A facile assay for zDHHC palmitoyl transferase activation elucidates effects of mutation and modification
At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty S-acylation (prototypically, S-palmitoylation) operates across eukaryotic phylogeny and cell type. S-palmitoylation is carried out in mammal...
Saved in:
Published in | Journal of lipid research Vol. 66; no. 2; p. 100743 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2025
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0022-2275 1539-7262 1539-7262 |
DOI | 10.1016/j.jlr.2025.100743 |
Cover
Loading…
Abstract | At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty S-acylation (prototypically, S-palmitoylation) operates across eukaryotic phylogeny and cell type. S-palmitoylation is carried out in mammalian cells by a family of 23–24 dedicated zDHHC palmitoyl transferase enzymes, and mutation of zDHHCs is associated with a number of human pathophysiologies. Activation of the zDHHCs by auto-S-palmitoylation, the transthioesterification of the active site Cys by fatty acyl coenzyme A, is the necessary first step in zDHHC-mediated protein S-palmitoylation. Most prior in vitro assessments of zDHHC activation have utilized purified zDHHCs, a time- and effort-intensive approach, which removes zDHHCs from their native membrane environment. We describe here a facile assay for zDHHC activation in native membranes. We overexpressed hemagglutinin-tagged wild-type or mutant zDHHCs in cultured HEK293 cells and prepared a whole membrane fraction, which was incubated with fluorescent palmitoyl CoA (NBD-palmitoyl-CoA) followed by SDS-PAGE, fluorescence imaging, and Western blotting for hemagglutinin. We show by mutational analysis that, as assayed, zDHHC auto-S-palmitoylation by NBD-palmitoyl-CoA is limited to the active site Cys. Application of the assay revealed differential effects on zDHHC activation of posttranslational zDHHC modification and of zDHHC mutations associated with human disease, in particular cancer. Our assay provides a facile means of assessing zDHHC activation, and thus of differentiating the effects of zDHHC mutation and posttranslational modification on zDHHC activation versus secondary effects on zDHHC functionality including altered zDHHC interaction with substrate palmitoyl-proteins.
[Display omitted] |
---|---|
AbstractList | At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty S-acylation (prototypically, S-palmitoylation) operates across eukaryotic phylogeny and cell type. S-palmitoylation is carried out in mammalian cells by a family of 23–24 dedicated zDHHC palmitoyl transferase enzymes, and mutation of zDHHCs is associated with a number of human pathophysiologies. Activation of the zDHHCs by auto-S-palmitoylation, the transthioesterification of the active site Cys by fatty acyl coenzyme A, is the necessary first step in zDHHC-mediated protein S-palmitoylation. Most prior in vitro assessments of zDHHC activation have utilized purified zDHHCs, a time- and effort-intensive approach, which removes zDHHCs from their native membrane environment. We describe here a facile assay for zDHHC activation in native membranes. We overexpressed hemagglutinin-tagged wild-type or mutant zDHHCs in cultured HEK293 cells and prepared a whole membrane fraction, which was incubated with fluorescent palmitoyl CoA (NBD-palmitoyl-CoA) followed by SDS-PAGE, fluorescence imaging, and Western blotting for hemagglutinin. We show by mutational analysis that, as assayed, zDHHC auto-S-palmitoylation by NBD-palmitoyl-CoA is limited to the active site Cys. Application of the assay revealed differential effects on zDHHC activation of posttranslational zDHHC modification and of zDHHC mutations associated with human disease, in particular cancer. Our assay provides a facile means of assessing zDHHC activation, and thus of differentiating the effects of zDHHC mutation and posttranslational modification on zDHHC activation versus secondary effects on zDHHC functionality including altered zDHHC interaction with substrate palmitoyl-proteins. At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty S-acylation (prototypically, S-palmitoylation) operates across eukaryotic phylogeny and cell type. S-palmitoylation is carried out in mammalian cells by a family of 23–24 dedicated zDHHC palmitoyl transferase enzymes, and mutation of zDHHCs is associated with a number of human pathophysiologies. Activation of the zDHHCs by auto-S-palmitoylation, the transthioesterification of the active site Cys by fatty acyl coenzyme A, is the necessary first step in zDHHC-mediated protein S-palmitoylation. Most prior in vitro assessments of zDHHC activation have utilized purified zDHHCs, a time- and effort-intensive approach, which removes zDHHCs from their native membrane environment. We describe here a facile assay for zDHHC activation in native membranes. We overexpressed hemagglutinin-tagged wild-type or mutant zDHHCs in cultured HEK293 cells and prepared a whole membrane fraction, which was incubated with fluorescent palmitoyl CoA (NBD-palmitoyl-CoA) followed by SDS-PAGE, fluorescence imaging, and Western blotting for hemagglutinin. We show by mutational analysis that, as assayed, zDHHC auto-S-palmitoylation by NBD-palmitoyl-CoA is limited to the active site Cys. Application of the assay revealed differential effects on zDHHC activation of posttranslational zDHHC modification and of zDHHC mutations associated with human disease, in particular cancer. Our assay provides a facile means of assessing zDHHC activation, and thus of differentiating the effects of zDHHC mutation and posttranslational modification on zDHHC activation versus secondary effects on zDHHC functionality including altered zDHHC interaction with substrate palmitoyl-proteins. [Display omitted] At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty S-acylation (prototypically, S-palmitoylation) operates across eukaryotic phylogeny and cell type. S-palmitoylation is carried out in mammalian cells by a family of 23-24 dedicated zDHHC palmitoyl transferase enzymes, and mutation of zDHHCs is associated with a number of human pathophysiologies. Activation of the zDHHCs by auto-S-palmitoylation, the transthioesterification of the active site Cys by fatty acyl coenzyme A, is the necessary first step in zDHHC-mediated protein S-palmitoylation. Most prior in vitro assessments of zDHHC activation have utilized purified zDHHCs, a time- and effort-intensive approach, which removes zDHHCs from their native membrane environment. We describe here a facile assay for zDHHC activation in native membranes. We overexpressed hemagglutinin-tagged wild-type or mutant zDHHCs in cultured HEK293 cells and prepared a whole membrane fraction, which was incubated with fluorescent palmitoyl CoA (NBD-palmitoyl-CoA) followed by SDS-PAGE, fluorescence imaging, and Western blotting for hemagglutinin. We show by mutational analysis that, as assayed, zDHHC auto-S-palmitoylation by NBD-palmitoyl-CoA is limited to the active site Cys. Application of the assay revealed differential effects on zDHHC activation of posttranslational zDHHC modification and of zDHHC mutations associated with human disease, in particular cancer. Our assay provides a facile means of assessing zDHHC activation, and thus of differentiating the effects of zDHHC mutation and posttranslational modification on zDHHC activation versus secondary effects on zDHHC functionality including altered zDHHC interaction with substrate palmitoyl-proteins.At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty S-acylation (prototypically, S-palmitoylation) operates across eukaryotic phylogeny and cell type. S-palmitoylation is carried out in mammalian cells by a family of 23-24 dedicated zDHHC palmitoyl transferase enzymes, and mutation of zDHHCs is associated with a number of human pathophysiologies. Activation of the zDHHCs by auto-S-palmitoylation, the transthioesterification of the active site Cys by fatty acyl coenzyme A, is the necessary first step in zDHHC-mediated protein S-palmitoylation. Most prior in vitro assessments of zDHHC activation have utilized purified zDHHCs, a time- and effort-intensive approach, which removes zDHHCs from their native membrane environment. We describe here a facile assay for zDHHC activation in native membranes. We overexpressed hemagglutinin-tagged wild-type or mutant zDHHCs in cultured HEK293 cells and prepared a whole membrane fraction, which was incubated with fluorescent palmitoyl CoA (NBD-palmitoyl-CoA) followed by SDS-PAGE, fluorescence imaging, and Western blotting for hemagglutinin. We show by mutational analysis that, as assayed, zDHHC auto-S-palmitoylation by NBD-palmitoyl-CoA is limited to the active site Cys. Application of the assay revealed differential effects on zDHHC activation of posttranslational zDHHC modification and of zDHHC mutations associated with human disease, in particular cancer. Our assay provides a facile means of assessing zDHHC activation, and thus of differentiating the effects of zDHHC mutation and posttranslational modification on zDHHC activation versus secondary effects on zDHHC functionality including altered zDHHC interaction with substrate palmitoyl-proteins. |
ArticleNumber | 100743 |
Author | Adachi, Naoko Hess, Douglas T. Ueyama, Takehiko |
Author_xml | – sequence: 1 givenname: Naoko orcidid: 0000-0002-8797-0717 surname: Adachi fullname: Adachi, Naoko email: na@gold.kobe-u.ac.jp organization: Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan – sequence: 2 givenname: Douglas T. surname: Hess fullname: Hess, Douglas T. organization: Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA – sequence: 3 givenname: Takehiko orcidid: 0000-0002-5647-3937 surname: Ueyama fullname: Ueyama, Takehiko email: tueyama@kobe-u.ac.jp organization: Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39800157$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctuFDEQRS0URCaBD2CDvGTTg5_9EKtoeEykSGxgbbntMnLL3R5sd6TJ1-OkQ5asrCqfW2Xfe4UulrgAQu8p2VNC20_TfgppzwiTtSad4K_Qjko-NB1r2QXaEcJYw1gnL9FVzhMhVIiWvkGXfOhrIbsd8jfYaeMDYJ2zPmMXE374cjwe8EmH2Zd4DrgkvWQHSedKmeLvdfFxwRBW460ukDE4B6ZkHB2e17Jd68XiOVrvvHlqvEWvnQ4Z3j2f1-jXt68_D8fm7sf328PNXWNES0pDwXTDIIDRVlhNmeP1paBpDyDavnOtI9ZKMCMQR3oKXEjLRzkaYujIxoFfo9ttro16UqfkZ53OKmqvnhox_VY6FW8CqFYw6gYw1EkujJUjoVaPrR0BwDgGddbHbdYpxT8r5KJmnw2EoBeIa1acStH33cBJRT88o-s4g31Z_M_qCtANMCnmnMC9IJSoxzjVpGqc6jFOtcVZNZ83DVTD7j0klY2HxYD1qRpef-T_o_4LwDWotQ |
Cites_doi | 10.1186/s13045-021-01147-6 10.1038/nmeth.1293 10.1074/jbc.M116.725762 10.1194/jlr.D002790 10.1074/mcp.M800448-MCP200 10.1042/BST20180429 10.1074/jbc.M110.169102 10.1042/BJ20121693 10.1038/s42003-020-01145-3 10.1038/s41598-017-04580-1 10.1016/j.jid.2022.08.040 10.1074/jbc.M111.337246 10.1194/jlr.D011106 10.1126/science.aao6326 10.1073/pnas.1612254114 10.1016/j.jbc.2023.105088 10.15252/embr.201847472 10.1038/ncomms9200 10.1016/j.bbalip.2006.03.010 10.1002/1878-0261.13308 10.1002/1098-2264(2000)9999:9999<::AID-GCC1001>3.0.CO;2-# 10.1038/s41594-023-01183-5 10.1523/JNEUROSCI.0419-16.2016 10.1038/s41467-020-18565-8 10.15252/embr.201846666 10.1074/jbc.M206573200 10.1074/jbc.REV120.014717 10.1016/j.neuron.2004.12.005 10.1002/path.4327 10.1016/j.jbc.2022.102469 10.1074/jbc.RA118.004978 10.7554/eLife.27826 10.1126/science.1133427 |
ContentType | Journal Article |
Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.jlr.2025.100743 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1539-7262 |
ExternalDocumentID | oai_doaj_org_article_6421f9ec1f534cd5b01dab6dbeeecf2e 39800157 10_1016_j_jlr_2025_100743 S0022227525000033 |
Genre | Journal Article |
GroupedDBID | --- -~X .55 .GJ 0R~ 0VX 18M 29K 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 6I. AAEDW AAFTH AAFWJ AALRI AAXUO AAYOK ABCQX ABOCM ACCCW ACGFO ACKIV ACNCT ACPRK ADBBV ADVLN AENEX AEXQZ AFFNX AFOSN AI. AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CS3 D-I DIK DU5 E3Z EBS EJD F5P FDB FRP GROUPED_DOAJ GX1 H13 HH5 HYE H~9 J5H KQ8 L7B MVM OK1 P2P RHI ROL RPM TBC TR2 TWZ VH1 W8F WH7 WOQ X7M YHG YKV ZGI ZXP ~KM AAYWO AAYXX ACVFH ADCNI AEUPX AFPKN AFPUW AIGII AKBMS AKYEP CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c460t-1ec7994e2164da12f3001ea18ee4687f6f0dd5ecbe0f081e345d3b5bc0c1b2b93 |
IEDL.DBID | DOA |
ISSN | 0022-2275 1539-7262 |
IngestDate | Wed Aug 27 01:24:11 EDT 2025 Thu Jul 10 18:53:47 EDT 2025 Fri May 02 01:41:54 EDT 2025 Tue Jul 01 05:25:41 EDT 2025 Sat Mar 08 15:47:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | acyl-CoA cancer mutations cell signaling fatty acyl-CoA tumor cell biology zinc finger enzymology-enzyme regulation lipid signaling palmitoylation acyltransferase |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-1ec7994e2164da12f3001ea18ee4687f6f0dd5ecbe0f081e345d3b5bc0c1b2b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8797-0717 0000-0002-5647-3937 |
OpenAccessLink | https://doaj.org/article/6421f9ec1f534cd5b01dab6dbeeecf2e |
PMID | 39800157 |
PQID | 3154887930 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6421f9ec1f534cd5b01dab6dbeeecf2e proquest_miscellaneous_3154887930 pubmed_primary_39800157 crossref_primary_10_1016_j_jlr_2025_100743 elsevier_sciencedirect_doi_10_1016_j_jlr_2025_100743 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2025 2025-02-00 2025-Feb 20250201 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of lipid research |
PublicationTitleAlternate | J Lipid Res |
PublicationYear | 2025 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Adachi, Hess, McLaughlin, Stamler (bib2) 2016; 291 Greaves, Munro, Davidson, Riviere, Wojno, Smith (bib10) 2017; 114 Rana, Kumar, Lee, Verardi, Rajashankar, Banerjee (bib12) 2018; 359 Yeste-Velasco, Mao, Grose, Kudahetti, Lin, Marzec (bib31) 2014; 232 Yap, Kostiuk, Martin, Perinpanayagam, Hak, Siddam (bib27) 2010; 51 Mesquita, Abrami, Linder, Bamji, Dickinson, van der Goot (bib1) 2024 González Montoro, Quiroga, Valdez Taubas (bib24) 2013; 454 Plain, Howie, Kennedy, Brown, Shattock, Fraser (bib23) 2020; 3 Rana, Lee, Banerjee (bib13) 2019; 47 Fukata, Fukata, Adesnik, Nicoll, Bredt (bib8) 2004; 44 Oyama, Miyoshi, Koyama, Nakagawa, Yamori, Ito (bib29) 2000; 29 Ko, Dixon (bib5) 2018; 19 Ohno, Kihara, Sano, Igarashi (bib9) 2006; 1761 Yokoi, Fukata, Sekiya, Murakami, Kobayashi, Fukata (bib34) 2016; 36 Lobo, Greentree, Linder, Deschenes (bib7) 2002; 277 Sjöblom, Jones, Wood, Parsons, Lin, Barber (bib30) 2006; 314 Yang, Di Vizio, Kirchner, Steen, Freeman (bib15) 2010; 9 Forrester, Hess, Thompson, Hultman, Moseley, Stamler (bib25) 2011; 52 Mitchell, Mitchell, Ling, Budde, Deschenes (bib18) 2010; 285 Adachi, Hess, Kaku, Ueda, Numa, Saito (bib3) 2019; 294 Yang, Liu, Zhang, Chen, Fan, Wang (bib19) 2024; 31 Woodley, Collins (bib22) 2019; 20 Martin, Cravatt (bib26) 2009; 6 Lee, Hur, Kwon, Chae, Choi, Hwang (bib35) 2021; 14 Nůsková, Cortizo, Schwenker, Sachsenheimer, Diakonov, Tiebe (bib11) 2023; 299 Abrami, Dallavilla, Sandoz, Demir, Kunz, Savoglidis (bib33) 2017; 6 Zmuda, Chamberlain (bib16) 2020; 295 Faergeman, Knudsen (bib28) 1997; 323 Niki, Adachi, Fukata, Fukata, Oku, Makino-Okamura (bib4) 2023; 143 Brigidi, Santyr, Shimell, Jovellar, Bamji (bib20) 2015; 6 Zhou, Hao, Liang, Kong (bib6) 2023; 17 Salaun, Takizawa, Galindo, Munro, McLellan, Sugimoto (bib17) 2022; 298 Collins, Woodley, Choudhary (bib32) 2017; 7 Jennings, Linder (bib14) 2012; 287 Hao, Wang, Guo, Zhao, Sun, Li (bib21) 2020; 11 Abrami (10.1016/j.jlr.2025.100743_bib33) 2017; 6 Lobo (10.1016/j.jlr.2025.100743_bib7) 2002; 277 Sjöblom (10.1016/j.jlr.2025.100743_bib30) 2006; 314 Rana (10.1016/j.jlr.2025.100743_bib13) 2019; 47 Mesquita (10.1016/j.jlr.2025.100743_bib1) 2024 Jennings (10.1016/j.jlr.2025.100743_bib14) 2012; 287 González Montoro (10.1016/j.jlr.2025.100743_bib24) 2013; 454 Martin (10.1016/j.jlr.2025.100743_bib26) 2009; 6 Faergeman (10.1016/j.jlr.2025.100743_bib28) 1997; 323 Lee (10.1016/j.jlr.2025.100743_bib35) 2021; 14 Rana (10.1016/j.jlr.2025.100743_bib12) 2018; 359 Niki (10.1016/j.jlr.2025.100743_bib4) 2023; 143 Brigidi (10.1016/j.jlr.2025.100743_bib20) 2015; 6 Forrester (10.1016/j.jlr.2025.100743_bib25) 2011; 52 Mitchell (10.1016/j.jlr.2025.100743_bib18) 2010; 285 Zhou (10.1016/j.jlr.2025.100743_bib6) 2023; 17 Ohno (10.1016/j.jlr.2025.100743_bib9) 2006; 1761 Ko (10.1016/j.jlr.2025.100743_bib5) 2018; 19 Yap (10.1016/j.jlr.2025.100743_bib27) 2010; 51 Greaves (10.1016/j.jlr.2025.100743_bib10) 2017; 114 Plain (10.1016/j.jlr.2025.100743_bib23) 2020; 3 Oyama (10.1016/j.jlr.2025.100743_bib29) 2000; 29 Yokoi (10.1016/j.jlr.2025.100743_bib34) 2016; 36 Adachi (10.1016/j.jlr.2025.100743_bib3) 2019; 294 Collins (10.1016/j.jlr.2025.100743_bib32) 2017; 7 Fukata (10.1016/j.jlr.2025.100743_bib8) 2004; 44 Woodley (10.1016/j.jlr.2025.100743_bib22) 2019; 20 Zmuda (10.1016/j.jlr.2025.100743_bib16) 2020; 295 Salaun (10.1016/j.jlr.2025.100743_bib17) 2022; 298 Yang (10.1016/j.jlr.2025.100743_bib15) 2010; 9 Adachi (10.1016/j.jlr.2025.100743_bib2) 2016; 291 Hao (10.1016/j.jlr.2025.100743_bib21) 2020; 11 Nůsková (10.1016/j.jlr.2025.100743_bib11) 2023; 299 Yang (10.1016/j.jlr.2025.100743_bib19) 2024; 31 Yeste-Velasco (10.1016/j.jlr.2025.100743_bib31) 2014; 232 |
References_xml | – volume: 6 start-page: 8200 year: 2015 ident: bib20 article-title: Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5 publication-title: Nat. Commun. – volume: 295 start-page: 14640 year: 2020 end-page: 14652 ident: bib16 article-title: Regulatory effects of post-translational modifications on zDHHC S-acyltransferases publication-title: J. Biol. Chem. – volume: 299 year: 2023 ident: bib11 article-title: Competition for cysteine acylation by C16:0 and C18:0 derived lipids is a global phenomenon in the proteome publication-title: J. Biol. Chem. – volume: 6 start-page: 135 year: 2009 end-page: 138 ident: bib26 article-title: Large-scale profiling of protein palmitoylation in mammalian cells publication-title: Nat. Methods – volume: 323 start-page: 1 year: 1997 end-page: 12 ident: bib28 article-title: Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling publication-title: Biochem. J. – volume: 232 start-page: 566 year: 2014 end-page: 577 ident: bib31 article-title: Identification of ZDHHC14 as a novel human tumour suppressor gene publication-title: J. Pathol. – volume: 294 start-page: 2569 year: 2019 end-page: 2578 ident: bib3 article-title: Differential S-palmitoylation of the human and rodent β publication-title: J. Biol. Chem. – volume: 3 start-page: 411 year: 2020 ident: bib23 article-title: Control of protein palmitoylation by regulating substrate recruitment to a zDHHC-protein acyltransferase publication-title: Commun. Biol. – volume: 6 start-page: e27826 year: 2017 ident: bib33 article-title: Identification and dynamics of the human ZDHHC16-ZDHHC6 palmitoylation cascade publication-title: eLife – volume: 277 start-page: 41268 year: 2002 end-page: 41273 ident: bib7 article-title: Identification of a ras palmitoyltransferase in Saccharomyces cerevisiae publication-title: J. Biol. Chem. – volume: 44 start-page: 987 year: 2004 end-page: 996 ident: bib8 article-title: Identification of PSD-95 palmitoylating enzymes publication-title: Neuron – volume: 20 year: 2019 ident: bib22 article-title: S-acylated Golga7b stabilises DHHC5 at the plasma membrane to regulate cell adhesion publication-title: EMBO Rep. – volume: 9 start-page: 54 year: 2010 end-page: 70 ident: bib15 article-title: Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes publication-title: Mol. Cell Proteomics – volume: 51 start-page: 1566 year: 2010 end-page: 1580 ident: bib27 article-title: Rapid and selective detection of fatty acylated proteins using omega-alkynyl-fatty acids and click chemistry publication-title: J. Lipid Res. – volume: 285 start-page: 38104 year: 2010 end-page: 38114 ident: bib18 article-title: Mutational analysis of Saccharomyces cerevisiae Erf2 reveals a two-step reaction mechanism for protein palmitoylation by DHHC enzymes publication-title: J. Biol. Chem. – volume: 19 start-page: e46666 year: 2018 ident: bib5 article-title: Protein palmitoylation and cancer publication-title: EMBO Rep. – volume: 359 year: 2018 ident: bib12 article-title: Fatty acyl recognition and transfer by an integral membrane S-acyltransferase publication-title: Science (New York, NY) – volume: 47 start-page: 157 year: 2019 end-page: 167 ident: bib13 article-title: The molecular mechanism of DHHC protein acyltransferases publication-title: Biochem. Soc. Trans. – volume: 454 start-page: 427 year: 2013 end-page: 435 ident: bib24 article-title: Zinc co-ordination by the DHHC cysteine-rich domain of the palmitoyltransferase Swf1 publication-title: Biochem. J. – volume: 314 start-page: 268 year: 2006 end-page: 274 ident: bib30 article-title: The consensus coding sequences of human breast and colorectal cancers publication-title: Science (New York, NY) – volume: 11 start-page: 4765 year: 2020 ident: bib21 article-title: CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis publication-title: Nat. Commun. – volume: 7 start-page: 4683 year: 2017 ident: bib32 article-title: Global, site-specific analysis of neuronal protein S-acylation publication-title: Sci. Rep. – volume: 17 start-page: 3 year: 2023 end-page: 26 ident: bib6 article-title: Protein palmitoylation in cancer: molecular functions and therapeutic potential publication-title: Mol. Oncol. – volume: 29 start-page: 9 year: 2000 end-page: 15 ident: bib29 article-title: Isolation of a novel gene on 8p21.3-22 whose expression is reduced significantly in human colorectal cancers with liver metastasis publication-title: Genes Chromosomes Cancer – volume: 143 start-page: 317 year: 2023 end-page: 327.e316 ident: bib4 article-title: S-palmitoylation of tyrosinase at cysteine 500 regulates melanogenesis publication-title: J. Invest. Dermatol. – volume: 291 start-page: 20232 year: 2016 end-page: 20246 ident: bib2 article-title: S-palmitoylation of a novel site in the β publication-title: J. Biol. Chem. – volume: 1761 start-page: 474 year: 2006 end-page: 483 ident: bib9 article-title: Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins publication-title: Biochim. Biophys. Acta – volume: 298 year: 2022 ident: bib17 article-title: Development of a novel high-throughput screen for the identification of new inhibitors of protein S-acylation publication-title: J. Biol. Chem. – volume: 52 start-page: 393 year: 2011 end-page: 398 ident: bib25 article-title: Site-specific analysis of protein S-acylation by resin-assisted capture publication-title: J. Lipid Res. – volume: 36 start-page: 6431 year: 2016 end-page: 6444 ident: bib34 article-title: Identification of PSD-95 depalmitoylating enzymes publication-title: J. Neurosci. – volume: 287 start-page: 7236 year: 2012 end-page: 7245 ident: bib14 article-title: DHHC protein S-acyltransferases use similar ping-pong kinetic mechanisms but display different acyl-CoA specificities publication-title: J. Biol. Chem. – volume: 31 start-page: 436 year: 2024 end-page: 446 ident: bib19 article-title: Regulation of RAS palmitoyltransferases by accessory proteins and palmitoylation publication-title: Nat. Struct. Mol. Biol. – year: 2024 ident: bib1 article-title: Mechanisms and functions of protein S-acylation publication-title: Nat. Rev. Mol. Cell Biol. – volume: 114 start-page: E1365 year: 2017 end-page: E1374 ident: bib10 article-title: Molecular basis of fatty acid selectivity in the zDHHC family of S-acyltransferases revealed by click chemistry publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 14 start-page: 148 year: 2021 ident: bib35 article-title: KAI1(CD82) is a key molecule to control angiogenesis and switch angiogenic milieu to quiescent state publication-title: J. Hematol. Oncol. – volume: 14 start-page: 148 year: 2021 ident: 10.1016/j.jlr.2025.100743_bib35 article-title: KAI1(CD82) is a key molecule to control angiogenesis and switch angiogenic milieu to quiescent state publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-021-01147-6 – volume: 6 start-page: 135 year: 2009 ident: 10.1016/j.jlr.2025.100743_bib26 article-title: Large-scale profiling of protein palmitoylation in mammalian cells publication-title: Nat. Methods doi: 10.1038/nmeth.1293 – volume: 291 start-page: 20232 year: 2016 ident: 10.1016/j.jlr.2025.100743_bib2 article-title: S-palmitoylation of a novel site in the β2-adrenergic receptor associated with a novel intracellular itinerary publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.725762 – volume: 51 start-page: 1566 year: 2010 ident: 10.1016/j.jlr.2025.100743_bib27 article-title: Rapid and selective detection of fatty acylated proteins using omega-alkynyl-fatty acids and click chemistry publication-title: J. Lipid Res. doi: 10.1194/jlr.D002790 – volume: 9 start-page: 54 year: 2010 ident: 10.1016/j.jlr.2025.100743_bib15 article-title: Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes publication-title: Mol. Cell Proteomics doi: 10.1074/mcp.M800448-MCP200 – volume: 47 start-page: 157 year: 2019 ident: 10.1016/j.jlr.2025.100743_bib13 article-title: The molecular mechanism of DHHC protein acyltransferases publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20180429 – volume: 285 start-page: 38104 year: 2010 ident: 10.1016/j.jlr.2025.100743_bib18 article-title: Mutational analysis of Saccharomyces cerevisiae Erf2 reveals a two-step reaction mechanism for protein palmitoylation by DHHC enzymes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.169102 – volume: 454 start-page: 427 year: 2013 ident: 10.1016/j.jlr.2025.100743_bib24 article-title: Zinc co-ordination by the DHHC cysteine-rich domain of the palmitoyltransferase Swf1 publication-title: Biochem. J. doi: 10.1042/BJ20121693 – volume: 3 start-page: 411 year: 2020 ident: 10.1016/j.jlr.2025.100743_bib23 article-title: Control of protein palmitoylation by regulating substrate recruitment to a zDHHC-protein acyltransferase publication-title: Commun. Biol. doi: 10.1038/s42003-020-01145-3 – volume: 7 start-page: 4683 year: 2017 ident: 10.1016/j.jlr.2025.100743_bib32 article-title: Global, site-specific analysis of neuronal protein S-acylation publication-title: Sci. Rep. doi: 10.1038/s41598-017-04580-1 – volume: 143 start-page: 317 year: 2023 ident: 10.1016/j.jlr.2025.100743_bib4 article-title: S-palmitoylation of tyrosinase at cysteine 500 regulates melanogenesis publication-title: J. Invest. Dermatol. doi: 10.1016/j.jid.2022.08.040 – volume: 287 start-page: 7236 year: 2012 ident: 10.1016/j.jlr.2025.100743_bib14 article-title: DHHC protein S-acyltransferases use similar ping-pong kinetic mechanisms but display different acyl-CoA specificities publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.337246 – year: 2024 ident: 10.1016/j.jlr.2025.100743_bib1 article-title: Mechanisms and functions of protein S-acylation publication-title: Nat. Rev. Mol. Cell Biol. – volume: 52 start-page: 393 year: 2011 ident: 10.1016/j.jlr.2025.100743_bib25 article-title: Site-specific analysis of protein S-acylation by resin-assisted capture publication-title: J. Lipid Res. doi: 10.1194/jlr.D011106 – volume: 359 year: 2018 ident: 10.1016/j.jlr.2025.100743_bib12 article-title: Fatty acyl recognition and transfer by an integral membrane S-acyltransferase publication-title: Science (New York, NY) doi: 10.1126/science.aao6326 – volume: 114 start-page: E1365 year: 2017 ident: 10.1016/j.jlr.2025.100743_bib10 article-title: Molecular basis of fatty acid selectivity in the zDHHC family of S-acyltransferases revealed by click chemistry publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1612254114 – volume: 299 year: 2023 ident: 10.1016/j.jlr.2025.100743_bib11 article-title: Competition for cysteine acylation by C16:0 and C18:0 derived lipids is a global phenomenon in the proteome publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2023.105088 – volume: 20 year: 2019 ident: 10.1016/j.jlr.2025.100743_bib22 article-title: S-acylated Golga7b stabilises DHHC5 at the plasma membrane to regulate cell adhesion publication-title: EMBO Rep. doi: 10.15252/embr.201847472 – volume: 6 start-page: 8200 year: 2015 ident: 10.1016/j.jlr.2025.100743_bib20 article-title: Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5 publication-title: Nat. Commun. doi: 10.1038/ncomms9200 – volume: 1761 start-page: 474 year: 2006 ident: 10.1016/j.jlr.2025.100743_bib9 article-title: Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2006.03.010 – volume: 17 start-page: 3 year: 2023 ident: 10.1016/j.jlr.2025.100743_bib6 article-title: Protein palmitoylation in cancer: molecular functions and therapeutic potential publication-title: Mol. Oncol. doi: 10.1002/1878-0261.13308 – volume: 29 start-page: 9 year: 2000 ident: 10.1016/j.jlr.2025.100743_bib29 article-title: Isolation of a novel gene on 8p21.3-22 whose expression is reduced significantly in human colorectal cancers with liver metastasis publication-title: Genes Chromosomes Cancer doi: 10.1002/1098-2264(2000)9999:9999<::AID-GCC1001>3.0.CO;2-# – volume: 31 start-page: 436 year: 2024 ident: 10.1016/j.jlr.2025.100743_bib19 article-title: Regulation of RAS palmitoyltransferases by accessory proteins and palmitoylation publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-023-01183-5 – volume: 36 start-page: 6431 year: 2016 ident: 10.1016/j.jlr.2025.100743_bib34 article-title: Identification of PSD-95 depalmitoylating enzymes publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0419-16.2016 – volume: 11 start-page: 4765 year: 2020 ident: 10.1016/j.jlr.2025.100743_bib21 article-title: CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis publication-title: Nat. Commun. doi: 10.1038/s41467-020-18565-8 – volume: 323 start-page: 1 issue: Pt 1 year: 1997 ident: 10.1016/j.jlr.2025.100743_bib28 article-title: Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling publication-title: Biochem. J. – volume: 19 start-page: e46666 year: 2018 ident: 10.1016/j.jlr.2025.100743_bib5 article-title: Protein palmitoylation and cancer publication-title: EMBO Rep. doi: 10.15252/embr.201846666 – volume: 277 start-page: 41268 year: 2002 ident: 10.1016/j.jlr.2025.100743_bib7 article-title: Identification of a ras palmitoyltransferase in Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1074/jbc.M206573200 – volume: 295 start-page: 14640 year: 2020 ident: 10.1016/j.jlr.2025.100743_bib16 article-title: Regulatory effects of post-translational modifications on zDHHC S-acyltransferases publication-title: J. Biol. Chem. doi: 10.1074/jbc.REV120.014717 – volume: 44 start-page: 987 year: 2004 ident: 10.1016/j.jlr.2025.100743_bib8 article-title: Identification of PSD-95 palmitoylating enzymes publication-title: Neuron doi: 10.1016/j.neuron.2004.12.005 – volume: 232 start-page: 566 year: 2014 ident: 10.1016/j.jlr.2025.100743_bib31 article-title: Identification of ZDHHC14 as a novel human tumour suppressor gene publication-title: J. Pathol. doi: 10.1002/path.4327 – volume: 298 year: 2022 ident: 10.1016/j.jlr.2025.100743_bib17 article-title: Development of a novel high-throughput screen for the identification of new inhibitors of protein S-acylation publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2022.102469 – volume: 294 start-page: 2569 year: 2019 ident: 10.1016/j.jlr.2025.100743_bib3 article-title: Differential S-palmitoylation of the human and rodent β3-adrenergic receptors publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.004978 – volume: 6 start-page: e27826 year: 2017 ident: 10.1016/j.jlr.2025.100743_bib33 article-title: Identification and dynamics of the human ZDHHC16-ZDHHC6 palmitoylation cascade publication-title: eLife doi: 10.7554/eLife.27826 – volume: 314 start-page: 268 year: 2006 ident: 10.1016/j.jlr.2025.100743_bib30 article-title: The consensus coding sequences of human breast and colorectal cancers publication-title: Science (New York, NY) doi: 10.1126/science.1133427 |
SSID | ssj0014461 |
Score | 2.4610622 |
Snippet | At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 100743 |
SubjectTerms | acyltransferase Acyltransferases - genetics Acyltransferases - metabolism cancer mutations cell signaling Enzyme Activation Enzyme Assays - methods enzymology-enzyme regulation fatty acyl-CoA HEK293 Cells Humans lipid signaling Lipoylation Mutation palmitoylation Protein Processing, Post-Translational tumor cell biology zinc finger |
Title | A facile assay for zDHHC palmitoyl transferase activation elucidates effects of mutation and modification |
URI | https://dx.doi.org/10.1016/j.jlr.2025.100743 https://www.ncbi.nlm.nih.gov/pubmed/39800157 https://www.proquest.com/docview/3154887930 https://doaj.org/article/6421f9ec1f534cd5b01dab6dbeeecf2e |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6hcqAXBC2FFKiMhDggrViv7X0cQ6CKqMQBUdGb5cdYSpVsqjY5hF_P2N6t6KHlwtXah-Vv7PnG83kM8N6KWASF-8J0nS8kt7ZofWML2wlLy5_sJCaB7Pd6fi6_XaiLv676ipqwXB44D9yneBAzdOh4UEI6r2zJvbG1t4joQoVx9SWfNwZTQ_6Aghw-1gmvqkaN-cyk7LpcxkKglUoKASnueKRUuP-OY7qPeCYHdPoMng7MkU1zj5_DI-wP4HDaU9S82rEPLGk50yb5ATyZjfe4HcJiyoJxNPkZ8WSzY8RS2e8v8_mMXZnliib0bsk2ib7iNbk0Fk865H1ahsutW8QtgRs26D7YOrDVNqfvmek9W619FBulhhdwfvr152xeDBcsFE7W5abg6JqO0KgoZvKGV0HQ0KHhLaKs2ybUofReobNYBgIUhVReWGVd6bitCM4j2OvXPb4CxgM2jbD0imvju62jQMUQCsYqFMFP4OM4yPoq19HQo8DsUhMiOiKiMyIT-BxhuH0wlsBODWQYejAM_S_DmIAcQdQDm8gsgT61eOjf70bANQEV0yemx_X2RosY3bW0npUTeJkt4baHomsj-2yO_0fPX8N-7FDWhr-Bvc31Ft8S9dnYE3g8Pfvx6-wkWfsfaTQEkQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+facile+assay+for+zDHHC+palmitoyl+transferase+activation+elucidates+effects+of+mutation+and+modification&rft.jtitle=Journal+of+lipid+research&rft.au=Adachi%2C+Naoko&rft.au=Hess%2C+Douglas+T&rft.au=Ueyama%2C+Takehiko&rft.date=2025-02-01&rft.eissn=1539-7262&rft.volume=66&rft.issue=2&rft.spage=100743&rft_id=info:doi/10.1016%2Fj.jlr.2025.100743&rft_id=info%3Apmid%2F39800157&rft.externalDocID=39800157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2275&client=summon |