Intramolecular Biradical Recombination of Dicarboxylic Acids to Unsaturated Compounds: A New Approach to an Old Kolbe Reaction
The Kolbe or Non‐Kolbe electrolysis is one of the most studied electro‐organic reactions and a fundamental pillar of organic chemistry. In contrast to classical Kolbe dimerization of monocarboxylic acids, dicarboxylic acids are only scarcely subject for Kolbe electrolysis in the literature despite t...
Saved in:
Published in | ChemElectroChem Vol. 7; no. 24; pp. 4873 - 4878 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
14.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Kolbe or Non‐Kolbe electrolysis is one of the most studied electro‐organic reactions and a fundamental pillar of organic chemistry. In contrast to classical Kolbe dimerization of monocarboxylic acids, dicarboxylic acids are only scarcely subject for Kolbe electrolysis in the literature despite their vast natural abundance. Herein, we report on the intramolecular biradical recombination of dicarboxylic acids as a green way to prepare alkenes or alkynes over a newly proposed mechanistic route. Proceeding over a radical mechanism without dimerization, it clearly stands out from classical (Non‐)Kolbe electrolysis. In the presence of non‐toxic aqueous solvents, the desired products form in excellent yields (up to 83 %), which are the highest reported for this substrate class. Once feasibility had been shown for the electrolysis of methylsuccinic acid, we could demonstrate its application to a broad scope of different dicarboxylic acids.
Biradical mechanism: A new approach to one of the most powerful electro‐organic reactions, showing an alternative pathway between the established Kolbe and Non‐Kolbe electrolysis routes, is reported. We focus on the intramolecular biradical recombination of dicarboxylic acids as a green way to prepare alkenes or alkynes. |
---|---|
AbstractList | The Kolbe or Non‐Kolbe electrolysis is one of the most studied electro‐organic reactions and a fundamental pillar of organic chemistry. In contrast to classical Kolbe dimerization of monocarboxylic acids, dicarboxylic acids are only scarcely subject for Kolbe electrolysis in the literature despite their vast natural abundance. Herein, we report on the intramolecular biradical recombination of dicarboxylic acids as a green way to prepare alkenes or alkynes over a newly proposed mechanistic route. Proceeding over a radical mechanism without dimerization, it clearly stands out from classical (Non‐)Kolbe electrolysis. In the presence of non‐toxic aqueous solvents, the desired products form in excellent yields (up to 83 %), which are the highest reported for this substrate class. Once feasibility had been shown for the electrolysis of methylsuccinic acid, we could demonstrate its application to a broad scope of different dicarboxylic acids. The Kolbe or Non‐Kolbe electrolysis is one of the most studied electro‐organic reactions and a fundamental pillar of organic chemistry. In contrast to classical Kolbe dimerization of monocarboxylic acids, dicarboxylic acids are only scarcely subject for Kolbe electrolysis in the literature despite their vast natural abundance. Herein, we report on the intramolecular biradical recombination of dicarboxylic acids as a green way to prepare alkenes or alkynes over a newly proposed mechanistic route. Proceeding over a radical mechanism without dimerization, it clearly stands out from classical (Non‐)Kolbe electrolysis. In the presence of non‐toxic aqueous solvents, the desired products form in excellent yields (up to 83 %), which are the highest reported for this substrate class. Once feasibility had been shown for the electrolysis of methylsuccinic acid, we could demonstrate its application to a broad scope of different dicarboxylic acids. Biradical mechanism: A new approach to one of the most powerful electro‐organic reactions, showing an alternative pathway between the established Kolbe and Non‐Kolbe electrolysis routes, is reported. We focus on the intramolecular biradical recombination of dicarboxylic acids as a green way to prepare alkenes or alkynes. |
Author | Valeske, Moritz Meyers, Jérôme Palkovits, Regina Kurig, Nils Panitz, Sinan Holzhäuser, F. Joschka Gohlke, Clara |
Author_xml | – sequence: 1 givenname: Jérôme orcidid: 0000-0002-3338-1386 surname: Meyers fullname: Meyers, Jérôme organization: RWTH Aachen University – sequence: 2 givenname: Nils orcidid: 0000-0003-0717-1964 surname: Kurig fullname: Kurig, Nils organization: RWTH Aachen University – sequence: 3 givenname: Clara surname: Gohlke fullname: Gohlke, Clara organization: RWTH Aachen University – sequence: 4 givenname: Moritz surname: Valeske fullname: Valeske, Moritz organization: RWTH Aachen University – sequence: 5 givenname: Sinan surname: Panitz fullname: Panitz, Sinan organization: RWTH Aachen University – sequence: 6 givenname: F. Joschka surname: Holzhäuser fullname: Holzhäuser, F. Joschka organization: RWTH Aachen University – sequence: 7 givenname: Regina orcidid: 0000-0002-4970-2957 surname: Palkovits fullname: Palkovits, Regina email: palkovits@itmc.rwth-aachen.de organization: RWTH Aachen University |
BookMark | eNqFkEFLwzAYhoNMcM5dPQc8byZpk1pvs04dDgfizuVrmmJGlsykZe7ib7d1oiKIp3yE53m_5D1GPeusQuiUkjElhJ1LZeSYEUYIZVwcoD6jqRgRRkXvx3yEhiGsSAtRwqML0UdvM1t7WDujZGPA4yvtodQSDH5U0q0LbaHWzmJX4ev22hfudWe0xBOpy4Brh5c2QN14qFWJM7feuMaW4RJP8IPa4slm4x3I5w4EixemxPfOFKoNB9nlnqDDCkxQw89zgJY306fsbjRf3M6yyXwkY0HEKI4TWsiqJARKXqgKJIeCJXFaiEhCIoWqVMSAEJ4qAlwoztMKaAw0iZmoWDRAZ_vc9j0vjQp1vnKNt-3KnMUJFxFNkrSl4j0lvQvBqyqXuv74f9uRNjkleVd23pWdf5XdauNf2sbrNfjd30K6F7baqN0_dJ5N59m3-w7b05Ua |
CitedBy_id | crossref_primary_10_1002_cctc_202300648 crossref_primary_10_1016_j_jechem_2023_12_041 crossref_primary_10_1021_acscatal_2c02775 crossref_primary_10_1021_acscatal_4c02314 crossref_primary_10_1002_celc_202201099 crossref_primary_10_1021_acscatal_2c02689 crossref_primary_10_1021_acscatal_1c02133 crossref_primary_10_1002_celc_202100372 crossref_primary_10_1002_tcr_202400259 crossref_primary_10_1002_anie_202210596 crossref_primary_10_1002_celc_202400061 crossref_primary_10_1016_j_coelec_2022_101111 crossref_primary_10_1002_cite_202100178 crossref_primary_10_1039_D3GC01045G crossref_primary_10_1002_ange_202210596 crossref_primary_10_1002_cite_202300176 crossref_primary_10_1002_cssc_202402515 crossref_primary_10_1002_ange_202419684 crossref_primary_10_1016_j_trac_2024_117631 crossref_primary_10_1002_anie_202419684 |
Cites_doi | 10.1016/0013-4686(67)80061-6 10.1002/hlca.193902201191 10.1007/s12678-020-00600-3 10.1016/0141-0229(81)90087-9 10.1023/A:1022604705859 10.1002/hlca.192901201124 10.1055/s-0039-1690839 10.1149/1.3498380 10.1039/C4RA16303F 10.1039/C9GC03264A 10.1039/C1EE02685B 10.1186/s40508-016-0051-z 10.1016/S0040-4020(00)00840-1 10.1002/hlca.19410240174 10.1016/j.fuel.2017.09.075 10.1021/ja070283w 10.1055/s-0037-1610303 10.1021/es00047a033 10.1002/cssc.201100776 10.1055/s-1996-4152 10.1021/ja00885a013 10.1016/0013-4686(73)85005-4 10.1002/anie.201711060 10.1002/hlca.19420250123 10.1002/jlac.18641310109 10.1021/cr050989d 10.1007/BFb0034365 10.1039/CT9068900598 10.1002/cssc.201501407 10.1149/1.2407320 10.1002/bbpc.19120181605 10.1039/C6GC03153F 10.1039/qr9520600380 10.1016/j.jelechem.2018.05.018 10.1016/j.apcatb.2020.119277 10.1002/cssc.201601271 10.1039/p19730000257 10.1002/celc.201700069 10.1016/0009-3084(79)90117-8 10.1039/CT9017901197 10.1016/S0022-0728(00)00365-X 10.1002/jlac.19023230304 10.1039/b617536h 10.1039/b512308a 10.1002/cber.19931260720 10.1002/jlac.18912610106 10.1021/cr60250a003 10.1002/cber.19671000742 10.1039/C9EE01485C 10.1149/1.2120109 10.1002/cber.19190521103 10.1016/S0040-4039(01)94346-1 10.1038/s41586-019-1539-y 10.1021/acssuschemeng.8b04488 10.1016/j.electacta.2011.10.079 |
ContentType | Journal Article |
Copyright | 2020 The Authors. ChemElectroChem published by Wiley-VCH GmbH 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. ChemElectroChem published by Wiley-VCH GmbH – notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1002/celc.202001256 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2196-0216 |
EndPage | 4878 |
ExternalDocumentID | 10_1002_celc_202001256 CELC202001256 |
Genre | article |
GrantInformation_xml | – fundername: Cluster of Excellence Fuel Science Center funderid: 390919832 |
GroupedDBID | 0R~ 1OC 24P 33P 8-1 AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG DPXWK DRFUL DRSTM EBS G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ TUS WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX ABJNI ADMLS CITATION 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c4606-4471bcfd00ad5befac5ab2749b63ca7c6efe32a0059e0a56e559fa14a17426f23 |
IEDL.DBID | 24P |
ISSN | 2196-0216 |
IngestDate | Fri Jul 25 11:45:11 EDT 2025 Tue Jul 01 00:45:11 EDT 2025 Thu Apr 24 22:53:13 EDT 2025 Wed Jan 22 16:30:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4606-4471bcfd00ad5befac5ab2749b63ca7c6efe32a0059e0a56e559fa14a17426f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4970-2957 0000-0002-3338-1386 0000-0003-0717-1964 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202001256 |
PQID | 2475631779 |
PQPubID | 2034587 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2475631779 crossref_citationtrail_10_1002_celc_202001256 crossref_primary_10_1002_celc_202001256 wiley_primary_10_1002_celc_202001256_CELC202001256 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 14, 2020 |
PublicationDateYYYYMMDD | 2020-12-14 |
PublicationDate_xml | – month: 12 year: 2020 text: December 14, 2020 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemElectroChem |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 1901; 79 2007; 107 1993; 27 2017; 4 2006; 35 1996; 1996 1941; 24 1967; 67 1963; 85 2019; 12 1973; 18 1973 1864; 131 2020; 11 2012; 59 1942; 25 1993; 126 2018; 6 2001; 498 1912; 18 1979; 24 1990 2020; 52 1967; 12 2018; 211 2007; 9 1967; 100 1972; 13 1970; 117 1998; 27 2007; 129 2019; 6 2019; 0 2019; 30 1983; 130 2002; 75 1919; 52 2018; 822 1981; 3 1939; 75 2016; 4 1891; 261 2020 1902; 323 1906; 89 1939; 22 1952; 6 2017; 19 1929; 12 2012; 5 2019; 573 2016; 9 2018; 57 e_1_2_6_51_1 e_1_2_6_72_2 e_1_2_6_53_2 e_1_2_6_32_1 e_1_2_6_30_2 e_1_2_6_70_2 e_1_2_6_19_2 e_1_2_6_36_1 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_59_2 Leech M. C. (e_1_2_6_9_2) 2020 e_1_2_6_11_1 e_1_2_6_55_1 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_15_1 e_1_2_6_57_2 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_60_1 Cataldo F. (e_1_2_6_73_2) 2002; 75 e_1_2_6_7_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_47_2 e_1_2_6_24_1 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 Holzhäuser F. J. (e_1_2_6_43_1) 2019; 6 e_1_2_6_45_1 e_1_2_6_66_2 e_1_2_6_26_2 e_1_2_6_68_2 e_1_2_6_50_2 e_1_2_6_52_1 e_1_2_6_71_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_14_1 e_1_2_6_10_2 e_1_2_6_33_1 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_56_1 e_1_2_6_37_2 e_1_2_6_63_1 e_1_2_6_42_2 e_1_2_6_21_1 e_1_2_6_40_2 e_1_2_6_61_1 e_1_2_6_8_2 e_1_2_6_4_2 Palkovits S. (e_1_2_6_31_2) 2019; 0 e_1_2_6_6_2 e_1_2_6_25_1 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_65_2 e_1_2_6_27_2 e_1_2_6_67_2 e_1_2_6_69_1 e_1_2_6_46_2 |
References_xml | – volume: 573 start-page: 398 year: 2019 end-page: 402 publication-title: Nature – volume: 13 start-page: 4483 year: 1972 end-page: 4486 publication-title: Tetrahedron Lett. – volume: 131 start-page: 79 year: 1864 end-page: 88 publication-title: Liebigs Ann. Chem. – volume: 24 start-page: 321 year: 1979 end-page: 333 publication-title: Chem. Phys. Lipids – volume: 19 start-page: 2390 year: 2017 end-page: 2397 publication-title: Green Chem. – volume: 27 start-page: 455 year: 1998 end-page: 461 publication-title: J. Solution Chem. – volume: 67 start-page: 623 year: 1967 end-page: 664 publication-title: Chem. Rev. – volume: 9 start-page: 927 year: 2007 end-page: 934 publication-title: Green Chem. – volume: 18 start-page: 710 year: 1912 end-page: 714 publication-title: Z. Elektrochem. – volume: 12 start-page: 2406 year: 2019 end-page: 2411 publication-title: Energy Environ. Sci. – volume: 0 year: 2019 publication-title: Chem. Ing. Tech. – volume: 11 start-page: 432 year: 2020 end-page: 442 publication-title: Electrocatalysis – volume: 85 start-page: 165 year: 1963 end-page: 169 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1152 year: 1929 end-page: 1164 publication-title: Helv. Chim. Acta – volume: 5 start-page: 617 year: 2012 end-page: 620 publication-title: ChemSusChem – volume: 130 start-page: 1844 year: 1983 end-page: 1848 publication-title: J. Electrochem. Soc. – volume: 107 start-page: 2411 year: 2007 end-page: 2502 publication-title: Chem. Rev. – volume: 12 start-page: 1473 year: 1967 end-page: 1478 publication-title: Electrochim. Acta – start-page: 257 year: 1973 end-page: 261 publication-title: J. Chem. Soc. Perkin Trans. 1 – start-page: 286 year: 2020 end-page: 301 publication-title: Green Chem. – volume: 89 start-page: 598 year: 1906 end-page: 604 publication-title: J. Chem. Soc. Trans. – volume: 117 start-page: 1358 year: 1970 end-page: 1362 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 7 year: 2016 publication-title: Sustain. Chem. Process – volume: 30 start-page: 275 year: 2019 end-page: 286 publication-title: Synlett – volume: 211 start-page: 415 year: 2018 end-page: 419 publication-title: Fuel – volume: 59 start-page: 376 year: 2012 end-page: 381 publication-title: Electrochim. Acta – volume: 4 start-page: 1378 year: 2017 end-page: 1389 publication-title: ChemElectroChem – volume: 6 start-page: 380 year: 1952 end-page: 398 publication-title: Q. Rev. Chem. Soc. – volume: 1996 start-page: 71 year: 1996 end-page: 76 publication-title: Synthesis – volume: 22 start-page: 1529 year: 1939 publication-title: Helv. Chim. Acta – volume: 6 start-page: 17108 year: 2018 end-page: 17113 publication-title: ACS Sustainable Chem. Eng. – volume: 5 start-page: 5231 year: 2012 end-page: 5235 publication-title: Energy Environ. Sci. – volume: 9 start-page: 50 year: 2016 end-page: 60 publication-title: ChemSusChem – volume: 6 start-page: 17108 year: 2019 end-page: 17113 publication-title: Green Chem. – volume: 100 start-page: 2427 year: 1967 end-page: 2434 publication-title: Chem. Ber. – year: 2020 publication-title: Acc. Chem. Res. – volume: 323 start-page: 284 year: 1902 end-page: 323 publication-title: Liebigs Ann. Chem. – year: 2020 publication-title: Appl. Catal. B – volume: 18 start-page: 359 year: 1973 end-page: 368 publication-title: Electrochim. Acta – volume: 261 start-page: 107 year: 1891 end-page: 128 publication-title: Liebigs Ann. Chem. – volume: 24 start-page: 549 year: 1941 end-page: 553 publication-title: Helv. Chim. Acta – volume: 498 start-page: 171 year: 2001 end-page: 180 publication-title: J. Electroanal. Chem. – volume: 57 start-page: 5594 year: 2018 end-page: 5619 publication-title: Angew. Chem. – volume: 822 start-page: 73 year: 2018 end-page: 80 publication-title: J. Electroanal. Chem. – volume: 3 start-page: 207 year: 1981 end-page: 215 publication-title: Enzyme Microb. Technol. – volume: 79 start-page: 1197 year: 1901 end-page: 1204 publication-title: J. Chem. Soc. Trans. – volume: 126 start-page: 1623 year: 1993 end-page: 1630 publication-title: Chem. Ber. – volume: 27 start-page: 2227 year: 1993 end-page: 2235 publication-title: Environ. Sci. Technol. – start-page: 91 year: 1990 end-page: 151 publication-title: Top. Curr. Chem. – volume: 52 start-page: 1357 year: 2020 end-page: 1368 publication-title: Synthesis – volume: 129 start-page: 6680 year: 2007 end-page: 6681 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 229 year: 1942 publication-title: Helv. Chim. Acta – volume: 35 start-page: 605 year: 2006 end-page: 621 publication-title: Chem. Soc. Rev. – volume: 75 year: 1939 publication-title: Trans. Electrochem. Soc. – volume: 52 start-page: 2120 year: 1919 end-page: 2125 publication-title: Ber. Dtsch. Chem. Ges. – volume: 75 start-page: 77 year: 2002 end-page: 88 publication-title: Croat. Chem. Acta – ident: e_1_2_6_12_2 doi: 10.1016/0013-4686(67)80061-6 – volume: 75 start-page: 77 year: 2002 ident: e_1_2_6_73_2 publication-title: Croat. Chem. Acta – ident: e_1_2_6_46_2 doi: 10.1002/hlca.193902201191 – ident: e_1_2_6_28_2 doi: 10.1007/s12678-020-00600-3 – ident: e_1_2_6_10_2 doi: 10.1016/0141-0229(81)90087-9 – ident: e_1_2_6_29_1 – year: 2020 ident: e_1_2_6_9_2 publication-title: Acc. Chem. Res. – ident: e_1_2_6_62_1 doi: 10.1023/A:1022604705859 – ident: e_1_2_6_45_1 – ident: e_1_2_6_49_2 doi: 10.1002/hlca.192901201124 – ident: e_1_2_6_30_2 doi: 10.1055/s-0039-1690839 – ident: e_1_2_6_50_2 doi: 10.1149/1.3498380 – ident: e_1_2_6_23_2 doi: 10.1039/C4RA16303F – ident: e_1_2_6_36_1 – ident: e_1_2_6_2_2 doi: 10.1039/C9GC03264A – ident: e_1_2_6_22_2 doi: 10.1039/C1EE02685B – ident: e_1_2_6_68_2 doi: 10.1186/s40508-016-0051-z – ident: e_1_2_6_6_2 doi: 10.1016/S0040-4020(00)00840-1 – ident: e_1_2_6_48_2 doi: 10.1002/hlca.19410240174 – ident: e_1_2_6_19_2 doi: 10.1016/j.fuel.2017.09.075 – volume: 6 start-page: 17108 year: 2019 ident: e_1_2_6_43_1 publication-title: Green Chem. – ident: e_1_2_6_69_1 – ident: e_1_2_6_18_2 doi: 10.1021/ja070283w – ident: e_1_2_6_20_2 doi: 10.1055/s-0037-1610303 – ident: e_1_2_6_32_1 doi: 10.1021/es00047a033 – ident: e_1_2_6_42_2 doi: 10.1002/cssc.201100776 – ident: e_1_2_6_38_2 doi: 10.1055/s-1996-4152 – ident: e_1_2_6_53_2 doi: 10.1021/ja00885a013 – ident: e_1_2_6_40_2 doi: 10.1016/0013-4686(73)85005-4 – ident: e_1_2_6_15_1 – ident: e_1_2_6_27_2 doi: 10.1002/anie.201711060 – ident: e_1_2_6_47_2 doi: 10.1002/hlca.19420250123 – ident: e_1_2_6_44_1 doi: 10.1002/jlac.18641310109 – ident: e_1_2_6_35_2 doi: 10.1021/cr050989d – ident: e_1_2_6_3_2 doi: 10.1007/BFb0034365 – ident: e_1_2_6_70_2 doi: 10.1039/CT9068900598 – ident: e_1_2_6_4_2 doi: 10.1002/cssc.201501407 – ident: e_1_2_6_67_2 doi: 10.1149/1.2407320 – ident: e_1_2_6_1_1 – ident: e_1_2_6_71_2 doi: 10.1002/bbpc.19120181605 – ident: e_1_2_6_11_1 – ident: e_1_2_6_55_1 doi: 10.1039/C6GC03153F – ident: e_1_2_6_51_1 doi: 10.1039/qr9520600380 – ident: e_1_2_6_56_1 – ident: e_1_2_6_64_1 – ident: e_1_2_6_59_2 doi: 10.1016/j.jelechem.2018.05.018 – ident: e_1_2_6_26_2 doi: 10.1016/j.apcatb.2020.119277 – ident: e_1_2_6_37_2 doi: 10.1002/cssc.201601271 – ident: e_1_2_6_7_2 doi: 10.1039/p19730000257 – ident: e_1_2_6_52_1 – ident: e_1_2_6_60_1 doi: 10.1002/celc.201700069 – ident: e_1_2_6_25_1 – ident: e_1_2_6_61_1 doi: 10.1016/0009-3084(79)90117-8 – ident: e_1_2_6_33_1 – ident: e_1_2_6_41_2 doi: 10.1039/CT9017901197 – ident: e_1_2_6_5_2 doi: 10.1016/S0022-0728(00)00365-X – ident: e_1_2_6_34_2 – ident: e_1_2_6_14_1 doi: 10.1002/jlac.19023230304 – volume: 0 year: 2019 ident: e_1_2_6_31_2 publication-title: Chem. Ing. Tech. – ident: e_1_2_6_65_2 doi: 10.1039/b617536h – ident: e_1_2_6_8_2 doi: 10.1039/b512308a – ident: e_1_2_6_16_2 doi: 10.1002/cber.19931260720 – ident: e_1_2_6_21_1 – ident: e_1_2_6_39_2 doi: 10.1002/jlac.18912610106 – ident: e_1_2_6_13_2 doi: 10.1021/cr60250a003 – ident: e_1_2_6_66_2 doi: 10.1002/cber.19671000742 – ident: e_1_2_6_17_2 doi: 10.1039/C9EE01485C – ident: e_1_2_6_63_1 doi: 10.1149/1.2120109 – ident: e_1_2_6_72_2 doi: 10.1002/cber.19190521103 – ident: e_1_2_6_54_2 doi: 10.1016/S0040-4039(01)94346-1 – ident: e_1_2_6_24_1 doi: 10.1038/s41586-019-1539-y – ident: e_1_2_6_57_2 doi: 10.1021/acssuschemeng.8b04488 – ident: e_1_2_6_58_2 doi: 10.1016/j.electacta.2011.10.079 |
SSID | ssj0001105386 |
Score | 2.3029978 |
Snippet | The Kolbe or Non‐Kolbe electrolysis is one of the most studied electro‐organic reactions and a fundamental pillar of organic chemistry. In contrast to... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4873 |
SubjectTerms | Acids Alkenes Alkynes Chemical reactions Dicarboxylic acids Dimerization Electrolysis Electrosynthesis Kolbe electrolysis Organic chemistry reaction mechanisms Substrates Weights & measures |
Title | Intramolecular Biradical Recombination of Dicarboxylic Acids to Unsaturated Compounds: A New Approach to an Old Kolbe Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202001256 https://www.proquest.com/docview/2475631779 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLAgnqJQKg9ITBGJ4zgtWyhUvEGCSmyR7dhSpTRBTZFg4bdzl0cLA0JicyLHwznn-z7b9x0hR0Z6AMON5yg_sQ7XAlqBJx3folgWc3UvwQTnu3txOeLXL8HLtyz-Sh9ivuGGnlGu1-jgUhUnC9FQbVKUIMQ7QRC2l8kK5teiej7jj4tdFoAPflnuETwTb9t6olFudNnJzyF-RqYF3PwOWsuoM9wg6zVcpFE1v5tkyWRbZHXQVGnbJp9XuDs7aYrc0rPxVJZHLxSJ5QR4b2l6mlt6Dq-nKn__SMeaRnqcFHSW01FWoLYnQM6E4uKAZZaKUxpRWP5oVCuOY0eZ0Yc0oTd5qgwMXiVE7JDR8OJ5cOnUNRUczYGrOByCkdI2cV2ZBMpYqQOpgJn2lfC1DLUw1vhMYk6qcWUgDDAOKz0ugbkwYZm_S1pZnpk9QoUVwnDZF9pTPAlDafvWiEADh-JS9Hpt4jT2jHUtOI51L9K4kkpmMdo_ntu_TY7n_V8rqY1fe3aa6YlrlytixsNAABoK-23Cyin7Y5R4cHE7mD_t_-ejA7KGbbze4vEOac2mb-YQQMpMdcv_sEtWovO726cvIWjf5A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DLAgnqI8PSAxRSSO4zRspYBa-oCBSmyR7dhSpTRBbZFg4bdzl0cLA0JiSyzHwznn--589x0hF0Z6AMON5yg_sQ7XAp4CTzq-RbIs5upmggXOg6HojPjDS1BnE2ItTMkPsQi4oWYU5zUqOAakr5asodqkyEGISUFgt1fJOhcsRN1k_GkZZgH84Bf9HkE1Md3WEzV1o8uufi7x0zQt8eZ31FqYnfttslXhRdoqN3iHrJhsl2y06zZte-Szi-HZSd3llt6Mp7K4e6HoWU7A8S1kT3NLb2F4qvL3j3SsaUuPkxmd53SUzZDcEzBnQvF0wD5Ls2vaonD-0VZFOY4TZUYf04T28lQZWLysiNgno_u753bHqZoqOJqDs-JwsEZK28R1ZRIoY6UOpALXNFLC1zLUwljjM4lFqcaVgTDgcljpcQmuCxOW-QdkLcszc0iosEIYLiOhPcWTMJQ2skYEGpwoLkWz2SBOLc9YV4zj2PgijUuuZBaj_OOF_BvkcjH_teTa-HXmSb09caVzs5jxMBAAh8KoQVixZX-sErfv-u3F29F_PjonG53nQT_ud4e9Y7KJ45jr4vETsjafvplTQCxzdVb8k183muG8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYJOCCWEVZfUDiFJHFcVpuoVCxw4EgxCXyKlVKE9QWCS58OzNZWjggJG6J5fgw9njeczxvCDk0wgMYbjxHBto6THF4Cj3hBBbFsnxXtTUmON_e8YuEXT2Hz9-y-Ct9iMmBG3pGuV-jg79qezwVDVUmQwlCvBMEYXuWzKNUHqzr-fgpeUmm5ywAIIKy4CP4Jt639Xij3ej6xz8H-RmbpoDzO2wt405vhSzXgJHG1QyvkhmTr5HFblOnbZ18XuL57KApc0tP-0NR_nyhSC0HwHxL49PC0jNoHsri_SPrKxqrvh7RcUGTfITqngA6NcXtAQstjU5oTGEDpHGtOY4dRU7vM02vi0waGLxKidggSe_8sXvh1FUVHMWArTgMwpFUVruu0KE0VqhQSOCmHckDJSLFjTWBLzAr1bgi5AY4hxUeE8BdfG79YJPM5UVutgjllnPDRIcrTzIdRcJ2rOGhAhbFBG-3W8Rp7JmqWnIcK19kaSWW7Kdo_3Ri_xY5mvR_rcQ2fu2520xPWjvdKPVZFHLAQ1GnRfxyyv4YJe2e33Qnb9v_-eiALDyc9dKby7vrHbKEzXjXxWO7ZG48fDN7gFjGcr9elF9Ht-K0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intramolecular+Biradical+Recombination+of+Dicarboxylic+Acids+to+Unsaturated+Compounds%3A+A+New+Approach+to+an+Old+Kolbe+Reaction&rft.jtitle=ChemElectroChem&rft.au=Meyers%2C+J%C3%A9r%C3%B4me&rft.au=Kurig%2C+Nils&rft.au=Gohlke%2C+Clara&rft.au=Valeske%2C+Moritz&rft.date=2020-12-14&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-0216&rft.volume=7&rft.issue=24&rft.spage=4873&rft.epage=4878&rft_id=info:doi/10.1002%2Fcelc.202001256&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon |