Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs

When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold r...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 38; pp. 13757 - 13762
Main Authors Mouillot, David, Villéger, Sébastien, Parravicini, Valeriano, Kulbicki, Michel, Arias-González, Jesus Ernesto, Bender, Mariana, Chabanet, Pascale, Floeter, Sergio R., Friedlander, Alan, Vigliola, Laurent, Bellwood, David R.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 23.09.2014
National Acad Sciences
SeriesFrom the Cover
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought.
AbstractList Our results indicate that, even in highly diverse systems like coral reefs, we can no longer assume that the erosion of species diversity can be discounted by the high probability of functional redundancy: i.e., that several species can support the same function. Indeed, we show that fish species tend to disproportionately pack into a few particular functions while leaving many functions highly vulnerable, i.e., they are supported by just one species. Even the Coral Triangle, which has a high concentration of tropical-reef fishes, may experience a loss of functional diversity following fisheries pressure and local species extirpation. Our results suggest that the promised benefits of functional insurance from high species diversity may not be as strong as we once hoped. When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought.
When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought.
When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought.When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought.
Author Kulbicki, Michel
Arias-González, Jesus Ernesto
Chabanet, Pascale
Bender, Mariana
Floeter, Sergio R.
Bellwood, David R.
Mouillot, David
Friedlander, Alan
Vigliola, Laurent
Parravicini, Valeriano
Villéger, Sébastien
Author_xml – sequence: 1
  givenname: David
  surname: Mouillot
  fullname: Mouillot, David
– sequence: 2
  givenname: Sébastien
  surname: Villéger
  fullname: Villéger, Sébastien
– sequence: 3
  givenname: Valeriano
  surname: Parravicini
  fullname: Parravicini, Valeriano
– sequence: 4
  givenname: Michel
  surname: Kulbicki
  fullname: Kulbicki, Michel
– sequence: 5
  givenname: Jesus Ernesto
  surname: Arias-González
  fullname: Arias-González, Jesus Ernesto
– sequence: 6
  givenname: Mariana
  surname: Bender
  fullname: Bender, Mariana
– sequence: 7
  givenname: Pascale
  surname: Chabanet
  fullname: Chabanet, Pascale
– sequence: 8
  givenname: Sergio R.
  surname: Floeter
  fullname: Floeter, Sergio R.
– sequence: 9
  givenname: Alan
  surname: Friedlander
  fullname: Friedlander, Alan
– sequence: 10
  givenname: Laurent
  surname: Vigliola
  fullname: Vigliola, Laurent
– sequence: 11
  givenname: David R.
  surname: Bellwood
  fullname: Bellwood, David R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25225388$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1rGzEQhkVJaZy0555aBL30ssnoa1d7KYTQpIVAL-1ZaCWtLbOWXGnX4H9fLXacJlB6EIKZZ17e-bhAZyEGh9B7AlcEGna9DTpfEUaamgpCyCu0INCSquYtnKEFAG0qySk_Rxc5rwGgFRLeoHMqKBVMygWyd1Mwo49BDzjuXKqSs1OwOpg91sHilV-ucP_E7KYhuKQ7P_hxj33AyyF2Jd77XDg9FT84BjymuPWmxJNzfX6LXvd6yO7d8b9Ev-6-_rz9Vj38uP9-e_NQGV7DWBHataWR2lDd0d41FqgFR4WxQneM25oxITjXpu9bxiVxlBrNmdYta2vbOXaJvhx0t1O3cda4MCY9qG3yG532KmqvnmeCX6ll3ClOJGO0KQKfjwIp_p5cHtXGZ-OGQQcXp6yIBAYtJSD_j4paCKCUzuinF-g6TqlM80BJaLkUhfr4t_mT68ddFUAcAJNizsn1yvhRz3spvfhBEVDzTaj5JtTTTZS66xd1j9L_rsBHK3PiRBOimCxcI-ZJfTgg6zzGdGI4A85oeX8AuG_ObA
CitedBy_id crossref_primary_10_1016_j_ecolind_2019_105786
crossref_primary_10_1098_rstb_2015_0268
crossref_primary_10_1098_rspb_2016_0128
crossref_primary_10_1111_gcb_16707
crossref_primary_10_1111_jbi_14549
crossref_primary_10_1016_j_envpol_2023_121022
crossref_primary_10_1111_ecog_03711
crossref_primary_10_3389_fmars_2023_1117806
crossref_primary_10_1038_ncomms12461
crossref_primary_10_1016_j_ocecoaman_2016_12_013
crossref_primary_10_1016_j_scitotenv_2020_140380
crossref_primary_10_1098_rspb_2021_0274
crossref_primary_10_1111_brv_12323
crossref_primary_10_1007_s10641_019_00924_0
crossref_primary_10_1007_s00338_020_02026_1
crossref_primary_10_1016_j_aquaculture_2017_06_014
crossref_primary_10_1016_j_scitotenv_2018_12_277
crossref_primary_10_1038_s41467_021_25528_0
crossref_primary_10_1111_ddi_12857
crossref_primary_10_1371_journal_pone_0154014
crossref_primary_10_1007_s10641_020_01026_y
crossref_primary_10_1007_s00338_022_02302_2
crossref_primary_10_1111_2041_210X_13206
crossref_primary_10_1111_brv_12336
crossref_primary_10_1126_science_aax9412
crossref_primary_10_1016_j_envres_2023_116988
crossref_primary_10_1186_s40168_018_0530_4
crossref_primary_10_1111_gcb_70002
crossref_primary_10_1111_gcb_14785
crossref_primary_10_1002_ece3_4771
crossref_primary_10_1111_ddi_12987
crossref_primary_10_1111_jbi_14768
crossref_primary_10_1007_s11356_024_32834_9
crossref_primary_10_1371_journal_pone_0211224
crossref_primary_10_1007_s10531_022_02484_9
crossref_primary_10_1016_j_ijpara_2021_02_003
crossref_primary_10_1111_jvs_13299
crossref_primary_10_1016_j_biocon_2022_109484
crossref_primary_10_1111_ecog_01430
crossref_primary_10_1017_pab_2016_3
crossref_primary_10_1098_rspb_2020_1600
crossref_primary_10_1111_gcb_13571
crossref_primary_10_1038_s41467_018_05126_3
crossref_primary_10_1111_gcb_14662
crossref_primary_10_1038_ncomms12000
crossref_primary_10_1111_jbi_14770
crossref_primary_10_3390_d13100466
crossref_primary_10_1111_ecog_05904
crossref_primary_10_1007_s10750_022_04919_4
crossref_primary_10_1007_s00338_022_02303_1
crossref_primary_10_1007_s12526_017_0708_1
crossref_primary_10_1016_j_tree_2015_08_009
crossref_primary_10_3390_land13081206
crossref_primary_10_1126_science_aax0621
crossref_primary_10_1016_j_cub_2023_10_069
crossref_primary_10_3390_biology12111446
crossref_primary_10_1007_s10750_016_2974_5
crossref_primary_10_1590_1982_0224_2023_0022
crossref_primary_10_1007_s10531_016_1052_7
crossref_primary_10_1007_s10531_022_02528_0
crossref_primary_10_1016_j_scitotenv_2018_05_179
crossref_primary_10_1073_pnas_1716643115
crossref_primary_10_1007_s00227_016_3020_x
crossref_primary_10_1007_s11160_019_09588_6
crossref_primary_10_1007_s00442_019_04555_1
crossref_primary_10_1038_nature22901
crossref_primary_10_1111_jbi_12574
crossref_primary_10_1002_ecs2_3184
crossref_primary_10_1038_s41586_021_03871_y
crossref_primary_10_1016_j_tree_2016_02_003
crossref_primary_10_1088_2515_7620_abf468
crossref_primary_10_1111_brv_12892
crossref_primary_10_1098_rspb_2016_1646
crossref_primary_10_1038_s41437_022_00514_4
crossref_primary_10_1111_ecog_03506
crossref_primary_10_1002_aqc_4062
crossref_primary_10_3389_fmars_2021_640619
crossref_primary_10_1007_s11258_020_01084_3
crossref_primary_10_1111_cobi_13142
crossref_primary_10_3389_fmars_2021_797112
crossref_primary_10_1007_s00227_019_3488_2
crossref_primary_10_1111_ecog_04868
crossref_primary_10_1007_s00227_019_3599_9
crossref_primary_10_1038_s41467_018_07592_1
crossref_primary_10_1002_ppp3_10523
crossref_primary_10_1038_s41467_022_32331_y
crossref_primary_10_1111_2041_210X_14100
crossref_primary_10_1007_s12080_019_00433_x
crossref_primary_10_1111_gcb_15941
crossref_primary_10_1111_1365_2435_13076
crossref_primary_10_1002_ldr_5527
crossref_primary_10_1016_j_jenvman_2021_114332
crossref_primary_10_1111_ddi_13526
crossref_primary_10_1016_j_tree_2021_05_001
crossref_primary_10_1038_s41579_021_00604_w
crossref_primary_10_1111_oik_10011
crossref_primary_10_1016_j_marenvres_2017_05_007
crossref_primary_10_1016_j_ecolind_2020_107148
crossref_primary_10_1038_s41558_020_0838_5
crossref_primary_10_1016_j_scitotenv_2019_07_047
crossref_primary_10_1098_rspb_2019_0745
crossref_primary_10_1016_j_ecss_2018_11_012
crossref_primary_10_1126_sciadv_aay7650
crossref_primary_10_3389_fmars_2023_1243918
crossref_primary_10_1111_geb_12869
crossref_primary_10_1016_j_geoderma_2022_116073
crossref_primary_10_1038_s41598_018_22419_1
crossref_primary_10_1073_pnas_2019404118
crossref_primary_10_1051_bioconf_202413406021
crossref_primary_10_1016_j_ecss_2016_05_022
crossref_primary_10_3354_meps13633
crossref_primary_10_1111_maec_12609
crossref_primary_10_1016_j_gecco_2017_05_002
crossref_primary_10_1007_s10750_024_05690_4
crossref_primary_10_1007_s10531_022_02421_w
crossref_primary_10_1007_s10641_020_01044_w
crossref_primary_10_1038_s41467_020_16498_w
crossref_primary_10_1111_2041_210X_12865
crossref_primary_10_1111_jfb_14873
crossref_primary_10_1002_ecm_1278
crossref_primary_10_1093_iob_obz023
crossref_primary_10_1111_gcb_14119
crossref_primary_10_1016_j_ecolind_2024_112389
crossref_primary_10_1016_j_pocean_2025_103441
crossref_primary_10_1111_jbi_13966
crossref_primary_10_1016_j_pocean_2016_07_006
crossref_primary_10_1111_geb_13948
crossref_primary_10_1038_s41598_019_56515_7
crossref_primary_10_1016_j_isci_2023_107340
crossref_primary_10_1111_ddi_13430
crossref_primary_10_1111_1365_2435_13265
crossref_primary_10_1111_geb_12843
crossref_primary_10_1111_ele_13219
crossref_primary_10_7717_peerj_16264
crossref_primary_10_1007_s00027_017_0546_z
crossref_primary_10_1016_j_biocon_2022_109525
crossref_primary_10_1007_s00338_022_02311_1
crossref_primary_10_3354_meps11795
crossref_primary_10_1111_ecog_05079
crossref_primary_10_1038_s41598_017_17975_x
crossref_primary_10_3389_fmars_2022_921595
crossref_primary_10_1016_j_gecco_2023_e02717
crossref_primary_10_1016_j_envpol_2019_06_117
crossref_primary_10_1016_j_ecolind_2015_08_019
crossref_primary_10_1371_journal_pone_0308602
crossref_primary_10_1098_rspb_2022_0162
crossref_primary_10_3354_meps13968
crossref_primary_10_1590_2675_2824072_23199
crossref_primary_10_1093_icesjms_fsad132
crossref_primary_10_1111_ecog_07121
crossref_primary_10_1111_icad_12211
crossref_primary_10_1111_1365_2435_14487
crossref_primary_10_3389_fmars_2023_1291038
crossref_primary_10_1007_s00227_021_03998_6
crossref_primary_10_1071_MF22253
crossref_primary_10_1111_ddi_12369
crossref_primary_10_1111_geb_13513
crossref_primary_10_1002_fee_2807
crossref_primary_10_1016_j_jenvman_2023_119656
crossref_primary_10_1111_jbi_12844
crossref_primary_10_1111_1365_2656_13585
crossref_primary_10_3354_meps11895
crossref_primary_10_1007_s11356_024_35763_9
crossref_primary_10_1111_faf_12297
crossref_primary_10_1038_srep22125
crossref_primary_10_1111_gcb_15771
crossref_primary_10_1007_s00338_016_1466_4
crossref_primary_10_1186_s13717_023_00463_8
crossref_primary_10_1016_j_foreco_2023_120981
crossref_primary_10_1038_s41467_023_37550_5
crossref_primary_10_1016_j_dsr_2018_06_004
crossref_primary_10_1016_j_isci_2024_110962
crossref_primary_10_1590_2675_2824072_23139
crossref_primary_10_3390_oceans5010002
crossref_primary_10_1016_j_marpol_2022_105305
crossref_primary_10_1098_rspb_2020_1162
crossref_primary_10_3390_d11040055
crossref_primary_10_1016_j_scitotenv_2024_173271
crossref_primary_10_1371_journal_pone_0287482
crossref_primary_10_1016_j_gecco_2024_e02940
crossref_primary_10_3354_meps12970
crossref_primary_10_1038_s41598_018_29637_7
crossref_primary_10_1007_s10641_017_0612_3
crossref_primary_10_1007_s12526_015_0322_z
crossref_primary_10_1016_j_gecco_2018_e00506
crossref_primary_10_1038_s41598_017_04309_0
crossref_primary_10_1111_1365_2435_14316
crossref_primary_10_1016_j_rsma_2024_103798
crossref_primary_10_3390_fishes9100370
crossref_primary_10_1111_geb_12523
crossref_primary_10_1007_s12526_019_01024_z
crossref_primary_10_1111_ele_13778
crossref_primary_10_1016_j_marenvres_2024_106504
crossref_primary_10_1016_j_dsr_2023_104223
crossref_primary_10_1073_pnas_1415442111
crossref_primary_10_1007_s10531_024_03005_6
crossref_primary_10_1111_faf_12157
crossref_primary_10_1111_faf_12399
crossref_primary_10_1038_s41598_021_95905_8
crossref_primary_10_3389_fmars_2021_654141
crossref_primary_10_1038_s41559_022_01882_0
crossref_primary_10_1098_rsbl_2019_0703
crossref_primary_10_1016_j_ecolind_2021_108364
crossref_primary_10_1111_jfb_15895
crossref_primary_10_1007_s00338_021_02192_w
crossref_primary_10_1007_s10641_016_0557_y
crossref_primary_10_1016_j_jembe_2022_151695
crossref_primary_10_1016_j_oneear_2022_10_012
crossref_primary_10_1016_j_pld_2024_03_005
crossref_primary_10_7717_peerj_8885
crossref_primary_10_1093_icesjms_fsab033
crossref_primary_10_1038_s41598_021_96910_7
crossref_primary_10_1111_faf_12284
crossref_primary_10_1111_1365_2664_13547
crossref_primary_10_1111_geb_13840
crossref_primary_10_1111_1365_2435_14442
crossref_primary_10_1016_j_ecolind_2017_05_072
crossref_primary_10_1007_s10750_025_05811_7
crossref_primary_10_1016_j_cub_2023_02_040
crossref_primary_10_1016_j_biocon_2019_03_019
crossref_primary_10_1111_fwb_13395
crossref_primary_10_1002_aqc_2770
crossref_primary_10_1111_oik_06621
crossref_primary_10_1002_ece3_70461
crossref_primary_10_1038_s41467_022_28488_1
crossref_primary_10_1111_maec_12447
crossref_primary_10_1016_j_marenvres_2020_105190
crossref_primary_10_1016_j_gecco_2023_e02458
crossref_primary_10_1007_s00338_018_1698_6
crossref_primary_10_1111_1365_2435_13882
crossref_primary_10_1126_sciadv_abf9967
crossref_primary_10_1111_cobi_13802
crossref_primary_10_3389_fmars_2019_00218
crossref_primary_10_1111_ddi_13024
crossref_primary_10_1016_j_marenvres_2022_105769
crossref_primary_10_46989_001c_87919
crossref_primary_10_1111_ddi_13268
crossref_primary_10_1021_acs_est_4c04901
crossref_primary_10_1098_rspb_2015_2013
crossref_primary_10_1111_ecog_06536
crossref_primary_10_1016_j_marpolbul_2016_08_011
crossref_primary_10_3390_insects14090722
crossref_primary_10_1111_ecog_02293
crossref_primary_10_1016_j_biocon_2024_110571
crossref_primary_10_1016_j_rse_2024_114446
crossref_primary_10_1038_s41598_019_39399_5
crossref_primary_10_1111_1462_2920_14537
crossref_primary_10_1111_fwb_14257
crossref_primary_10_1093_sysbio_syx054
crossref_primary_10_1016_j_ecolind_2016_10_040
crossref_primary_10_1038_s41598_017_10723_1
crossref_primary_10_1371_journal_pone_0309788
crossref_primary_10_1111_icad_12623
crossref_primary_10_1111_gcb_17375
crossref_primary_10_1002_ecs2_2433
crossref_primary_10_1007_s00338_024_02556_y
crossref_primary_10_1007_s11160_024_09916_5
crossref_primary_10_1007_s11258_021_01142_4
crossref_primary_10_1038_s41559_017_0223_6
crossref_primary_10_1016_j_marenvres_2022_105661
crossref_primary_10_1111_1365_2664_14033
crossref_primary_10_1002_ece3_70330
crossref_primary_10_1016_j_scitotenv_2019_02_187
crossref_primary_10_1111_geb_13881
crossref_primary_10_1016_j_jenvman_2022_116264
crossref_primary_10_1098_rspb_2021_1712
crossref_primary_10_1002_ecs2_1557
crossref_primary_10_1111_maec_12520
crossref_primary_10_1073_pnas_2012318118
crossref_primary_10_1038_s41598_023_32138_x
crossref_primary_10_1111_cobi_12876
crossref_primary_10_1007_s11160_020_09615_x
crossref_primary_10_1002_ece3_7398
crossref_primary_10_1007_s00027_016_0475_2
crossref_primary_10_1016_j_pocean_2021_102710
crossref_primary_10_1098_rspb_2015_2332
crossref_primary_10_1098_rspb_2018_1167
crossref_primary_10_1111_mec_15661
crossref_primary_10_1098_rspb_2018_1168
crossref_primary_10_1371_journal_pone_0171691
crossref_primary_10_1007_s00227_019_3602_5
crossref_primary_10_3389_fpls_2024_1372122
crossref_primary_10_1111_ecog_03187
crossref_primary_10_1016_j_crvi_2019_11_001
crossref_primary_10_1016_j_scitotenv_2015_07_102
crossref_primary_10_1002_fee_2088
crossref_primary_10_3389_fmars_2023_1324053
crossref_primary_10_1002_ece3_1619
crossref_primary_10_1016_j_ocecoaman_2020_105386
crossref_primary_10_1016_j_scitotenv_2024_173307
crossref_primary_10_1038_s41598_022_07991_x
crossref_primary_10_1073_pnas_2307214121
crossref_primary_10_1007_s00338_015_1371_2
crossref_primary_10_1016_j_biocon_2021_109326
crossref_primary_10_1371_journal_pbio_3000702
crossref_primary_10_1016_j_gecco_2020_e00970
crossref_primary_10_1016_j_rsma_2024_103836
crossref_primary_10_1111_2041_210X_12604
crossref_primary_10_1016_j_scitotenv_2023_162111
crossref_primary_10_1098_rspb_2016_2094
crossref_primary_10_1016_j_ecss_2019_106272
crossref_primary_10_1098_rspb_2017_0307
crossref_primary_10_3389_fmars_2019_00638
crossref_primary_10_1371_journal_pone_0189731
crossref_primary_10_1086_733931
crossref_primary_10_1890_14_1952_1
crossref_primary_10_1002_ece3_8381
crossref_primary_10_1007_s11356_024_32862_5
crossref_primary_10_1111_aec_13078
crossref_primary_10_1016_j_ecss_2025_109181
crossref_primary_10_3390_microorganisms9081711
crossref_primary_10_1016_j_pocean_2018_05_003
crossref_primary_10_3390_d17030161
crossref_primary_10_3354_meps14288
crossref_primary_10_1111_ecog_06476
crossref_primary_10_1016_j_ecolind_2018_03_020
crossref_primary_10_1016_j_ecolind_2017_01_011
crossref_primary_10_1111_maec_12539
crossref_primary_10_1071_MF14150
crossref_primary_10_1098_rspb_2019_2367
crossref_primary_10_1371_journal_pone_0295238
crossref_primary_10_1111_gcb_13835
crossref_primary_10_1007_s00442_020_04746_1
crossref_primary_10_1016_j_scitotenv_2024_177265
crossref_primary_10_3390_d14100808
crossref_primary_10_1016_j_ecolind_2020_106488
crossref_primary_10_1016_j_ecolind_2020_106241
crossref_primary_10_1126_science_abd5110
crossref_primary_10_1038_s44185_025_00073_x
crossref_primary_10_1038_s41598_017_10334_w
crossref_primary_10_1002_ece3_5575
crossref_primary_10_3389_fenvs_2021_766580
crossref_primary_10_1002_ecy_70007
crossref_primary_10_1007_s00338_024_02487_8
crossref_primary_10_1007_s00227_023_04238_9
crossref_primary_10_1073_pnas_2201944119
crossref_primary_10_3354_meps13186
crossref_primary_10_1111_1365_2435_12728
crossref_primary_10_1016_j_ecolind_2023_110696
crossref_primary_10_1111_gcb_14704
crossref_primary_10_1038_s41467_021_27440_z
crossref_primary_10_1002_ecy_2977
crossref_primary_10_1007_s10750_021_04756_x
crossref_primary_10_1016_j_marenvres_2025_107039
crossref_primary_10_1002_ece3_8736
crossref_primary_10_1038_s41467_021_25293_0
crossref_primary_10_1111_gcb_70094
crossref_primary_10_1007_s12526_016_0493_2
crossref_primary_10_1111_geb_13494
crossref_primary_10_1016_j_marenvres_2017_06_017
crossref_primary_10_1002_ece3_6320
crossref_primary_10_1002_ece3_70619
crossref_primary_10_3390_d14050310
crossref_primary_10_1098_rspb_2023_0403
crossref_primary_10_1002_ecy_2508
crossref_primary_10_1016_j_ecss_2023_108301
crossref_primary_10_1016_j_marenvres_2020_105102
crossref_primary_10_1016_j_scitotenv_2024_177250
crossref_primary_10_1038_s41598_018_20823_1
crossref_primary_10_1007_s10531_020_01974_y
crossref_primary_10_1016_j_palaeo_2024_112581
crossref_primary_10_1016_j_marenvres_2021_105519
crossref_primary_10_1111_1462_2920_13822
crossref_primary_10_1002_edn3_305
crossref_primary_10_1073_pnas_2403899121
crossref_primary_10_3390_w16213034
crossref_primary_10_1111_conl_12351
crossref_primary_10_1016_j_marenvres_2020_105038
crossref_primary_10_1016_j_ecss_2023_108334
crossref_primary_10_1111_jbi_14599
crossref_primary_10_1007_s00338_020_01970_2
crossref_primary_10_1007_s10641_018_0786_3
crossref_primary_10_1111_jbi_14237
crossref_primary_10_1098_rspb_2016_2116
crossref_primary_10_3354_meps13150
crossref_primary_10_1007_s10641_016_0571_0
crossref_primary_10_1016_j_jenvman_2024_121582
crossref_primary_10_1002_ecs2_70193
crossref_primary_10_1073_pnas_2016913118
crossref_primary_10_1002_ece3_11466
crossref_primary_10_1071_MF17233
crossref_primary_10_1016_j_ecolind_2023_110260
crossref_primary_10_1038_s41559_022_01710_5
crossref_primary_10_1093_femsre_fuae031
crossref_primary_10_1073_pnas_2100966118
crossref_primary_10_1111_ddi_12812
crossref_primary_10_3389_fevo_2024_1322751
crossref_primary_10_1111_jbi_14349
crossref_primary_10_1007_s00338_021_02054_5
crossref_primary_10_1111_brv_12259
crossref_primary_10_1016_j_heliyon_2024_e39428
crossref_primary_10_1038_ncomms11461
crossref_primary_10_1371_journal_pone_0187140
crossref_primary_10_3389_fmars_2023_1102373
crossref_primary_10_1088_1748_9326_aca77e
crossref_primary_10_1186_s12983_023_00485_0
crossref_primary_10_1016_j_biocon_2018_08_011
crossref_primary_10_1016_j_oneear_2024_03_004
crossref_primary_10_1016_j_ecss_2024_108750
crossref_primary_10_1111_jbi_14214
crossref_primary_10_1111_ecog_03010
crossref_primary_10_1007_s00338_019_01874_w
crossref_primary_10_1007_s00338_024_02599_1
crossref_primary_10_1038_s41467_025_57258_y
crossref_primary_10_1098_rspb_2021_0130
crossref_primary_10_1111_jbi_14450
crossref_primary_10_1016_j_cub_2024_08_031
crossref_primary_10_1016_j_rsma_2018_01_005
crossref_primary_10_1038_s41598_021_84016_z
crossref_primary_10_1038_s41598_022_20919_9
crossref_primary_10_1016_j_cub_2025_01_049
crossref_primary_10_1002_ece3_70657
crossref_primary_10_3354_meps13129
crossref_primary_10_1111_ddi_13923
crossref_primary_10_3354_meps13005
crossref_primary_10_3354_meps14447
crossref_primary_10_1007_s10750_017_3208_1
crossref_primary_10_1016_j_marenvres_2018_09_011
crossref_primary_10_1177_19400829231225428
crossref_primary_10_1098_rsos_171111
crossref_primary_10_1007_s00442_017_4026_x
Cites_doi 10.1038/nature11148
10.1111/j.1600-0587.2012.07514.x
10.1371/journal.pone.0026735
10.3354/meps08601
10.1111/j.1461-0248.2011.01618.x
10.1111/j.1461-0248.2010.01515.x
10.1016/j.ppees.2011.10.002
10.1111/j.1469-1795.2012.00528.x
10.1073/pnas.96.4.1463
10.1371/journal.pbio.1001569
10.2307/3546010
10.1038/nature02691
10.1016/j.cub.2006.10.030
10.1038/nature12529
10.1371/journal.pone.0081847
10.1371/journal.pone.0039825
10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2
10.1038/nature10282
10.1146/annurev-ecolsys-102209-144628
10.1016/j.tree.2012.10.004
10.1038/nature05202
10.1126/science.1058635
10.1126/science.1215855
10.1371/journal.pone.0044297
10.1111/j.1365-2699.2011.02613.x
10.1890/08-1276.1
10.1038/nature09678
10.1126/science.1152197
10.1098/rspb.2011.1906
10.1046/j.1365-2745.2001.00528.x
10.1111/j.1472-4642.2010.00650.x
10.1111/j.1600-0587.2013.00291.x
10.1002/aqc.880
10.1371/journal.pone.0021710
10.1890/07-1206.1
10.1111/j.1461-0248.2011.01592.x
10.1111/jfb.12177
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Sep 23, 2014
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Sep 23, 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1317625111
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Virology and AIDS Abstracts
MEDLINE - Academic

MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Functional over-redundancy in fish faunas
EISSN 1091-6490
EndPage 13762
ExternalDocumentID PMC4183327
3444742811
25225388
10_1073_pnas_1317625111
111_38_13757
43043204
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c460t-12b97626c2ab2fe7d02d0e25cd5ab34d6335544acff93481e22ca43aa9396dbe3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:08:04 EDT 2025
Fri Jul 11 12:36:43 EDT 2025
Fri Jul 11 16:08:27 EDT 2025
Mon Jun 30 08:09:19 EDT 2025
Mon Jul 21 06:04:31 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Tue Jul 01 01:53:14 EDT 2025
Wed Nov 11 00:30:10 EST 2020
Thu May 29 08:40:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords coral reefs
fish ecology
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c460t-12b97626c2ab2fe7d02d0e25cd5ab34d6335544acff93481e22ca43aa9396dbe3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
1D.M., S.V., and V.P. contributed equally to this work.
Edited by Cyrille Violle, Centre National de la Recherche Scientifique, Montpellier, France, and accepted by the Editorial Board January 28, 2014 (received for review September 18, 2013)
Author contributions: D.M., S.V., V.P., M.K., J.E.A.-G., M.B., P.C., S.R.F., A.F., L.V., and D.R.B. designed research, performed research, contributed new reagents/analytic tools, analyzed data, and wrote the paper.
PMID 25225388
PQID 1565809485
PQPubID 42026
PageCount 6
ParticipantIDs proquest_journals_1565809485
proquest_miscellaneous_1803092108
proquest_miscellaneous_1565502228
pnas_primary_111_38_13757
jstor_primary_43043204
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4183327
crossref_citationtrail_10_1073_pnas_1317625111
pubmed_primary_25225388
crossref_primary_10_1073_pnas_1317625111
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-23
PublicationDateYYYYMMDD 2014-09-23
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle From the Cover
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Kulbicki M (e_1_3_3_36_2) 2007; 31
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
Legendre P (e_1_3_3_37_2) 1998
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
24386083 - PLoS One. 2013;8(12):e81847
18724739 - Ecology. 2008 Aug;89(8):2290-301
21481126 - Ecol Lett. 2011 Jun;14(6):561-8
17066035 - Nature. 2006 Oct 26;443(7114):989-92
22090383 - Proc Biol Sci. 2012 Apr 22;279(1733):1621-9
21832994 - Nature. 2011 Sep 8;477(7363):199-202
22808066 - PLoS One. 2012;7(7):e39825
21320260 - Ecol Lett. 2011 Apr;14(4):341-8
23723735 - PLoS Biol. 2013;11(5):e1001569
21738772 - PLoS One. 2011;6(6):e21710
24067714 - Nature. 2013 Sep 26;501(7468):539-42
22039543 - PLoS One. 2011;6(10):e26735
20649638 - Ecol Lett. 2010 Oct;13(10):1310-24
22700920 - Science. 2012 Jun 15;336(6087):1401-6
11375488 - Science. 2001 May 25;292(5521):1532-5
17174918 - Curr Biol. 2006 Dec 19;16(24):2434-9
22678280 - Nature. 2012 Jun 7;486(7401):59-67
20426336 - Ecology. 2010 Mar;91(3):782-92
9990046 - Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1463-8
23141923 - Trends Ecol Evol. 2013 Mar;28(3):167-77
22952950 - PLoS One. 2012;7(8):e44297
23902311 - J Fish Biol. 2013 Aug;83(2):355-77
15215854 - Nature. 2004 Jun 24;429(6994):827-33
21368823 - Nature. 2011 Mar 3;471(7336):51-7
18339937 - Science. 2008 Mar 14;319(5869):1521-3
References_xml – ident: e_1_3_3_3_2
  doi: 10.1038/nature11148
– ident: e_1_3_3_10_2
  doi: 10.1111/j.1600-0587.2012.07514.x
– ident: e_1_3_3_16_2
  doi: 10.1371/journal.pone.0026735
– ident: e_1_3_3_31_2
  doi: 10.3354/meps08601
– ident: e_1_3_3_38_2
  doi: 10.1111/j.1461-0248.2011.01618.x
– ident: e_1_3_3_25_2
  doi: 10.1111/j.1461-0248.2010.01515.x
– ident: e_1_3_3_15_2
  doi: 10.1016/j.ppees.2011.10.002
– ident: e_1_3_3_9_2
  doi: 10.1111/j.1469-1795.2012.00528.x
– ident: e_1_3_3_7_2
  doi: 10.1073/pnas.96.4.1463
– ident: e_1_3_3_8_2
  doi: 10.1371/journal.pbio.1001569
– ident: e_1_3_3_11_2
  doi: 10.2307/3546010
– ident: e_1_3_3_18_2
  doi: 10.1038/nature02691
– ident: e_1_3_3_19_2
  doi: 10.1016/j.cub.2006.10.030
– ident: e_1_3_3_30_2
  doi: 10.1038/nature12529
– ident: e_1_3_3_23_2
  doi: 10.1371/journal.pone.0081847
– ident: e_1_3_3_26_2
  doi: 10.1371/journal.pone.0039825
– ident: e_1_3_3_32_2
  doi: 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2
– ident: e_1_3_3_2_2
  doi: 10.1038/nature10282
– ident: e_1_3_3_29_2
  doi: 10.1146/annurev-ecolsys-102209-144628
– ident: e_1_3_3_22_2
  doi: 10.1016/j.tree.2012.10.004
– ident: e_1_3_3_12_2
  doi: 10.1038/nature05202
– ident: e_1_3_3_20_2
  doi: 10.1126/science.1058635
– ident: e_1_3_3_5_2
  doi: 10.1126/science.1215855
– volume: 31
  start-page: 275
  year: 2007
  ident: e_1_3_3_36_2
  article-title: Biogeography of reef fishes of the french territories in the south pacific
  publication-title: Cybium
– ident: e_1_3_3_14_2
  doi: 10.1371/journal.pone.0044297
– ident: e_1_3_3_34_2
  doi: 10.1111/j.1365-2699.2011.02613.x
– ident: e_1_3_3_17_2
  doi: 10.1890/08-1276.1
– ident: e_1_3_3_1_2
  doi: 10.1038/nature09678
– ident: e_1_3_3_24_2
  doi: 10.1126/science.1152197
– ident: e_1_3_3_4_2
  doi: 10.1098/rspb.2011.1906
– ident: e_1_3_3_6_2
  doi: 10.1046/j.1365-2745.2001.00528.x
– ident: e_1_3_3_33_2
  doi: 10.1111/j.1472-4642.2010.00650.x
– volume-title: Numerical Ecology
  year: 1998
  ident: e_1_3_3_37_2
– ident: e_1_3_3_21_2
  doi: 10.1111/j.1600-0587.2013.00291.x
– ident: e_1_3_3_35_2
  doi: 10.1002/aqc.880
– ident: e_1_3_3_13_2
  doi: 10.1371/journal.pone.0021710
– ident: e_1_3_3_39_2
  doi: 10.1890/07-1206.1
– ident: e_1_3_3_27_2
  doi: 10.1111/j.1461-0248.2011.01592.x
– ident: e_1_3_3_28_2
  doi: 10.1111/jfb.12177
– reference: 22090383 - Proc Biol Sci. 2012 Apr 22;279(1733):1621-9
– reference: 23723735 - PLoS Biol. 2013;11(5):e1001569
– reference: 21832994 - Nature. 2011 Sep 8;477(7363):199-202
– reference: 17066035 - Nature. 2006 Oct 26;443(7114):989-92
– reference: 23902311 - J Fish Biol. 2013 Aug;83(2):355-77
– reference: 22039543 - PLoS One. 2011;6(10):e26735
– reference: 21368823 - Nature. 2011 Mar 3;471(7336):51-7
– reference: 21481126 - Ecol Lett. 2011 Jun;14(6):561-8
– reference: 22678280 - Nature. 2012 Jun 7;486(7401):59-67
– reference: 11375488 - Science. 2001 May 25;292(5521):1532-5
– reference: 22808066 - PLoS One. 2012;7(7):e39825
– reference: 21738772 - PLoS One. 2011;6(6):e21710
– reference: 18724739 - Ecology. 2008 Aug;89(8):2290-301
– reference: 20426336 - Ecology. 2010 Mar;91(3):782-92
– reference: 24386083 - PLoS One. 2013;8(12):e81847
– reference: 20649638 - Ecol Lett. 2010 Oct;13(10):1310-24
– reference: 22700920 - Science. 2012 Jun 15;336(6087):1401-6
– reference: 24067714 - Nature. 2013 Sep 26;501(7468):539-42
– reference: 22952950 - PLoS One. 2012;7(8):e44297
– reference: 21320260 - Ecol Lett. 2011 Apr;14(4):341-8
– reference: 15215854 - Nature. 2004 Jun 24;429(6994):827-33
– reference: 23141923 - Trends Ecol Evol. 2013 Mar;28(3):167-77
– reference: 9990046 - Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1463-8
– reference: 18339937 - Science. 2008 Mar 14;319(5869):1521-3
– reference: 17174918 - Curr Biol. 2006 Dec 19;16(24):2434-9
SSID ssj0009580
Score 2.6177092
Snippet When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to...
Our results indicate that, even in highly diverse systems like coral reefs, we can no longer assume that the erosion of species diversity can be discounted by...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13757
SubjectTerms Animals
Biodiversity
Biological Sciences
Biological taxonomies
Biota
Coral Reefs
Ecological function
Ecosystem services
Ecosystems
Extinct species
Fauna
Fish
fisheries
Fishes - physiology
Functional diversity
insurance
Marine fishes
probability
Reefs
Species
species diversity
Threatened species
Tropical Climate
Tropical fishes
Title Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs
URI https://www.jstor.org/stable/43043204
http://www.pnas.org/content/111/38/13757.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25225388
https://www.proquest.com/docview/1565809485
https://www.proquest.com/docview/1565502228
https://www.proquest.com/docview/1803092108
https://pubmed.ncbi.nlm.nih.gov/PMC4183327
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaq5cIFscBCYEFG4rCoSkls53XgsEJbrdBu2UO76i3Kw4FKVbJKGw78Wn4KM7bzaCkr4BK18SRNPV9mxvbMZ0LeBZ6QkUxC2_MDbkN869lJIjybZT4MDtxURC4WJ1_P_MuF-Lz0lqPRz0HWUrNNJ9mPg3Ul_6NVOAd6xSrZf9Bsd1M4AZ9Bv3AEDcPxr3Q8Badk5vIwE9OuJdaEob1UawJIRTwuepnvzRo5plU6rCr3M2wgBbIaFUlTJnrtoK7ulOpqKYvNMHq96bzdps0tmLWTied9aYqxF5uxPb6Z9RsdX1fNar2utnup9M3HW6TUVgv2X802YPobeFgkfe1XueoaLstWaheq8S24NujjsupXo9bpKtPbcOsM1-GUhisw_0JXHQ8ZwQ8--dCWM_CvQldgT6Q23xD92L7QG5B29t1Ycw1kzSVjzLXLA02P_ZsjAcuHux9Dx09cCLF8HIm5vc9s8wRmX-Lp4uoqnl8s57utJkQQIoAXAIvPHzAYyPB2PqmjhQ51kZT5Ly35VMA_7P32TtykU2eRjxeEDo2N9lN8BzHT_DF5ZAY79Fwj95iMZPmEHLedTM8M5_n7pyTvoUz3oEwByhShTHso0x0o01VJNZQpQplqKNOqpC2UqYLyM7KYXsw_XdpmAxA7E76ztV2WQrTM_IwlKStkkDssdyTzstxLUi5yn2O0LJKsKCIsKJeMZYngSRLxyM9TyU_IUVmV8gWhfhp53IkCiYRMmcfgfpEH6ApFynnocItM2u6NM8OOj5u0rGOVpRHwGLs67vVhkbPugjtNDPNn0ROlr05OcCTCdIRFLCXaXQ-DcR7GCpUWOW21GhuTA_eE4VfoIKGTRd52zeAQcJUvKWXVaBkPp3HCe2RCXFllrgMyzzVQuodgMCKDKAhagh0IdQJISL_bUq6-KWJ6AfEBZ8HL-x_9FXnYv_Sn5GhbN_I1RPbb9I16OX4BGdf7Mw
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+over-redundancy+and+high+functional+vulnerability+in+global+fish+faunas+on+tropical+reefs&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Mouillot%2C+David&rft.au=Vill%C3%A9ger%2C+S%C3%A9bastien&rft.au=Parravicini%2C+Valeriano&rft.au=Kulbicki%2C+Michel&rft.date=2014-09-23&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=38&rft.spage=13757&rft_id=info:doi/10.1073%2Fpnas.1317625111&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3444742811
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F38.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F38.cover.gif