Controlling Photocatalytic Activity by Self‐Assembly – Tuning Perylene Bisimide Photocatalysts for the Hydrogen Evolution Reaction

Amino acid functionalized perylene bisimides (PBIs) form self‐assembled structures in solution, the nature of which depends on the local environment. Using a high‐throughput photocatalysis setup, five PBIs are studied for the hydrogen evolution reaction (HER) under a range of conditions (pH and hole...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 10; no. 46
Main Authors McDowall, Daniel, Greeves, Benjamin J., Clowes, Rob, McAulay, Kate, Fuentes‐Caparrós, Ana M., Thomson, Lisa, Khunti, Nikul, Cowieson, Nathan, Nolan, Michael C., Wallace, Matthew, Cooper, Andrew I., Draper, Emily R., Cowan, Alexander J., Adams, Dave J.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Amino acid functionalized perylene bisimides (PBIs) form self‐assembled structures in solution, the nature of which depends on the local environment. Using a high‐throughput photocatalysis setup, five PBIs are studied for the hydrogen evolution reaction (HER) under a range of conditions (pH and hole scavenger concentration) across 350 experiments to explore the relationship between supramolecular structure and photocatalytic activity. Using small angle X‐ray scattering (SAXS), NMR spectroscopy and ultraviolet‐visible (UV‐vis) absorption spectroscopy, it is shown that photocatalytic activity is determined by the nature of the self‐assembled aggregate that is formed, demonstrating the potential of self‐assembly to tune activity. There is a clear correlation between the presence of charged flexible cylindrical aggregates and the occurrence of photocatalytic H2 production, with UV–vis spectroscopy indicating that the most active structure type has a distinctive form of π‐aggregation which is proposed to enable efficient charge separation across multiple PBI units. Self‐assembly is an exciting but underexplored field in photocatalysis. The design of molecular chromophores is common, but less attention is paid to how these building blocks assemble. Using high‐throughput testing and detailed characterization, it is shown how a single set of starting molecules can give rise to profoundly different levels of photocatalytic activity depending on their supramolecular structure.
AbstractList Amino acid functionalized perylene bisimides (PBIs) form self‐assembled structures in solution, the nature of which depends on the local environment. Using a high‐throughput photocatalysis setup, five PBIs are studied for the hydrogen evolution reaction (HER) under a range of conditions (pH and hole scavenger concentration) across 350 experiments to explore the relationship between supramolecular structure and photocatalytic activity. Using small angle X‐ray scattering (SAXS), NMR spectroscopy and ultraviolet‐visible (UV‐vis) absorption spectroscopy, it is shown that photocatalytic activity is determined by the nature of the self‐assembled aggregate that is formed, demonstrating the potential of self‐assembly to tune activity. There is a clear correlation between the presence of charged flexible cylindrical aggregates and the occurrence of photocatalytic H2 production, with UV–vis spectroscopy indicating that the most active structure type has a distinctive form of π‐aggregation which is proposed to enable efficient charge separation across multiple PBI units. Self‐assembly is an exciting but underexplored field in photocatalysis. The design of molecular chromophores is common, but less attention is paid to how these building blocks assemble. Using high‐throughput testing and detailed characterization, it is shown how a single set of starting molecules can give rise to profoundly different levels of photocatalytic activity depending on their supramolecular structure.
Amino acid functionalized perylene bisimides (PBIs) form self‐assembled structures in solution, the nature of which depends on the local environment. Using a high‐throughput photocatalysis setup, five PBIs are studied for the hydrogen evolution reaction (HER) under a range of conditions (pH and hole scavenger concentration) across 350 experiments to explore the relationship between supramolecular structure and photocatalytic activity. Using small angle X‐ray scattering (SAXS), NMR spectroscopy and ultraviolet‐visible (UV‐vis) absorption spectroscopy, it is shown that photocatalytic activity is determined by the nature of the self‐assembled aggregate that is formed, demonstrating the potential of self‐assembly to tune activity. There is a clear correlation between the presence of charged flexible cylindrical aggregates and the occurrence of photocatalytic H 2 production, with UV–vis spectroscopy indicating that the most active structure type has a distinctive form of π‐aggregation which is proposed to enable efficient charge separation across multiple PBI units.
Amino acid functionalized perylene bisimides (PBIs) form self‐assembled structures in solution, the nature of which depends on the local environment. Using a high‐throughput photocatalysis setup, five PBIs are studied for the hydrogen evolution reaction (HER) under a range of conditions (pH and hole scavenger concentration) across 350 experiments to explore the relationship between supramolecular structure and photocatalytic activity. Using small angle X‐ray scattering (SAXS), NMR spectroscopy and ultraviolet‐visible (UV‐vis) absorption spectroscopy, it is shown that photocatalytic activity is determined by the nature of the self‐assembled aggregate that is formed, demonstrating the potential of self‐assembly to tune activity. There is a clear correlation between the presence of charged flexible cylindrical aggregates and the occurrence of photocatalytic H2 production, with UV–vis spectroscopy indicating that the most active structure type has a distinctive form of π‐aggregation which is proposed to enable efficient charge separation across multiple PBI units.
Author Khunti, Nikul
Nolan, Michael C.
Cooper, Andrew I.
McDowall, Daniel
Cowieson, Nathan
McAulay, Kate
Cowan, Alexander J.
Greeves, Benjamin J.
Clowes, Rob
Adams, Dave J.
Wallace, Matthew
Draper, Emily R.
Fuentes‐Caparrós, Ana M.
Thomson, Lisa
Author_xml – sequence: 1
  givenname: Daniel
  surname: McDowall
  fullname: McDowall, Daniel
  organization: University of Glasgow
– sequence: 2
  givenname: Benjamin J.
  surname: Greeves
  fullname: Greeves, Benjamin J.
  organization: University of Liverpool
– sequence: 3
  givenname: Rob
  surname: Clowes
  fullname: Clowes, Rob
  organization: University of Liverpool
– sequence: 4
  givenname: Kate
  surname: McAulay
  fullname: McAulay, Kate
  organization: University of Glasgow
– sequence: 5
  givenname: Ana M.
  surname: Fuentes‐Caparrós
  fullname: Fuentes‐Caparrós, Ana M.
  organization: University of Glasgow
– sequence: 6
  givenname: Lisa
  surname: Thomson
  fullname: Thomson, Lisa
  organization: University of Glasgow
– sequence: 7
  givenname: Nikul
  surname: Khunti
  fullname: Khunti, Nikul
  organization: Harwell Science and Innovation Campus
– sequence: 8
  givenname: Nathan
  surname: Cowieson
  fullname: Cowieson, Nathan
  organization: Harwell Science and Innovation Campus
– sequence: 9
  givenname: Michael C.
  surname: Nolan
  fullname: Nolan, Michael C.
  organization: University of Liverpool
– sequence: 10
  givenname: Matthew
  surname: Wallace
  fullname: Wallace, Matthew
  organization: University of East Anglia
– sequence: 11
  givenname: Andrew I.
  surname: Cooper
  fullname: Cooper, Andrew I.
  organization: University of Liverpool
– sequence: 12
  givenname: Emily R.
  surname: Draper
  fullname: Draper, Emily R.
  organization: University of Glasgow
– sequence: 13
  givenname: Alexander J.
  orcidid: 0000-0001-9032-3548
  surname: Cowan
  fullname: Cowan, Alexander J.
  email: a.j.cowan@liverpool.ac.uk
  organization: University of Liverpool
– sequence: 14
  givenname: Dave J.
  orcidid: 0000-0002-3176-1350
  surname: Adams
  fullname: Adams, Dave J.
  email: Dave.Adams@glasgow.ac.uk
  organization: University of Glasgow
BookMark eNqFkEtLAzEUhYMo-Ny6Drhuzaszk2Ut9QG-8LEeMpk7GkkTTdLK7Fy5FvyH_hKnVlQE8W7uWZzv3MtZR8vOO0Bom5I-JYTtKnCTPiOs0yKTS2iNZlT0skKQ5S_N2SraivGOdCMkJZyvoeeRdyl4a427wee3PnmtkrJtMhoPdTIzk1pctfgSbPP29DKMESaVbfHb0yu-mroPCkJrwQHeM9FMTA0_c2KKuPEBp1vAh20d_A04PJ55O03GO3wBSs_FJlpplI2w9bk30PX--Gp02Ds-OzgaDY97WmRE9qjWSleMc1FTVWQSajnIudBE8VzXPCcZAS4rwYqiYFQOGmjqijOm5YAWGQW-gXYWuffBP0whpvLOT4PrTpZdb3leDCgRnUssXDr4GAM0pTZJzf9MQRlbUlLOSy_npZdfpXdY_xd2H8xEhfZvQC6AR2Oh_cddDsenJ9_sO4UnmtA
CitedBy_id crossref_primary_10_1016_j_ccr_2024_216218
crossref_primary_10_1063_5_0098274
crossref_primary_10_1039_D1RA01218E
crossref_primary_10_3390_molecules29163872
crossref_primary_10_1002_chem_202301042
crossref_primary_10_1002_ange_202210619
crossref_primary_10_1016_j_jallcom_2022_168500
crossref_primary_10_1016_j_molliq_2024_124267
crossref_primary_10_1039_D4SM00238E
crossref_primary_10_1039_D1NJ02557K
crossref_primary_10_1002_smll_202410805
crossref_primary_10_1039_D2MA00207H
crossref_primary_10_1039_D2QM00299J
crossref_primary_10_1021_jacs_4c02019
crossref_primary_10_1016_j_dyepig_2024_111968
crossref_primary_10_1039_D3CC04123A
crossref_primary_10_1002_adma_202418137
crossref_primary_10_1016_j_dyepig_2021_110044
crossref_primary_10_1002_cctc_202301033
crossref_primary_10_1016_j_ijhydene_2024_06_245
crossref_primary_10_1021_acs_langmuir_1c01772
crossref_primary_10_1063_5_0202991
crossref_primary_10_1002_aenm_202100709
crossref_primary_10_1016_j_apcatb_2024_124222
crossref_primary_10_1021_acs_jpcc_2c03210
crossref_primary_10_1039_D3CC04557A
crossref_primary_10_1016_j_aca_2023_340828
crossref_primary_10_1021_acsanm_2c03061
crossref_primary_10_1021_acscatal_4c07058
crossref_primary_10_1002_adfm_202100233
crossref_primary_10_1021_jacs_1c12155
crossref_primary_10_1002_anie_202210619
crossref_primary_10_1016_j_xcrp_2022_101132
crossref_primary_10_1038_s41467_022_29826_z
crossref_primary_10_1039_D3RE00398A
crossref_primary_10_1016_j_jmst_2024_01_058
crossref_primary_10_1002_smll_202100132
crossref_primary_10_1088_2515_7639_ad08d2
crossref_primary_10_1021_acs_nanolett_0c05024
crossref_primary_10_1016_j_ijhydene_2022_11_115
crossref_primary_10_1002_advs_202307227
crossref_primary_10_1039_D4SC03825H
crossref_primary_10_1038_s41565_022_01289_9
crossref_primary_10_3762_bjoc_20_220
crossref_primary_10_1039_D4NR00383G
crossref_primary_10_1039_D4TB00836G
Cites_doi 10.1039/C9TA08974H
10.1021/jacs.5b10027
10.1002/anie.201505289
10.1039/C4RA09258A
10.1038/s41598-017-08644-0
10.1021/jacs.6b05673
10.1002/anie.201108690
10.1002/chem.200600889
10.1039/B401630K
10.1098/rsta.2016.0400
10.1039/c2cc31465g
10.1021/acs.chemrev.5b00188
10.1039/C8SC05595E
10.1039/C6SM02404A
10.1039/C8EE01157E
10.1002/chem.201800201
10.1016/j.xcrp.2020.100148
10.1007/s11426-017-9098-6
10.1039/C7TA01845B
10.1021/jacs.9b03591
10.1021/acs.chemrev.5b00312
10.1016/j.dyepig.2009.04.014
10.1021/jp504564s
10.1039/c1cc14189a
10.1021/jacs.7b12641
10.1016/j.ejpb.2015.05.017
10.1007/s40974-016-0005-z
10.1021/la104888p
10.1039/c1cc10321k
10.1038/nchem.2075
10.1021/ja9600789
10.1039/C5SM01760B
10.1021/acs.jpcc.9b11846
10.1021/acs.jpcc.6b06222
10.1021/jf9710185
10.1016/j.chempr.2017.03.022
10.1039/C9CP05839G
10.1039/f19878301101
10.1021/ar900233v
10.1134/S003602441807035X
10.1039/c3ra44553d
10.1002/anie.200504454
10.1021/ja903938g
10.1039/C4TC00744A
10.1021/la061409q
10.1016/j.apcatb.2016.09.037
10.1021/jo2001963
10.1021/acs.biomac.7b00823
10.1039/C5RA22253B
10.1039/C9NR03898A
ContentType Journal Article
Copyright 2020 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202002469
DatabaseName Wiley Online Library Open Access
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
CrossRef
Aerospace Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202002469
AENM202002469
Genre article
GrantInformation_xml – fundername: EPSRC
  funderid: EP/P034497/1; EP/L021978/1; L/021978/2
– fundername: Leverhulme Trust
  funderid: RPG‐2018‐013
GroupedDBID 05W
0R~
1OC
24P
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4609-1ccacb2334d1a869ed95734c0a37cd37060e39b428882195fefdb322c951861e3
IEDL.DBID 24P
ISSN 1614-6832
IngestDate Fri Jul 25 12:12:04 EDT 2025
Tue Jul 01 01:43:37 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Wed Jan 22 16:31:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4609-1ccacb2334d1a869ed95734c0a37cd37060e39b428882195fefdb322c951861e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9032-3548
0000-0002-3176-1350
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202002469
PQID 2467785104
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_2467785104
crossref_citationtrail_10_1002_aenm_202002469
crossref_primary_10_1002_aenm_202002469
wiley_primary_10_1002_aenm_202002469_AENM202002469
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 7
2013; 3
2017; 2
2019; 11
2019; 10
2019; 12
2004; 4
2020; 124
2012; 51
1998; 46
2014; 4
2020; 1
2014; 2
2015; 137
1987; 83
2006; 22
2019; 21
2016; 116
2011; 27
2017; 202
2014; 6
2014; 118
2019; 8
2015; 5
2017; 60
2018; 140
2015; 97
2015; 11
2015; 54
2011; 76
2009; 131
2017; 375
2019; 141
2016; 120
2007; 13
2010; 84
2018; 24
2010; 43
2016; 1
2015; 115
2006; 45
2017; 13
2018; 92
2017; 18
2016; 138
2011; 47
2012; 48
1996; 118
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 1
  year: 2020
  publication-title: Cell Reports Phys. Sci.
– volume: 54
  year: 2015
  publication-title: Angew. Chemie – Int. Ed.
– volume: 3
  year: 2013
  publication-title: RSC Adv.
– volume: 45
  start-page: 2778
  year: 2006
  publication-title: Angew. Chemie – Int. Ed.
– volume: 1
  start-page: 10
  year: 2016
  publication-title: Energy, Ecol. Environ.
– volume: 140
  start-page: 4965
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1564
  year: 2004
  publication-title: Chem. Commun.
– volume: 51
  start-page: 6328
  year: 2012
  publication-title: Angew. Chemie – Int. Ed.
– volume: 22
  start-page: 7610
  year: 2006
  publication-title: Langmuir
– volume: 2
  start-page: 5570
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 375
  year: 2017
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
– volume: 124
  start-page: 6971
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 115
  year: 2015
  publication-title: Chem. Rev.
– volume: 27
  start-page: 3074
  year: 2011
  publication-title: Langmuir
– volume: 48
  start-page: 7961
  year: 2012
  publication-title: Chem. Commun.
– volume: 83
  start-page: 1101
  year: 1987
  publication-title: J. Chem. Soc. Faraday Trans. I
– volume: 116
  start-page: 962
  year: 2016
  publication-title: Chem. Rev.
– volume: 118
  start-page: 6767
  year: 1996
  publication-title: J. Am. Chem. Soc.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 6
  start-page: 964
  year: 2014
  publication-title: Nat. Chem.
– volume: 18
  start-page: 3531
  year: 2017
  publication-title: Biomacromolecules
– volume: 118
  start-page: 8642
  year: 2014
  publication-title: J. Phys. Chem. B
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 76
  start-page: 2386
  year: 2011
  publication-title: J. Org. Chem.
– volume: 60
  start-page: 1334
  year: 2017
  publication-title: Sci. China Chem.
– volume: 10
  start-page: 5779
  year: 2019
  publication-title: Chem. Sci.
– volume: 46
  start-page: 1830
  year: 1998
  publication-title: J. Agric. Food Chem.
– volume: 47
  start-page: 5109
  year: 2011
  publication-title: Chem. Commun.
– volume: 2
  start-page: 716
  year: 2017
  publication-title: Chem
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 9063
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 7739
  year: 2015
  publication-title: Soft Matter
– volume: 97
  start-page: 338
  year: 2015
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 47
  year: 2011
  publication-title: Chem. Commun.
– volume: 202
  start-page: 289
  year: 2017
  publication-title: Appl. Catal. B Environ.
– volume: 13
  start-page: 436
  year: 2007
  publication-title: Chem. – A Eur. J.
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 21
  year: 2019
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 8380
  year: 2017
  publication-title: Sci. Rep.
– volume: 4
  year: 2014
  publication-title: RSC Adv.
– volume: 84
  start-page: 1
  year: 2010
  publication-title: Dye. Pigment.
– volume: 131
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 4006
  year: 2018
  publication-title: Chem. – A Eur. J.
– volume: 12
  start-page: 463
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 92
  start-page: 1261
  year: 2018
  publication-title: Russ. J. Phys. Chem. A
– volume: 13
  start-page: 1716
  year: 2017
  publication-title: Soft Matter
– volume: 5
  start-page: 7555
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 429
  year: 2010
  publication-title: Acc. Chem. Res.
– volume: 8
  start-page: 158
  year: 2019
  publication-title: J. Mater. Chem. A
– ident: e_1_2_6_37_1
  doi: 10.1039/C9TA08974H
– ident: e_1_2_6_35_1
  doi: 10.1021/jacs.5b10027
– ident: e_1_2_6_43_1
  doi: 10.1002/anie.201505289
– ident: e_1_2_6_21_1
  doi: 10.1039/C4RA09258A
– ident: e_1_2_6_45_1
  doi: 10.1038/s41598-017-08644-0
– ident: e_1_2_6_49_1
  doi: 10.1021/jacs.6b05673
– ident: e_1_2_6_2_1
  doi: 10.1002/anie.201108690
– ident: e_1_2_6_47_1
  doi: 10.1002/chem.200600889
– ident: e_1_2_6_3_1
  doi: 10.1039/B401630K
– ident: e_1_2_6_16_1
  doi: 10.1098/rsta.2016.0400
– ident: e_1_2_6_5_1
  doi: 10.1039/c2cc31465g
– ident: e_1_2_6_10_1
  doi: 10.1021/acs.chemrev.5b00188
– ident: e_1_2_6_34_1
  doi: 10.1039/C8SC05595E
– ident: e_1_2_6_44_1
– ident: e_1_2_6_50_1
  doi: 10.1039/C6SM02404A
– ident: e_1_2_6_18_1
  doi: 10.1039/C8EE01157E
– ident: e_1_2_6_29_1
  doi: 10.1002/chem.201800201
– ident: e_1_2_6_13_1
  doi: 10.1016/j.xcrp.2020.100148
– ident: e_1_2_6_9_1
  doi: 10.1007/s11426-017-9098-6
– ident: e_1_2_6_22_1
  doi: 10.1039/C7TA01845B
– ident: e_1_2_6_41_1
  doi: 10.1021/jacs.9b03591
– ident: e_1_2_6_14_1
  doi: 10.1021/acs.chemrev.5b00312
– ident: e_1_2_6_15_1
  doi: 10.1016/j.dyepig.2009.04.014
– ident: e_1_2_6_11_1
  doi: 10.1021/jp504564s
– ident: e_1_2_6_27_1
  doi: 10.1039/c1cc14189a
– ident: e_1_2_6_36_1
  doi: 10.1021/jacs.7b12641
– ident: e_1_2_6_39_1
  doi: 10.1016/j.ejpb.2015.05.017
– ident: e_1_2_6_17_1
  doi: 10.1007/s40974-016-0005-z
– ident: e_1_2_6_38_1
  doi: 10.1021/la104888p
– ident: e_1_2_6_1_1
  doi: 10.1039/c1cc10321k
– ident: e_1_2_6_20_1
  doi: 10.1038/nchem.2075
– ident: e_1_2_6_4_1
  doi: 10.1021/ja9600789
– ident: e_1_2_6_51_1
  doi: 10.1039/C5SM01760B
– ident: e_1_2_6_24_1
  doi: 10.1021/acs.jpcc.9b11846
– ident: e_1_2_6_30_1
  doi: 10.1021/acs.jpcc.6b06222
– ident: e_1_2_6_40_1
  doi: 10.1021/jf9710185
– ident: e_1_2_6_6_1
  doi: 10.1016/j.chempr.2017.03.022
– ident: e_1_2_6_33_1
  doi: 10.1039/C9CP05839G
– ident: e_1_2_6_12_1
  doi: 10.1039/f19878301101
– ident: e_1_2_6_46_1
  doi: 10.1021/ar900233v
– ident: e_1_2_6_42_1
  doi: 10.1134/S003602441807035X
– ident: e_1_2_6_8_1
  doi: 10.1039/c3ra44553d
– ident: e_1_2_6_23_1
  doi: 10.1002/anie.200504454
– ident: e_1_2_6_28_1
  doi: 10.1021/ja903938g
– ident: e_1_2_6_25_1
  doi: 10.1039/C4TC00744A
– ident: e_1_2_6_26_1
  doi: 10.1021/la061409q
– ident: e_1_2_6_19_1
  doi: 10.1016/j.apcatb.2016.09.037
– ident: e_1_2_6_7_1
  doi: 10.1021/jo2001963
– ident: e_1_2_6_31_1
  doi: 10.1021/acs.biomac.7b00823
– ident: e_1_2_6_32_1
  doi: 10.1039/C5RA22253B
– ident: e_1_2_6_48_1
  doi: 10.1039/C9NR03898A
SSID ssj0000491033
Score 2.517188
Snippet Amino acid functionalized perylene bisimides (PBIs) form self‐assembled structures in solution, the nature of which depends on the local environment. Using a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Assembly
Catalytic activity
hydrogen
Hydrogen evolution reactions
Hydrogen production
NMR spectroscopy
organic photocatalysts
Photocatalysis
self‐assembly
Small angle X ray scattering
solar fuels
Spectrum analysis
Title Controlling Photocatalytic Activity by Self‐Assembly – Tuning Perylene Bisimide Photocatalysts for the Hydrogen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202002469
https://www.proquest.com/docview/2467785104
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60vehBfGK1lj0InkLT7CZxj7G2FLEi2kJvIfsIFtpUmlbIzZNnwX_YX-JskqbxIIK3hOzsYWcm--3szDcIXWq-FJeFtsGESQwqA8vgHE4p0gwBwAaUyDQ00H9wekN6N7JHpSr-jB-iCLhpz0j_19rBAx43N6ShgYp0JblOMoAj3jaq6vpandRn0cciygL4t2Wm_eQB2VDDAftdMzeaVvPnFD93pg3cLIPWdNfp7qO9HC5iL9PvAdpS0SHaLZEIHqGPdpZtruvK8ePLbDFLQzIJSGBPZM0hME_ws5qEq_dPfcs75ZMEr96_8GAZpVJqnsDuo_DNOB5Px1KV54kXMQZkiwEp4l4i5zMwOdx5y00WP6msNOIYDbudQbtn5N0VDEEd3QMBdCe4RQiVreDaYUoy2yVUmAFxhSSaVUcRxuF4AiC8xexQhZKD-wvAZNdOS5ETVIlmkTpF2OVhSGB9ueCS2sJhoaMEF4FGW0wwUkPGemV9kVOP6w4YEz8jTbZ8rQm_0EQNXRXjXzPSjV9H1teK8nPni3344LqAJE1aQ1aqvD9m8b3OQ794O_uP0Dna0c9ZoksdVRbzpboAuLLgjdQiG6jq3fbvn78BaYrmYg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB5ReqA9oAJFDQTYA4iThbO7ttlDDwGCQiERgiBxM94fq5GCU8WByrecOCPxJLwST9JZ2zHhUFWqxNH27mq1M-P9dnbmG4Bty5cSiNhzhHKZw3VEHSnxlKLdGAFsxJnOXQOdrt--4j-uves5eJ7mwhT8EJXDzVpG_r-2Bm4d0nuvrKGRSWwquY0ywDNeGVd5arLfeGpLv58coYh3KD1u9Q7bTllYwFHct_T_OG0lKWNcN6J9XxgtvIBx5UYsUJpZQhnDhERkjvizIbzYxFqi5iuEI_t-wzAc9wN85D4NbNEEys8rtw4C7oabF7BHKMUdHw1mShXp0r23U367Fb7i21mUnG9zx19gscSnpFko1BLMmWQZPs-wFq7Aw2ER3m4T2cn5z-F4mPuAMuxBmqqoRkFkRi7NIH6ZPNpr5Vs5yMjL5In07pK8lxlluN0ZctBP-7d9bWbHSccpQShNEJqSdqZHQ9Rx0rovbYRcmCIX4ytcvcuqr8J8MkzMNyCBjGOG6yuV1NxTvoh9o6SKLLwTSrAaONOVDVXJdW5LbgzCgqWZhlYSYSWJGuxW7X8VLB9_bVmfCiosrT0N8UMQIHR1eQ1oLrx_jBI2W91O9bT2P522YKHd65yFZyfd03X4ZN8XUTZ1mB-P7swGYqWx3My1k8DNe5vDH6A_IOk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6xIK2WA-KxK8rTBxCniDR2Enzg0IVWBZaqYkHilo1folJJUVNAuXHijLR_hN_EL2GcpKEc0EorcUxiW5ZnJv48nvkGYMvypYTc-A6XLnWYij1HCDylKNcggI0ZVblr4LQTtC_Y8aV_OQXP41yYgh-icrhZy8j_19bAb5TZfSMNjXViM8ltkAEe8cqwyhOd3eOhLd0_OkQJb3teq3l-0HbKugKOZIFl_8dZS-FRylQ93gu4VtwPKZNuTEOpqOWT0ZQLBOYIP-vcN9oogYovEY3sBXVNcdwvMGNvGG0Qmce6lVcH8XbdzevXI5JiToD2MmaKdL3d91N-vxO-wdtJkJzvcq15mCvhKWkU-rQAUzpZhNkJ0sIleDwootttHjvpXg1Gg9wFlGEP0pBFMQoiMvJb983Lw5O9Vb4W_Yy8PPwl57dJ3ksPM9ztNPnZS3vXPaUnx0lHKUEkTRCZknamhgNUcdK8K02EnOkiFeM7XHzKqv-A6WSQ6GUgoTCG4voKKRTzZcBNoKWQsUV3XHJaA2e8spEsqc5txY1-VJA0e5GVRFRJogY7VfubguTjw5ZrY0FFpbGnEX4IQ0SuLquBlwvvH6NEjWbntHpa-Z9Om_C1e9iKfh11Tlbhm31dxNiswfRoeKvXESmNxEaunAT-fLY1vAK1NCAb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlling+Photocatalytic+Activity+by+Self%E2%80%90Assembly+%E2%80%93+Tuning+Perylene+Bisimide+Photocatalysts+for+the+Hydrogen+Evolution+Reaction&rft.jtitle=Advanced+energy+materials&rft.au=McDowall%2C+Daniel&rft.au=Greeves%2C+Benjamin+J.&rft.au=Clowes%2C+Rob&rft.au=McAulay%2C+Kate&rft.date=2020-12-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=46&rft_id=info:doi/10.1002%2Faenm.202002469&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202002469
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon