Controlling Photocatalytic Activity by Self‐Assembly – Tuning Perylene Bisimide Photocatalysts for the Hydrogen Evolution Reaction
Amino acid functionalized perylene bisimides (PBIs) form self‐assembled structures in solution, the nature of which depends on the local environment. Using a high‐throughput photocatalysis setup, five PBIs are studied for the hydrogen evolution reaction (HER) under a range of conditions (pH and hole...
Saved in:
Published in | Advanced energy materials Vol. 10; no. 46 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Amino acid functionalized perylene bisimides (PBIs) form self‐assembled structures in solution, the nature of which depends on the local environment. Using a high‐throughput photocatalysis setup, five PBIs are studied for the hydrogen evolution reaction (HER) under a range of conditions (pH and hole scavenger concentration) across 350 experiments to explore the relationship between supramolecular structure and photocatalytic activity. Using small angle X‐ray scattering (SAXS), NMR spectroscopy and ultraviolet‐visible (UV‐vis) absorption spectroscopy, it is shown that photocatalytic activity is determined by the nature of the self‐assembled aggregate that is formed, demonstrating the potential of self‐assembly to tune activity. There is a clear correlation between the presence of charged flexible cylindrical aggregates and the occurrence of photocatalytic H2 production, with UV–vis spectroscopy indicating that the most active structure type has a distinctive form of π‐aggregation which is proposed to enable efficient charge separation across multiple PBI units.
Self‐assembly is an exciting but underexplored field in photocatalysis. The design of molecular chromophores is common, but less attention is paid to how these building blocks assemble. Using high‐throughput testing and detailed characterization, it is shown how a single set of starting molecules can give rise to profoundly different levels of photocatalytic activity depending on their supramolecular structure. |
---|---|
AbstractList | Amino acid functionalized perylene bisimides (PBIs) form self‐assembled structures in solution, the nature of which depends on the local environment. Using a high‐throughput photocatalysis setup, five PBIs are studied for the hydrogen evolution reaction (HER) under a range of conditions (pH and hole scavenger concentration) across 350 experiments to explore the relationship between supramolecular structure and photocatalytic activity. Using small angle X‐ray scattering (SAXS), NMR spectroscopy and ultraviolet‐visible (UV‐vis) absorption spectroscopy, it is shown that photocatalytic activity is determined by the nature of the self‐assembled aggregate that is formed, demonstrating the potential of self‐assembly to tune activity. There is a clear correlation between the presence of charged flexible cylindrical aggregates and the occurrence of photocatalytic H2 production, with UV–vis spectroscopy indicating that the most active structure type has a distinctive form of π‐aggregation which is proposed to enable efficient charge separation across multiple PBI units.
Self‐assembly is an exciting but underexplored field in photocatalysis. The design of molecular chromophores is common, but less attention is paid to how these building blocks assemble. Using high‐throughput testing and detailed characterization, it is shown how a single set of starting molecules can give rise to profoundly different levels of photocatalytic activity depending on their supramolecular structure. Amino acid functionalized perylene bisimides (PBIs) form self‐assembled structures in solution, the nature of which depends on the local environment. Using a high‐throughput photocatalysis setup, five PBIs are studied for the hydrogen evolution reaction (HER) under a range of conditions (pH and hole scavenger concentration) across 350 experiments to explore the relationship between supramolecular structure and photocatalytic activity. Using small angle X‐ray scattering (SAXS), NMR spectroscopy and ultraviolet‐visible (UV‐vis) absorption spectroscopy, it is shown that photocatalytic activity is determined by the nature of the self‐assembled aggregate that is formed, demonstrating the potential of self‐assembly to tune activity. There is a clear correlation between the presence of charged flexible cylindrical aggregates and the occurrence of photocatalytic H 2 production, with UV–vis spectroscopy indicating that the most active structure type has a distinctive form of π‐aggregation which is proposed to enable efficient charge separation across multiple PBI units. Amino acid functionalized perylene bisimides (PBIs) form self‐assembled structures in solution, the nature of which depends on the local environment. Using a high‐throughput photocatalysis setup, five PBIs are studied for the hydrogen evolution reaction (HER) under a range of conditions (pH and hole scavenger concentration) across 350 experiments to explore the relationship between supramolecular structure and photocatalytic activity. Using small angle X‐ray scattering (SAXS), NMR spectroscopy and ultraviolet‐visible (UV‐vis) absorption spectroscopy, it is shown that photocatalytic activity is determined by the nature of the self‐assembled aggregate that is formed, demonstrating the potential of self‐assembly to tune activity. There is a clear correlation between the presence of charged flexible cylindrical aggregates and the occurrence of photocatalytic H2 production, with UV–vis spectroscopy indicating that the most active structure type has a distinctive form of π‐aggregation which is proposed to enable efficient charge separation across multiple PBI units. |
Author | Khunti, Nikul Nolan, Michael C. Cooper, Andrew I. McDowall, Daniel Cowieson, Nathan McAulay, Kate Cowan, Alexander J. Greeves, Benjamin J. Clowes, Rob Adams, Dave J. Wallace, Matthew Draper, Emily R. Fuentes‐Caparrós, Ana M. Thomson, Lisa |
Author_xml | – sequence: 1 givenname: Daniel surname: McDowall fullname: McDowall, Daniel organization: University of Glasgow – sequence: 2 givenname: Benjamin J. surname: Greeves fullname: Greeves, Benjamin J. organization: University of Liverpool – sequence: 3 givenname: Rob surname: Clowes fullname: Clowes, Rob organization: University of Liverpool – sequence: 4 givenname: Kate surname: McAulay fullname: McAulay, Kate organization: University of Glasgow – sequence: 5 givenname: Ana M. surname: Fuentes‐Caparrós fullname: Fuentes‐Caparrós, Ana M. organization: University of Glasgow – sequence: 6 givenname: Lisa surname: Thomson fullname: Thomson, Lisa organization: University of Glasgow – sequence: 7 givenname: Nikul surname: Khunti fullname: Khunti, Nikul organization: Harwell Science and Innovation Campus – sequence: 8 givenname: Nathan surname: Cowieson fullname: Cowieson, Nathan organization: Harwell Science and Innovation Campus – sequence: 9 givenname: Michael C. surname: Nolan fullname: Nolan, Michael C. organization: University of Liverpool – sequence: 10 givenname: Matthew surname: Wallace fullname: Wallace, Matthew organization: University of East Anglia – sequence: 11 givenname: Andrew I. surname: Cooper fullname: Cooper, Andrew I. organization: University of Liverpool – sequence: 12 givenname: Emily R. surname: Draper fullname: Draper, Emily R. organization: University of Glasgow – sequence: 13 givenname: Alexander J. orcidid: 0000-0001-9032-3548 surname: Cowan fullname: Cowan, Alexander J. email: a.j.cowan@liverpool.ac.uk organization: University of Liverpool – sequence: 14 givenname: Dave J. orcidid: 0000-0002-3176-1350 surname: Adams fullname: Adams, Dave J. email: Dave.Adams@glasgow.ac.uk organization: University of Glasgow |
BookMark | eNqFkEtLAzEUhYMo-Ny6Drhuzaszk2Ut9QG-8LEeMpk7GkkTTdLK7Fy5FvyH_hKnVlQE8W7uWZzv3MtZR8vOO0Bom5I-JYTtKnCTPiOs0yKTS2iNZlT0skKQ5S_N2SraivGOdCMkJZyvoeeRdyl4a427wee3PnmtkrJtMhoPdTIzk1pctfgSbPP29DKMESaVbfHb0yu-mroPCkJrwQHeM9FMTA0_c2KKuPEBp1vAh20d_A04PJ55O03GO3wBSs_FJlpplI2w9bk30PX--Gp02Ds-OzgaDY97WmRE9qjWSleMc1FTVWQSajnIudBE8VzXPCcZAS4rwYqiYFQOGmjqijOm5YAWGQW-gXYWuffBP0whpvLOT4PrTpZdb3leDCgRnUssXDr4GAM0pTZJzf9MQRlbUlLOSy_npZdfpXdY_xd2H8xEhfZvQC6AR2Oh_cddDsenJ9_sO4UnmtA |
CitedBy_id | crossref_primary_10_1016_j_ccr_2024_216218 crossref_primary_10_1063_5_0098274 crossref_primary_10_1039_D1RA01218E crossref_primary_10_3390_molecules29163872 crossref_primary_10_1002_chem_202301042 crossref_primary_10_1002_ange_202210619 crossref_primary_10_1016_j_jallcom_2022_168500 crossref_primary_10_1016_j_molliq_2024_124267 crossref_primary_10_1039_D4SM00238E crossref_primary_10_1039_D1NJ02557K crossref_primary_10_1002_smll_202410805 crossref_primary_10_1039_D2MA00207H crossref_primary_10_1039_D2QM00299J crossref_primary_10_1021_jacs_4c02019 crossref_primary_10_1016_j_dyepig_2024_111968 crossref_primary_10_1039_D3CC04123A crossref_primary_10_1002_adma_202418137 crossref_primary_10_1016_j_dyepig_2021_110044 crossref_primary_10_1002_cctc_202301033 crossref_primary_10_1016_j_ijhydene_2024_06_245 crossref_primary_10_1021_acs_langmuir_1c01772 crossref_primary_10_1063_5_0202991 crossref_primary_10_1002_aenm_202100709 crossref_primary_10_1016_j_apcatb_2024_124222 crossref_primary_10_1021_acs_jpcc_2c03210 crossref_primary_10_1039_D3CC04557A crossref_primary_10_1016_j_aca_2023_340828 crossref_primary_10_1021_acsanm_2c03061 crossref_primary_10_1021_acscatal_4c07058 crossref_primary_10_1002_adfm_202100233 crossref_primary_10_1021_jacs_1c12155 crossref_primary_10_1002_anie_202210619 crossref_primary_10_1016_j_xcrp_2022_101132 crossref_primary_10_1038_s41467_022_29826_z crossref_primary_10_1039_D3RE00398A crossref_primary_10_1016_j_jmst_2024_01_058 crossref_primary_10_1002_smll_202100132 crossref_primary_10_1088_2515_7639_ad08d2 crossref_primary_10_1021_acs_nanolett_0c05024 crossref_primary_10_1016_j_ijhydene_2022_11_115 crossref_primary_10_1002_advs_202307227 crossref_primary_10_1039_D4SC03825H crossref_primary_10_1038_s41565_022_01289_9 crossref_primary_10_3762_bjoc_20_220 crossref_primary_10_1039_D4NR00383G crossref_primary_10_1039_D4TB00836G |
Cites_doi | 10.1039/C9TA08974H 10.1021/jacs.5b10027 10.1002/anie.201505289 10.1039/C4RA09258A 10.1038/s41598-017-08644-0 10.1021/jacs.6b05673 10.1002/anie.201108690 10.1002/chem.200600889 10.1039/B401630K 10.1098/rsta.2016.0400 10.1039/c2cc31465g 10.1021/acs.chemrev.5b00188 10.1039/C8SC05595E 10.1039/C6SM02404A 10.1039/C8EE01157E 10.1002/chem.201800201 10.1016/j.xcrp.2020.100148 10.1007/s11426-017-9098-6 10.1039/C7TA01845B 10.1021/jacs.9b03591 10.1021/acs.chemrev.5b00312 10.1016/j.dyepig.2009.04.014 10.1021/jp504564s 10.1039/c1cc14189a 10.1021/jacs.7b12641 10.1016/j.ejpb.2015.05.017 10.1007/s40974-016-0005-z 10.1021/la104888p 10.1039/c1cc10321k 10.1038/nchem.2075 10.1021/ja9600789 10.1039/C5SM01760B 10.1021/acs.jpcc.9b11846 10.1021/acs.jpcc.6b06222 10.1021/jf9710185 10.1016/j.chempr.2017.03.022 10.1039/C9CP05839G 10.1039/f19878301101 10.1021/ar900233v 10.1134/S003602441807035X 10.1039/c3ra44553d 10.1002/anie.200504454 10.1021/ja903938g 10.1039/C4TC00744A 10.1021/la061409q 10.1016/j.apcatb.2016.09.037 10.1021/jo2001963 10.1021/acs.biomac.7b00823 10.1039/C5RA22253B 10.1039/C9NR03898A |
ContentType | Journal Article |
Copyright | 2020 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202002469 |
DatabaseName | Wiley Online Library Open Access CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202002469 AENM202002469 |
Genre | article |
GrantInformation_xml | – fundername: EPSRC funderid: EP/P034497/1; EP/L021978/1; L/021978/2 – fundername: Leverhulme Trust funderid: RPG‐2018‐013 |
GroupedDBID | 05W 0R~ 1OC 24P 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4609-1ccacb2334d1a869ed95734c0a37cd37060e39b428882195fefdb322c951861e3 |
IEDL.DBID | 24P |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:12:04 EDT 2025 Tue Jul 01 01:43:37 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Wed Jan 22 16:31:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4609-1ccacb2334d1a869ed95734c0a37cd37060e39b428882195fefdb322c951861e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9032-3548 0000-0002-3176-1350 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202002469 |
PQID | 2467785104 |
PQPubID | 886389 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2467785104 crossref_citationtrail_10_1002_aenm_202002469 crossref_primary_10_1002_aenm_202002469 wiley_primary_10_1002_aenm_202002469_AENM202002469 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2013; 3 2017; 2 2019; 11 2019; 10 2019; 12 2004; 4 2020; 124 2012; 51 1998; 46 2014; 4 2020; 1 2014; 2 2015; 137 1987; 83 2006; 22 2019; 21 2016; 116 2011; 27 2017; 202 2014; 6 2014; 118 2019; 8 2015; 5 2017; 60 2018; 140 2015; 97 2015; 11 2015; 54 2011; 76 2009; 131 2017; 375 2019; 141 2016; 120 2007; 13 2010; 84 2018; 24 2010; 43 2016; 1 2015; 115 2006; 45 2017; 13 2018; 92 2017; 18 2016; 138 2011; 47 2012; 48 1996; 118 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 1 year: 2020 publication-title: Cell Reports Phys. Sci. – volume: 54 year: 2015 publication-title: Angew. Chemie – Int. Ed. – volume: 3 year: 2013 publication-title: RSC Adv. – volume: 45 start-page: 2778 year: 2006 publication-title: Angew. Chemie – Int. Ed. – volume: 1 start-page: 10 year: 2016 publication-title: Energy, Ecol. Environ. – volume: 140 start-page: 4965 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1564 year: 2004 publication-title: Chem. Commun. – volume: 51 start-page: 6328 year: 2012 publication-title: Angew. Chemie – Int. Ed. – volume: 22 start-page: 7610 year: 2006 publication-title: Langmuir – volume: 2 start-page: 5570 year: 2014 publication-title: J. Mater. Chem. C – volume: 375 year: 2017 publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. – volume: 124 start-page: 6971 year: 2020 publication-title: J. Phys. Chem. C – volume: 115 year: 2015 publication-title: Chem. Rev. – volume: 27 start-page: 3074 year: 2011 publication-title: Langmuir – volume: 48 start-page: 7961 year: 2012 publication-title: Chem. Commun. – volume: 83 start-page: 1101 year: 1987 publication-title: J. Chem. Soc. Faraday Trans. I – volume: 116 start-page: 962 year: 2016 publication-title: Chem. Rev. – volume: 118 start-page: 6767 year: 1996 publication-title: J. Am. Chem. Soc. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 6 start-page: 964 year: 2014 publication-title: Nat. Chem. – volume: 18 start-page: 3531 year: 2017 publication-title: Biomacromolecules – volume: 118 start-page: 8642 year: 2014 publication-title: J. Phys. Chem. B – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 76 start-page: 2386 year: 2011 publication-title: J. Org. Chem. – volume: 60 start-page: 1334 year: 2017 publication-title: Sci. China Chem. – volume: 10 start-page: 5779 year: 2019 publication-title: Chem. Sci. – volume: 46 start-page: 1830 year: 1998 publication-title: J. Agric. Food Chem. – volume: 47 start-page: 5109 year: 2011 publication-title: Chem. Commun. – volume: 2 start-page: 716 year: 2017 publication-title: Chem – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 9063 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 7739 year: 2015 publication-title: Soft Matter – volume: 97 start-page: 338 year: 2015 publication-title: Eur. J. Pharm. Biopharm. – volume: 47 year: 2011 publication-title: Chem. Commun. – volume: 202 start-page: 289 year: 2017 publication-title: Appl. Catal. B Environ. – volume: 13 start-page: 436 year: 2007 publication-title: Chem. – A Eur. J. – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – volume: 21 year: 2019 publication-title: Phys. Chem. Chem. Phys. – volume: 7 start-page: 8380 year: 2017 publication-title: Sci. Rep. – volume: 4 year: 2014 publication-title: RSC Adv. – volume: 84 start-page: 1 year: 2010 publication-title: Dye. Pigment. – volume: 131 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 4006 year: 2018 publication-title: Chem. – A Eur. J. – volume: 12 start-page: 463 year: 2019 publication-title: Energy Environ. Sci. – volume: 92 start-page: 1261 year: 2018 publication-title: Russ. J. Phys. Chem. A – volume: 13 start-page: 1716 year: 2017 publication-title: Soft Matter – volume: 5 start-page: 7555 year: 2017 publication-title: J. Mater. Chem. A – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 429 year: 2010 publication-title: Acc. Chem. Res. – volume: 8 start-page: 158 year: 2019 publication-title: J. Mater. Chem. A – ident: e_1_2_6_37_1 doi: 10.1039/C9TA08974H – ident: e_1_2_6_35_1 doi: 10.1021/jacs.5b10027 – ident: e_1_2_6_43_1 doi: 10.1002/anie.201505289 – ident: e_1_2_6_21_1 doi: 10.1039/C4RA09258A – ident: e_1_2_6_45_1 doi: 10.1038/s41598-017-08644-0 – ident: e_1_2_6_49_1 doi: 10.1021/jacs.6b05673 – ident: e_1_2_6_2_1 doi: 10.1002/anie.201108690 – ident: e_1_2_6_47_1 doi: 10.1002/chem.200600889 – ident: e_1_2_6_3_1 doi: 10.1039/B401630K – ident: e_1_2_6_16_1 doi: 10.1098/rsta.2016.0400 – ident: e_1_2_6_5_1 doi: 10.1039/c2cc31465g – ident: e_1_2_6_10_1 doi: 10.1021/acs.chemrev.5b00188 – ident: e_1_2_6_34_1 doi: 10.1039/C8SC05595E – ident: e_1_2_6_44_1 – ident: e_1_2_6_50_1 doi: 10.1039/C6SM02404A – ident: e_1_2_6_18_1 doi: 10.1039/C8EE01157E – ident: e_1_2_6_29_1 doi: 10.1002/chem.201800201 – ident: e_1_2_6_13_1 doi: 10.1016/j.xcrp.2020.100148 – ident: e_1_2_6_9_1 doi: 10.1007/s11426-017-9098-6 – ident: e_1_2_6_22_1 doi: 10.1039/C7TA01845B – ident: e_1_2_6_41_1 doi: 10.1021/jacs.9b03591 – ident: e_1_2_6_14_1 doi: 10.1021/acs.chemrev.5b00312 – ident: e_1_2_6_15_1 doi: 10.1016/j.dyepig.2009.04.014 – ident: e_1_2_6_11_1 doi: 10.1021/jp504564s – ident: e_1_2_6_27_1 doi: 10.1039/c1cc14189a – ident: e_1_2_6_36_1 doi: 10.1021/jacs.7b12641 – ident: e_1_2_6_39_1 doi: 10.1016/j.ejpb.2015.05.017 – ident: e_1_2_6_17_1 doi: 10.1007/s40974-016-0005-z – ident: e_1_2_6_38_1 doi: 10.1021/la104888p – ident: e_1_2_6_1_1 doi: 10.1039/c1cc10321k – ident: e_1_2_6_20_1 doi: 10.1038/nchem.2075 – ident: e_1_2_6_4_1 doi: 10.1021/ja9600789 – ident: e_1_2_6_51_1 doi: 10.1039/C5SM01760B – ident: e_1_2_6_24_1 doi: 10.1021/acs.jpcc.9b11846 – ident: e_1_2_6_30_1 doi: 10.1021/acs.jpcc.6b06222 – ident: e_1_2_6_40_1 doi: 10.1021/jf9710185 – ident: e_1_2_6_6_1 doi: 10.1016/j.chempr.2017.03.022 – ident: e_1_2_6_33_1 doi: 10.1039/C9CP05839G – ident: e_1_2_6_12_1 doi: 10.1039/f19878301101 – ident: e_1_2_6_46_1 doi: 10.1021/ar900233v – ident: e_1_2_6_42_1 doi: 10.1134/S003602441807035X – ident: e_1_2_6_8_1 doi: 10.1039/c3ra44553d – ident: e_1_2_6_23_1 doi: 10.1002/anie.200504454 – ident: e_1_2_6_28_1 doi: 10.1021/ja903938g – ident: e_1_2_6_25_1 doi: 10.1039/C4TC00744A – ident: e_1_2_6_26_1 doi: 10.1021/la061409q – ident: e_1_2_6_19_1 doi: 10.1016/j.apcatb.2016.09.037 – ident: e_1_2_6_7_1 doi: 10.1021/jo2001963 – ident: e_1_2_6_31_1 doi: 10.1021/acs.biomac.7b00823 – ident: e_1_2_6_32_1 doi: 10.1039/C5RA22253B – ident: e_1_2_6_48_1 doi: 10.1039/C9NR03898A |
SSID | ssj0000491033 |
Score | 2.517188 |
Snippet | Amino acid functionalized perylene bisimides (PBIs) form self‐assembled structures in solution, the nature of which depends on the local environment. Using a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Assembly Catalytic activity hydrogen Hydrogen evolution reactions Hydrogen production NMR spectroscopy organic photocatalysts Photocatalysis self‐assembly Small angle X ray scattering solar fuels Spectrum analysis |
Title | Controlling Photocatalytic Activity by Self‐Assembly – Tuning Perylene Bisimide Photocatalysts for the Hydrogen Evolution Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202002469 https://www.proquest.com/docview/2467785104 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60vehBfGK1lj0InkLT7CZxj7G2FLEi2kJvIfsIFtpUmlbIzZNnwX_YX-JskqbxIIK3hOzsYWcm--3szDcIXWq-FJeFtsGESQwqA8vgHE4p0gwBwAaUyDQ00H9wekN6N7JHpSr-jB-iCLhpz0j_19rBAx43N6ShgYp0JblOMoAj3jaq6vpandRn0cciygL4t2Wm_eQB2VDDAftdMzeaVvPnFD93pg3cLIPWdNfp7qO9HC5iL9PvAdpS0SHaLZEIHqGPdpZtruvK8ePLbDFLQzIJSGBPZM0hME_ws5qEq_dPfcs75ZMEr96_8GAZpVJqnsDuo_DNOB5Px1KV54kXMQZkiwEp4l4i5zMwOdx5y00WP6msNOIYDbudQbtn5N0VDEEd3QMBdCe4RQiVreDaYUoy2yVUmAFxhSSaVUcRxuF4AiC8xexQhZKD-wvAZNdOS5ETVIlmkTpF2OVhSGB9ueCS2sJhoaMEF4FGW0wwUkPGemV9kVOP6w4YEz8jTbZ8rQm_0EQNXRXjXzPSjV9H1teK8nPni3344LqAJE1aQ1aqvD9m8b3OQ794O_uP0Dna0c9ZoksdVRbzpboAuLLgjdQiG6jq3fbvn78BaYrmYg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB5ReqA9oAJFDQTYA4iThbO7ttlDDwGCQiERgiBxM94fq5GCU8WByrecOCPxJLwST9JZ2zHhUFWqxNH27mq1M-P9dnbmG4Bty5cSiNhzhHKZw3VEHSnxlKLdGAFsxJnOXQOdrt--4j-uves5eJ7mwhT8EJXDzVpG_r-2Bm4d0nuvrKGRSWwquY0ywDNeGVd5arLfeGpLv58coYh3KD1u9Q7bTllYwFHct_T_OG0lKWNcN6J9XxgtvIBx5UYsUJpZQhnDhERkjvizIbzYxFqi5iuEI_t-wzAc9wN85D4NbNEEys8rtw4C7oabF7BHKMUdHw1mShXp0r23U367Fb7i21mUnG9zx19gscSnpFko1BLMmWQZPs-wFq7Aw2ER3m4T2cn5z-F4mPuAMuxBmqqoRkFkRi7NIH6ZPNpr5Vs5yMjL5In07pK8lxlluN0ZctBP-7d9bWbHSccpQShNEJqSdqZHQ9Rx0rovbYRcmCIX4ytcvcuqr8J8MkzMNyCBjGOG6yuV1NxTvoh9o6SKLLwTSrAaONOVDVXJdW5LbgzCgqWZhlYSYSWJGuxW7X8VLB9_bVmfCiosrT0N8UMQIHR1eQ1oLrx_jBI2W91O9bT2P522YKHd65yFZyfd03X4ZN8XUTZ1mB-P7swGYqWx3My1k8DNe5vDH6A_IOk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6xIK2WA-KxK8rTBxCniDR2Enzg0IVWBZaqYkHilo1folJJUVNAuXHijLR_hN_EL2GcpKEc0EorcUxiW5ZnJv48nvkGYMvypYTc-A6XLnWYij1HCDylKNcggI0ZVblr4LQTtC_Y8aV_OQXP41yYgh-icrhZy8j_19bAb5TZfSMNjXViM8ltkAEe8cqwyhOd3eOhLd0_OkQJb3teq3l-0HbKugKOZIFl_8dZS-FRylQ93gu4VtwPKZNuTEOpqOWT0ZQLBOYIP-vcN9oogYovEY3sBXVNcdwvMGNvGG0Qmce6lVcH8XbdzevXI5JiToD2MmaKdL3d91N-vxO-wdtJkJzvcq15mCvhKWkU-rQAUzpZhNkJ0sIleDwootttHjvpXg1Gg9wFlGEP0pBFMQoiMvJb983Lw5O9Vb4W_Yy8PPwl57dJ3ksPM9ztNPnZS3vXPaUnx0lHKUEkTRCZknamhgNUcdK8K02EnOkiFeM7XHzKqv-A6WSQ6GUgoTCG4voKKRTzZcBNoKWQsUV3XHJaA2e8spEsqc5txY1-VJA0e5GVRFRJogY7VfubguTjw5ZrY0FFpbGnEX4IQ0SuLquBlwvvH6NEjWbntHpa-Z9Om_C1e9iKfh11Tlbhm31dxNiswfRoeKvXESmNxEaunAT-fLY1vAK1NCAb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlling+Photocatalytic+Activity+by+Self%E2%80%90Assembly+%E2%80%93+Tuning+Perylene+Bisimide+Photocatalysts+for+the+Hydrogen+Evolution+Reaction&rft.jtitle=Advanced+energy+materials&rft.au=McDowall%2C+Daniel&rft.au=Greeves%2C+Benjamin+J.&rft.au=Clowes%2C+Rob&rft.au=McAulay%2C+Kate&rft.date=2020-12-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=46&rft_id=info:doi/10.1002%2Faenm.202002469&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202002469 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |