High‐Entropy Metal Sulfide Nanoparticles Promise High‐Performance Oxygen Evolution Reaction
Transition metal sulfides with a multi‐elemental nature represent a class of promising catalysts for oxygen evolution reaction (OER) owing to their good catalytic activity. However, their synthesis remains a challenge due to the thermodynamic immiscibility of the constituent multimetallic elements i...
Saved in:
Published in | Advanced energy materials Vol. 11; no. 3 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transition metal sulfides with a multi‐elemental nature represent a class of promising catalysts for oxygen evolution reaction (OER) owing to their good catalytic activity. However, their synthesis remains a challenge due to the thermodynamic immiscibility of the constituent multimetallic elements in a sulfide structure. Herein, for the first time the synthesis of high‐entropy metal sulfide (HEMS, i.e., (CrMnFeCoNi)Sx) solid solution nanoparticles is reported. Computational and X‐ray photoelectron spectroscopy analysis suggest that the (CrMnFeCoNi)Sx exhibits a synergistic effect among metal atoms that leads to desired electronic states to enhance OER activity. The (CrMnFeCoNi)Sx nanoparticles show one of the best activities (low overpotential 295 mV at 100 mA cm−2 in 1 m KOH solution) and good durability (only slight polarization after 10 h by chronopotentiometry) compared with their unary, binary, ternary, and quaternary sulfide counterparts. This work opens up a new synthesis paradigm for high‐entropy compound nanoparticles for highly efficient electrocatalysis applications.
High‐entropy metal sulfide (HEMS) nanoparticles are achieved through a pulse thermal decomposition method by overcoming the immiscibility of multiple metallic constituents. Benefiting from synergistic effects and high‐entropy stabilization, nanoscale HEMS greatly promotes oxygen evolution reaction performance. Thus, a new synthesis paradigm for high‐entropy nanomaterials is established for renewable energy conversion and storage applications. |
---|---|
AbstractList | Transition metal sulfides with a multi‐elemental nature represent a class of promising catalysts for oxygen evolution reaction (OER) owing to their good catalytic activity. However, their synthesis remains a challenge due to the thermodynamic immiscibility of the constituent multimetallic elements in a sulfide structure. Herein, for the first time the synthesis of high‐entropy metal sulfide (HEMS, i.e., (CrMnFeCoNi)Sx) solid solution nanoparticles is reported. Computational and X‐ray photoelectron spectroscopy analysis suggest that the (CrMnFeCoNi)Sx exhibits a synergistic effect among metal atoms that leads to desired electronic states to enhance OER activity. The (CrMnFeCoNi)Sx nanoparticles show one of the best activities (low overpotential 295 mV at 100 mA cm−2 in 1 m KOH solution) and good durability (only slight polarization after 10 h by chronopotentiometry) compared with their unary, binary, ternary, and quaternary sulfide counterparts. This work opens up a new synthesis paradigm for high‐entropy compound nanoparticles for highly efficient electrocatalysis applications.
High‐entropy metal sulfide (HEMS) nanoparticles are achieved through a pulse thermal decomposition method by overcoming the immiscibility of multiple metallic constituents. Benefiting from synergistic effects and high‐entropy stabilization, nanoscale HEMS greatly promotes oxygen evolution reaction performance. Thus, a new synthesis paradigm for high‐entropy nanomaterials is established for renewable energy conversion and storage applications. Transition metal sulfides with a multi‐elemental nature represent a class of promising catalysts for oxygen evolution reaction (OER) owing to their good catalytic activity. However, their synthesis remains a challenge due to the thermodynamic immiscibility of the constituent multimetallic elements in a sulfide structure. Herein, for the first time the synthesis of high‐entropy metal sulfide (HEMS, i.e., (CrMnFeCoNi)S x ) solid solution nanoparticles is reported. Computational and X‐ray photoelectron spectroscopy analysis suggest that the (CrMnFeCoNi)S x exhibits a synergistic effect among metal atoms that leads to desired electronic states to enhance OER activity. The (CrMnFeCoNi)S x nanoparticles show one of the best activities (low overpotential 295 mV at 100 mA cm −2 in 1 m KOH solution) and good durability (only slight polarization after 10 h by chronopotentiometry) compared with their unary, binary, ternary, and quaternary sulfide counterparts. This work opens up a new synthesis paradigm for high‐entropy compound nanoparticles for highly efficient electrocatalysis applications. Transition metal sulfides with a multi‐elemental nature represent a class of promising catalysts for oxygen evolution reaction (OER) owing to their good catalytic activity. However, their synthesis remains a challenge due to the thermodynamic immiscibility of the constituent multimetallic elements in a sulfide structure. Herein, for the first time the synthesis of high‐entropy metal sulfide (HEMS, i.e., (CrMnFeCoNi)Sx) solid solution nanoparticles is reported. Computational and X‐ray photoelectron spectroscopy analysis suggest that the (CrMnFeCoNi)Sx exhibits a synergistic effect among metal atoms that leads to desired electronic states to enhance OER activity. The (CrMnFeCoNi)Sx nanoparticles show one of the best activities (low overpotential 295 mV at 100 mA cm−2 in 1 m KOH solution) and good durability (only slight polarization after 10 h by chronopotentiometry) compared with their unary, binary, ternary, and quaternary sulfide counterparts. This work opens up a new synthesis paradigm for high‐entropy compound nanoparticles for highly efficient electrocatalysis applications. |
Author | Wu, Meiling Li, Boyang Wang, Xizheng Hu, Liangbing Yang, Chunpeng Xie, Hua Cui, Mingjin Dong, Qi Hwang, Sooyeon Wang, Guofeng |
Author_xml | – sequence: 1 givenname: Mingjin surname: Cui fullname: Cui, Mingjin organization: University of Maryland – sequence: 2 givenname: Chunpeng surname: Yang fullname: Yang, Chunpeng organization: University of Maryland – sequence: 3 givenname: Boyang surname: Li fullname: Li, Boyang organization: University of Pittsburgh – sequence: 4 givenname: Qi surname: Dong fullname: Dong, Qi organization: University of Maryland – sequence: 5 givenname: Meiling surname: Wu fullname: Wu, Meiling organization: University of Maryland – sequence: 6 givenname: Sooyeon surname: Hwang fullname: Hwang, Sooyeon organization: Brookhaven National Laboratory – sequence: 7 givenname: Hua surname: Xie fullname: Xie, Hua organization: University of Maryland – sequence: 8 givenname: Xizheng surname: Wang fullname: Wang, Xizheng organization: University of Maryland – sequence: 9 givenname: Guofeng surname: Wang fullname: Wang, Guofeng email: guw8@pitt.edu organization: University of Pittsburgh – sequence: 10 givenname: Liangbing orcidid: 0000-0002-9456-9315 surname: Hu fullname: Hu, Liangbing email: binghu@umd.edu organization: University of Maryland |
BookMark | eNqFkE1LAzEQhoNUsNZePS943ppk0-3mWEq1Qr_Q3kM2O6kp26Rmd9Xe_An-Rn-Ju7RUEMS5zMswz3y8l6hlnQWErgnuEYzprQS77VFMa50kgzPUJjFhYZww3DrpiF6gblFscB2MExxFbSQmZv389fE5tqV3u30wg1LmwVOVa5NBMJfW7aQvjcqhCJbebU0BwRFZgtfOb6VVECze92uwwfjV5VVpnA0eQapGXKFzLfMCusfcQau78Wo0CaeL-4fRcBoqFuNBmHFK-zrDWQQJV4ylcax5DClQrtIIMObpIOqTKNU45VRzqXFdJaCJojFPow66OYzdefdSQVGKjau8rTcKygYJZwTX_3cQO3Qp74rCgxbKlLI5s_TS5IJg0ZgpGjPFycwa6_3Cdt5spd__DfAD8GZy2P_TLYbj-eyH_QbOY4yJ |
CitedBy_id | crossref_primary_10_1007_s12598_024_02852_0 crossref_primary_10_1016_j_ccr_2024_216237 crossref_primary_10_1002_anie_202407079 crossref_primary_10_1007_s12274_023_5419_2 crossref_primary_10_1016_j_cej_2022_135184 crossref_primary_10_1021_acsanm_4c06098 crossref_primary_10_1038_s41427_022_00398_0 crossref_primary_10_1016_j_pmatsci_2024_101382 crossref_primary_10_1021_acs_nanolett_2c01596 crossref_primary_10_1002_adfm_202301490 crossref_primary_10_1016_j_ijhydene_2023_06_121 crossref_primary_10_1016_j_est_2023_108213 crossref_primary_10_1021_acscatal_4c05997 crossref_primary_10_1039_D4CS00034J crossref_primary_10_1016_j_jcis_2023_03_152 crossref_primary_10_1016_j_colsurfa_2023_131915 crossref_primary_10_1021_acsami_2c09161 crossref_primary_10_1016_j_cej_2021_133829 crossref_primary_10_1021_acs_iecr_3c00300 crossref_primary_10_1021_jacs_3c05688 crossref_primary_10_3390_nano14100889 crossref_primary_10_1039_D2MA00547F crossref_primary_10_1039_D2NJ03739D crossref_primary_10_1038_s41467_021_26425_2 crossref_primary_10_1016_j_coelec_2022_101010 crossref_primary_10_1016_j_trechm_2022_07_004 crossref_primary_10_1002_elsa_202100105 crossref_primary_10_3390_nano14181533 crossref_primary_10_1021_acsmaterialslett_4c00587 crossref_primary_10_1002_sstr_202300012 crossref_primary_10_1016_j_cej_2024_152758 crossref_primary_10_1016_j_jece_2022_107416 crossref_primary_10_1016_j_ensm_2024_103718 crossref_primary_10_1016_j_electacta_2023_142294 crossref_primary_10_1002_adfm_202310181 crossref_primary_10_1002_adma_202412337 crossref_primary_10_1039_D3YA00062A crossref_primary_10_1021_acsnano_4c17661 crossref_primary_10_1002_adfm_202208170 crossref_primary_10_1016_j_mser_2024_100813 crossref_primary_10_1039_D4EE02817A crossref_primary_10_1016_j_jcis_2022_12_135 crossref_primary_10_1007_s11814_024_00249_4 crossref_primary_10_1016_j_pnsc_2024_08_005 crossref_primary_10_1021_acs_jpcc_3c01499 crossref_primary_10_1021_acsnano_4c04112 crossref_primary_10_1016_j_apsusc_2024_161600 crossref_primary_10_1007_s12274_022_5207_4 crossref_primary_10_1039_D2TA00149G crossref_primary_10_1002_ange_202411977 crossref_primary_10_1039_D2TA04736E crossref_primary_10_1007_s44405_025_00001_4 crossref_primary_10_1016_j_electacta_2022_140711 crossref_primary_10_1016_j_joule_2024_06_004 crossref_primary_10_1002_cey2_375 crossref_primary_10_1021_acsmaterialslett_4c00699 crossref_primary_10_1002_advs_202413424 crossref_primary_10_1016_j_apsusc_2022_154743 crossref_primary_10_1039_D4MH01168F crossref_primary_10_1002_adfm_202310179 crossref_primary_10_1016_j_apsusc_2022_155951 crossref_primary_10_1088_2752_5724_ad8a78 crossref_primary_10_1002_adma_202405129 crossref_primary_10_1002_cssc_202401871 crossref_primary_10_1002_ente_202401555 crossref_primary_10_1021_acsami_3c16333 crossref_primary_10_1016_j_cej_2023_147896 crossref_primary_10_1002_er_7849 crossref_primary_10_1016_j_jmat_2023_06_006 crossref_primary_10_1126_sciadv_abg1600 crossref_primary_10_1002_advs_202204488 crossref_primary_10_1016_j_cej_2023_143855 crossref_primary_10_1002_adfm_202304296 crossref_primary_10_1016_j_mtphys_2023_101169 crossref_primary_10_1186_s11671_023_03890_w crossref_primary_10_1002_adfm_202112157 crossref_primary_10_1007_s12274_022_4304_8 crossref_primary_10_1016_j_electacta_2022_140947 crossref_primary_10_1021_acs_energyfuels_1c02810 crossref_primary_10_1007_s12274_021_3860_7 crossref_primary_10_1016_j_cej_2024_156419 crossref_primary_10_1016_j_apsusc_2023_157624 crossref_primary_10_1021_acsami_3c10585 crossref_primary_10_1002_adfm_202112832 crossref_primary_10_1016_j_cej_2023_144134 crossref_primary_10_1039_D4TA06197G crossref_primary_10_1002_adfm_202213304 crossref_primary_10_1016_j_apsusc_2023_159102 crossref_primary_10_1016_j_apsusc_2023_157282 crossref_primary_10_1002_adma_202110511 crossref_primary_10_1016_j_joule_2024_06_023 crossref_primary_10_1016_j_ijhydene_2021_09_123 crossref_primary_10_1007_s42114_025_01275_4 crossref_primary_10_1016_j_fuel_2023_130315 crossref_primary_10_1039_D3CC03205A crossref_primary_10_1039_D3SC06784J crossref_primary_10_1002_adfm_202207536 crossref_primary_10_1016_j_jallcom_2024_174574 crossref_primary_10_1039_D2SC06403K crossref_primary_10_1002_smll_202104339 crossref_primary_10_1021_acs_jpcc_1c03824 crossref_primary_10_1002_smll_202207044 crossref_primary_10_1021_acs_energyfuels_2c01429 crossref_primary_10_1016_j_apsusc_2022_152546 crossref_primary_10_1002_adma_202418890 crossref_primary_10_1039_D1TA08039C crossref_primary_10_1021_acs_chemmater_3c00363 crossref_primary_10_1021_acs_inorgchem_4c02339 crossref_primary_10_1016_j_jcis_2022_08_068 crossref_primary_10_1002_adfm_202405643 crossref_primary_10_1038_s41377_024_01614_y crossref_primary_10_1007_s40843_022_2234_5 crossref_primary_10_1002_smll_202302151 crossref_primary_10_1002_cphc_202300999 crossref_primary_10_1002_ange_202209616 crossref_primary_10_1002_ange_202407079 crossref_primary_10_1016_j_cej_2022_139232 crossref_primary_10_1039_D3TA07107C crossref_primary_10_1002_adma_202101473 crossref_primary_10_1016_j_jpowsour_2025_236402 crossref_primary_10_1002_adma_202305222 crossref_primary_10_1021_acs_energyfuels_3c05202 crossref_primary_10_1002_adfm_202312322 crossref_primary_10_1016_j_ijhydene_2024_08_221 crossref_primary_10_1016_j_jcis_2023_07_084 crossref_primary_10_1016_j_apcatb_2023_123686 crossref_primary_10_1002_adfm_202106229 crossref_primary_10_1021_acs_chemrev_3c00005 crossref_primary_10_3390_nano14010016 crossref_primary_10_1016_j_apsusc_2023_158598 crossref_primary_10_1016_j_cej_2023_143942 crossref_primary_10_1038_s44160_022_00203_4 crossref_primary_10_1016_j_jechem_2022_04_027 crossref_primary_10_1016_j_jechem_2023_06_039 crossref_primary_10_1002_cssc_202300927 crossref_primary_10_1021_acs_chemmater_2c01455 crossref_primary_10_1016_j_electacta_2022_141444 crossref_primary_10_1016_j_jallcom_2022_167210 crossref_primary_10_1016_j_jssc_2022_123556 crossref_primary_10_1002_smll_202401491 crossref_primary_10_1016_j_ica_2024_122377 crossref_primary_10_1039_D3QM00638G crossref_primary_10_1002_ece2_91 crossref_primary_10_1002_advs_202200529 crossref_primary_10_1016_j_jallcom_2023_170479 crossref_primary_10_1016_j_jelechem_2022_116760 crossref_primary_10_1021_acs_inorgchem_4c03303 crossref_primary_10_1016_j_ijhydene_2024_07_414 crossref_primary_10_1021_acsaem_2c03656 crossref_primary_10_1016_j_cej_2024_152808 crossref_primary_10_1016_j_nxmate_2024_100192 crossref_primary_10_1021_acs_iecr_4c03229 crossref_primary_10_1016_j_sajce_2024_03_012 crossref_primary_10_1007_s12598_023_02460_4 crossref_primary_10_1039_D4SC05326E crossref_primary_10_1016_j_checat_2022_05_003 crossref_primary_10_1007_s12274_022_5259_5 crossref_primary_10_1039_D2TA07527J crossref_primary_10_1039_D3SC04962K crossref_primary_10_1039_D4CC04075A crossref_primary_10_1016_j_jallcom_2023_172786 crossref_primary_10_1039_D2YA00152G crossref_primary_10_1021_acsami_4c10131 crossref_primary_10_1002_smll_202404093 crossref_primary_10_1002_cssc_202400332 crossref_primary_10_1016_j_ijhydene_2021_12_189 crossref_primary_10_1021_acs_jpcc_2c05666 crossref_primary_10_1039_D2SC04900G crossref_primary_10_1002_cssc_202401663 crossref_primary_10_1007_s12274_024_6421_z crossref_primary_10_1016_j_apcatb_2023_123542 crossref_primary_10_1007_s42864_021_00084_8 crossref_primary_10_1016_j_asems_2023_100046 crossref_primary_10_1016_j_apsusc_2022_153041 crossref_primary_10_1021_acs_energyfuels_2c03011 crossref_primary_10_1063_5_0155397 crossref_primary_10_1002_anie_202411977 crossref_primary_10_1021_acsami_4c16847 crossref_primary_10_1021_acsnano_4c06954 crossref_primary_10_1039_D3MH02181E crossref_primary_10_1021_acsnano_2c06890 crossref_primary_10_3390_molecules27217438 crossref_primary_10_1002_cmt2_26 crossref_primary_10_1016_j_pmatsci_2024_101300 crossref_primary_10_1039_D2EE03357G crossref_primary_10_1002_adfm_202413115 crossref_primary_10_1039_D2CC04646F crossref_primary_10_1016_j_cej_2021_133448 crossref_primary_10_1039_D3CC00282A crossref_primary_10_1002_adma_202313209 crossref_primary_10_1038_s41467_023_41706_8 crossref_primary_10_1016_j_ijhydene_2024_12_510 crossref_primary_10_1063_5_0246719 crossref_primary_10_1002_smll_202309025 crossref_primary_10_1016_j_cej_2023_143352 crossref_primary_10_1016_j_jcis_2021_05_170 crossref_primary_10_1002_ange_202117178 crossref_primary_10_1016_j_jssc_2022_123542 crossref_primary_10_1016_j_renene_2024_121180 crossref_primary_10_6023_A23020020 crossref_primary_10_1016_j_jallcom_2022_165305 crossref_primary_10_1002_smsc_202200109 crossref_primary_10_1039_D2NJ00489E crossref_primary_10_1039_D2NR01516A crossref_primary_10_1007_s40820_024_01504_3 crossref_primary_10_1016_j_nanoen_2021_106029 crossref_primary_10_1002_adfm_202306889 crossref_primary_10_1002_slct_202200196 crossref_primary_10_1016_j_jallcom_2023_171039 crossref_primary_10_1002_anie_202401238 crossref_primary_10_1021_acsmaterialslett_4c01952 crossref_primary_10_1016_j_checat_2022_02_007 crossref_primary_10_1039_D2RA07642J crossref_primary_10_1149_1945_7111_ac8d30 crossref_primary_10_1039_D1TA06548C crossref_primary_10_1039_D4QI01835D crossref_primary_10_1002_eem2_70007 crossref_primary_10_1007_s12598_024_02749_y crossref_primary_10_1016_j_actamat_2025_120964 crossref_primary_10_1039_D2TA03922B crossref_primary_10_1016_j_jallcom_2022_164669 crossref_primary_10_1021_acsnano_3c05869 crossref_primary_10_1002_anie_202209616 crossref_primary_10_1016_j_jiec_2024_11_050 crossref_primary_10_1016_j_ijhydene_2022_02_123 crossref_primary_10_1002_smll_202404205 crossref_primary_10_1002_smll_202404689 crossref_primary_10_1039_D3MH00360D crossref_primary_10_1039_D1NR03539H crossref_primary_10_1039_D3YA00305A crossref_primary_10_1016_j_jcis_2022_02_135 crossref_primary_10_1016_j_fuel_2023_130659 crossref_primary_10_1016_j_mattod_2023_12_006 crossref_primary_10_1039_D4TA01747A crossref_primary_10_1016_j_ijhydene_2023_04_132 crossref_primary_10_1016_j_materresbull_2025_113333 crossref_primary_10_1360_TB_2023_0133 crossref_primary_10_1002_ente_202300490 crossref_primary_10_1039_D4TA02271H crossref_primary_10_1002_sus2_47 crossref_primary_10_1002_metm_31 crossref_primary_10_1016_j_jcis_2023_05_074 crossref_primary_10_1039_D2TA01376B crossref_primary_10_1021_acs_inorgchem_4c00778 crossref_primary_10_1002_aenm_202103090 crossref_primary_10_1002_aenm_202200742 crossref_primary_10_1016_j_jallcom_2022_164670 crossref_primary_10_1002_cssc_202200590 crossref_primary_10_1039_D3SE00736G crossref_primary_10_1002_phmt_14 crossref_primary_10_1016_j_carbon_2025_120166 crossref_primary_10_1016_j_jeurceramsoc_2024_05_013 crossref_primary_10_1039_D4MA00382A crossref_primary_10_1039_D3TA03098A crossref_primary_10_1038_s41467_022_30379_4 crossref_primary_10_1016_j_apsusc_2021_150757 crossref_primary_10_1016_j_jcis_2023_05_192 crossref_primary_10_1016_j_apcatb_2022_122356 crossref_primary_10_1007_s42823_024_00693_6 crossref_primary_10_1016_j_jece_2022_109080 crossref_primary_10_1039_D4EE01139B crossref_primary_10_3390_mi13020278 crossref_primary_10_1016_j_jallcom_2022_164004 crossref_primary_10_1002_adma_202404772 crossref_primary_10_1002_anie_202117178 crossref_primary_10_1002_ange_202401238 crossref_primary_10_20517_energymater_2024_130 crossref_primary_10_1016_j_actamat_2024_119713 crossref_primary_10_1016_j_ijhydene_2022_07_242 crossref_primary_10_1002_adfm_202421504 crossref_primary_10_1016_j_cej_2024_151220 crossref_primary_10_1039_D1TA02658E crossref_primary_10_1016_j_electacta_2022_140975 crossref_primary_10_1039_D1TA09306A crossref_primary_10_1002_smll_202106358 crossref_primary_10_1002_smll_202107207 crossref_primary_10_1007_s10853_021_06451_7 crossref_primary_10_1038_s44160_024_00690_7 crossref_primary_10_1002_smll_202301915 crossref_primary_10_1039_D3RA01945D crossref_primary_10_1016_j_nanoen_2023_108992 crossref_primary_10_1016_j_ceramint_2024_02_209 crossref_primary_10_1039_D2TA10081A crossref_primary_10_1039_D2TA06930J crossref_primary_10_1038_s43246_022_00235_5 crossref_primary_10_1002_smll_202103106 crossref_primary_10_1142_S1793604723510219 crossref_primary_10_3390_nano14010064 crossref_primary_10_1021_acsami_3c05781 crossref_primary_10_1016_j_cej_2022_139510 crossref_primary_10_1016_j_partic_2024_06_014 crossref_primary_10_1039_D1SC06015E crossref_primary_10_1016_j_cej_2022_136121 crossref_primary_10_1002_adfm_202309438 crossref_primary_10_1002_adma_202103812 crossref_primary_10_1093_nsr_nwae033 crossref_primary_10_1002_sus2_32 crossref_primary_10_1021_acsanm_2c02003 crossref_primary_10_1002_smll_202104863 crossref_primary_10_1080_17436753_2021_2014277 crossref_primary_10_1088_2053_1591_ad068a crossref_primary_10_1021_jacs_3c08598 crossref_primary_10_1360_TB_2024_0239 crossref_primary_10_1021_acsami_2c11627 crossref_primary_10_1016_j_jeurceramsoc_2024_05_063 crossref_primary_10_1002_celc_202101098 crossref_primary_10_1016_j_jcis_2024_02_092 crossref_primary_10_1002_aenm_202401838 crossref_primary_10_1039_D2QI02256G crossref_primary_10_1016_j_cej_2024_153997 crossref_primary_10_1007_s40843_024_2967_2 crossref_primary_10_1016_j_jpowsour_2021_230873 crossref_primary_10_1021_acsnano_2c01064 crossref_primary_10_1021_acs_inorgchem_4c03822 crossref_primary_10_1016_j_jelechem_2024_118108 crossref_primary_10_1016_j_jelechem_2023_117619 crossref_primary_10_1007_s11837_024_06486_6 crossref_primary_10_1021_jacs_1c13740 crossref_primary_10_1021_acs_energyfuels_2c03661 crossref_primary_10_1088_2752_5724_accbd8 crossref_primary_10_12677_NAT_2022_124025 crossref_primary_10_1021_acs_nanolett_4c05699 crossref_primary_10_1016_j_jcis_2023_08_186 crossref_primary_10_1002_adfm_202413562 crossref_primary_10_1002_smll_202403162 crossref_primary_10_1038_s41893_023_01101_z crossref_primary_10_1002_advs_202307649 crossref_primary_10_1016_j_mtener_2024_101492 crossref_primary_10_12677_NAT_2022_124030 crossref_primary_10_1016_j_cej_2024_156219 crossref_primary_10_1016_j_apsusc_2024_161660 crossref_primary_10_1016_j_jeurceramsoc_2024_05_058 crossref_primary_10_1016_j_jpowsour_2023_233956 |
Cites_doi | 10.1021/acscatal.7b01831 10.1016/j.matt.2019.10.017 10.1038/nenergy.2016.184 10.1021/acsami.0c11324 10.1016/j.ijhydene.2019.11.156 10.1038/nmat1223 10.1002/smll.201904507 10.1039/C9TA04972J 10.1039/C8TA01832D 10.1038/s41929-018-0055-z 10.1038/nchem.2740 10.1021/acsnano.7b04646 10.1126/science.aad4998 10.1002/aenm.202001331 10.1021/acs.nanolett.6b00121 10.1021/acsami.8b08547 10.1038/nmat4410 10.1002/anie.201505320 10.1002/adfm.201706675 10.1016/j.nanoen.2016.12.008 10.1021/jacs.9b01834 10.1021/acs.chemrev.7b00488 10.1126/science.1141483 10.1002/adma.201808281 10.1016/j.nanoen.2017.11.049 10.1002/admi.201900015 10.1021/acsami.9b19382 10.1021/acscatal.9b05170 10.1002/aenm.202001397 10.1021/jacs.9b04492 10.1002/aenm.201903289 10.1038/s41929-018-0141-2 10.1038/nchem.1634 10.1016/j.electacta.2017.01.178 10.1038/ncomms10771 10.1126/science.aaf1525 10.1038/nmat1752 10.1073/pnas.1903721117 10.1016/j.matt.2019.10.007 10.1002/anie.201810104 10.1002/anie.201701280 10.1007/s40820-020-00505-2 10.1126/science.aan5412 10.1039/C7TA04438K 10.1021/acscatal.8b00017 10.1088/0953-8984/21/8/084204 10.1039/C8NR10191D 10.1002/adfm.201600566 10.1021/acs.nanolett.9b01523 10.1021/acsmaterialslett.9b00064 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202002887 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202002887 AENM202002887 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation funderid: ACI‐1053575 – fundername: Brookhaven National Laboratory funderid: DE‐SC0012704 – fundername: US DOE |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4607-d9225fd0d3e89c44b66f96ebe29cb3e009b73513bf0b92f9af03e01ef1c269b3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:19:48 EDT 2025 Tue Jul 01 01:43:37 EDT 2025 Thu Apr 24 22:57:23 EDT 2025 Wed Jan 22 16:31:54 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4607-d9225fd0d3e89c44b66f96ebe29cb3e009b73513bf0b92f9af03e01ef1c269b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9456-9315 |
OpenAccessLink | https://www.osti.gov/biblio/1760637 |
PQID | 2478941068 |
PQPubID | 886389 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2478941068 crossref_citationtrail_10_1002_aenm_202002887 crossref_primary_10_1002_aenm_202002887 wiley_primary_10_1002_aenm_202002887_AENM202002887 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2019; 7 2017; 7 2015; 14 2018; 28 2019; 6 2009; 21 2019; 31 2019; 11 2019; 1 2019; 15 2019; 58 2015; 54 2004; 3 2006; 5 2019; 19 2020; 12 2017; 230 2020; 10 2019; 141 2013; 5 2016; 16 2017; 355 2018; 43 2017; 9 2018; 6 2017; 31 2018; 8 2016; 7 2007; 317 2016; 1 2020; 2 2018; 359 2018; 1 2020 2018; 118 2017; 56 2020; 117 2016; 352 2020; 45 2018; 12 2018; 10 2016; 26 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_50_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 1 start-page: 711 year: 2018 publication-title: Nat. Catal. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 5 start-page: 909 year: 2006 publication-title: Nat. Mater. – volume: 117 start-page: 6316 year: 2020 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 5 start-page: 362 year: 2013 publication-title: Nat. Chem. – volume: 1 start-page: 1606 year: 2019 publication-title: Matter – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 5149 year: 2019 publication-title: Nano Lett. – volume: 21 year: 2009 publication-title: J. Phys.: Condens. Matter – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 6 start-page: 8109 year: 2018 publication-title: J. Mater. Chem. A – volume: 56 start-page: 4858 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 58 start-page: 4484 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 6 year: 2019 publication-title: Adv. Mater. Interfaces – volume: 11 start-page: 7239 year: 2019 publication-title: Nanoscale – volume: 230 start-page: 151 year: 2017 publication-title: Electrochim. Acta – volume: 14 start-page: 1245 year: 2015 publication-title: Nat. Mater. – volume: 10 start-page: 1855 year: 2020 publication-title: ACS Catal. – year: 2020 publication-title: Adv. Energy Mater. – volume: 15 year: 2019 publication-title: Small – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 2 start-page: 32 year: 2020 publication-title: Matter – volume: 352 start-page: 333 year: 2016 publication-title: Science – volume: 45 start-page: 2745 year: 2020 publication-title: Int. J. Hydrog. Energy – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 43 start-page: 300 year: 2018 publication-title: Nano Energy – volume: 12 start-page: 6250 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 83 year: 2019 publication-title: ACS Mater. Lett. – volume: 3 start-page: 810 year: 2004 publication-title: Nat. Mater. – volume: 118 start-page: 2302 year: 2018 publication-title: Chem. Rev. – volume: 355 year: 2017 publication-title: Science – volume: 7 start-page: 5871 year: 2017 publication-title: ACS Catal. – volume: 359 start-page: 1489 year: 2018 publication-title: Science – volume: 12 start-page: 158 year: 2018 publication-title: ACS Nano – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 4091 year: 2018 publication-title: ACS Catal. – volume: 317 start-page: 100 year: 2007 publication-title: Science – volume: 16 start-page: 2560 year: 2016 publication-title: Nano Lett. – volume: 31 start-page: 541 year: 2017 publication-title: Nano Energy – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 810 year: 2017 publication-title: Nat. Chem. – volume: 26 start-page: 4661 year: 2016 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 291 year: 2018 publication-title: Nat. Catal. – volume: 12 start-page: 162 year: 2020 publication-title: Nano‐Micro Lett. – ident: e_1_2_5_25_1 doi: 10.1021/acscatal.7b01831 – ident: e_1_2_5_29_1 doi: 10.1016/j.matt.2019.10.017 – ident: e_1_2_5_11_1 doi: 10.1038/nenergy.2016.184 – ident: e_1_2_5_51_1 doi: 10.1021/acsami.0c11324 – ident: e_1_2_5_48_1 doi: 10.1016/j.ijhydene.2019.11.156 – ident: e_1_2_5_17_1 doi: 10.1038/nmat1223 – ident: e_1_2_5_33_1 doi: 10.1002/smll.201904507 – ident: e_1_2_5_40_1 doi: 10.1039/C9TA04972J – ident: e_1_2_5_44_1 doi: 10.1039/C8TA01832D – ident: e_1_2_5_8_1 doi: 10.1038/s41929-018-0055-z – ident: e_1_2_5_13_1 doi: 10.1038/nchem.2740 – ident: e_1_2_5_7_1 doi: 10.1021/acsnano.7b04646 – ident: e_1_2_5_19_1 doi: 10.1126/science.aad4998 – ident: e_1_2_5_30_1 doi: 10.1002/aenm.202001331 – ident: e_1_2_5_16_1 doi: 10.1021/acs.nanolett.6b00121 – ident: e_1_2_5_28_1 doi: 10.1021/acsami.8b08547 – ident: e_1_2_5_34_1 doi: 10.1038/nmat4410 – ident: e_1_2_5_42_1 doi: 10.1002/anie.201505320 – ident: e_1_2_5_47_1 doi: 10.1002/adfm.201706675 – ident: e_1_2_5_45_1 doi: 10.1016/j.nanoen.2016.12.008 – ident: e_1_2_5_2_1 doi: 10.1021/jacs.9b01834 – ident: e_1_2_5_38_1 doi: 10.1021/acs.chemrev.7b00488 – ident: e_1_2_5_1_1 doi: 10.1126/science.1141483 – ident: e_1_2_5_41_1 doi: 10.1002/adma.201808281 – ident: e_1_2_5_43_1 doi: 10.1016/j.nanoen.2017.11.049 – ident: e_1_2_5_23_1 doi: 10.1002/admi.201900015 – ident: e_1_2_5_49_1 doi: 10.1021/acsami.9b19382 – ident: e_1_2_5_50_1 doi: 10.1021/acscatal.9b05170 – ident: e_1_2_5_10_1 doi: 10.1002/aenm.202001397 – ident: e_1_2_5_36_1 doi: 10.1021/jacs.9b04492 – ident: e_1_2_5_37_1 doi: 10.1002/aenm.201903289 – ident: e_1_2_5_4_1 doi: 10.1038/s41929-018-0141-2 – ident: e_1_2_5_3_1 doi: 10.1038/nchem.1634 – ident: e_1_2_5_15_1 doi: 10.1016/j.electacta.2017.01.178 – ident: e_1_2_5_35_1 doi: 10.1038/ncomms10771 – ident: e_1_2_5_5_1 doi: 10.1126/science.aaf1525 – ident: e_1_2_5_18_1 doi: 10.1038/nmat1752 – ident: e_1_2_5_22_1 doi: 10.1073/pnas.1903721117 – ident: e_1_2_5_6_1 doi: 10.1016/j.matt.2019.10.007 – ident: e_1_2_5_20_1 doi: 10.1002/anie.201810104 – ident: e_1_2_5_12_1 doi: 10.1002/anie.201701280 – ident: e_1_2_5_31_1 doi: 10.1007/s40820-020-00505-2 – ident: e_1_2_5_32_1 doi: 10.1126/science.aan5412 – ident: e_1_2_5_26_1 doi: 10.1039/C7TA04438K – ident: e_1_2_5_14_1 doi: 10.1021/acscatal.8b00017 – ident: e_1_2_5_39_1 doi: 10.1088/0953-8984/21/8/084204 – ident: e_1_2_5_9_1 doi: 10.1039/C8NR10191D – ident: e_1_2_5_46_1 doi: 10.1002/adfm.201600566 – ident: e_1_2_5_21_1 doi: 10.1021/acs.nanolett.9b01523 – ident: e_1_2_5_24_1 doi: 10.1021/acsmaterialslett.9b00064 – ident: e_1_2_5_27_1 doi: 10.1016/j.nanoen.2016.12.008 |
SSID | ssj0000491033 |
Score | 2.6898668 |
Snippet | Transition metal sulfides with a multi‐elemental nature represent a class of promising catalysts for oxygen evolution reaction (OER) owing to their good... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Catalytic activity catalytic stability Chemical synthesis Electron states Entropy high‐entropy Metal sulfides Miscibility Nanoparticles oxygen evolution reaction Oxygen evolution reactions Photoelectrons Solid solutions Synergistic effect Transition metals transition‐metal sulfide nanoparticles |
Title | High‐Entropy Metal Sulfide Nanoparticles Promise High‐Performance Oxygen Evolution Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202002887 https://www.proquest.com/docview/2478941068 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZge4EHxLiIwpj8gMRDZbBj14kfy1Y0ITpAK9J4imLHgaIpq6BFlCd-Ar-RX8Jx7LgJKmLwErWWnUu_z-fWc04QelSqlGuWclJoJogAo5RkJRVE64xZYSRYHE23zxN5_Fa8OBudbYI5TXXJUj8x37bWlfwPqjAGuLoq2X9ANp4UBuAz4AtHQBiOl8LYJWnEbIWJyzlfrIdT6-obT1fn1by0TnqCWxyy31xZAOBqh72Frzu1A6--ruFqw8mXcN8uyd5E7NputW3egPWFg2D0-qeNf2is5j4lv37_cR7Z9y6Epg8_rOqFDRrT5QI1k59drIvN2FHIFH4z74YlEtYJS3hJCnqfyCwEL213zPdniuKXdWjGt0p13yW2sLVrHeCySrKgpHvts39TazHZ0DdmTnK3Po_rr6LdBDwLEI2746Ppy9MYmAOXiVHeFGa0j9A2-6TJ0_5N9I2ZjYfS9XMaQ2V2E90IHgYee8z30BVb30LXO30nb6Pc4f_z-49AGdxQBgfK4B5lcKAMDks6ZMGeLDiSBbdkuYNmzyezw2MS3rRBjJA0JaUCsV6VtOQ2U0YILWWlJOzvRBnNLdjhOuUjxnVFtUoqVVQURpmtmEmk0vwu2qkvansPYVrwFJxyMzJKCS24FrAG1AboDbBspRwg0v5iuQld6N3LUM7z7TAN0OM4f-H7r_xx5n4LQB726Oc8EWmmBKMyG6CkAeUvZ8nHk5Np_Hb_0ld_gK5tdsE-2ll-WtmHYK4u9UEg2C-u15G7 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Entropy+Metal+Sulfide+Nanoparticles+Promise+High%E2%80%90Performance+Oxygen+Evolution+Reaction&rft.jtitle=Advanced+energy+materials&rft.au=Cui%2C+Mingjin&rft.au=Yang%2C+Chunpeng&rft.au=Li%2C+Boyang&rft.au=Dong%2C+Qi&rft.date=2021-01-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=11&rft.issue=3&rft_id=info:doi/10.1002%2Faenm.202002887&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202002887 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |