High‐Entropy Metal Sulfide Nanoparticles Promise High‐Performance Oxygen Evolution Reaction

Transition metal sulfides with a multi‐elemental nature represent a class of promising catalysts for oxygen evolution reaction (OER) owing to their good catalytic activity. However, their synthesis remains a challenge due to the thermodynamic immiscibility of the constituent multimetallic elements i...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 11; no. 3
Main Authors Cui, Mingjin, Yang, Chunpeng, Li, Boyang, Dong, Qi, Wu, Meiling, Hwang, Sooyeon, Xie, Hua, Wang, Xizheng, Wang, Guofeng, Hu, Liangbing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transition metal sulfides with a multi‐elemental nature represent a class of promising catalysts for oxygen evolution reaction (OER) owing to their good catalytic activity. However, their synthesis remains a challenge due to the thermodynamic immiscibility of the constituent multimetallic elements in a sulfide structure. Herein, for the first time the synthesis of high‐entropy metal sulfide (HEMS, i.e., (CrMnFeCoNi)Sx) solid solution nanoparticles is reported. Computational and X‐ray photoelectron spectroscopy analysis suggest that the (CrMnFeCoNi)Sx exhibits a synergistic effect among metal atoms that leads to desired electronic states to enhance OER activity. The (CrMnFeCoNi)Sx nanoparticles show one of the best activities (low overpotential 295 mV at 100 mA cm−2 in 1 m KOH solution) and good durability (only slight polarization after 10 h by chronopotentiometry) compared with their unary, binary, ternary, and quaternary sulfide counterparts. This work opens up a new synthesis paradigm for high‐entropy compound nanoparticles for highly efficient electrocatalysis applications. High‐entropy metal sulfide (HEMS) nanoparticles are achieved through a pulse thermal decomposition method by overcoming the immiscibility of multiple metallic constituents. Benefiting from synergistic effects and high‐entropy stabilization, nanoscale HEMS greatly promotes oxygen evolution reaction performance. Thus, a new synthesis paradigm for high‐entropy nanomaterials is established for renewable energy conversion and storage applications.
AbstractList Transition metal sulfides with a multi‐elemental nature represent a class of promising catalysts for oxygen evolution reaction (OER) owing to their good catalytic activity. However, their synthesis remains a challenge due to the thermodynamic immiscibility of the constituent multimetallic elements in a sulfide structure. Herein, for the first time the synthesis of high‐entropy metal sulfide (HEMS, i.e., (CrMnFeCoNi)Sx) solid solution nanoparticles is reported. Computational and X‐ray photoelectron spectroscopy analysis suggest that the (CrMnFeCoNi)Sx exhibits a synergistic effect among metal atoms that leads to desired electronic states to enhance OER activity. The (CrMnFeCoNi)Sx nanoparticles show one of the best activities (low overpotential 295 mV at 100 mA cm−2 in 1 m KOH solution) and good durability (only slight polarization after 10 h by chronopotentiometry) compared with their unary, binary, ternary, and quaternary sulfide counterparts. This work opens up a new synthesis paradigm for high‐entropy compound nanoparticles for highly efficient electrocatalysis applications. High‐entropy metal sulfide (HEMS) nanoparticles are achieved through a pulse thermal decomposition method by overcoming the immiscibility of multiple metallic constituents. Benefiting from synergistic effects and high‐entropy stabilization, nanoscale HEMS greatly promotes oxygen evolution reaction performance. Thus, a new synthesis paradigm for high‐entropy nanomaterials is established for renewable energy conversion and storage applications.
Transition metal sulfides with a multi‐elemental nature represent a class of promising catalysts for oxygen evolution reaction (OER) owing to their good catalytic activity. However, their synthesis remains a challenge due to the thermodynamic immiscibility of the constituent multimetallic elements in a sulfide structure. Herein, for the first time the synthesis of high‐entropy metal sulfide (HEMS, i.e., (CrMnFeCoNi)S x ) solid solution nanoparticles is reported. Computational and X‐ray photoelectron spectroscopy analysis suggest that the (CrMnFeCoNi)S x exhibits a synergistic effect among metal atoms that leads to desired electronic states to enhance OER activity. The (CrMnFeCoNi)S x nanoparticles show one of the best activities (low overpotential 295 mV at 100 mA cm −2 in 1 m KOH solution) and good durability (only slight polarization after 10 h by chronopotentiometry) compared with their unary, binary, ternary, and quaternary sulfide counterparts. This work opens up a new synthesis paradigm for high‐entropy compound nanoparticles for highly efficient electrocatalysis applications.
Transition metal sulfides with a multi‐elemental nature represent a class of promising catalysts for oxygen evolution reaction (OER) owing to their good catalytic activity. However, their synthesis remains a challenge due to the thermodynamic immiscibility of the constituent multimetallic elements in a sulfide structure. Herein, for the first time the synthesis of high‐entropy metal sulfide (HEMS, i.e., (CrMnFeCoNi)Sx) solid solution nanoparticles is reported. Computational and X‐ray photoelectron spectroscopy analysis suggest that the (CrMnFeCoNi)Sx exhibits a synergistic effect among metal atoms that leads to desired electronic states to enhance OER activity. The (CrMnFeCoNi)Sx nanoparticles show one of the best activities (low overpotential 295 mV at 100 mA cm−2 in 1 m KOH solution) and good durability (only slight polarization after 10 h by chronopotentiometry) compared with their unary, binary, ternary, and quaternary sulfide counterparts. This work opens up a new synthesis paradigm for high‐entropy compound nanoparticles for highly efficient electrocatalysis applications.
Author Wu, Meiling
Li, Boyang
Wang, Xizheng
Hu, Liangbing
Yang, Chunpeng
Xie, Hua
Cui, Mingjin
Dong, Qi
Hwang, Sooyeon
Wang, Guofeng
Author_xml – sequence: 1
  givenname: Mingjin
  surname: Cui
  fullname: Cui, Mingjin
  organization: University of Maryland
– sequence: 2
  givenname: Chunpeng
  surname: Yang
  fullname: Yang, Chunpeng
  organization: University of Maryland
– sequence: 3
  givenname: Boyang
  surname: Li
  fullname: Li, Boyang
  organization: University of Pittsburgh
– sequence: 4
  givenname: Qi
  surname: Dong
  fullname: Dong, Qi
  organization: University of Maryland
– sequence: 5
  givenname: Meiling
  surname: Wu
  fullname: Wu, Meiling
  organization: University of Maryland
– sequence: 6
  givenname: Sooyeon
  surname: Hwang
  fullname: Hwang, Sooyeon
  organization: Brookhaven National Laboratory
– sequence: 7
  givenname: Hua
  surname: Xie
  fullname: Xie, Hua
  organization: University of Maryland
– sequence: 8
  givenname: Xizheng
  surname: Wang
  fullname: Wang, Xizheng
  organization: University of Maryland
– sequence: 9
  givenname: Guofeng
  surname: Wang
  fullname: Wang, Guofeng
  email: guw8@pitt.edu
  organization: University of Pittsburgh
– sequence: 10
  givenname: Liangbing
  orcidid: 0000-0002-9456-9315
  surname: Hu
  fullname: Hu, Liangbing
  email: binghu@umd.edu
  organization: University of Maryland
BookMark eNqFkE1LAzEQhoNUsNZePS943ppk0-3mWEq1Qr_Q3kM2O6kp26Rmd9Xe_An-Rn-Ju7RUEMS5zMswz3y8l6hlnQWErgnuEYzprQS77VFMa50kgzPUJjFhYZww3DrpiF6gblFscB2MExxFbSQmZv389fE5tqV3u30wg1LmwVOVa5NBMJfW7aQvjcqhCJbebU0BwRFZgtfOb6VVECze92uwwfjV5VVpnA0eQapGXKFzLfMCusfcQau78Wo0CaeL-4fRcBoqFuNBmHFK-zrDWQQJV4ylcax5DClQrtIIMObpIOqTKNU45VRzqXFdJaCJojFPow66OYzdefdSQVGKjau8rTcKygYJZwTX_3cQO3Qp74rCgxbKlLI5s_TS5IJg0ZgpGjPFycwa6_3Cdt5spd__DfAD8GZy2P_TLYbj-eyH_QbOY4yJ
CitedBy_id crossref_primary_10_1007_s12598_024_02852_0
crossref_primary_10_1016_j_ccr_2024_216237
crossref_primary_10_1002_anie_202407079
crossref_primary_10_1007_s12274_023_5419_2
crossref_primary_10_1016_j_cej_2022_135184
crossref_primary_10_1021_acsanm_4c06098
crossref_primary_10_1038_s41427_022_00398_0
crossref_primary_10_1016_j_pmatsci_2024_101382
crossref_primary_10_1021_acs_nanolett_2c01596
crossref_primary_10_1002_adfm_202301490
crossref_primary_10_1016_j_ijhydene_2023_06_121
crossref_primary_10_1016_j_est_2023_108213
crossref_primary_10_1021_acscatal_4c05997
crossref_primary_10_1039_D4CS00034J
crossref_primary_10_1016_j_jcis_2023_03_152
crossref_primary_10_1016_j_colsurfa_2023_131915
crossref_primary_10_1021_acsami_2c09161
crossref_primary_10_1016_j_cej_2021_133829
crossref_primary_10_1021_acs_iecr_3c00300
crossref_primary_10_1021_jacs_3c05688
crossref_primary_10_3390_nano14100889
crossref_primary_10_1039_D2MA00547F
crossref_primary_10_1039_D2NJ03739D
crossref_primary_10_1038_s41467_021_26425_2
crossref_primary_10_1016_j_coelec_2022_101010
crossref_primary_10_1016_j_trechm_2022_07_004
crossref_primary_10_1002_elsa_202100105
crossref_primary_10_3390_nano14181533
crossref_primary_10_1021_acsmaterialslett_4c00587
crossref_primary_10_1002_sstr_202300012
crossref_primary_10_1016_j_cej_2024_152758
crossref_primary_10_1016_j_jece_2022_107416
crossref_primary_10_1016_j_ensm_2024_103718
crossref_primary_10_1016_j_electacta_2023_142294
crossref_primary_10_1002_adfm_202310181
crossref_primary_10_1002_adma_202412337
crossref_primary_10_1039_D3YA00062A
crossref_primary_10_1021_acsnano_4c17661
crossref_primary_10_1002_adfm_202208170
crossref_primary_10_1016_j_mser_2024_100813
crossref_primary_10_1039_D4EE02817A
crossref_primary_10_1016_j_jcis_2022_12_135
crossref_primary_10_1007_s11814_024_00249_4
crossref_primary_10_1016_j_pnsc_2024_08_005
crossref_primary_10_1021_acs_jpcc_3c01499
crossref_primary_10_1021_acsnano_4c04112
crossref_primary_10_1016_j_apsusc_2024_161600
crossref_primary_10_1007_s12274_022_5207_4
crossref_primary_10_1039_D2TA00149G
crossref_primary_10_1002_ange_202411977
crossref_primary_10_1039_D2TA04736E
crossref_primary_10_1007_s44405_025_00001_4
crossref_primary_10_1016_j_electacta_2022_140711
crossref_primary_10_1016_j_joule_2024_06_004
crossref_primary_10_1002_cey2_375
crossref_primary_10_1021_acsmaterialslett_4c00699
crossref_primary_10_1002_advs_202413424
crossref_primary_10_1016_j_apsusc_2022_154743
crossref_primary_10_1039_D4MH01168F
crossref_primary_10_1002_adfm_202310179
crossref_primary_10_1016_j_apsusc_2022_155951
crossref_primary_10_1088_2752_5724_ad8a78
crossref_primary_10_1002_adma_202405129
crossref_primary_10_1002_cssc_202401871
crossref_primary_10_1002_ente_202401555
crossref_primary_10_1021_acsami_3c16333
crossref_primary_10_1016_j_cej_2023_147896
crossref_primary_10_1002_er_7849
crossref_primary_10_1016_j_jmat_2023_06_006
crossref_primary_10_1126_sciadv_abg1600
crossref_primary_10_1002_advs_202204488
crossref_primary_10_1016_j_cej_2023_143855
crossref_primary_10_1002_adfm_202304296
crossref_primary_10_1016_j_mtphys_2023_101169
crossref_primary_10_1186_s11671_023_03890_w
crossref_primary_10_1002_adfm_202112157
crossref_primary_10_1007_s12274_022_4304_8
crossref_primary_10_1016_j_electacta_2022_140947
crossref_primary_10_1021_acs_energyfuels_1c02810
crossref_primary_10_1007_s12274_021_3860_7
crossref_primary_10_1016_j_cej_2024_156419
crossref_primary_10_1016_j_apsusc_2023_157624
crossref_primary_10_1021_acsami_3c10585
crossref_primary_10_1002_adfm_202112832
crossref_primary_10_1016_j_cej_2023_144134
crossref_primary_10_1039_D4TA06197G
crossref_primary_10_1002_adfm_202213304
crossref_primary_10_1016_j_apsusc_2023_159102
crossref_primary_10_1016_j_apsusc_2023_157282
crossref_primary_10_1002_adma_202110511
crossref_primary_10_1016_j_joule_2024_06_023
crossref_primary_10_1016_j_ijhydene_2021_09_123
crossref_primary_10_1007_s42114_025_01275_4
crossref_primary_10_1016_j_fuel_2023_130315
crossref_primary_10_1039_D3CC03205A
crossref_primary_10_1039_D3SC06784J
crossref_primary_10_1002_adfm_202207536
crossref_primary_10_1016_j_jallcom_2024_174574
crossref_primary_10_1039_D2SC06403K
crossref_primary_10_1002_smll_202104339
crossref_primary_10_1021_acs_jpcc_1c03824
crossref_primary_10_1002_smll_202207044
crossref_primary_10_1021_acs_energyfuels_2c01429
crossref_primary_10_1016_j_apsusc_2022_152546
crossref_primary_10_1002_adma_202418890
crossref_primary_10_1039_D1TA08039C
crossref_primary_10_1021_acs_chemmater_3c00363
crossref_primary_10_1021_acs_inorgchem_4c02339
crossref_primary_10_1016_j_jcis_2022_08_068
crossref_primary_10_1002_adfm_202405643
crossref_primary_10_1038_s41377_024_01614_y
crossref_primary_10_1007_s40843_022_2234_5
crossref_primary_10_1002_smll_202302151
crossref_primary_10_1002_cphc_202300999
crossref_primary_10_1002_ange_202209616
crossref_primary_10_1002_ange_202407079
crossref_primary_10_1016_j_cej_2022_139232
crossref_primary_10_1039_D3TA07107C
crossref_primary_10_1002_adma_202101473
crossref_primary_10_1016_j_jpowsour_2025_236402
crossref_primary_10_1002_adma_202305222
crossref_primary_10_1021_acs_energyfuels_3c05202
crossref_primary_10_1002_adfm_202312322
crossref_primary_10_1016_j_ijhydene_2024_08_221
crossref_primary_10_1016_j_jcis_2023_07_084
crossref_primary_10_1016_j_apcatb_2023_123686
crossref_primary_10_1002_adfm_202106229
crossref_primary_10_1021_acs_chemrev_3c00005
crossref_primary_10_3390_nano14010016
crossref_primary_10_1016_j_apsusc_2023_158598
crossref_primary_10_1016_j_cej_2023_143942
crossref_primary_10_1038_s44160_022_00203_4
crossref_primary_10_1016_j_jechem_2022_04_027
crossref_primary_10_1016_j_jechem_2023_06_039
crossref_primary_10_1002_cssc_202300927
crossref_primary_10_1021_acs_chemmater_2c01455
crossref_primary_10_1016_j_electacta_2022_141444
crossref_primary_10_1016_j_jallcom_2022_167210
crossref_primary_10_1016_j_jssc_2022_123556
crossref_primary_10_1002_smll_202401491
crossref_primary_10_1016_j_ica_2024_122377
crossref_primary_10_1039_D3QM00638G
crossref_primary_10_1002_ece2_91
crossref_primary_10_1002_advs_202200529
crossref_primary_10_1016_j_jallcom_2023_170479
crossref_primary_10_1016_j_jelechem_2022_116760
crossref_primary_10_1021_acs_inorgchem_4c03303
crossref_primary_10_1016_j_ijhydene_2024_07_414
crossref_primary_10_1021_acsaem_2c03656
crossref_primary_10_1016_j_cej_2024_152808
crossref_primary_10_1016_j_nxmate_2024_100192
crossref_primary_10_1021_acs_iecr_4c03229
crossref_primary_10_1016_j_sajce_2024_03_012
crossref_primary_10_1007_s12598_023_02460_4
crossref_primary_10_1039_D4SC05326E
crossref_primary_10_1016_j_checat_2022_05_003
crossref_primary_10_1007_s12274_022_5259_5
crossref_primary_10_1039_D2TA07527J
crossref_primary_10_1039_D3SC04962K
crossref_primary_10_1039_D4CC04075A
crossref_primary_10_1016_j_jallcom_2023_172786
crossref_primary_10_1039_D2YA00152G
crossref_primary_10_1021_acsami_4c10131
crossref_primary_10_1002_smll_202404093
crossref_primary_10_1002_cssc_202400332
crossref_primary_10_1016_j_ijhydene_2021_12_189
crossref_primary_10_1021_acs_jpcc_2c05666
crossref_primary_10_1039_D2SC04900G
crossref_primary_10_1002_cssc_202401663
crossref_primary_10_1007_s12274_024_6421_z
crossref_primary_10_1016_j_apcatb_2023_123542
crossref_primary_10_1007_s42864_021_00084_8
crossref_primary_10_1016_j_asems_2023_100046
crossref_primary_10_1016_j_apsusc_2022_153041
crossref_primary_10_1021_acs_energyfuels_2c03011
crossref_primary_10_1063_5_0155397
crossref_primary_10_1002_anie_202411977
crossref_primary_10_1021_acsami_4c16847
crossref_primary_10_1021_acsnano_4c06954
crossref_primary_10_1039_D3MH02181E
crossref_primary_10_1021_acsnano_2c06890
crossref_primary_10_3390_molecules27217438
crossref_primary_10_1002_cmt2_26
crossref_primary_10_1016_j_pmatsci_2024_101300
crossref_primary_10_1039_D2EE03357G
crossref_primary_10_1002_adfm_202413115
crossref_primary_10_1039_D2CC04646F
crossref_primary_10_1016_j_cej_2021_133448
crossref_primary_10_1039_D3CC00282A
crossref_primary_10_1002_adma_202313209
crossref_primary_10_1038_s41467_023_41706_8
crossref_primary_10_1016_j_ijhydene_2024_12_510
crossref_primary_10_1063_5_0246719
crossref_primary_10_1002_smll_202309025
crossref_primary_10_1016_j_cej_2023_143352
crossref_primary_10_1016_j_jcis_2021_05_170
crossref_primary_10_1002_ange_202117178
crossref_primary_10_1016_j_jssc_2022_123542
crossref_primary_10_1016_j_renene_2024_121180
crossref_primary_10_6023_A23020020
crossref_primary_10_1016_j_jallcom_2022_165305
crossref_primary_10_1002_smsc_202200109
crossref_primary_10_1039_D2NJ00489E
crossref_primary_10_1039_D2NR01516A
crossref_primary_10_1007_s40820_024_01504_3
crossref_primary_10_1016_j_nanoen_2021_106029
crossref_primary_10_1002_adfm_202306889
crossref_primary_10_1002_slct_202200196
crossref_primary_10_1016_j_jallcom_2023_171039
crossref_primary_10_1002_anie_202401238
crossref_primary_10_1021_acsmaterialslett_4c01952
crossref_primary_10_1016_j_checat_2022_02_007
crossref_primary_10_1039_D2RA07642J
crossref_primary_10_1149_1945_7111_ac8d30
crossref_primary_10_1039_D1TA06548C
crossref_primary_10_1039_D4QI01835D
crossref_primary_10_1002_eem2_70007
crossref_primary_10_1007_s12598_024_02749_y
crossref_primary_10_1016_j_actamat_2025_120964
crossref_primary_10_1039_D2TA03922B
crossref_primary_10_1016_j_jallcom_2022_164669
crossref_primary_10_1021_acsnano_3c05869
crossref_primary_10_1002_anie_202209616
crossref_primary_10_1016_j_jiec_2024_11_050
crossref_primary_10_1016_j_ijhydene_2022_02_123
crossref_primary_10_1002_smll_202404205
crossref_primary_10_1002_smll_202404689
crossref_primary_10_1039_D3MH00360D
crossref_primary_10_1039_D1NR03539H
crossref_primary_10_1039_D3YA00305A
crossref_primary_10_1016_j_jcis_2022_02_135
crossref_primary_10_1016_j_fuel_2023_130659
crossref_primary_10_1016_j_mattod_2023_12_006
crossref_primary_10_1039_D4TA01747A
crossref_primary_10_1016_j_ijhydene_2023_04_132
crossref_primary_10_1016_j_materresbull_2025_113333
crossref_primary_10_1360_TB_2023_0133
crossref_primary_10_1002_ente_202300490
crossref_primary_10_1039_D4TA02271H
crossref_primary_10_1002_sus2_47
crossref_primary_10_1002_metm_31
crossref_primary_10_1016_j_jcis_2023_05_074
crossref_primary_10_1039_D2TA01376B
crossref_primary_10_1021_acs_inorgchem_4c00778
crossref_primary_10_1002_aenm_202103090
crossref_primary_10_1002_aenm_202200742
crossref_primary_10_1016_j_jallcom_2022_164670
crossref_primary_10_1002_cssc_202200590
crossref_primary_10_1039_D3SE00736G
crossref_primary_10_1002_phmt_14
crossref_primary_10_1016_j_carbon_2025_120166
crossref_primary_10_1016_j_jeurceramsoc_2024_05_013
crossref_primary_10_1039_D4MA00382A
crossref_primary_10_1039_D3TA03098A
crossref_primary_10_1038_s41467_022_30379_4
crossref_primary_10_1016_j_apsusc_2021_150757
crossref_primary_10_1016_j_jcis_2023_05_192
crossref_primary_10_1016_j_apcatb_2022_122356
crossref_primary_10_1007_s42823_024_00693_6
crossref_primary_10_1016_j_jece_2022_109080
crossref_primary_10_1039_D4EE01139B
crossref_primary_10_3390_mi13020278
crossref_primary_10_1016_j_jallcom_2022_164004
crossref_primary_10_1002_adma_202404772
crossref_primary_10_1002_anie_202117178
crossref_primary_10_1002_ange_202401238
crossref_primary_10_20517_energymater_2024_130
crossref_primary_10_1016_j_actamat_2024_119713
crossref_primary_10_1016_j_ijhydene_2022_07_242
crossref_primary_10_1002_adfm_202421504
crossref_primary_10_1016_j_cej_2024_151220
crossref_primary_10_1039_D1TA02658E
crossref_primary_10_1016_j_electacta_2022_140975
crossref_primary_10_1039_D1TA09306A
crossref_primary_10_1002_smll_202106358
crossref_primary_10_1002_smll_202107207
crossref_primary_10_1007_s10853_021_06451_7
crossref_primary_10_1038_s44160_024_00690_7
crossref_primary_10_1002_smll_202301915
crossref_primary_10_1039_D3RA01945D
crossref_primary_10_1016_j_nanoen_2023_108992
crossref_primary_10_1016_j_ceramint_2024_02_209
crossref_primary_10_1039_D2TA10081A
crossref_primary_10_1039_D2TA06930J
crossref_primary_10_1038_s43246_022_00235_5
crossref_primary_10_1002_smll_202103106
crossref_primary_10_1142_S1793604723510219
crossref_primary_10_3390_nano14010064
crossref_primary_10_1021_acsami_3c05781
crossref_primary_10_1016_j_cej_2022_139510
crossref_primary_10_1016_j_partic_2024_06_014
crossref_primary_10_1039_D1SC06015E
crossref_primary_10_1016_j_cej_2022_136121
crossref_primary_10_1002_adfm_202309438
crossref_primary_10_1002_adma_202103812
crossref_primary_10_1093_nsr_nwae033
crossref_primary_10_1002_sus2_32
crossref_primary_10_1021_acsanm_2c02003
crossref_primary_10_1002_smll_202104863
crossref_primary_10_1080_17436753_2021_2014277
crossref_primary_10_1088_2053_1591_ad068a
crossref_primary_10_1021_jacs_3c08598
crossref_primary_10_1360_TB_2024_0239
crossref_primary_10_1021_acsami_2c11627
crossref_primary_10_1016_j_jeurceramsoc_2024_05_063
crossref_primary_10_1002_celc_202101098
crossref_primary_10_1016_j_jcis_2024_02_092
crossref_primary_10_1002_aenm_202401838
crossref_primary_10_1039_D2QI02256G
crossref_primary_10_1016_j_cej_2024_153997
crossref_primary_10_1007_s40843_024_2967_2
crossref_primary_10_1016_j_jpowsour_2021_230873
crossref_primary_10_1021_acsnano_2c01064
crossref_primary_10_1021_acs_inorgchem_4c03822
crossref_primary_10_1016_j_jelechem_2024_118108
crossref_primary_10_1016_j_jelechem_2023_117619
crossref_primary_10_1007_s11837_024_06486_6
crossref_primary_10_1021_jacs_1c13740
crossref_primary_10_1021_acs_energyfuels_2c03661
crossref_primary_10_1088_2752_5724_accbd8
crossref_primary_10_12677_NAT_2022_124025
crossref_primary_10_1021_acs_nanolett_4c05699
crossref_primary_10_1016_j_jcis_2023_08_186
crossref_primary_10_1002_adfm_202413562
crossref_primary_10_1002_smll_202403162
crossref_primary_10_1038_s41893_023_01101_z
crossref_primary_10_1002_advs_202307649
crossref_primary_10_1016_j_mtener_2024_101492
crossref_primary_10_12677_NAT_2022_124030
crossref_primary_10_1016_j_cej_2024_156219
crossref_primary_10_1016_j_apsusc_2024_161660
crossref_primary_10_1016_j_jeurceramsoc_2024_05_058
crossref_primary_10_1016_j_jpowsour_2023_233956
Cites_doi 10.1021/acscatal.7b01831
10.1016/j.matt.2019.10.017
10.1038/nenergy.2016.184
10.1021/acsami.0c11324
10.1016/j.ijhydene.2019.11.156
10.1038/nmat1223
10.1002/smll.201904507
10.1039/C9TA04972J
10.1039/C8TA01832D
10.1038/s41929-018-0055-z
10.1038/nchem.2740
10.1021/acsnano.7b04646
10.1126/science.aad4998
10.1002/aenm.202001331
10.1021/acs.nanolett.6b00121
10.1021/acsami.8b08547
10.1038/nmat4410
10.1002/anie.201505320
10.1002/adfm.201706675
10.1016/j.nanoen.2016.12.008
10.1021/jacs.9b01834
10.1021/acs.chemrev.7b00488
10.1126/science.1141483
10.1002/adma.201808281
10.1016/j.nanoen.2017.11.049
10.1002/admi.201900015
10.1021/acsami.9b19382
10.1021/acscatal.9b05170
10.1002/aenm.202001397
10.1021/jacs.9b04492
10.1002/aenm.201903289
10.1038/s41929-018-0141-2
10.1038/nchem.1634
10.1016/j.electacta.2017.01.178
10.1038/ncomms10771
10.1126/science.aaf1525
10.1038/nmat1752
10.1073/pnas.1903721117
10.1016/j.matt.2019.10.007
10.1002/anie.201810104
10.1002/anie.201701280
10.1007/s40820-020-00505-2
10.1126/science.aan5412
10.1039/C7TA04438K
10.1021/acscatal.8b00017
10.1088/0953-8984/21/8/084204
10.1039/C8NR10191D
10.1002/adfm.201600566
10.1021/acs.nanolett.9b01523
10.1021/acsmaterialslett.9b00064
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202002887
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202002887
AENM202002887
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: ACI‐1053575
– fundername: Brookhaven National Laboratory
  funderid: DE‐SC0012704
– fundername: US DOE
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4607-d9225fd0d3e89c44b66f96ebe29cb3e009b73513bf0b92f9af03e01ef1c269b3
ISSN 1614-6832
IngestDate Fri Jul 25 12:19:48 EDT 2025
Tue Jul 01 01:43:37 EDT 2025
Thu Apr 24 22:57:23 EDT 2025
Wed Jan 22 16:31:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4607-d9225fd0d3e89c44b66f96ebe29cb3e009b73513bf0b92f9af03e01ef1c269b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9456-9315
OpenAccessLink https://www.osti.gov/biblio/1760637
PQID 2478941068
PQPubID 886389
PageCount 8
ParticipantIDs proquest_journals_2478941068
crossref_citationtrail_10_1002_aenm_202002887
crossref_primary_10_1002_aenm_202002887
wiley_primary_10_1002_aenm_202002887_AENM202002887
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 7
2017; 7
2015; 14
2018; 28
2019; 6
2009; 21
2019; 31
2019; 11
2019; 1
2019; 15
2019; 58
2015; 54
2004; 3
2006; 5
2019; 19
2020; 12
2017; 230
2020; 10
2019; 141
2013; 5
2016; 16
2017; 355
2018; 43
2017; 9
2018; 6
2017; 31
2018; 8
2016; 7
2007; 317
2016; 1
2020; 2
2018; 359
2018; 1
2020
2018; 118
2017; 56
2020; 117
2016; 352
2020; 45
2018; 12
2018; 10
2016; 26
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_50_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 711
  year: 2018
  publication-title: Nat. Catal.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 909
  year: 2006
  publication-title: Nat. Mater.
– volume: 117
  start-page: 6316
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 5
  start-page: 362
  year: 2013
  publication-title: Nat. Chem.
– volume: 1
  start-page: 1606
  year: 2019
  publication-title: Matter
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 5149
  year: 2019
  publication-title: Nano Lett.
– volume: 21
  year: 2009
  publication-title: J. Phys.: Condens. Matter
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 6
  start-page: 8109
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 56
  start-page: 4858
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 58
  start-page: 4484
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  year: 2019
  publication-title: Adv. Mater. Interfaces
– volume: 11
  start-page: 7239
  year: 2019
  publication-title: Nanoscale
– volume: 230
  start-page: 151
  year: 2017
  publication-title: Electrochim. Acta
– volume: 14
  start-page: 1245
  year: 2015
  publication-title: Nat. Mater.
– volume: 10
  start-page: 1855
  year: 2020
  publication-title: ACS Catal.
– year: 2020
  publication-title: Adv. Energy Mater.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 2
  start-page: 32
  year: 2020
  publication-title: Matter
– volume: 352
  start-page: 333
  year: 2016
  publication-title: Science
– volume: 45
  start-page: 2745
  year: 2020
  publication-title: Int. J. Hydrog. Energy
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 43
  start-page: 300
  year: 2018
  publication-title: Nano Energy
– volume: 12
  start-page: 6250
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 83
  year: 2019
  publication-title: ACS Mater. Lett.
– volume: 3
  start-page: 810
  year: 2004
  publication-title: Nat. Mater.
– volume: 118
  start-page: 2302
  year: 2018
  publication-title: Chem. Rev.
– volume: 355
  year: 2017
  publication-title: Science
– volume: 7
  start-page: 5871
  year: 2017
  publication-title: ACS Catal.
– volume: 359
  start-page: 1489
  year: 2018
  publication-title: Science
– volume: 12
  start-page: 158
  year: 2018
  publication-title: ACS Nano
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 4091
  year: 2018
  publication-title: ACS Catal.
– volume: 317
  start-page: 100
  year: 2007
  publication-title: Science
– volume: 16
  start-page: 2560
  year: 2016
  publication-title: Nano Lett.
– volume: 31
  start-page: 541
  year: 2017
  publication-title: Nano Energy
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 810
  year: 2017
  publication-title: Nat. Chem.
– volume: 26
  start-page: 4661
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 291
  year: 2018
  publication-title: Nat. Catal.
– volume: 12
  start-page: 162
  year: 2020
  publication-title: Nano‐Micro Lett.
– ident: e_1_2_5_25_1
  doi: 10.1021/acscatal.7b01831
– ident: e_1_2_5_29_1
  doi: 10.1016/j.matt.2019.10.017
– ident: e_1_2_5_11_1
  doi: 10.1038/nenergy.2016.184
– ident: e_1_2_5_51_1
  doi: 10.1021/acsami.0c11324
– ident: e_1_2_5_48_1
  doi: 10.1016/j.ijhydene.2019.11.156
– ident: e_1_2_5_17_1
  doi: 10.1038/nmat1223
– ident: e_1_2_5_33_1
  doi: 10.1002/smll.201904507
– ident: e_1_2_5_40_1
  doi: 10.1039/C9TA04972J
– ident: e_1_2_5_44_1
  doi: 10.1039/C8TA01832D
– ident: e_1_2_5_8_1
  doi: 10.1038/s41929-018-0055-z
– ident: e_1_2_5_13_1
  doi: 10.1038/nchem.2740
– ident: e_1_2_5_7_1
  doi: 10.1021/acsnano.7b04646
– ident: e_1_2_5_19_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_5_30_1
  doi: 10.1002/aenm.202001331
– ident: e_1_2_5_16_1
  doi: 10.1021/acs.nanolett.6b00121
– ident: e_1_2_5_28_1
  doi: 10.1021/acsami.8b08547
– ident: e_1_2_5_34_1
  doi: 10.1038/nmat4410
– ident: e_1_2_5_42_1
  doi: 10.1002/anie.201505320
– ident: e_1_2_5_47_1
  doi: 10.1002/adfm.201706675
– ident: e_1_2_5_45_1
  doi: 10.1016/j.nanoen.2016.12.008
– ident: e_1_2_5_2_1
  doi: 10.1021/jacs.9b01834
– ident: e_1_2_5_38_1
  doi: 10.1021/acs.chemrev.7b00488
– ident: e_1_2_5_1_1
  doi: 10.1126/science.1141483
– ident: e_1_2_5_41_1
  doi: 10.1002/adma.201808281
– ident: e_1_2_5_43_1
  doi: 10.1016/j.nanoen.2017.11.049
– ident: e_1_2_5_23_1
  doi: 10.1002/admi.201900015
– ident: e_1_2_5_49_1
  doi: 10.1021/acsami.9b19382
– ident: e_1_2_5_50_1
  doi: 10.1021/acscatal.9b05170
– ident: e_1_2_5_10_1
  doi: 10.1002/aenm.202001397
– ident: e_1_2_5_36_1
  doi: 10.1021/jacs.9b04492
– ident: e_1_2_5_37_1
  doi: 10.1002/aenm.201903289
– ident: e_1_2_5_4_1
  doi: 10.1038/s41929-018-0141-2
– ident: e_1_2_5_3_1
  doi: 10.1038/nchem.1634
– ident: e_1_2_5_15_1
  doi: 10.1016/j.electacta.2017.01.178
– ident: e_1_2_5_35_1
  doi: 10.1038/ncomms10771
– ident: e_1_2_5_5_1
  doi: 10.1126/science.aaf1525
– ident: e_1_2_5_18_1
  doi: 10.1038/nmat1752
– ident: e_1_2_5_22_1
  doi: 10.1073/pnas.1903721117
– ident: e_1_2_5_6_1
  doi: 10.1016/j.matt.2019.10.007
– ident: e_1_2_5_20_1
  doi: 10.1002/anie.201810104
– ident: e_1_2_5_12_1
  doi: 10.1002/anie.201701280
– ident: e_1_2_5_31_1
  doi: 10.1007/s40820-020-00505-2
– ident: e_1_2_5_32_1
  doi: 10.1126/science.aan5412
– ident: e_1_2_5_26_1
  doi: 10.1039/C7TA04438K
– ident: e_1_2_5_14_1
  doi: 10.1021/acscatal.8b00017
– ident: e_1_2_5_39_1
  doi: 10.1088/0953-8984/21/8/084204
– ident: e_1_2_5_9_1
  doi: 10.1039/C8NR10191D
– ident: e_1_2_5_46_1
  doi: 10.1002/adfm.201600566
– ident: e_1_2_5_21_1
  doi: 10.1021/acs.nanolett.9b01523
– ident: e_1_2_5_24_1
  doi: 10.1021/acsmaterialslett.9b00064
– ident: e_1_2_5_27_1
  doi: 10.1016/j.nanoen.2016.12.008
SSID ssj0000491033
Score 2.6898668
Snippet Transition metal sulfides with a multi‐elemental nature represent a class of promising catalysts for oxygen evolution reaction (OER) owing to their good...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Catalytic activity
catalytic stability
Chemical synthesis
Electron states
Entropy
high‐entropy
Metal sulfides
Miscibility
Nanoparticles
oxygen evolution reaction
Oxygen evolution reactions
Photoelectrons
Solid solutions
Synergistic effect
Transition metals
transition‐metal sulfide nanoparticles
Title High‐Entropy Metal Sulfide Nanoparticles Promise High‐Performance Oxygen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202002887
https://www.proquest.com/docview/2478941068
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZge4EHxLiIwpj8gMRDZbBj14kfy1Y0ITpAK9J4imLHgaIpq6BFlCd-Ar-RX8Jx7LgJKmLwErWWnUu_z-fWc04QelSqlGuWclJoJogAo5RkJRVE64xZYSRYHE23zxN5_Fa8OBudbYI5TXXJUj8x37bWlfwPqjAGuLoq2X9ANp4UBuAz4AtHQBiOl8LYJWnEbIWJyzlfrIdT6-obT1fn1by0TnqCWxyy31xZAOBqh72Frzu1A6--ruFqw8mXcN8uyd5E7NputW3egPWFg2D0-qeNf2is5j4lv37_cR7Z9y6Epg8_rOqFDRrT5QI1k59drIvN2FHIFH4z74YlEtYJS3hJCnqfyCwEL213zPdniuKXdWjGt0p13yW2sLVrHeCySrKgpHvts39TazHZ0DdmTnK3Po_rr6LdBDwLEI2746Ppy9MYmAOXiVHeFGa0j9A2-6TJ0_5N9I2ZjYfS9XMaQ2V2E90IHgYee8z30BVb30LXO30nb6Pc4f_z-49AGdxQBgfK4B5lcKAMDks6ZMGeLDiSBbdkuYNmzyezw2MS3rRBjJA0JaUCsV6VtOQ2U0YILWWlJOzvRBnNLdjhOuUjxnVFtUoqVVQURpmtmEmk0vwu2qkvansPYVrwFJxyMzJKCS24FrAG1AboDbBspRwg0v5iuQld6N3LUM7z7TAN0OM4f-H7r_xx5n4LQB726Oc8EWmmBKMyG6CkAeUvZ8nHk5Np_Hb_0ld_gK5tdsE-2ll-WtmHYK4u9UEg2C-u15G7
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Entropy+Metal+Sulfide+Nanoparticles+Promise+High%E2%80%90Performance+Oxygen+Evolution+Reaction&rft.jtitle=Advanced+energy+materials&rft.au=Cui%2C+Mingjin&rft.au=Yang%2C+Chunpeng&rft.au=Li%2C+Boyang&rft.au=Dong%2C+Qi&rft.date=2021-01-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=11&rft.issue=3&rft_id=info:doi/10.1002%2Faenm.202002887&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202002887
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon