article-title: S-palmitoylation of tyrosinase at cysteine 500 regulates melanogenesis
  publication-title: J. Invest. Dermatol.
  doi: 10.1016/j.jid.2022.08.040
– volume: 287
  start-page: 7236
  year: 2012
  ident: 10.1016/j.jlr.2025.100743_bib14
  article-title: DHHC protein S-acyltransferases use similar ping-pong kinetic mechanisms but display different acyl-CoA specificities
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.337246
– year: 2024
  ident: 10.1016/j.jlr.2025.100743_bib1
  article-title: Mechanisms and functions of protein S-acylation
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 52
  start-page: 393
  year: 2011
  ident: 10.1016/j.jlr.2025.100743_bib25
  article-title: Site-specific analysis of protein S-acylation by resin-assisted capture
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.D011106
– volume: 359
  year: 2018
  ident: 10.1016/j.jlr.2025.100743_bib12
  article-title: Fatty acyl recognition and transfer by an integral membrane S-acyltransferase
  publication-title: Science (New York, NY)
  doi: 10.1126/science.aao6326
– volume: 114
  start-page: E1365
  year: 2017
  ident: 10.1016/j.jlr.2025.100743_bib10
  article-title: Molecular basis of fatty acid selectivity in the zDHHC family of S-acyltransferases revealed by click chemistry
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1612254114
– volume: 299
  year: 2023
  ident: 10.1016/j.jlr.2025.100743_bib11
  article-title: Competition for cysteine acylation by C16:0 and C18:0 derived lipids is a global phenomenon in the proteome
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2023.105088
– volume: 20
  year: 2019
  ident: 10.1016/j.jlr.2025.100743_bib22
  article-title: S-acylated Golga7b stabilises DHHC5 at the plasma membrane to regulate cell adhesion
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201847472
– volume: 6
  start-page: 8200
  year: 2015
  ident: 10.1016/j.jlr.2025.100743_bib20
  article-title: Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9200
– volume: 1761
  start-page: 474
  year: 2006
  ident: 10.1016/j.jlr.2025.100743_bib9
  article-title: Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2006.03.010
– volume: 17
  start-page: 3
  year: 2023
  ident: 10.1016/j.jlr.2025.100743_bib6
  article-title: Protein palmitoylation in cancer: molecular functions and therapeutic potential
  publication-title: Mol. Oncol.
  doi: 10.1002/1878-0261.13308
– volume: 29
  start-page: 9
  year: 2000
  ident: 10.1016/j.jlr.2025.100743_bib29
  article-title: Isolation of a novel gene on 8p21.3-22 whose expression is reduced significantly in human colorectal cancers with liver metastasis
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/1098-2264(2000)9999:9999<::AID-GCC1001>3.0.CO;2-#
– volume: 31
  start-page: 436
  year: 2024
  ident: 10.1016/j.jlr.2025.100743_bib19
  article-title: Regulation of RAS palmitoyltransferases by accessory proteins and palmitoylation
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-023-01183-5
– volume: 36
  start-page: 6431
  year: 2016
  ident: 10.1016/j.jlr.2025.100743_bib34
  article-title: Identification of PSD-95 depalmitoylating enzymes
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0419-16.2016
– volume: 11
  start-page: 4765
  year: 2020
  ident: 10.1016/j.jlr.2025.100743_bib21
  article-title: CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18565-8
– volume: 323
  start-page: 1
  issue: Pt 1
  year: 1997
  ident: 10.1016/j.jlr.2025.100743_bib28
  article-title: Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling
  publication-title: Biochem. J.
– volume: 19
  start-page: e46666
  year: 2018
  ident: 10.1016/j.jlr.2025.100743_bib5
  article-title: Protein palmitoylation and cancer
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201846666
– volume: 277
  start-page: 41268
  year: 2002
  ident: 10.1016/j.jlr.2025.100743_bib7
  article-title: Identification of a ras palmitoyltransferase in Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M206573200
– volume: 295
  start-page: 14640
  year: 2020
  ident: 10.1016/j.jlr.2025.100743_bib16
  article-title: Regulatory effects of post-translational modifications on zDHHC S-acyltransferases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.REV120.014717
– volume: 44
  start-page: 987
  year: 2004
  ident: 10.1016/j.jlr.2025.100743_bib8
  article-title: Identification of PSD-95 palmitoylating enzymes
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.12.005
– volume: 232
  start-page: 566
  year: 2014
  ident: 10.1016/j.jlr.2025.100743_bib31
  article-title: Identification of ZDHHC14 as a novel human tumour suppressor gene
  publication-title: J. Pathol.
  doi: 10.1002/path.4327
– volume: 298
  year: 2022
  ident: 10.1016/j.jlr.2025.100743_bib17
  article-title: Development of a novel high-throughput screen for the identification of new inhibitors of protein S-acylation
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2022.102469
– volume: 294
  start-page: 2569
  year: 2019
  ident: 10.1016/j.jlr.2025.100743_bib3
  article-title: Differential S-palmitoylation of the human and rodent β3-adrenergic receptors
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.004978
– volume: 6
  start-page: e27826
  year: 2017
  ident: 10.1016/j.jlr.2025.100743_bib33
  article-title: Identification and dynamics of the human ZDHHC16-ZDHHC6 palmitoylation cascade
  publication-title: eLife
  doi: 10.7554/eLife.27826
– volume: 314
  start-page: 268
  year: 2006
  ident: 10.1016/j.jlr.2025.100743_bib30
  article-title: The consensus coding sequences of human breast and colorectal cancers
  publication-title: Science (New York, NY)
  doi: 10.1126/science.1133427
SSID ssj0014461
Score 2.4610622
Snippet At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 100743
SubjectTerms acyltransferase
Acyltransferases - genetics
Acyltransferases - metabolism
cancer mutations
cell signaling
Enzyme Activation
Enzyme Assays - methods
enzymology-enzyme regulation
fatty acyl-CoA
HEK293 Cells
Humans
lipid signaling
Lipoylation
Mutation
palmitoylation
Protein Processing, Post-Translational
tumor cell biology
zinc finger
Title A facile assay for zDHHC palmitoyl transferase activation elucidates effects of mutation and modification
URI https://dx.doi.org/10.1016/j.jlr.2025.100743
https://www.ncbi.nlm.nih.gov/pubmed/39800157
https://www.proquest.com/docview/3154887930
https://doaj.org/article/6421f9ec1f534cd5b01dab6dbeeecf2e
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6hcqAXBC2FFKiMhDggrViv7X0cQ6CKqMQBUdGb5cdYSpVsqjY5hF_P2N6t6KHlwtXah-Vv7PnG83kM8N6KWASF-8J0nS8kt7ZofWML2wlLy5_sJCaB7Pd6fi6_XaiLv676ipqwXB44D9yneBAzdOh4UEI6r2zJvbG1t4joQoVx9SWfNwZTQ_6Aghw-1gmvqkaN-cyk7LpcxkKglUoKASnueKRUuP-OY7qPeCYHdPoMng7MkU1zj5_DI-wP4HDaU9S82rEPLGk50yb5ATyZjfe4HcJiyoJxNPkZ8WSzY8RS2e8v8_mMXZnliib0bsk2ib7iNbk0Fk865H1ahsutW8QtgRs26D7YOrDVNqfvmek9W619FBulhhdwfvr152xeDBcsFE7W5abg6JqO0KgoZvKGV0HQ0KHhLaKs2ybUofReobNYBgIUhVReWGVd6bitCM4j2OvXPb4CxgM2jbD0imvju62jQMUQCsYqFMFP4OM4yPoq19HQo8DsUhMiOiKiMyIT-BxhuH0wlsBODWQYejAM_S_DmIAcQdQDm8gsgT61eOjf70bANQEV0yemx_X2RosY3bW0npUTeJkt4baHomsj-2yO_0fPX8N-7FDWhr-Bvc31Ft8S9dnYE3g8Pfvx6-wkWfsfaTQEkQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+facile+assay+for+zDHHC+palmitoyl+transferase+activation+elucidates+effects+of+mutation+and+modification&rft.jtitle=Journal+of+lipid+research&rft.au=Adachi%2C+Naoko&rft.au=Hess%2C+Douglas+T&rft.au=Ueyama%2C+Takehiko&rft.date=2025-02-01&rft.eissn=1539-7262&rft.volume=66&rft.issue=2&rft.spage=100743&rft_id=info:doi/10.1016%2Fj.jlr.2025.100743&rft_id=info%3Apmid%2F39800157&rft.externalDocID=39800157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2275&client=summon