Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs
When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold r...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 38; pp. 13757 - 13762 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
23.09.2014
National Acad Sciences |
Series | From the Cover |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought. |
---|---|
AbstractList | Our results indicate that, even in highly diverse systems like coral reefs, we can no longer assume that the erosion of species diversity can be discounted by the high probability of functional redundancy: i.e., that several species can support the same function. Indeed, we show that fish species tend to disproportionately pack into a few particular functions while leaving many functions highly vulnerable, i.e., they are supported by just one species. Even the Coral Triangle, which has a high concentration of tropical-reef fishes, may experience a loss of functional diversity following fisheries pressure and local species extirpation. Our results suggest that the promised benefits of functional insurance from high species diversity may not be as strong as we once hoped.
When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought. When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought. When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought.When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought. |
Author | Kulbicki, Michel Arias-González, Jesus Ernesto Chabanet, Pascale Bender, Mariana Floeter, Sergio R. Bellwood, David R. Mouillot, David Friedlander, Alan Vigliola, Laurent Parravicini, Valeriano Villéger, Sébastien |
Author_xml | – sequence: 1 givenname: David surname: Mouillot fullname: Mouillot, David – sequence: 2 givenname: Sébastien surname: Villéger fullname: Villéger, Sébastien – sequence: 3 givenname: Valeriano surname: Parravicini fullname: Parravicini, Valeriano – sequence: 4 givenname: Michel surname: Kulbicki fullname: Kulbicki, Michel – sequence: 5 givenname: Jesus Ernesto surname: Arias-González fullname: Arias-González, Jesus Ernesto – sequence: 6 givenname: Mariana surname: Bender fullname: Bender, Mariana – sequence: 7 givenname: Pascale surname: Chabanet fullname: Chabanet, Pascale – sequence: 8 givenname: Sergio R. surname: Floeter fullname: Floeter, Sergio R. – sequence: 9 givenname: Alan surname: Friedlander fullname: Friedlander, Alan – sequence: 10 givenname: Laurent surname: Vigliola fullname: Vigliola, Laurent – sequence: 11 givenname: David R. surname: Bellwood fullname: Bellwood, David R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25225388$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1rGzEQhkVJaZy0555aBL30ssnoa1d7KYTQpIVAL-1ZaCWtLbOWXGnX4H9fLXacJlB6EIKZZ17e-bhAZyEGh9B7AlcEGna9DTpfEUaamgpCyCu0INCSquYtnKEFAG0qySk_Rxc5rwGgFRLeoHMqKBVMygWyd1Mwo49BDzjuXKqSs1OwOpg91sHilV-ucP_E7KYhuKQ7P_hxj33AyyF2Jd77XDg9FT84BjymuPWmxJNzfX6LXvd6yO7d8b9Ev-6-_rz9Vj38uP9-e_NQGV7DWBHataWR2lDd0d41FqgFR4WxQneM25oxITjXpu9bxiVxlBrNmdYta2vbOXaJvhx0t1O3cda4MCY9qG3yG532KmqvnmeCX6ll3ClOJGO0KQKfjwIp_p5cHtXGZ-OGQQcXp6yIBAYtJSD_j4paCKCUzuinF-g6TqlM80BJaLkUhfr4t_mT68ddFUAcAJNizsn1yvhRz3spvfhBEVDzTaj5JtTTTZS66xd1j9L_rsBHK3PiRBOimCxcI-ZJfTgg6zzGdGI4A85oeX8AuG_ObA |
CitedBy_id | crossref_primary_10_1016_j_ecolind_2019_105786 crossref_primary_10_1098_rstb_2015_0268 crossref_primary_10_1098_rspb_2016_0128 crossref_primary_10_1111_gcb_16707 crossref_primary_10_1111_jbi_14549 crossref_primary_10_1016_j_envpol_2023_121022 crossref_primary_10_1111_ecog_03711 crossref_primary_10_3389_fmars_2023_1117806 crossref_primary_10_1038_ncomms12461 crossref_primary_10_1016_j_ocecoaman_2016_12_013 crossref_primary_10_1016_j_scitotenv_2020_140380 crossref_primary_10_1098_rspb_2021_0274 crossref_primary_10_1111_brv_12323 crossref_primary_10_1007_s10641_019_00924_0 crossref_primary_10_1007_s00338_020_02026_1 crossref_primary_10_1016_j_aquaculture_2017_06_014 crossref_primary_10_1016_j_scitotenv_2018_12_277 crossref_primary_10_1038_s41467_021_25528_0 crossref_primary_10_1111_ddi_12857 crossref_primary_10_1371_journal_pone_0154014 crossref_primary_10_1007_s10641_020_01026_y crossref_primary_10_1007_s00338_022_02302_2 crossref_primary_10_1111_2041_210X_13206 crossref_primary_10_1111_brv_12336 crossref_primary_10_1126_science_aax9412 crossref_primary_10_1016_j_envres_2023_116988 crossref_primary_10_1186_s40168_018_0530_4 crossref_primary_10_1111_gcb_70002 crossref_primary_10_1111_gcb_14785 crossref_primary_10_1002_ece3_4771 crossref_primary_10_1111_ddi_12987 crossref_primary_10_1111_jbi_14768 crossref_primary_10_1007_s11356_024_32834_9 crossref_primary_10_1371_journal_pone_0211224 crossref_primary_10_1007_s10531_022_02484_9 crossref_primary_10_1016_j_ijpara_2021_02_003 crossref_primary_10_1111_jvs_13299 crossref_primary_10_1016_j_biocon_2022_109484 crossref_primary_10_1111_ecog_01430 crossref_primary_10_1017_pab_2016_3 crossref_primary_10_1098_rspb_2020_1600 crossref_primary_10_1111_gcb_13571 crossref_primary_10_1038_s41467_018_05126_3 crossref_primary_10_1111_gcb_14662 crossref_primary_10_1038_ncomms12000 crossref_primary_10_1111_jbi_14770 crossref_primary_10_3390_d13100466 crossref_primary_10_1111_ecog_05904 crossref_primary_10_1007_s10750_022_04919_4 crossref_primary_10_1007_s00338_022_02303_1 crossref_primary_10_1007_s12526_017_0708_1 crossref_primary_10_1016_j_tree_2015_08_009 crossref_primary_10_3390_land13081206 crossref_primary_10_1126_science_aax0621 crossref_primary_10_1016_j_cub_2023_10_069 crossref_primary_10_3390_biology12111446 crossref_primary_10_1007_s10750_016_2974_5 crossref_primary_10_1590_1982_0224_2023_0022 crossref_primary_10_1007_s10531_016_1052_7 crossref_primary_10_1007_s10531_022_02528_0 crossref_primary_10_1016_j_scitotenv_2018_05_179 crossref_primary_10_1073_pnas_1716643115 crossref_primary_10_1007_s00227_016_3020_x crossref_primary_10_1007_s11160_019_09588_6 crossref_primary_10_1007_s00442_019_04555_1 crossref_primary_10_1038_nature22901 crossref_primary_10_1111_jbi_12574 crossref_primary_10_1002_ecs2_3184 crossref_primary_10_1038_s41586_021_03871_y crossref_primary_10_1016_j_tree_2016_02_003 crossref_primary_10_1088_2515_7620_abf468 crossref_primary_10_1111_brv_12892 crossref_primary_10_1098_rspb_2016_1646 crossref_primary_10_1038_s41437_022_00514_4 crossref_primary_10_1111_ecog_03506 crossref_primary_10_1002_aqc_4062 crossref_primary_10_3389_fmars_2021_640619 crossref_primary_10_1007_s11258_020_01084_3 crossref_primary_10_1111_cobi_13142 crossref_primary_10_3389_fmars_2021_797112 crossref_primary_10_1007_s00227_019_3488_2 crossref_primary_10_1111_ecog_04868 crossref_primary_10_1007_s00227_019_3599_9 crossref_primary_10_1038_s41467_018_07592_1 crossref_primary_10_1002_ppp3_10523 crossref_primary_10_1038_s41467_022_32331_y crossref_primary_10_1111_2041_210X_14100 crossref_primary_10_1007_s12080_019_00433_x crossref_primary_10_1111_gcb_15941 crossref_primary_10_1111_1365_2435_13076 crossref_primary_10_1002_ldr_5527 crossref_primary_10_1016_j_jenvman_2021_114332 crossref_primary_10_1111_ddi_13526 crossref_primary_10_1016_j_tree_2021_05_001 crossref_primary_10_1038_s41579_021_00604_w crossref_primary_10_1111_oik_10011 crossref_primary_10_1016_j_marenvres_2017_05_007 crossref_primary_10_1016_j_ecolind_2020_107148 crossref_primary_10_1038_s41558_020_0838_5 crossref_primary_10_1016_j_scitotenv_2019_07_047 crossref_primary_10_1098_rspb_2019_0745 crossref_primary_10_1016_j_ecss_2018_11_012 crossref_primary_10_1126_sciadv_aay7650 crossref_primary_10_3389_fmars_2023_1243918 crossref_primary_10_1111_geb_12869 crossref_primary_10_1016_j_geoderma_2022_116073 crossref_primary_10_1038_s41598_018_22419_1 crossref_primary_10_1073_pnas_2019404118 crossref_primary_10_1051_bioconf_202413406021 crossref_primary_10_1016_j_ecss_2016_05_022 crossref_primary_10_3354_meps13633 crossref_primary_10_1111_maec_12609 crossref_primary_10_1016_j_gecco_2017_05_002 crossref_primary_10_1007_s10750_024_05690_4 crossref_primary_10_1007_s10531_022_02421_w crossref_primary_10_1007_s10641_020_01044_w crossref_primary_10_1038_s41467_020_16498_w crossref_primary_10_1111_2041_210X_12865 crossref_primary_10_1111_jfb_14873 crossref_primary_10_1002_ecm_1278 crossref_primary_10_1093_iob_obz023 crossref_primary_10_1111_gcb_14119 crossref_primary_10_1016_j_ecolind_2024_112389 crossref_primary_10_1016_j_pocean_2025_103441 crossref_primary_10_1111_jbi_13966 crossref_primary_10_1016_j_pocean_2016_07_006 crossref_primary_10_1111_geb_13948 crossref_primary_10_1038_s41598_019_56515_7 crossref_primary_10_1016_j_isci_2023_107340 crossref_primary_10_1111_ddi_13430 crossref_primary_10_1111_1365_2435_13265 crossref_primary_10_1111_geb_12843 crossref_primary_10_1111_ele_13219 crossref_primary_10_7717_peerj_16264 crossref_primary_10_1007_s00027_017_0546_z crossref_primary_10_1016_j_biocon_2022_109525 crossref_primary_10_1007_s00338_022_02311_1 crossref_primary_10_3354_meps11795 crossref_primary_10_1111_ecog_05079 crossref_primary_10_1038_s41598_017_17975_x crossref_primary_10_3389_fmars_2022_921595 crossref_primary_10_1016_j_gecco_2023_e02717 crossref_primary_10_1016_j_envpol_2019_06_117 crossref_primary_10_1016_j_ecolind_2015_08_019 crossref_primary_10_1371_journal_pone_0308602 crossref_primary_10_1098_rspb_2022_0162 crossref_primary_10_3354_meps13968 crossref_primary_10_1590_2675_2824072_23199 crossref_primary_10_1093_icesjms_fsad132 crossref_primary_10_1111_ecog_07121 crossref_primary_10_1111_icad_12211 crossref_primary_10_1111_1365_2435_14487 crossref_primary_10_3389_fmars_2023_1291038 crossref_primary_10_1007_s00227_021_03998_6 crossref_primary_10_1071_MF22253 crossref_primary_10_1111_ddi_12369 crossref_primary_10_1111_geb_13513 crossref_primary_10_1002_fee_2807 crossref_primary_10_1016_j_jenvman_2023_119656 crossref_primary_10_1111_jbi_12844 crossref_primary_10_1111_1365_2656_13585 crossref_primary_10_3354_meps11895 crossref_primary_10_1007_s11356_024_35763_9 crossref_primary_10_1111_faf_12297 crossref_primary_10_1038_srep22125 crossref_primary_10_1111_gcb_15771 crossref_primary_10_1007_s00338_016_1466_4 crossref_primary_10_1186_s13717_023_00463_8 crossref_primary_10_1016_j_foreco_2023_120981 crossref_primary_10_1038_s41467_023_37550_5 crossref_primary_10_1016_j_dsr_2018_06_004 crossref_primary_10_1016_j_isci_2024_110962 crossref_primary_10_1590_2675_2824072_23139 crossref_primary_10_3390_oceans5010002 crossref_primary_10_1016_j_marpol_2022_105305 crossref_primary_10_1098_rspb_2020_1162 crossref_primary_10_3390_d11040055 crossref_primary_10_1016_j_scitotenv_2024_173271 crossref_primary_10_1371_journal_pone_0287482 crossref_primary_10_1016_j_gecco_2024_e02940 crossref_primary_10_3354_meps12970 crossref_primary_10_1038_s41598_018_29637_7 crossref_primary_10_1007_s10641_017_0612_3 crossref_primary_10_1007_s12526_015_0322_z crossref_primary_10_1016_j_gecco_2018_e00506 crossref_primary_10_1038_s41598_017_04309_0 crossref_primary_10_1111_1365_2435_14316 crossref_primary_10_1016_j_rsma_2024_103798 crossref_primary_10_3390_fishes9100370 crossref_primary_10_1111_geb_12523 crossref_primary_10_1007_s12526_019_01024_z crossref_primary_10_1111_ele_13778 crossref_primary_10_1016_j_marenvres_2024_106504 crossref_primary_10_1016_j_dsr_2023_104223 crossref_primary_10_1073_pnas_1415442111 crossref_primary_10_1007_s10531_024_03005_6 crossref_primary_10_1111_faf_12157 crossref_primary_10_1111_faf_12399 crossref_primary_10_1038_s41598_021_95905_8 crossref_primary_10_3389_fmars_2021_654141 crossref_primary_10_1038_s41559_022_01882_0 crossref_primary_10_1098_rsbl_2019_0703 crossref_primary_10_1016_j_ecolind_2021_108364 crossref_primary_10_1111_jfb_15895 crossref_primary_10_1007_s00338_021_02192_w crossref_primary_10_1007_s10641_016_0557_y crossref_primary_10_1016_j_jembe_2022_151695 crossref_primary_10_1016_j_oneear_2022_10_012 crossref_primary_10_1016_j_pld_2024_03_005 crossref_primary_10_7717_peerj_8885 crossref_primary_10_1093_icesjms_fsab033 crossref_primary_10_1038_s41598_021_96910_7 crossref_primary_10_1111_faf_12284 crossref_primary_10_1111_1365_2664_13547 crossref_primary_10_1111_geb_13840 crossref_primary_10_1111_1365_2435_14442 crossref_primary_10_1016_j_ecolind_2017_05_072 crossref_primary_10_1007_s10750_025_05811_7 crossref_primary_10_1016_j_cub_2023_02_040 crossref_primary_10_1016_j_biocon_2019_03_019 crossref_primary_10_1111_fwb_13395 crossref_primary_10_1002_aqc_2770 crossref_primary_10_1111_oik_06621 crossref_primary_10_1002_ece3_70461 crossref_primary_10_1038_s41467_022_28488_1 crossref_primary_10_1111_maec_12447 crossref_primary_10_1016_j_marenvres_2020_105190 crossref_primary_10_1016_j_gecco_2023_e02458 crossref_primary_10_1007_s00338_018_1698_6 crossref_primary_10_1111_1365_2435_13882 crossref_primary_10_1126_sciadv_abf9967 crossref_primary_10_1111_cobi_13802 crossref_primary_10_3389_fmars_2019_00218 crossref_primary_10_1111_ddi_13024 crossref_primary_10_1016_j_marenvres_2022_105769 crossref_primary_10_46989_001c_87919 crossref_primary_10_1111_ddi_13268 crossref_primary_10_1021_acs_est_4c04901 crossref_primary_10_1098_rspb_2015_2013 crossref_primary_10_1111_ecog_06536 crossref_primary_10_1016_j_marpolbul_2016_08_011 crossref_primary_10_3390_insects14090722 crossref_primary_10_1111_ecog_02293 crossref_primary_10_1016_j_biocon_2024_110571 crossref_primary_10_1016_j_rse_2024_114446 crossref_primary_10_1038_s41598_019_39399_5 crossref_primary_10_1111_1462_2920_14537 crossref_primary_10_1111_fwb_14257 crossref_primary_10_1093_sysbio_syx054 crossref_primary_10_1016_j_ecolind_2016_10_040 crossref_primary_10_1038_s41598_017_10723_1 crossref_primary_10_1371_journal_pone_0309788 crossref_primary_10_1111_icad_12623 crossref_primary_10_1111_gcb_17375 crossref_primary_10_1002_ecs2_2433 crossref_primary_10_1007_s00338_024_02556_y crossref_primary_10_1007_s11160_024_09916_5 crossref_primary_10_1007_s11258_021_01142_4 crossref_primary_10_1038_s41559_017_0223_6 crossref_primary_10_1016_j_marenvres_2022_105661 crossref_primary_10_1111_1365_2664_14033 crossref_primary_10_1002_ece3_70330 crossref_primary_10_1016_j_scitotenv_2019_02_187 crossref_primary_10_1111_geb_13881 crossref_primary_10_1016_j_jenvman_2022_116264 crossref_primary_10_1098_rspb_2021_1712 crossref_primary_10_1002_ecs2_1557 crossref_primary_10_1111_maec_12520 crossref_primary_10_1073_pnas_2012318118 crossref_primary_10_1038_s41598_023_32138_x crossref_primary_10_1111_cobi_12876 crossref_primary_10_1007_s11160_020_09615_x crossref_primary_10_1002_ece3_7398 crossref_primary_10_1007_s00027_016_0475_2 crossref_primary_10_1016_j_pocean_2021_102710 crossref_primary_10_1098_rspb_2015_2332 crossref_primary_10_1098_rspb_2018_1167 crossref_primary_10_1111_mec_15661 crossref_primary_10_1098_rspb_2018_1168 crossref_primary_10_1371_journal_pone_0171691 crossref_primary_10_1007_s00227_019_3602_5 crossref_primary_10_3389_fpls_2024_1372122 crossref_primary_10_1111_ecog_03187 crossref_primary_10_1016_j_crvi_2019_11_001 crossref_primary_10_1016_j_scitotenv_2015_07_102 crossref_primary_10_1002_fee_2088 crossref_primary_10_3389_fmars_2023_1324053 crossref_primary_10_1002_ece3_1619 crossref_primary_10_1016_j_ocecoaman_2020_105386 crossref_primary_10_1016_j_scitotenv_2024_173307 crossref_primary_10_1038_s41598_022_07991_x crossref_primary_10_1073_pnas_2307214121 crossref_primary_10_1007_s00338_015_1371_2 crossref_primary_10_1016_j_biocon_2021_109326 crossref_primary_10_1371_journal_pbio_3000702 crossref_primary_10_1016_j_gecco_2020_e00970 crossref_primary_10_1016_j_rsma_2024_103836 crossref_primary_10_1111_2041_210X_12604 crossref_primary_10_1016_j_scitotenv_2023_162111 crossref_primary_10_1098_rspb_2016_2094 crossref_primary_10_1016_j_ecss_2019_106272 crossref_primary_10_1098_rspb_2017_0307 crossref_primary_10_3389_fmars_2019_00638 crossref_primary_10_1371_journal_pone_0189731 crossref_primary_10_1086_733931 crossref_primary_10_1890_14_1952_1 crossref_primary_10_1002_ece3_8381 crossref_primary_10_1007_s11356_024_32862_5 crossref_primary_10_1111_aec_13078 crossref_primary_10_1016_j_ecss_2025_109181 crossref_primary_10_3390_microorganisms9081711 crossref_primary_10_1016_j_pocean_2018_05_003 crossref_primary_10_3390_d17030161 crossref_primary_10_3354_meps14288 crossref_primary_10_1111_ecog_06476 crossref_primary_10_1016_j_ecolind_2018_03_020 crossref_primary_10_1016_j_ecolind_2017_01_011 crossref_primary_10_1111_maec_12539 crossref_primary_10_1071_MF14150 crossref_primary_10_1098_rspb_2019_2367 crossref_primary_10_1371_journal_pone_0295238 crossref_primary_10_1111_gcb_13835 crossref_primary_10_1007_s00442_020_04746_1 crossref_primary_10_1016_j_scitotenv_2024_177265 crossref_primary_10_3390_d14100808 crossref_primary_10_1016_j_ecolind_2020_106488 crossref_primary_10_1016_j_ecolind_2020_106241 crossref_primary_10_1126_science_abd5110 crossref_primary_10_1038_s44185_025_00073_x crossref_primary_10_1038_s41598_017_10334_w crossref_primary_10_1002_ece3_5575 crossref_primary_10_3389_fenvs_2021_766580 crossref_primary_10_1002_ecy_70007 crossref_primary_10_1007_s00338_024_02487_8 crossref_primary_10_1007_s00227_023_04238_9 crossref_primary_10_1073_pnas_2201944119 crossref_primary_10_3354_meps13186 crossref_primary_10_1111_1365_2435_12728 crossref_primary_10_1016_j_ecolind_2023_110696 crossref_primary_10_1111_gcb_14704 crossref_primary_10_1038_s41467_021_27440_z crossref_primary_10_1002_ecy_2977 crossref_primary_10_1007_s10750_021_04756_x crossref_primary_10_1016_j_marenvres_2025_107039 crossref_primary_10_1002_ece3_8736 crossref_primary_10_1038_s41467_021_25293_0 crossref_primary_10_1111_gcb_70094 crossref_primary_10_1007_s12526_016_0493_2 crossref_primary_10_1111_geb_13494 crossref_primary_10_1016_j_marenvres_2017_06_017 crossref_primary_10_1002_ece3_6320 crossref_primary_10_1002_ece3_70619 crossref_primary_10_3390_d14050310 crossref_primary_10_1098_rspb_2023_0403 crossref_primary_10_1002_ecy_2508 crossref_primary_10_1016_j_ecss_2023_108301 crossref_primary_10_1016_j_marenvres_2020_105102 crossref_primary_10_1016_j_scitotenv_2024_177250 crossref_primary_10_1038_s41598_018_20823_1 crossref_primary_10_1007_s10531_020_01974_y crossref_primary_10_1016_j_palaeo_2024_112581 crossref_primary_10_1016_j_marenvres_2021_105519 crossref_primary_10_1111_1462_2920_13822 crossref_primary_10_1002_edn3_305 crossref_primary_10_1073_pnas_2403899121 crossref_primary_10_3390_w16213034 crossref_primary_10_1111_conl_12351 crossref_primary_10_1016_j_marenvres_2020_105038 crossref_primary_10_1016_j_ecss_2023_108334 crossref_primary_10_1111_jbi_14599 crossref_primary_10_1007_s00338_020_01970_2 crossref_primary_10_1007_s10641_018_0786_3 crossref_primary_10_1111_jbi_14237 crossref_primary_10_1098_rspb_2016_2116 crossref_primary_10_3354_meps13150 crossref_primary_10_1007_s10641_016_0571_0 crossref_primary_10_1016_j_jenvman_2024_121582 crossref_primary_10_1002_ecs2_70193 crossref_primary_10_1073_pnas_2016913118 crossref_primary_10_1002_ece3_11466 crossref_primary_10_1071_MF17233 crossref_primary_10_1016_j_ecolind_2023_110260 crossref_primary_10_1038_s41559_022_01710_5 crossref_primary_10_1093_femsre_fuae031 crossref_primary_10_1073_pnas_2100966118 crossref_primary_10_1111_ddi_12812 crossref_primary_10_3389_fevo_2024_1322751 crossref_primary_10_1111_jbi_14349 crossref_primary_10_1007_s00338_021_02054_5 crossref_primary_10_1111_brv_12259 crossref_primary_10_1016_j_heliyon_2024_e39428 crossref_primary_10_1038_ncomms11461 crossref_primary_10_1371_journal_pone_0187140 crossref_primary_10_3389_fmars_2023_1102373 crossref_primary_10_1088_1748_9326_aca77e crossref_primary_10_1186_s12983_023_00485_0 crossref_primary_10_1016_j_biocon_2018_08_011 crossref_primary_10_1016_j_oneear_2024_03_004 crossref_primary_10_1016_j_ecss_2024_108750 crossref_primary_10_1111_jbi_14214 crossref_primary_10_1111_ecog_03010 crossref_primary_10_1007_s00338_019_01874_w crossref_primary_10_1007_s00338_024_02599_1 crossref_primary_10_1038_s41467_025_57258_y crossref_primary_10_1098_rspb_2021_0130 crossref_primary_10_1111_jbi_14450 crossref_primary_10_1016_j_cub_2024_08_031 crossref_primary_10_1016_j_rsma_2018_01_005 crossref_primary_10_1038_s41598_021_84016_z crossref_primary_10_1038_s41598_022_20919_9 crossref_primary_10_1016_j_cub_2025_01_049 crossref_primary_10_1002_ece3_70657 crossref_primary_10_3354_meps13129 crossref_primary_10_1111_ddi_13923 crossref_primary_10_3354_meps13005 crossref_primary_10_3354_meps14447 crossref_primary_10_1007_s10750_017_3208_1 crossref_primary_10_1016_j_marenvres_2018_09_011 crossref_primary_10_1177_19400829231225428 crossref_primary_10_1098_rsos_171111 crossref_primary_10_1007_s00442_017_4026_x |
Cites_doi | 10.1038/nature11148 10.1111/j.1600-0587.2012.07514.x 10.1371/journal.pone.0026735 10.3354/meps08601 10.1111/j.1461-0248.2011.01618.x 10.1111/j.1461-0248.2010.01515.x 10.1016/j.ppees.2011.10.002 10.1111/j.1469-1795.2012.00528.x 10.1073/pnas.96.4.1463 10.1371/journal.pbio.1001569 10.2307/3546010 10.1038/nature02691 10.1016/j.cub.2006.10.030 10.1038/nature12529 10.1371/journal.pone.0081847 10.1371/journal.pone.0039825 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2 10.1038/nature10282 10.1146/annurev-ecolsys-102209-144628 10.1016/j.tree.2012.10.004 10.1038/nature05202 10.1126/science.1058635 10.1126/science.1215855 10.1371/journal.pone.0044297 10.1111/j.1365-2699.2011.02613.x 10.1890/08-1276.1 10.1038/nature09678 10.1126/science.1152197 10.1098/rspb.2011.1906 10.1046/j.1365-2745.2001.00528.x 10.1111/j.1472-4642.2010.00650.x 10.1111/j.1600-0587.2013.00291.x 10.1002/aqc.880 10.1371/journal.pone.0021710 10.1890/07-1206.1 10.1111/j.1461-0248.2011.01592.x 10.1111/jfb.12177 |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Sep 23, 2014 |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Sep 23, 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1317625111 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Functional over-redundancy in fish faunas |
EISSN | 1091-6490 |
EndPage | 13762 |
ExternalDocumentID | PMC4183327 3444742811 25225388 10_1073_pnas_1317625111 111_38_13757 43043204 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c460t-12b97626c2ab2fe7d02d0e25cd5ab34d6335544acff93481e22ca43aa9396dbe3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:08:04 EDT 2025 Fri Jul 11 12:36:43 EDT 2025 Fri Jul 11 16:08:27 EDT 2025 Mon Jun 30 08:09:19 EDT 2025 Mon Jul 21 06:04:31 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Tue Jul 01 01:53:14 EDT 2025 Wed Nov 11 00:30:10 EST 2020 Thu May 29 08:40:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | coral reefs fish ecology |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c460t-12b97626c2ab2fe7d02d0e25cd5ab34d6335544acff93481e22ca43aa9396dbe3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 1D.M., S.V., and V.P. contributed equally to this work. Edited by Cyrille Violle, Centre National de la Recherche Scientifique, Montpellier, France, and accepted by the Editorial Board January 28, 2014 (received for review September 18, 2013) Author contributions: D.M., S.V., V.P., M.K., J.E.A.-G., M.B., P.C., S.R.F., A.F., L.V., and D.R.B. designed research, performed research, contributed new reagents/analytic tools, analyzed data, and wrote the paper. |
PMID | 25225388 |
PQID | 1565809485 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_journals_1565809485 proquest_miscellaneous_1803092108 proquest_miscellaneous_1565502228 pnas_primary_111_38_13757 jstor_primary_43043204 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4183327 crossref_citationtrail_10_1073_pnas_1317625111 pubmed_primary_25225388 crossref_primary_10_1073_pnas_1317625111 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-23 |
PublicationDateYYYYMMDD | 2014-09-23 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | From the Cover |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Kulbicki M (e_1_3_3_36_2) 2007; 31 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 Legendre P (e_1_3_3_37_2) 1998 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 24386083 - PLoS One. 2013;8(12):e81847 18724739 - Ecology. 2008 Aug;89(8):2290-301 21481126 - Ecol Lett. 2011 Jun;14(6):561-8 17066035 - Nature. 2006 Oct 26;443(7114):989-92 22090383 - Proc Biol Sci. 2012 Apr 22;279(1733):1621-9 21832994 - Nature. 2011 Sep 8;477(7363):199-202 22808066 - PLoS One. 2012;7(7):e39825 21320260 - Ecol Lett. 2011 Apr;14(4):341-8 23723735 - PLoS Biol. 2013;11(5):e1001569 21738772 - PLoS One. 2011;6(6):e21710 24067714 - Nature. 2013 Sep 26;501(7468):539-42 22039543 - PLoS One. 2011;6(10):e26735 20649638 - Ecol Lett. 2010 Oct;13(10):1310-24 22700920 - Science. 2012 Jun 15;336(6087):1401-6 11375488 - Science. 2001 May 25;292(5521):1532-5 17174918 - Curr Biol. 2006 Dec 19;16(24):2434-9 22678280 - Nature. 2012 Jun 7;486(7401):59-67 20426336 - Ecology. 2010 Mar;91(3):782-92 9990046 - Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1463-8 23141923 - Trends Ecol Evol. 2013 Mar;28(3):167-77 22952950 - PLoS One. 2012;7(8):e44297 23902311 - J Fish Biol. 2013 Aug;83(2):355-77 15215854 - Nature. 2004 Jun 24;429(6994):827-33 21368823 - Nature. 2011 Mar 3;471(7336):51-7 18339937 - Science. 2008 Mar 14;319(5869):1521-3 |
References_xml | – ident: e_1_3_3_3_2 doi: 10.1038/nature11148 – ident: e_1_3_3_10_2 doi: 10.1111/j.1600-0587.2012.07514.x – ident: e_1_3_3_16_2 doi: 10.1371/journal.pone.0026735 – ident: e_1_3_3_31_2 doi: 10.3354/meps08601 – ident: e_1_3_3_38_2 doi: 10.1111/j.1461-0248.2011.01618.x – ident: e_1_3_3_25_2 doi: 10.1111/j.1461-0248.2010.01515.x – ident: e_1_3_3_15_2 doi: 10.1016/j.ppees.2011.10.002 – ident: e_1_3_3_9_2 doi: 10.1111/j.1469-1795.2012.00528.x – ident: e_1_3_3_7_2 doi: 10.1073/pnas.96.4.1463 – ident: e_1_3_3_8_2 doi: 10.1371/journal.pbio.1001569 – ident: e_1_3_3_11_2 doi: 10.2307/3546010 – ident: e_1_3_3_18_2 doi: 10.1038/nature02691 – ident: e_1_3_3_19_2 doi: 10.1016/j.cub.2006.10.030 – ident: e_1_3_3_30_2 doi: 10.1038/nature12529 – ident: e_1_3_3_23_2 doi: 10.1371/journal.pone.0081847 – ident: e_1_3_3_26_2 doi: 10.1371/journal.pone.0039825 – ident: e_1_3_3_32_2 doi: 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2 – ident: e_1_3_3_2_2 doi: 10.1038/nature10282 – ident: e_1_3_3_29_2 doi: 10.1146/annurev-ecolsys-102209-144628 – ident: e_1_3_3_22_2 doi: 10.1016/j.tree.2012.10.004 – ident: e_1_3_3_12_2 doi: 10.1038/nature05202 – ident: e_1_3_3_20_2 doi: 10.1126/science.1058635 – ident: e_1_3_3_5_2 doi: 10.1126/science.1215855 – volume: 31 start-page: 275 year: 2007 ident: e_1_3_3_36_2 article-title: Biogeography of reef fishes of the french territories in the south pacific publication-title: Cybium – ident: e_1_3_3_14_2 doi: 10.1371/journal.pone.0044297 – ident: e_1_3_3_34_2 doi: 10.1111/j.1365-2699.2011.02613.x – ident: e_1_3_3_17_2 doi: 10.1890/08-1276.1 – ident: e_1_3_3_1_2 doi: 10.1038/nature09678 – ident: e_1_3_3_24_2 doi: 10.1126/science.1152197 – ident: e_1_3_3_4_2 doi: 10.1098/rspb.2011.1906 – ident: e_1_3_3_6_2 doi: 10.1046/j.1365-2745.2001.00528.x – ident: e_1_3_3_33_2 doi: 10.1111/j.1472-4642.2010.00650.x – volume-title: Numerical Ecology year: 1998 ident: e_1_3_3_37_2 – ident: e_1_3_3_21_2 doi: 10.1111/j.1600-0587.2013.00291.x – ident: e_1_3_3_35_2 doi: 10.1002/aqc.880 – ident: e_1_3_3_13_2 doi: 10.1371/journal.pone.0021710 – ident: e_1_3_3_39_2 doi: 10.1890/07-1206.1 – ident: e_1_3_3_27_2 doi: 10.1111/j.1461-0248.2011.01592.x – ident: e_1_3_3_28_2 doi: 10.1111/jfb.12177 – reference: 22090383 - Proc Biol Sci. 2012 Apr 22;279(1733):1621-9 – reference: 23723735 - PLoS Biol. 2013;11(5):e1001569 – reference: 21832994 - Nature. 2011 Sep 8;477(7363):199-202 – reference: 17066035 - Nature. 2006 Oct 26;443(7114):989-92 – reference: 23902311 - J Fish Biol. 2013 Aug;83(2):355-77 – reference: 22039543 - PLoS One. 2011;6(10):e26735 – reference: 21368823 - Nature. 2011 Mar 3;471(7336):51-7 – reference: 21481126 - Ecol Lett. 2011 Jun;14(6):561-8 – reference: 22678280 - Nature. 2012 Jun 7;486(7401):59-67 – reference: 11375488 - Science. 2001 May 25;292(5521):1532-5 – reference: 22808066 - PLoS One. 2012;7(7):e39825 – reference: 21738772 - PLoS One. 2011;6(6):e21710 – reference: 18724739 - Ecology. 2008 Aug;89(8):2290-301 – reference: 20426336 - Ecology. 2010 Mar;91(3):782-92 – reference: 24386083 - PLoS One. 2013;8(12):e81847 – reference: 20649638 - Ecol Lett. 2010 Oct;13(10):1310-24 – reference: 22700920 - Science. 2012 Jun 15;336(6087):1401-6 – reference: 24067714 - Nature. 2013 Sep 26;501(7468):539-42 – reference: 22952950 - PLoS One. 2012;7(8):e44297 – reference: 21320260 - Ecol Lett. 2011 Apr;14(4):341-8 – reference: 15215854 - Nature. 2004 Jun 24;429(6994):827-33 – reference: 23141923 - Trends Ecol Evol. 2013 Mar;28(3):167-77 – reference: 9990046 - Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1463-8 – reference: 18339937 - Science. 2008 Mar 14;319(5869):1521-3 – reference: 17174918 - Curr Biol. 2006 Dec 19;16(24):2434-9 |
SSID | ssj0009580 |
Score | 2.6177092 |
Snippet | When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to... Our results indicate that, even in highly diverse systems like coral reefs, we can no longer assume that the erosion of species diversity can be discounted by... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13757 |
SubjectTerms | Animals Biodiversity Biological Sciences Biological taxonomies Biota Coral Reefs Ecological function Ecosystem services Ecosystems Extinct species Fauna Fish fisheries Fishes - physiology Functional diversity insurance Marine fishes probability Reefs Species species diversity Threatened species Tropical Climate Tropical fishes |
Title | Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs |
URI | https://www.jstor.org/stable/43043204 http://www.pnas.org/content/111/38/13757.abstract https://www.ncbi.nlm.nih.gov/pubmed/25225388 https://www.proquest.com/docview/1565809485 https://www.proquest.com/docview/1565502228 https://www.proquest.com/docview/1803092108 https://pubmed.ncbi.nlm.nih.gov/PMC4183327 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaq5cIFscBCYEFG4rCoSkls53XgsEJbrdBu2UO76i3Kw4FKVbJKGw78Wn4KM7bzaCkr4BK18SRNPV9mxvbMZ0LeBZ6QkUxC2_MDbkN869lJIjybZT4MDtxURC4WJ1_P_MuF-Lz0lqPRz0HWUrNNJ9mPg3Ul_6NVOAd6xSrZf9Bsd1M4AZ9Bv3AEDcPxr3Q8Badk5vIwE9OuJdaEob1UawJIRTwuepnvzRo5plU6rCr3M2wgBbIaFUlTJnrtoK7ulOpqKYvNMHq96bzdps0tmLWTied9aYqxF5uxPb6Z9RsdX1fNar2utnup9M3HW6TUVgv2X802YPobeFgkfe1XueoaLstWaheq8S24NujjsupXo9bpKtPbcOsM1-GUhisw_0JXHQ8ZwQ8--dCWM_CvQldgT6Q23xD92L7QG5B29t1Ycw1kzSVjzLXLA02P_ZsjAcuHux9Dx09cCLF8HIm5vc9s8wRmX-Lp4uoqnl8s57utJkQQIoAXAIvPHzAYyPB2PqmjhQ51kZT5Ly35VMA_7P32TtykU2eRjxeEDo2N9lN8BzHT_DF5ZAY79Fwj95iMZPmEHLedTM8M5_n7pyTvoUz3oEwByhShTHso0x0o01VJNZQpQplqKNOqpC2UqYLyM7KYXsw_XdpmAxA7E76ztV2WQrTM_IwlKStkkDssdyTzstxLUi5yn2O0LJKsKCIsKJeMZYngSRLxyM9TyU_IUVmV8gWhfhp53IkCiYRMmcfgfpEH6ApFynnocItM2u6NM8OOj5u0rGOVpRHwGLs67vVhkbPugjtNDPNn0ROlr05OcCTCdIRFLCXaXQ-DcR7GCpUWOW21GhuTA_eE4VfoIKGTRd52zeAQcJUvKWXVaBkPp3HCe2RCXFllrgMyzzVQuodgMCKDKAhagh0IdQJISL_bUq6-KWJ6AfEBZ8HL-x_9FXnYv_Sn5GhbN_I1RPbb9I16OX4BGdf7Mw |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+over-redundancy+and+high+functional+vulnerability+in+global+fish+faunas+on+tropical+reefs&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Mouillot%2C+David&rft.au=Vill%C3%A9ger%2C+S%C3%A9bastien&rft.au=Parravicini%2C+Valeriano&rft.au=Kulbicki%2C+Michel&rft.date=2014-09-23&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=38&rft.spage=13757&rft_id=info:doi/10.1073%2Fpnas.1317625111&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3444742811 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F38.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F38.cover.gif |