Dielectric barrier discharge plasma treatment affects stability, metal ion coordination, and enzyme activity of bacterial superoxide dismutases
A molecular‐level understanding of the effects of atmospheric‐pressure plasma on biological samples requires knowledge of the effects on proteins. Superoxide dismutases, which detoxify superoxide under oxidative stress conditions, play a key role in bacterial plasma resistance. Investigation of the...
Saved in:
Published in | Plasma processes and polymers Vol. 17; no. 10 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A molecular‐level understanding of the effects of atmospheric‐pressure plasma on biological samples requires knowledge of the effects on proteins. Superoxide dismutases, which detoxify superoxide under oxidative stress conditions, play a key role in bacterial plasma resistance. Investigation of the impact of dielectric barrier discharge (DBD) treatment on purified superoxide dismutases SodA and SodB of Escherichia coli showed that DBD treatment caused a rapid protein degradation, with only 8% of protein remaining after 10 min. The affinity of SodA for the metal cofactor Mn2+ was reduced. Mass spectrometry, in conjunction with coupled‐cluster calculations, revealed that modifications of amino acid residues in the active site can explain the decreased metal affinity and a distortion of the coordination geometry responsible for the activity loss.
All three superoxide dismutases (SODs) of Escherichia coli contribute to basal dielectric barrier discharge (DBD) plasma resistance. Purified SODs retain 50% activity after 1‐min DBD treatment. Histidine modifications in the active center affect metal cofactor coordination. The use of SODs as superoxide scavengers in plasma experiments is limited by protein stability and increasingly unspecific scavenging, as SODs are being modified by plasma. |
---|---|
AbstractList | A molecular‐level understanding of the effects of atmospheric‐pressure plasma on biological samples requires knowledge of the effects on proteins. Superoxide dismutases, which detoxify superoxide under oxidative stress conditions, play a key role in bacterial plasma resistance. Investigation of the impact of dielectric barrier discharge (DBD) treatment on purified superoxide dismutases SodA and SodB of Escherichia coli showed that DBD treatment caused a rapid protein degradation, with only 8% of protein remaining after 10 min. The affinity of SodA for the metal cofactor Mn2+ was reduced. Mass spectrometry, in conjunction with coupled‐cluster calculations, revealed that modifications of amino acid residues in the active site can explain the decreased metal affinity and a distortion of the coordination geometry responsible for the activity loss. A molecular‐level understanding of the effects of atmospheric‐pressure plasma on biological samples requires knowledge of the effects on proteins. Superoxide dismutases, which detoxify superoxide under oxidative stress conditions, play a key role in bacterial plasma resistance. Investigation of the impact of dielectric barrier discharge (DBD) treatment on purified superoxide dismutases SodA and SodB of Escherichia coli showed that DBD treatment caused a rapid protein degradation, with only 8% of protein remaining after 10 min. The affinity of SodA for the metal cofactor Mn 2+ was reduced. Mass spectrometry, in conjunction with coupled‐cluster calculations, revealed that modifications of amino acid residues in the active site can explain the decreased metal affinity and a distortion of the coordination geometry responsible for the activity loss. A molecular‐level understanding of the effects of atmospheric‐pressure plasma on biological samples requires knowledge of the effects on proteins. Superoxide dismutases, which detoxify superoxide under oxidative stress conditions, play a key role in bacterial plasma resistance. Investigation of the impact of dielectric barrier discharge (DBD) treatment on purified superoxide dismutases SodA and SodB of Escherichia coli showed that DBD treatment caused a rapid protein degradation, with only 8% of protein remaining after 10 min. The affinity of SodA for the metal cofactor Mn2+ was reduced. Mass spectrometry, in conjunction with coupled‐cluster calculations, revealed that modifications of amino acid residues in the active site can explain the decreased metal affinity and a distortion of the coordination geometry responsible for the activity loss. All three superoxide dismutases (SODs) of Escherichia coli contribute to basal dielectric barrier discharge (DBD) plasma resistance. Purified SODs retain 50% activity after 1‐min DBD treatment. Histidine modifications in the active center affect metal cofactor coordination. The use of SODs as superoxide scavengers in plasma experiments is limited by protein stability and increasingly unspecific scavenging, as SODs are being modified by plasma. |
Author | Schubert, Britta Jacob, Timo Jung, Christoph K. Krewing, Marco Dobbelstein, Elena Bandow, Julia E. |
Author_xml | – sequence: 1 givenname: Marco orcidid: 0000-0002-5315-8755 surname: Krewing fullname: Krewing, Marco organization: Ruhr University Bochum – sequence: 2 givenname: Christoph K. surname: Jung fullname: Jung, Christoph K. organization: Ulm University – sequence: 3 givenname: Elena surname: Dobbelstein fullname: Dobbelstein, Elena organization: Ruhr University Bochum – sequence: 4 givenname: Britta surname: Schubert fullname: Schubert, Britta organization: Ruhr University Bochum – sequence: 5 givenname: Timo orcidid: 0000-0001-7777-2306 surname: Jacob fullname: Jacob, Timo organization: Ulm University – sequence: 6 givenname: Julia E. orcidid: 0000-0003-4100-8829 surname: Bandow fullname: Bandow, Julia E. email: julia.bandow@rub.de organization: Ruhr University Bochum |
BookMark | eNqFkE1LAzEQhoNUsK1ePQe8tjX7nRxL_YSCPeh5mc3OasruZk2yav0T_mVTKxUEMYdJBt5n3sw7IoNWt0jIacBmAWPheddBNwtZyPwJxAEZBmkQTjlPxWD_TtgRGVm7ZixiCWdD8nGhsEbpjJK0AGMUGloqK5_APCLtarANUGcQXIOto1BVXmypdVCoWrnNhDbooKZKt1RqbUrVgvPNhEJbUmzfNw1SkE69eDHVlTeRDo3yiO07NPpNlbh1bHoHFu0xOaygtnjyfY_Jw9Xl_eJmury7vl3Ml1MZp0xMkwxSwUFyX0RUibSIfJNFDHhRlDKBIuGl_2whRcSZ5EWCKDmysuISIh5GY3K2m9sZ_dyjdfla96b1lnkYxzzNRJYFXhXvVNJoaw1WuVTuaz9nQNV5wPJt9Pk2-nwfvcdmv7DOqAbM5m9A7IBXVePmH3W-Ws1XP-wnXg-eUA |
CitedBy_id | crossref_primary_10_1088_1361_6463_ad211c crossref_primary_10_3389_fphy_2020_613046 crossref_primary_10_1002_ppap_202070028 crossref_primary_10_3390_vaccines9050527 crossref_primary_10_1098_rsif_2023_0299 crossref_primary_10_1016_j_redox_2025_103562 |
Cites_doi | 10.1007/s11426-014-5246-0 10.1063/1.3382344 10.3389/fpls.2013.00450 10.1080/00268976.2018.1433336 10.1016/S0021-9258(18)55001-8 10.1006/abbi.1995.1324 10.1021/acs.jctc.6b01041 10.1002/ppap.201300035 10.1007/s10529-010-0284-y 10.1039/b515623h 10.1088/0022-3727/47/28/285403 10.1111/jdv.12490 10.1002/ppap.200900077 10.1088/0022-3727/48/49/494003 10.1063/1.5012601 10.1002/ctpp.200710011 10.1021/ja972060j 10.1006/abio.1996.0162 10.1002/ppap.201100063 10.1021/bi051495d 10.1098/rsif.2018.0846 10.1002/jcc.20702 10.1002/jcc.21759 10.1111/j.1365-2133.2010.09744.x 10.1039/b508541a 10.1088/0022-3727/42/4/045212 10.1128/JB.62.3.293-300.1951 10.1021/ja00297a040 10.1016/S0006-291X(72)80218-3 10.1016/j.freeradbiomed.2019.01.018 10.1074/jbc.M708597200 10.1016/0378-1119(95)00193-A 10.1016/0891-5849(93)90513-T 10.1038/s41598-017-13041-8 10.1093/dnares/dsi012 10.1042/BJ20120505 10.1039/C8CP07550F 10.1098/rsif.2013.0591 10.1111/j.1365-2958.2004.03971.x 10.1016/j.jinorgbio.2009.07.011 10.1016/0891-5849(93)90512-S 10.1039/b906690j 10.1039/c001188f 10.1016/j.febslet.2011.10.048 10.1016/S0021-9258(19)61951-4 10.1016/S0162-0134(00)00086-6 10.1038/srep10031 10.1021/ja016146v 10.1002/ppap.201100078 10.1039/C8CP00197A 10.1128/AAC.01002-10 10.1021/ar020230d 10.1023/A:1009238214394 10.1002/wcms.81 10.1529/biophysj.105.071308 10.1002/ppap.201200047 10.1016/j.ifset.2013.04.002 10.1016/0076-6879(90)86141-H 10.1016/0003-9861(79)90628-3 10.1016/0003-2697(76)90527-3 10.1111/j.1432-1033.1995.0700p.x 10.1016/j.ab.2014.04.034 10.1088/0022-3727/48/27/275203 10.1038/msb4100050 10.1007/s00214-007-0250-5 10.1007/s007750050217 10.1021/bi971894b |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Wiley‐VCH Verlag GmbH & Co. KGaA 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by Wiley‐VCH Verlag GmbH & Co. KGaA – notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/ppap.202000019 |
DatabaseName | Wiley Online Library Open Access CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1612-8869 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ppap_202000019 PPAP202000019 |
Genre | article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: BA 4193/7‐1; CRC1316‐1 – fundername: German State of North Rhine‐Westphalia funderid: Großgerät der Länder |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ UB1 W8V W99 WBKPD WFSAM WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c4609-57a698ac898a93f96b3ac8730a8bbdc5ab58daffbc9380c8b5eec8e0df8ca3823 |
IEDL.DBID | DR2 |
ISSN | 1612-8850 |
IngestDate | Fri Jul 25 12:14:59 EDT 2025 Thu Apr 24 23:12:55 EDT 2025 Tue Jul 01 01:25:49 EDT 2025 Wed Jan 22 16:32:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4609-57a698ac898a93f96b3ac8730a8bbdc5ab58daffbc9380c8b5eec8e0df8ca3823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5315-8755 0000-0001-7777-2306 0000-0003-4100-8829 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fppap.202000019 |
PQID | 2448679771 |
PQPubID | 1036335 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2448679771 crossref_citationtrail_10_1002_ppap_202000019 crossref_primary_10_1002_ppap_202000019 wiley_primary_10_1002_ppap_202000019_PPAP202000019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Plasma processes and polymers |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2017; 7 2014; 458 2013; 4 2009; 42 2017; 44 2019; 16 2011; 55 1979; 194 1972; 46 2012; 445 1990; 186 1951; 62 2013; 19 2015; 48 2010; 27 1991; 266 1994; 269 2013; 10 2019; 21 1976; 72 2008; 29 2014; 57 2007; 1 2010; 7 1998; 11 1998; 120 2010; 32 2006; 90 2001; 123 2015; 5 2012; 586 1995; 319 2018; 148 2006; 8 2003; 36 2010; 163 2014; 47 2011; 32 1995; 158 1985; 107 2006; 2 2018; 20 2011; 8 2008; 283 1993; 14 1998; 37 2004; 52 2012; 2 2015; 29 2007; 117 2006; 45 2018; 116 2017; 13 1995; 227 2010; 132 2019 2005; 7 2017 1998; 3 2000; 80 1996; 236 2009; 103 2007; 47 2005; 12 2019; 134 2012; 9 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 Chauvin J. (e_1_2_7_54_1) 2017 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 Thomason L. C. (e_1_2_7_27_1) 2007; 1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Steinman H. M. (e_1_2_7_19_1) 1994; 269 Krewing M. (e_1_2_7_51_1) 2019 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 Colagar A. H. (e_1_2_7_14_1) 2017; 44 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 19 start-page: 146 year: 2013 publication-title: Innovative Food Sci. Emerging Technol. – volume: 90 start-page: 598 year: 2006 publication-title: Biophys. J. – volume: 445 start-page: 337 year: 2012 publication-title: Biochem. J. – volume: 8 start-page: 1154 year: 2011 publication-title: Plasma. Process. Polym. – volume: 7 start-page: 3297 year: 2005 publication-title: Phys. Chem. Chem. Phys. – start-page: 7 year: 2017 publication-title: Sci. Rep. – volume: 3 start-page: 161 year: 1998 publication-title: J. Biol. Inorg. Chem. – volume: 283 start-page: 1786 year: 2008 publication-title: J. Biol. Chem. – volume: 1 start-page: 17 year: 2007 publication-title: Curr. Protoc. Mol. Biol. – volume: 12 start-page: 291 year: 2005 publication-title: DNA Res. – volume: 14 start-page: 91 year: 1993 publication-title: Free Radic. Biol. Med. – volume: 16 year: 2019 publication-title: J. R. Soc., Interface – volume: 120 start-page: 461 year: 1998 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 1708 year: 2014 publication-title: Sci. China: Chem. – volume: 21 start-page: 4117 year: 2019 publication-title: Phys. Chem. Chem. Phys. – volume: 134 start-page: 215 year: 2019 publication-title: Free Radic. Biol. Med. – volume: 20 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 10 start-page: 731 year: 2013 publication-title: Plasma. Process. Polym. – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 72 start-page: 248 year: 1976 publication-title: Anal. Biochem. – volume: 10 year: 2013 publication-title: J. R. Soc., Interface – volume: 7 start-page: 250 year: 2010 publication-title: Plasma. Process. Polym. – volume: 158 start-page: 9 year: 1995 publication-title: Gene – volume: 148 year: 2018 publication-title: J. Chem. Phys. – volume: 45 start-page: 1151 year: 2006 publication-title: Biochemistry – volume: 227 start-page: 700 year: 1995 publication-title: Eur. J. Biochem. – volume: 116 start-page: 1523 year: 2018 publication-title: Mol. Phys. – volume: 29 start-page: 167 year: 2008 publication-title: J. Comput. Chem. – volume: 44 start-page: 678 year: 2017 publication-title: Chiang Mai J. Sci. – volume: 29 start-page: 148 year: 2015 publication-title: J. Eur. Acad. Dermatol. – volume: 55 start-page: 1053 year: 2011 publication-title: Antimicrob. Agents Chemother. – volume: 186 start-page: 464 year: 1990 publication-title: Methods Enzymol. – volume: 47 start-page: 72 year: 2007 publication-title: Contrib. Plasm. Phys. – year: 2019 publication-title: Plasma Chem. Plasma Process. – volume: 103 start-page: 1375 year: 2009 publication-title: J. Inorg. Biochem. – volume: 117 start-page: 587 year: 2007 publication-title: Theor. Chem. Acc. – volume: 14 start-page: 85 year: 1993 publication-title: Free Radic. Biol. Med. – volume: 266 year: 1991 publication-title: J. Biol. Chem. – volume: 236 start-page: 242 year: 1996 publication-title: Anal. Biochem. – volume: 4 start-page: 450 year: 2013 publication-title: Front. Plant Sci. – volume: 62 start-page: 293 year: 1951 publication-title: J. Bacteriol. – volume: 107 start-page: 3295 year: 1985 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 554 year: 2017 publication-title: J. Chem. Theory Comput. – volume: 586 start-page: 585 year: 2012 publication-title: FEBS Lett. – volume: 46 start-page: 849 year: 1972 publication-title: Biochem. Biophys. Res. Commun. – volume: 458 start-page: 69 year: 2014 publication-title: Anal. Biochem. – volume: 11 start-page: 159 year: 1998 publication-title: Biometals – volume: 36 start-page: 255 year: 2003 publication-title: Acc. Chem. Res. – volume: 319 start-page: 508 year: 1995 publication-title: Arch. Biochem. Biophys. – volume: 10 start-page: 181 year: 2013 publication-title: Plasma. Process. Polym. – volume: 8 start-page: 1057 year: 2006 publication-title: Phys. Chem. Chem. Phys. – volume: 42 year: 2009 publication-title: J. Phys. D: Appl. Phys. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 37 start-page: 1613 year: 1998 publication-title: Biochemistry – volume: 123 start-page: 8614 year: 2001 publication-title: J. Am. Chem. Soc. – volume: 163 start-page: 78 year: 2010 publication-title: Br. J. Dermatol. – volume: 2 start-page: 73 year: 2012 publication-title: WIREs Comput. Mol. Sci. – volume: 52 start-page: 133 year: 2004 publication-title: Mol. Microbiol. – volume: 27 start-page: 768 year: 2010 publication-title: Nat. Prod. Rep. – volume: 47 year: 2014 publication-title: J. Phys. D: Appl. Phys. – volume: 80 start-page: 247 year: 2000 publication-title: J. Inorg. Biochem. – volume: 48 year: 2015 publication-title: J. Phys. D: Appl. Phys. – volume: 12 start-page: 7779 year: 2010 publication-title: Phys. Chem. Chem. Phys. – volume: 269 year: 1994 publication-title: J. Biol. Chem. – volume: 32 start-page: 1245 year: 2010 publication-title: Biotechnol. Lett. – volume: 9 start-page: 77 year: 2012 publication-title: Plasma. Process. Polym. – volume: 2 year: 2006 publication-title: Mol. Syst. Biol. – volume: 194 start-page: 360 year: 1979 publication-title: Arch. Biochem. Biophys. – volume: 32 start-page: 1456 year: 2011 publication-title: J. Comput. Chem. – volume: 132 year: 2010 publication-title: J. Chem. Phys. – ident: e_1_2_7_63_1 doi: 10.1007/s11426-014-5246-0 – ident: e_1_2_7_42_1 doi: 10.1063/1.3382344 – ident: e_1_2_7_57_1 doi: 10.3389/fpls.2013.00450 – ident: e_1_2_7_47_1 doi: 10.1080/00268976.2018.1433336 – ident: e_1_2_7_15_1 doi: 10.1016/S0021-9258(18)55001-8 – ident: e_1_2_7_20_1 doi: 10.1006/abbi.1995.1324 – ident: e_1_2_7_45_1 doi: 10.1021/acs.jctc.6b01041 – ident: e_1_2_7_53_1 doi: 10.1002/ppap.201300035 – ident: e_1_2_7_11_1 doi: 10.1007/s10529-010-0284-y – ident: e_1_2_7_44_1 doi: 10.1039/b515623h – ident: e_1_2_7_35_1 doi: 10.1088/0022-3727/47/28/285403 – ident: e_1_2_7_3_1 doi: 10.1111/jdv.12490 – ident: e_1_2_7_8_1 doi: 10.1002/ppap.200900077 – volume: 44 start-page: 678 year: 2017 ident: e_1_2_7_14_1 publication-title: Chiang Mai J. Sci. – ident: e_1_2_7_23_1 doi: 10.1088/0022-3727/48/49/494003 – ident: e_1_2_7_40_1 doi: 10.1063/1.5012601 – year: 2019 ident: e_1_2_7_51_1 publication-title: Plasma Chem. Plasma Process. – ident: e_1_2_7_2_1 doi: 10.1002/ctpp.200710011 – ident: e_1_2_7_72_1 doi: 10.1021/ja972060j – ident: e_1_2_7_32_1 doi: 10.1006/abio.1996.0162 – ident: e_1_2_7_21_1 doi: 10.1002/ppap.201100063 – ident: e_1_2_7_71_1 doi: 10.1021/bi051495d – ident: e_1_2_7_16_1 doi: 10.1098/rsif.2018.0846 – ident: e_1_2_7_48_1 doi: 10.1002/jcc.20702 – ident: e_1_2_7_41_1 doi: 10.1002/jcc.21759 – ident: e_1_2_7_4_1 doi: 10.1111/j.1365-2133.2010.09744.x – ident: e_1_2_7_43_1 doi: 10.1039/b508541a – ident: e_1_2_7_5_1 doi: 10.1088/0022-3727/42/4/045212 – ident: e_1_2_7_28_1 doi: 10.1128/JB.62.3.293-300.1951 – ident: e_1_2_7_17_1 doi: 10.1021/ja00297a040 – ident: e_1_2_7_24_1 doi: 10.1016/S0006-291X(72)80218-3 – ident: e_1_2_7_49_1 doi: 10.1016/j.freeradbiomed.2019.01.018 – ident: e_1_2_7_30_1 doi: 10.1074/jbc.M708597200 – ident: e_1_2_7_26_1 doi: 10.1016/0378-1119(95)00193-A – ident: e_1_2_7_65_1 doi: 10.1016/0891-5849(93)90513-T – ident: e_1_2_7_67_1 doi: 10.1038/s41598-017-13041-8 – ident: e_1_2_7_31_1 doi: 10.1093/dnares/dsi012 – ident: e_1_2_7_58_1 doi: 10.1042/BJ20120505 – ident: e_1_2_7_9_1 doi: 10.1039/C8CP07550F – ident: e_1_2_7_12_1 doi: 10.1098/rsif.2013.0591 – ident: e_1_2_7_56_1 doi: 10.1111/j.1365-2958.2004.03971.x – ident: e_1_2_7_52_1 doi: 10.1016/j.jinorgbio.2009.07.011 – start-page: 7 year: 2017 ident: e_1_2_7_54_1 publication-title: Sci. Rep. – ident: e_1_2_7_64_1 doi: 10.1016/0891-5849(93)90512-S – ident: e_1_2_7_38_1 doi: 10.1039/b906690j – ident: e_1_2_7_10_1 doi: 10.1039/c001188f – ident: e_1_2_7_18_1 doi: 10.1016/j.febslet.2011.10.048 – volume: 1 start-page: 17 year: 2007 ident: e_1_2_7_27_1 publication-title: Curr. Protoc. Mol. Biol. – volume: 269 start-page: 28629 year: 1994 ident: e_1_2_7_19_1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)61951-4 – ident: e_1_2_7_70_1 doi: 10.1016/S0162-0134(00)00086-6 – ident: e_1_2_7_22_1 doi: 10.1038/srep10031 – ident: e_1_2_7_37_1 doi: 10.1021/ja016146v – ident: e_1_2_7_55_1 doi: 10.1002/ppap.201100078 – ident: e_1_2_7_7_1 doi: 10.1039/C8CP00197A – ident: e_1_2_7_66_1 doi: 10.1128/AAC.01002-10 – ident: e_1_2_7_62_1 doi: 10.1021/ar020230d – ident: e_1_2_7_50_1 doi: 10.1023/A:1009238214394 – ident: e_1_2_7_39_1 doi: 10.1002/wcms.81 – ident: e_1_2_7_60_1 doi: 10.1529/biophysj.105.071308 – ident: e_1_2_7_68_1 doi: 10.1002/ppap.201200047 – ident: e_1_2_7_13_1 doi: 10.1016/j.ifset.2013.04.002 – ident: e_1_2_7_33_1 doi: 10.1016/0076-6879(90)86141-H – ident: e_1_2_7_59_1 doi: 10.1016/0003-9861(79)90628-3 – ident: e_1_2_7_29_1 doi: 10.1016/0003-2697(76)90527-3 – ident: e_1_2_7_36_1 doi: 10.1111/j.1432-1033.1995.0700p.x – ident: e_1_2_7_34_1 doi: 10.1016/j.ab.2014.04.034 – ident: e_1_2_7_6_1 doi: 10.1088/0022-3727/48/27/275203 – ident: e_1_2_7_25_1 doi: 10.1038/msb4100050 – ident: e_1_2_7_46_1 doi: 10.1007/s00214-007-0250-5 – ident: e_1_2_7_61_1 doi: 10.1007/s007750050217 – ident: e_1_2_7_69_1 doi: 10.1021/bi971894b |
SSID | ssj0030580 |
Score | 2.298576 |
Snippet | A molecular‐level understanding of the effects of atmospheric‐pressure plasma on biological samples requires knowledge of the effects on proteins. Superoxide... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Affinity Biological properties Coordination Dielectric barrier discharge E coli Enzyme activity Impact resistance iron manganese Mass spectrometry Oxidation resistance peroxynitrite plasma medicine Pressure effects Proteins |
Title | Dielectric barrier discharge plasma treatment affects stability, metal ion coordination, and enzyme activity of bacterial superoxide dismutases |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fppap.202000019 https://www.proquest.com/docview/2448679771 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEA7qRS_q-sDRWclB8GJrpp_p4-AqsrAyiIK3ppLUwKDTM8wD1D_hX7aqM90-YBF2L00Hkk46qUq-rq76SogjUDE6l2NgEw1BbJQNdKQg6ER0PGHoUm05OPnPdXp1F_--T-4_RPF7fojG4MaaUe3XrOBgpmfvpKHjMTDfZFjZpzmCjx22GBXdNPxRJMtV6jRCNaT2OlE1a6MKzz43_3wqvUPNj4C1OnEuNwTUY_WOJg-n85k5tS9faBz_52U2xfoCjsqul58fYgnLLbF6XmeB2xavvwY-U87ASgMTzm8nOZKXCZZQjgl7D0E23uoSvHuIJMxZed0-n8ghEr6XtPzSjuhLd-DNjycSSiexfHkeouTgCs5hIUd96qSij6Ym0zmTmD8NHHKPQ3Yex-mOuLu8uD2_ChZJHAIbpyoPkgzSXIPVdMmjfp6aiAq0r4A2xtkETKIdDc7YPNLKapMgWo3K9bUF_km5K1bKUYl7QqJOM-wb3YmBcEeuchOTcKFTLnQQZdgSQb2IhV0wnHOijcfCczOHBU9z0UxzSxw39cee2-OvNdu1TBQLHZ8WBIyYrTDLOi0RVov7zVOKXq_ba0r7_9LoQKzxvfcmbIuV2WSOPwkVzcyhWA7j3mEl_2_bvAoP |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BOZQLtDxEoFAfKnHpts4-7WNVWgVoqwi1Um8rPyZSBNlETSLR_gn-MjN2dtsiVUhwWckre9drz9ifZ2e-AdgxMkfvNSauUCbJrXSJyqRJ-hltT5j6UjkOTj49KwcX-ZfLovUm5FiYyA_RGdxYM8J6zQrOBun9W9bQ2cww4WQaDNT6MTzhtN7hVPWtY5AiaQ7J0wjXkOKrQra8jTLdv9_-_r50CzbvQtaw5xw_B9v2NrqafN9bLuyeu_mDyPG_PmcDnq0QqTiIIrQJj7B5AeuHbSK4l_Dr0zgmyxk7Yc0Vp7gTHMzLHEsoZgS_J0Z0DuvCRA8RQbAzON5e74oJEsQXJAHCTemwO44WyF1hGi-wubmeoOD4Ck5jIaYjeklgkKYm8yXzmP8ce-Q3Tth_HOev4OL46PxwkKzyOCQuL6VOisqUWhmn6KKzkS5tRgVaWoyy1rvC2EJ56px1OlPSKVsgOoXSj5Qz_J_yNaw10wbfgEBVVjiyqp8bgh5aapuTfKGXPvUmq7AHSTuLtVuRnHOujR91pGdOax7muhvmHnzs6s8ivceDNbdaoahXaj6vCRsxYWFV9XuQhtn9y1Pq4fBg2JXe_kujbVgfnJ-e1Cefz76-g6d8PzoXbsHa4mqJ7wkkLeyHoAa_ASQ6DVM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7aFJpc-kzptmmrQ6GXONH6KR1Dtkv6CktpIDejxxiWdr1mH5DkT_Qvd8ZaO0mhFNqLQUayZM2M9Fme-QbgrZEpeq8xcpkyUWqli1QiTTRMaHvC2OfKcXDyl9P85Cz9eJ6d34jiD_wQ_YEbW0a7XrOBN746vCYNbRrDfJNxez6t78K9NJeK9Xr0tSeQImVuc6cRrCG7V5nsaBtlfHi7_e1t6Rpr3kSs7ZYzfgimG2zwNPl-sF7ZA3f1G4_j_7zNI3iwwaPiKCjQY7iD9RPYPu7SwD2Fn6NpSJUzdcKaBSe4ExzKywxLKBoC3zMjend1YYJ_iCDQ2brdXu6LGRLAFyR_4eb0qTsN54_7wtReYH11OUPB0RWcxELMK-qk5Y-mJss1s5hfTD1yjzP2HsflLpyN3387Pok2WRwiRxLRUVaYXCvjFF10UuncJlSghcUoa73LjM2Up8FZpxMlnbIZolMofaWc4b-Uz2Crntf4HASqvMDKqmFqCHhoqW1K2oVe-tibpMABRJ0QS7ehOOdMGz_KQM4clzzNZT_NA3jX128Cuccfa-51OlFujHxZEjJiusKiGA4gboX7l6eUk8nRpC-9-JdGb-D-ZDQuP384_fQSdvh28Czcg63VYo2vCCGt7OvWCH4BFNsMCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dielectric+barrier+discharge+plasma+treatment+affects+stability%2C+metal+ion+coordination%2C+and+enzyme+activity+of+bacterial+superoxide+dismutases&rft.jtitle=Plasma+processes+and+polymers&rft.au=Krewing%2C+Marco&rft.au=Jung%2C+Christoph+K&rft.au=Dobbelstein%2C+Elena&rft.au=Schubert%2C+Britta&rft.date=2020-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1612-8850&rft.eissn=1612-8869&rft.volume=17&rft.issue=10&rft_id=info:doi/10.1002%2Fppap.202000019&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1612-8850&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1612-8850&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1612-8850&client=summon |