Dielectric barrier discharge plasma treatment affects stability, metal ion coordination, and enzyme activity of bacterial superoxide dismutases

A molecular‐level understanding of the effects of atmospheric‐pressure plasma on biological samples requires knowledge of the effects on proteins. Superoxide dismutases, which detoxify superoxide under oxidative stress conditions, play a key role in bacterial plasma resistance. Investigation of the...

Full description

Saved in:
Bibliographic Details
Published inPlasma processes and polymers Vol. 17; no. 10
Main Authors Krewing, Marco, Jung, Christoph K., Dobbelstein, Elena, Schubert, Britta, Jacob, Timo, Bandow, Julia E.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A molecular‐level understanding of the effects of atmospheric‐pressure plasma on biological samples requires knowledge of the effects on proteins. Superoxide dismutases, which detoxify superoxide under oxidative stress conditions, play a key role in bacterial plasma resistance. Investigation of the impact of dielectric barrier discharge (DBD) treatment on purified superoxide dismutases SodA and SodB of Escherichia coli showed that DBD treatment caused a rapid protein degradation, with only 8% of protein remaining after 10 min. The affinity of SodA for the metal cofactor Mn2+ was reduced. Mass spectrometry, in conjunction with coupled‐cluster calculations, revealed that modifications of amino acid residues in the active site can explain the decreased metal affinity and a distortion of the coordination geometry responsible for the activity loss. All three superoxide dismutases (SODs) of Escherichia coli contribute to basal dielectric barrier discharge (DBD) plasma resistance. Purified SODs retain 50% activity after 1‐min DBD treatment. Histidine modifications in the active center affect metal cofactor coordination. The use of SODs as superoxide scavengers in plasma experiments is limited by protein stability and increasingly unspecific scavenging, as SODs are being modified by plasma.
AbstractList A molecular‐level understanding of the effects of atmospheric‐pressure plasma on biological samples requires knowledge of the effects on proteins. Superoxide dismutases, which detoxify superoxide under oxidative stress conditions, play a key role in bacterial plasma resistance. Investigation of the impact of dielectric barrier discharge (DBD) treatment on purified superoxide dismutases SodA and SodB of Escherichia coli showed that DBD treatment caused a rapid protein degradation, with only 8% of protein remaining after 10 min. The affinity of SodA for the metal cofactor Mn2+ was reduced. Mass spectrometry, in conjunction with coupled‐cluster calculations, revealed that modifications of amino acid residues in the active site can explain the decreased metal affinity and a distortion of the coordination geometry responsible for the activity loss.
A molecular‐level understanding of the effects of atmospheric‐pressure plasma on biological samples requires knowledge of the effects on proteins. Superoxide dismutases, which detoxify superoxide under oxidative stress conditions, play a key role in bacterial plasma resistance. Investigation of the impact of dielectric barrier discharge (DBD) treatment on purified superoxide dismutases SodA and SodB of Escherichia coli showed that DBD treatment caused a rapid protein degradation, with only 8% of protein remaining after 10 min. The affinity of SodA for the metal cofactor Mn 2+ was reduced. Mass spectrometry, in conjunction with coupled‐cluster calculations, revealed that modifications of amino acid residues in the active site can explain the decreased metal affinity and a distortion of the coordination geometry responsible for the activity loss.
A molecular‐level understanding of the effects of atmospheric‐pressure plasma on biological samples requires knowledge of the effects on proteins. Superoxide dismutases, which detoxify superoxide under oxidative stress conditions, play a key role in bacterial plasma resistance. Investigation of the impact of dielectric barrier discharge (DBD) treatment on purified superoxide dismutases SodA and SodB of Escherichia coli showed that DBD treatment caused a rapid protein degradation, with only 8% of protein remaining after 10 min. The affinity of SodA for the metal cofactor Mn2+ was reduced. Mass spectrometry, in conjunction with coupled‐cluster calculations, revealed that modifications of amino acid residues in the active site can explain the decreased metal affinity and a distortion of the coordination geometry responsible for the activity loss. All three superoxide dismutases (SODs) of Escherichia coli contribute to basal dielectric barrier discharge (DBD) plasma resistance. Purified SODs retain 50% activity after 1‐min DBD treatment. Histidine modifications in the active center affect metal cofactor coordination. The use of SODs as superoxide scavengers in plasma experiments is limited by protein stability and increasingly unspecific scavenging, as SODs are being modified by plasma.
Author Schubert, Britta
Jacob, Timo
Jung, Christoph K.
Krewing, Marco
Dobbelstein, Elena
Bandow, Julia E.
Author_xml – sequence: 1
  givenname: Marco
  orcidid: 0000-0002-5315-8755
  surname: Krewing
  fullname: Krewing, Marco
  organization: Ruhr University Bochum
– sequence: 2
  givenname: Christoph K.
  surname: Jung
  fullname: Jung, Christoph K.
  organization: Ulm University
– sequence: 3
  givenname: Elena
  surname: Dobbelstein
  fullname: Dobbelstein, Elena
  organization: Ruhr University Bochum
– sequence: 4
  givenname: Britta
  surname: Schubert
  fullname: Schubert, Britta
  organization: Ruhr University Bochum
– sequence: 5
  givenname: Timo
  orcidid: 0000-0001-7777-2306
  surname: Jacob
  fullname: Jacob, Timo
  organization: Ulm University
– sequence: 6
  givenname: Julia E.
  orcidid: 0000-0003-4100-8829
  surname: Bandow
  fullname: Bandow, Julia E.
  email: julia.bandow@rub.de
  organization: Ruhr University Bochum
BookMark eNqFkE1LAzEQhoNUsK1ePQe8tjX7nRxL_YSCPeh5mc3OasruZk2yav0T_mVTKxUEMYdJBt5n3sw7IoNWt0jIacBmAWPheddBNwtZyPwJxAEZBmkQTjlPxWD_TtgRGVm7ZixiCWdD8nGhsEbpjJK0AGMUGloqK5_APCLtarANUGcQXIOto1BVXmypdVCoWrnNhDbooKZKt1RqbUrVgvPNhEJbUmzfNw1SkE69eDHVlTeRDo3yiO07NPpNlbh1bHoHFu0xOaygtnjyfY_Jw9Xl_eJmury7vl3Ml1MZp0xMkwxSwUFyX0RUibSIfJNFDHhRlDKBIuGl_2whRcSZ5EWCKDmysuISIh5GY3K2m9sZ_dyjdfla96b1lnkYxzzNRJYFXhXvVNJoaw1WuVTuaz9nQNV5wPJt9Pk2-nwfvcdmv7DOqAbM5m9A7IBXVePmH3W-Ws1XP-wnXg-eUA
CitedBy_id crossref_primary_10_1088_1361_6463_ad211c
crossref_primary_10_3389_fphy_2020_613046
crossref_primary_10_1002_ppap_202070028
crossref_primary_10_3390_vaccines9050527
crossref_primary_10_1098_rsif_2023_0299
crossref_primary_10_1016_j_redox_2025_103562
Cites_doi 10.1007/s11426-014-5246-0
10.1063/1.3382344
10.3389/fpls.2013.00450
10.1080/00268976.2018.1433336
10.1016/S0021-9258(18)55001-8
10.1006/abbi.1995.1324
10.1021/acs.jctc.6b01041
10.1002/ppap.201300035
10.1007/s10529-010-0284-y
10.1039/b515623h
10.1088/0022-3727/47/28/285403
10.1111/jdv.12490
10.1002/ppap.200900077
10.1088/0022-3727/48/49/494003
10.1063/1.5012601
10.1002/ctpp.200710011
10.1021/ja972060j
10.1006/abio.1996.0162
10.1002/ppap.201100063
10.1021/bi051495d
10.1098/rsif.2018.0846
10.1002/jcc.20702
10.1002/jcc.21759
10.1111/j.1365-2133.2010.09744.x
10.1039/b508541a
10.1088/0022-3727/42/4/045212
10.1128/JB.62.3.293-300.1951
10.1021/ja00297a040
10.1016/S0006-291X(72)80218-3
10.1016/j.freeradbiomed.2019.01.018
10.1074/jbc.M708597200
10.1016/0378-1119(95)00193-A
10.1016/0891-5849(93)90513-T
10.1038/s41598-017-13041-8
10.1093/dnares/dsi012
10.1042/BJ20120505
10.1039/C8CP07550F
10.1098/rsif.2013.0591
10.1111/j.1365-2958.2004.03971.x
10.1016/j.jinorgbio.2009.07.011
10.1016/0891-5849(93)90512-S
10.1039/b906690j
10.1039/c001188f
10.1016/j.febslet.2011.10.048
10.1016/S0021-9258(19)61951-4
10.1016/S0162-0134(00)00086-6
10.1038/srep10031
10.1021/ja016146v
10.1002/ppap.201100078
10.1039/C8CP00197A
10.1128/AAC.01002-10
10.1021/ar020230d
10.1023/A:1009238214394
10.1002/wcms.81
10.1529/biophysj.105.071308
10.1002/ppap.201200047
10.1016/j.ifset.2013.04.002
10.1016/0076-6879(90)86141-H
10.1016/0003-9861(79)90628-3
10.1016/0003-2697(76)90527-3
10.1111/j.1432-1033.1995.0700p.x
10.1016/j.ab.2014.04.034
10.1088/0022-3727/48/27/275203
10.1038/msb4100050
10.1007/s00214-007-0250-5
10.1007/s007750050217
10.1021/bi971894b
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley‐VCH Verlag GmbH & Co. KGaA
2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Wiley‐VCH Verlag GmbH & Co. KGaA
– notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/ppap.202000019
DatabaseName Wiley Online Library Open Access
CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1612-8869
EndPage n/a
ExternalDocumentID 10_1002_ppap_202000019
PPAP202000019
Genre article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: BA 4193/7‐1; CRC1316‐1
– fundername: German State of North Rhine‐Westphalia
  funderid: Großgerät der Länder
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WFSAM
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c4609-57a698ac898a93f96b3ac8730a8bbdc5ab58daffbc9380c8b5eec8e0df8ca3823
IEDL.DBID DR2
ISSN 1612-8850
IngestDate Fri Jul 25 12:14:59 EDT 2025
Thu Apr 24 23:12:55 EDT 2025
Tue Jul 01 01:25:49 EDT 2025
Wed Jan 22 16:32:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4609-57a698ac898a93f96b3ac8730a8bbdc5ab58daffbc9380c8b5eec8e0df8ca3823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5315-8755
0000-0001-7777-2306
0000-0003-4100-8829
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fppap.202000019
PQID 2448679771
PQPubID 1036335
PageCount 14
ParticipantIDs proquest_journals_2448679771
crossref_citationtrail_10_1002_ppap_202000019
crossref_primary_10_1002_ppap_202000019
wiley_primary_10_1002_ppap_202000019_PPAP202000019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Plasma processes and polymers
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2017; 7
2014; 458
2013; 4
2009; 42
2017; 44
2019; 16
2011; 55
1979; 194
1972; 46
2012; 445
1990; 186
1951; 62
2013; 19
2015; 48
2010; 27
1991; 266
1994; 269
2013; 10
2019; 21
1976; 72
2008; 29
2014; 57
2007; 1
2010; 7
1998; 11
1998; 120
2010; 32
2006; 90
2001; 123
2015; 5
2012; 586
1995; 319
2018; 148
2006; 8
2003; 36
2010; 163
2014; 47
2011; 32
1995; 158
1985; 107
2006; 2
2018; 20
2011; 8
2008; 283
1993; 14
1998; 37
2004; 52
2012; 2
2015; 29
2007; 117
2006; 45
2018; 116
2017; 13
1995; 227
2010; 132
2019
2005; 7
2017
1998; 3
2000; 80
1996; 236
2009; 103
2007; 47
2005; 12
2019; 134
2012; 9
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
Chauvin J. (e_1_2_7_54_1) 2017
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
Thomason L. C. (e_1_2_7_27_1) 2007; 1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Steinman H. M. (e_1_2_7_19_1) 1994; 269
Krewing M. (e_1_2_7_51_1) 2019
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
Colagar A. H. (e_1_2_7_14_1) 2017; 44
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 19
  start-page: 146
  year: 2013
  publication-title: Innovative Food Sci. Emerging Technol.
– volume: 90
  start-page: 598
  year: 2006
  publication-title: Biophys. J.
– volume: 445
  start-page: 337
  year: 2012
  publication-title: Biochem. J.
– volume: 8
  start-page: 1154
  year: 2011
  publication-title: Plasma. Process. Polym.
– volume: 7
  start-page: 3297
  year: 2005
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 3
  start-page: 161
  year: 1998
  publication-title: J. Biol. Inorg. Chem.
– volume: 283
  start-page: 1786
  year: 2008
  publication-title: J. Biol. Chem.
– volume: 1
  start-page: 17
  year: 2007
  publication-title: Curr. Protoc. Mol. Biol.
– volume: 12
  start-page: 291
  year: 2005
  publication-title: DNA Res.
– volume: 14
  start-page: 91
  year: 1993
  publication-title: Free Radic. Biol. Med.
– volume: 16
  year: 2019
  publication-title: J. R. Soc., Interface
– volume: 120
  start-page: 461
  year: 1998
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 1708
  year: 2014
  publication-title: Sci. China: Chem.
– volume: 21
  start-page: 4117
  year: 2019
  publication-title: Phys. Chem. Chem. Phys.
– volume: 134
  start-page: 215
  year: 2019
  publication-title: Free Radic. Biol. Med.
– volume: 20
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 10
  start-page: 731
  year: 2013
  publication-title: Plasma. Process. Polym.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 72
  start-page: 248
  year: 1976
  publication-title: Anal. Biochem.
– volume: 10
  year: 2013
  publication-title: J. R. Soc., Interface
– volume: 7
  start-page: 250
  year: 2010
  publication-title: Plasma. Process. Polym.
– volume: 158
  start-page: 9
  year: 1995
  publication-title: Gene
– volume: 148
  year: 2018
  publication-title: J. Chem. Phys.
– volume: 45
  start-page: 1151
  year: 2006
  publication-title: Biochemistry
– volume: 227
  start-page: 700
  year: 1995
  publication-title: Eur. J. Biochem.
– volume: 116
  start-page: 1523
  year: 2018
  publication-title: Mol. Phys.
– volume: 29
  start-page: 167
  year: 2008
  publication-title: J. Comput. Chem.
– volume: 44
  start-page: 678
  year: 2017
  publication-title: Chiang Mai J. Sci.
– volume: 29
  start-page: 148
  year: 2015
  publication-title: J. Eur. Acad. Dermatol.
– volume: 55
  start-page: 1053
  year: 2011
  publication-title: Antimicrob. Agents Chemother.
– volume: 186
  start-page: 464
  year: 1990
  publication-title: Methods Enzymol.
– volume: 47
  start-page: 72
  year: 2007
  publication-title: Contrib. Plasm. Phys.
– year: 2019
  publication-title: Plasma Chem. Plasma Process.
– volume: 103
  start-page: 1375
  year: 2009
  publication-title: J. Inorg. Biochem.
– volume: 117
  start-page: 587
  year: 2007
  publication-title: Theor. Chem. Acc.
– volume: 14
  start-page: 85
  year: 1993
  publication-title: Free Radic. Biol. Med.
– volume: 266
  year: 1991
  publication-title: J. Biol. Chem.
– volume: 236
  start-page: 242
  year: 1996
  publication-title: Anal. Biochem.
– volume: 4
  start-page: 450
  year: 2013
  publication-title: Front. Plant Sci.
– volume: 62
  start-page: 293
  year: 1951
  publication-title: J. Bacteriol.
– volume: 107
  start-page: 3295
  year: 1985
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 554
  year: 2017
  publication-title: J. Chem. Theory Comput.
– volume: 586
  start-page: 585
  year: 2012
  publication-title: FEBS Lett.
– volume: 46
  start-page: 849
  year: 1972
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 458
  start-page: 69
  year: 2014
  publication-title: Anal. Biochem.
– volume: 11
  start-page: 159
  year: 1998
  publication-title: Biometals
– volume: 36
  start-page: 255
  year: 2003
  publication-title: Acc. Chem. Res.
– volume: 319
  start-page: 508
  year: 1995
  publication-title: Arch. Biochem. Biophys.
– volume: 10
  start-page: 181
  year: 2013
  publication-title: Plasma. Process. Polym.
– volume: 8
  start-page: 1057
  year: 2006
  publication-title: Phys. Chem. Chem. Phys.
– volume: 42
  year: 2009
  publication-title: J. Phys. D: Appl. Phys.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 37
  start-page: 1613
  year: 1998
  publication-title: Biochemistry
– volume: 123
  start-page: 8614
  year: 2001
  publication-title: J. Am. Chem. Soc.
– volume: 163
  start-page: 78
  year: 2010
  publication-title: Br. J. Dermatol.
– volume: 2
  start-page: 73
  year: 2012
  publication-title: WIREs Comput. Mol. Sci.
– volume: 52
  start-page: 133
  year: 2004
  publication-title: Mol. Microbiol.
– volume: 27
  start-page: 768
  year: 2010
  publication-title: Nat. Prod. Rep.
– volume: 47
  year: 2014
  publication-title: J. Phys. D: Appl. Phys.
– volume: 80
  start-page: 247
  year: 2000
  publication-title: J. Inorg. Biochem.
– volume: 48
  year: 2015
  publication-title: J. Phys. D: Appl. Phys.
– volume: 12
  start-page: 7779
  year: 2010
  publication-title: Phys. Chem. Chem. Phys.
– volume: 269
  year: 1994
  publication-title: J. Biol. Chem.
– volume: 32
  start-page: 1245
  year: 2010
  publication-title: Biotechnol. Lett.
– volume: 9
  start-page: 77
  year: 2012
  publication-title: Plasma. Process. Polym.
– volume: 2
  year: 2006
  publication-title: Mol. Syst. Biol.
– volume: 194
  start-page: 360
  year: 1979
  publication-title: Arch. Biochem. Biophys.
– volume: 32
  start-page: 1456
  year: 2011
  publication-title: J. Comput. Chem.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– ident: e_1_2_7_63_1
  doi: 10.1007/s11426-014-5246-0
– ident: e_1_2_7_42_1
  doi: 10.1063/1.3382344
– ident: e_1_2_7_57_1
  doi: 10.3389/fpls.2013.00450
– ident: e_1_2_7_47_1
  doi: 10.1080/00268976.2018.1433336
– ident: e_1_2_7_15_1
  doi: 10.1016/S0021-9258(18)55001-8
– ident: e_1_2_7_20_1
  doi: 10.1006/abbi.1995.1324
– ident: e_1_2_7_45_1
  doi: 10.1021/acs.jctc.6b01041
– ident: e_1_2_7_53_1
  doi: 10.1002/ppap.201300035
– ident: e_1_2_7_11_1
  doi: 10.1007/s10529-010-0284-y
– ident: e_1_2_7_44_1
  doi: 10.1039/b515623h
– ident: e_1_2_7_35_1
  doi: 10.1088/0022-3727/47/28/285403
– ident: e_1_2_7_3_1
  doi: 10.1111/jdv.12490
– ident: e_1_2_7_8_1
  doi: 10.1002/ppap.200900077
– volume: 44
  start-page: 678
  year: 2017
  ident: e_1_2_7_14_1
  publication-title: Chiang Mai J. Sci.
– ident: e_1_2_7_23_1
  doi: 10.1088/0022-3727/48/49/494003
– ident: e_1_2_7_40_1
  doi: 10.1063/1.5012601
– year: 2019
  ident: e_1_2_7_51_1
  publication-title: Plasma Chem. Plasma Process.
– ident: e_1_2_7_2_1
  doi: 10.1002/ctpp.200710011
– ident: e_1_2_7_72_1
  doi: 10.1021/ja972060j
– ident: e_1_2_7_32_1
  doi: 10.1006/abio.1996.0162
– ident: e_1_2_7_21_1
  doi: 10.1002/ppap.201100063
– ident: e_1_2_7_71_1
  doi: 10.1021/bi051495d
– ident: e_1_2_7_16_1
  doi: 10.1098/rsif.2018.0846
– ident: e_1_2_7_48_1
  doi: 10.1002/jcc.20702
– ident: e_1_2_7_41_1
  doi: 10.1002/jcc.21759
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1365-2133.2010.09744.x
– ident: e_1_2_7_43_1
  doi: 10.1039/b508541a
– ident: e_1_2_7_5_1
  doi: 10.1088/0022-3727/42/4/045212
– ident: e_1_2_7_28_1
  doi: 10.1128/JB.62.3.293-300.1951
– ident: e_1_2_7_17_1
  doi: 10.1021/ja00297a040
– ident: e_1_2_7_24_1
  doi: 10.1016/S0006-291X(72)80218-3
– ident: e_1_2_7_49_1
  doi: 10.1016/j.freeradbiomed.2019.01.018
– ident: e_1_2_7_30_1
  doi: 10.1074/jbc.M708597200
– ident: e_1_2_7_26_1
  doi: 10.1016/0378-1119(95)00193-A
– ident: e_1_2_7_65_1
  doi: 10.1016/0891-5849(93)90513-T
– ident: e_1_2_7_67_1
  doi: 10.1038/s41598-017-13041-8
– ident: e_1_2_7_31_1
  doi: 10.1093/dnares/dsi012
– ident: e_1_2_7_58_1
  doi: 10.1042/BJ20120505
– ident: e_1_2_7_9_1
  doi: 10.1039/C8CP07550F
– ident: e_1_2_7_12_1
  doi: 10.1098/rsif.2013.0591
– ident: e_1_2_7_56_1
  doi: 10.1111/j.1365-2958.2004.03971.x
– ident: e_1_2_7_52_1
  doi: 10.1016/j.jinorgbio.2009.07.011
– start-page: 7
  year: 2017
  ident: e_1_2_7_54_1
  publication-title: Sci. Rep.
– ident: e_1_2_7_64_1
  doi: 10.1016/0891-5849(93)90512-S
– ident: e_1_2_7_38_1
  doi: 10.1039/b906690j
– ident: e_1_2_7_10_1
  doi: 10.1039/c001188f
– ident: e_1_2_7_18_1
  doi: 10.1016/j.febslet.2011.10.048
– volume: 1
  start-page: 17
  year: 2007
  ident: e_1_2_7_27_1
  publication-title: Curr. Protoc. Mol. Biol.
– volume: 269
  start-page: 28629
  year: 1994
  ident: e_1_2_7_19_1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)61951-4
– ident: e_1_2_7_70_1
  doi: 10.1016/S0162-0134(00)00086-6
– ident: e_1_2_7_22_1
  doi: 10.1038/srep10031
– ident: e_1_2_7_37_1
  doi: 10.1021/ja016146v
– ident: e_1_2_7_55_1
  doi: 10.1002/ppap.201100078
– ident: e_1_2_7_7_1
  doi: 10.1039/C8CP00197A
– ident: e_1_2_7_66_1
  doi: 10.1128/AAC.01002-10
– ident: e_1_2_7_62_1
  doi: 10.1021/ar020230d
– ident: e_1_2_7_50_1
  doi: 10.1023/A:1009238214394
– ident: e_1_2_7_39_1
  doi: 10.1002/wcms.81
– ident: e_1_2_7_60_1
  doi: 10.1529/biophysj.105.071308
– ident: e_1_2_7_68_1
  doi: 10.1002/ppap.201200047
– ident: e_1_2_7_13_1
  doi: 10.1016/j.ifset.2013.04.002
– ident: e_1_2_7_33_1
  doi: 10.1016/0076-6879(90)86141-H
– ident: e_1_2_7_59_1
  doi: 10.1016/0003-9861(79)90628-3
– ident: e_1_2_7_29_1
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1432-1033.1995.0700p.x
– ident: e_1_2_7_34_1
  doi: 10.1016/j.ab.2014.04.034
– ident: e_1_2_7_6_1
  doi: 10.1088/0022-3727/48/27/275203
– ident: e_1_2_7_25_1
  doi: 10.1038/msb4100050
– ident: e_1_2_7_46_1
  doi: 10.1007/s00214-007-0250-5
– ident: e_1_2_7_61_1
  doi: 10.1007/s007750050217
– ident: e_1_2_7_69_1
  doi: 10.1021/bi971894b
SSID ssj0030580
Score 2.298576
Snippet A molecular‐level understanding of the effects of atmospheric‐pressure plasma on biological samples requires knowledge of the effects on proteins. Superoxide...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Affinity
Biological properties
Coordination
Dielectric barrier discharge
E coli
Enzyme activity
Impact resistance
iron
manganese
Mass spectrometry
Oxidation resistance
peroxynitrite
plasma medicine
Pressure effects
Proteins
Title Dielectric barrier discharge plasma treatment affects stability, metal ion coordination, and enzyme activity of bacterial superoxide dismutases
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fppap.202000019
https://www.proquest.com/docview/2448679771
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEA7qRS_q-sDRWclB8GJrpp_p4-AqsrAyiIK3ppLUwKDTM8wD1D_hX7aqM90-YBF2L00Hkk46qUq-rq76SogjUDE6l2NgEw1BbJQNdKQg6ER0PGHoUm05OPnPdXp1F_--T-4_RPF7fojG4MaaUe3XrOBgpmfvpKHjMTDfZFjZpzmCjx22GBXdNPxRJMtV6jRCNaT2OlE1a6MKzz43_3wqvUPNj4C1OnEuNwTUY_WOJg-n85k5tS9faBz_52U2xfoCjsqul58fYgnLLbF6XmeB2xavvwY-U87ASgMTzm8nOZKXCZZQjgl7D0E23uoSvHuIJMxZed0-n8ghEr6XtPzSjuhLd-DNjycSSiexfHkeouTgCs5hIUd96qSij6Ym0zmTmD8NHHKPQ3Yex-mOuLu8uD2_ChZJHAIbpyoPkgzSXIPVdMmjfp6aiAq0r4A2xtkETKIdDc7YPNLKapMgWo3K9bUF_km5K1bKUYl7QqJOM-wb3YmBcEeuchOTcKFTLnQQZdgSQb2IhV0wnHOijcfCczOHBU9z0UxzSxw39cee2-OvNdu1TBQLHZ8WBIyYrTDLOi0RVov7zVOKXq_ba0r7_9LoQKzxvfcmbIuV2WSOPwkVzcyhWA7j3mEl_2_bvAoP
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BOZQLtDxEoFAfKnHpts4-7WNVWgVoqwi1Um8rPyZSBNlETSLR_gn-MjN2dtsiVUhwWckre9drz9ifZ2e-AdgxMkfvNSauUCbJrXSJyqRJ-hltT5j6UjkOTj49KwcX-ZfLovUm5FiYyA_RGdxYM8J6zQrOBun9W9bQ2cww4WQaDNT6MTzhtN7hVPWtY5AiaQ7J0wjXkOKrQra8jTLdv9_-_r50CzbvQtaw5xw_B9v2NrqafN9bLuyeu_mDyPG_PmcDnq0QqTiIIrQJj7B5AeuHbSK4l_Dr0zgmyxk7Yc0Vp7gTHMzLHEsoZgS_J0Z0DuvCRA8RQbAzON5e74oJEsQXJAHCTemwO44WyF1hGi-wubmeoOD4Ck5jIaYjeklgkKYm8yXzmP8ce-Q3Tth_HOev4OL46PxwkKzyOCQuL6VOisqUWhmn6KKzkS5tRgVaWoyy1rvC2EJ56px1OlPSKVsgOoXSj5Qz_J_yNaw10wbfgEBVVjiyqp8bgh5aapuTfKGXPvUmq7AHSTuLtVuRnHOujR91pGdOax7muhvmHnzs6s8ivceDNbdaoahXaj6vCRsxYWFV9XuQhtn9y1Pq4fBg2JXe_kujbVgfnJ-e1Cefz76-g6d8PzoXbsHa4mqJ7wkkLeyHoAa_ASQ6DVM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7aFJpc-kzptmmrQ6GXONH6KR1Dtkv6CktpIDejxxiWdr1mH5DkT_Qvd8ZaO0mhFNqLQUayZM2M9Fme-QbgrZEpeq8xcpkyUWqli1QiTTRMaHvC2OfKcXDyl9P85Cz9eJ6d34jiD_wQ_YEbW0a7XrOBN746vCYNbRrDfJNxez6t78K9NJeK9Xr0tSeQImVuc6cRrCG7V5nsaBtlfHi7_e1t6Rpr3kSs7ZYzfgimG2zwNPl-sF7ZA3f1G4_j_7zNI3iwwaPiKCjQY7iD9RPYPu7SwD2Fn6NpSJUzdcKaBSe4ExzKywxLKBoC3zMjend1YYJ_iCDQ2brdXu6LGRLAFyR_4eb0qTsN54_7wtReYH11OUPB0RWcxELMK-qk5Y-mJss1s5hfTD1yjzP2HsflLpyN3387Pok2WRwiRxLRUVaYXCvjFF10UuncJlSghcUoa73LjM2Up8FZpxMlnbIZolMofaWc4b-Uz2Crntf4HASqvMDKqmFqCHhoqW1K2oVe-tibpMABRJ0QS7ehOOdMGz_KQM4clzzNZT_NA3jX128Cuccfa-51OlFujHxZEjJiusKiGA4gboX7l6eUk8nRpC-9-JdGb-D-ZDQuP384_fQSdvh28Czcg63VYo2vCCGt7OvWCH4BFNsMCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dielectric+barrier+discharge+plasma+treatment+affects+stability%2C+metal+ion+coordination%2C+and+enzyme+activity+of+bacterial+superoxide+dismutases&rft.jtitle=Plasma+processes+and+polymers&rft.au=Krewing%2C+Marco&rft.au=Jung%2C+Christoph+K&rft.au=Dobbelstein%2C+Elena&rft.au=Schubert%2C+Britta&rft.date=2020-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1612-8850&rft.eissn=1612-8869&rft.volume=17&rft.issue=10&rft_id=info:doi/10.1002%2Fppap.202000019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1612-8850&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1612-8850&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1612-8850&client=summon