Multilayered Lipid Membrane Stacks for Biocatalysis Using Membrane Enzymes
Multilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single‐lipid membranes, such as their ability to spatially organize processes, compartmentalize molecules, and greatly increase surface area and hence membrane protein concent...
Saved in:
Published in | Advanced functional materials Vol. 27; no. 17 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
04.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single‐lipid membranes, such as their ability to spatially organize processes, compartmentalize molecules, and greatly increase surface area and hence membrane protein concentration. Here, a supramolecular assembly of a multilayered lipid membrane system is reported in which poly‐l‐lysine electrostatically links negatively charged lipid membranes. When suitable membrane enzymes are incorporated, either an ubiquinol oxidase (cytochrome bo
3 from Escherichia coli) or an oxygen tolerant hydrogenase (the membrane‐bound hydrogenase from Ralstonia eutropha), cyclic voltammetry (CV) reveals a linear increase in biocatalytic activity with each additional membrane layer. Electron transfer between the enzymes and the electrode is mediated by the quinone pool that is present in the lipid phase. Using atomic force microscopy, CV, and fluorescence microscopy it is deduced that quinones are able to diffuse between the stacked lipid membrane layers via defect sites where the lipid membranes are interconnected. This assembly is akin to that of interconnected thylakoid membranes or the folded lamella of mitochondria and has significant potential for mimicry in biotechnology applications such as energy production or biosensing.
Layer‐by‐layer assembly of lipid bilayers is used to multiply the surface concentration of electroactive membrane enzymes at electrodes. The interconnected membrane multilayers, akin to that of thylakoid membranes, are investigated using cyclic voltammetry to reveal a linear increase in biocatalytic activity with each additional membrane layer containing a ubiquinol oxidase or an oxygen‐tolerant hydrogenase. |
---|---|
AbstractList | Multilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single‐lipid membranes, such as their ability to spatially organize processes, compartmentalize molecules, and greatly increase surface area and hence membrane protein concentration. Here, a supramolecular assembly of a multilayered lipid membrane system is reported in which poly‐l‐lysine electrostatically links negatively charged lipid membranes. When suitable membrane enzymes are incorporated, either an ubiquinol oxidase (cytochrome bo
3 from Escherichia coli) or an oxygen tolerant hydrogenase (the membrane‐bound hydrogenase from Ralstonia eutropha), cyclic voltammetry (CV) reveals a linear increase in biocatalytic activity with each additional membrane layer. Electron transfer between the enzymes and the electrode is mediated by the quinone pool that is present in the lipid phase. Using atomic force microscopy, CV, and fluorescence microscopy it is deduced that quinones are able to diffuse between the stacked lipid membrane layers via defect sites where the lipid membranes are interconnected. This assembly is akin to that of interconnected thylakoid membranes or the folded lamella of mitochondria and has significant potential for mimicry in biotechnology applications such as energy production or biosensing.
Layer‐by‐layer assembly of lipid bilayers is used to multiply the surface concentration of electroactive membrane enzymes at electrodes. The interconnected membrane multilayers, akin to that of thylakoid membranes, are investigated using cyclic voltammetry to reveal a linear increase in biocatalytic activity with each additional membrane layer containing a ubiquinol oxidase or an oxygen‐tolerant hydrogenase. Multilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single‐lipid membranes, such as their ability to spatially organize processes, compartmentalize molecules, and greatly increase surface area and hence membrane protein concentration. Here, a supramolecular assembly of a multilayered lipid membrane system is reported in which poly‐l‐lysine electrostatically links negatively charged lipid membranes. When suitable membrane enzymes are incorporated, either an ubiquinol oxidase (cytochrome bo3 from Escherichia coli) or an oxygen tolerant hydrogenase (the membrane‐bound hydrogenase from Ralstonia eutropha), cyclic voltammetry (CV) reveals a linear increase in biocatalytic activity with each additional membrane layer. Electron transfer between the enzymes and the electrode is mediated by the quinone pool that is present in the lipid phase. Using atomic force microscopy, CV, and fluorescence microscopy it is deduced that quinones are able to diffuse between the stacked lipid membrane layers via defect sites where the lipid membranes are interconnected. This assembly is akin to that of interconnected thylakoid membranes or the folded lamella of mitochondria and has significant potential for mimicry in biotechnology applications such as energy production or biosensing. Multilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single‐lipid membranes, such as their ability to spatially organize processes, compartmentalize molecules, and greatly increase surface area and hence membrane protein concentration. Here, a supramolecular assembly of a multilayered lipid membrane system is reported in which poly‐ l ‐lysine electrostatically links negatively charged lipid membranes. When suitable membrane enzymes are incorporated, either an ubiquinol oxidase (cytochrome bo 3 from Escherichia coli ) or an oxygen tolerant hydrogenase (the membrane‐bound hydrogenase from Ralstonia eutropha ), cyclic voltammetry (CV) reveals a linear increase in biocatalytic activity with each additional membrane layer. Electron transfer between the enzymes and the electrode is mediated by the quinone pool that is present in the lipid phase. Using atomic force microscopy, CV, and fluorescence microscopy it is deduced that quinones are able to diffuse between the stacked lipid membrane layers via defect sites where the lipid membranes are interconnected. This assembly is akin to that of interconnected thylakoid membranes or the folded lamella of mitochondria and has significant potential for mimicry in biotechnology applications such as energy production or biosensing. |
Author | Lenz, Oliver Radu, Valentin Jeuken, Lars J. C. Rong, Honling Heath, George R. Li, Mengqiu Butt, Julea N. Frielingsdorf, Stefan |
Author_xml | – sequence: 1 givenname: George R. surname: Heath fullname: Heath, George R. organization: University of Leeds – sequence: 2 givenname: Mengqiu surname: Li fullname: Li, Mengqiu organization: University of Leeds – sequence: 3 givenname: Honling surname: Rong fullname: Rong, Honling organization: University of Leeds – sequence: 4 givenname: Valentin surname: Radu fullname: Radu, Valentin organization: University of Leeds – sequence: 5 givenname: Stefan surname: Frielingsdorf fullname: Frielingsdorf, Stefan organization: Technische Universität Berlin – sequence: 6 givenname: Oliver surname: Lenz fullname: Lenz, Oliver organization: Technische Universität Berlin – sequence: 7 givenname: Julea N. surname: Butt fullname: Butt, Julea N. organization: University of East Anglia – sequence: 8 givenname: Lars J. C. surname: Jeuken fullname: Jeuken, Lars J. C. email: l.j.c.jeuken@leeds.ac.uk organization: University of Leeds |
BookMark | eNqFkD1PwzAQQC1UJNrCyhyJOeXOsZ1kLKXlQ60YoBKb5TgOcslHsVOh8OtJVdSOTHfDe3fSG5FB3dSGkGuECQLQW5UX1YQCChBU8DMyRIEijIAmg-OO7xdk5P0GAOM4YkPyvNqVrS1VZ5zJg6Xd2jxYmSpzqjbBa6v0pw-KxgV3ttGqVWXnrQ_W3tYfJ2xe_3SV8ZfkvFClN1d_c0zWi_nb7DFcvjw8zabLUDMBPGQq05ABMsyhMEJFiYoyLjimymSQJYwZHueFQEwzwXNBMWGgtWAq7WETR2Nyc7i7dc3XzvhWbpqdq_uXElMKDClH7KnJgdKu8d6ZQm6drZTrJILc95L7XvLYqxfSg_BtS9P9Q8vp_WJ1cn8B9BhwMA |
CitedBy_id | crossref_primary_10_1002_adfm_201704356 crossref_primary_10_1016_j_surfin_2022_101762 crossref_primary_10_1021_acs_jpclett_3c00705 crossref_primary_10_1021_acs_chemrev_0c00249 crossref_primary_10_1080_10408347_2022_2088226 crossref_primary_10_1002_smll_202006608 crossref_primary_10_1016_j_bbabio_2018_06_011 crossref_primary_10_1038_s42004_019_0155_y crossref_primary_10_1098_rsob_210177 crossref_primary_10_3390_catal10121427 crossref_primary_10_1016_j_ab_2018_03_006 crossref_primary_10_1039_C8SM00052B crossref_primary_10_1021_acsnano_9b03326 crossref_primary_10_1016_j_coelec_2018_03_021 crossref_primary_10_1039_C8SC03302A crossref_primary_10_1002_adma_201707482 crossref_primary_10_1016_j_isci_2018_09_020 crossref_primary_10_1002_jbio_202200034 crossref_primary_10_1107_S2059798322008701 crossref_primary_10_1002_chem_202003391 crossref_primary_10_1016_j_coelec_2020_06_011 crossref_primary_10_3390_s20123393 crossref_primary_10_3390_mi14020372 crossref_primary_10_3390_app9091745 crossref_primary_10_1021_acsami_1c15166 crossref_primary_10_1002_admi_202100257 crossref_primary_10_1016_j_bbagen_2020_129542 crossref_primary_10_1021_acsami_0c21662 crossref_primary_10_1016_j_jelechem_2023_117881 crossref_primary_10_1016_j_coelec_2017_09_002 crossref_primary_10_1021_acs_chemmater_7b02845 crossref_primary_10_1016_j_coelec_2018_05_020 crossref_primary_10_1016_j_chemphyslip_2019_04_004 |
Cites_doi | 10.1021/bi00513a012 10.1038/srep05216 10.1002/jcp.1030460205 10.1039/C6NR03817D 10.1016/j.sbi.2008.03.008 10.1016/j.bbabio.2010.01.012 10.1016/S0006-3495(98)77902-0 10.1128/jb.176.18.5587-5600.1994 10.1016/j.bpc.2010.11.002 10.1021/nl070519u 10.1038/nchem.2022 10.1038/nnano.2008.274 10.1016/0304-4157(88)90015-9 10.1039/C6NR00097E 10.3390/ijms141121561 10.1105/tpc.11.4.557 10.1021/ja503138p 10.1038/nmat3451 10.1529/biophysj.106.103572 10.1021/la960805d 10.1002/anie.201502364 10.1021/jp102616m 10.1002/anie.201502776 10.1021/ja056972u 10.1002/smll.201300051 10.1038/nchembio.555 10.1021/ac049738f 10.1038/nmat3507 10.1126/science.271.5245.43 10.1042/BJ20081345 10.1039/b201337a 10.1038/nature10505 10.1021/bi201594m 10.1016/j.snb.2007.01.014 10.1038/nature04164 10.1016/j.jsb.2009.07.008 10.1016/S0006-3495(03)74590-1 10.1002/celc.201600460 10.1039/C5CC05930E 10.1039/C5CC10382G 10.1039/c2sc01103d 10.1016/j.bpj.2014.04.016 10.1073/pnas.0905959106 10.1039/B817371K 10.1021/acs.biomac.5b01434 10.1021/acs.langmuir.6b02575 10.1038/nrmicro2940 10.1016/S0006-3495(76)85755-4 10.1021/bi00513a028 10.1039/b004379f |
ContentType | Journal Article |
Copyright | 2017 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2017 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201606265 |
DatabaseName | Wiley Online Library Wiley Online Library Open Access CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201606265 ADFM201606265 |
Genre | article |
GrantInformation_xml | – fundername: European Research Council under the European Union's Seventh Framework Programme funderid: FP/2007‐2013; 280518 – fundername: BBSRC funderid: BB/L020130/1; BB/L022176/1 – fundername: German Research Foundation |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WIN WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMNL AAYXX ACBWZ ACRPL ACYXJ ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c4605-4abc0b0141d0fe6a38a3b56519aeb0b844e57df6119b65d621840cc64a96a3e73 |
IEDL.DBID | 24P |
ISSN | 1616-301X |
IngestDate | Thu Oct 10 20:25:14 EDT 2024 Fri Dec 06 00:57:04 EST 2024 Sat Aug 24 00:57:18 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4605-4abc0b0141d0fe6a38a3b56519aeb0b844e57df6119b65d621840cc64a96a3e73 |
Notes | The copyright line of this paper was changed 5 April 2017 after initial publication. |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201606265 |
PQID | 1920412511 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1920412511 crossref_primary_10_1002_adfm_201606265 wiley_primary_10_1002_adfm_201606265_ADFM201606265 |
PublicationCentury | 2000 |
PublicationDate | May 4, 2017 |
PublicationDateYYYYMMDD | 2017-05-04 |
PublicationDate_xml | – month: 05 year: 2017 text: May 4, 2017 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 479 1994; 176 2007; 124 2015; 51 2000; 116 2008; 18 2002; 8 2015; 54 2005; 437 2009 2016; 32 2016; 52 2007; 92 2008; 3 1988; 947 2016; 17 2009; 417 2012; 11 1955; 46 2014; 136 1981; 20 2011; 7 2013; 9 2011; 153 2010; 1797 2004; 76 2014; 106 2013; 14 2014; 4 2012; 3 2016; 3 2001 2013; 11 2010; 114 1997; 13 2011; 50 1996; 271 1999; 11 2007; 7 2009; 168 2009; 5 1998; 74 1976; 16 2003; 85 2006; 128 2014; 6 2016; 8 2009; 106 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Hopkins C. D. (e_1_2_6_13_1) 2009 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 Fontanesi F. (e_1_2_6_1_1) 2001 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – year: 2009 – volume: 6 start-page: 822 year: 2014 publication-title: Nat. Chem. – volume: 54 start-page: 12303 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 666 year: 2008 publication-title: Nat. Nanotechnol. – volume: 417 start-page: 555 year: 2009 publication-title: Biochem. J. – volume: 168 start-page: 200 year: 2009 publication-title: J. Struct. Biol. – year: 2001 – volume: 8 start-page: 13513 year: 2016 publication-title: Nanoscale – volume: 3 start-page: 1015 year: 2012 publication-title: Chem. Sci. – volume: 124 start-page: 501 year: 2007 publication-title: Sens. Actuators, B – volume: 18 start-page: 406 year: 2008 publication-title: Curr. Opin. Struct. Biol. – volume: 20 start-page: 2893 year: 1981 publication-title: Biochemistry – volume: 16 start-page: 1055 year: 1976 publication-title: Biophys. J. – volume: 7 start-page: 1603 year: 2007 publication-title: Nano Lett. – volume: 74 start-page: 1937 year: 1998 publication-title: Biophys. J. – volume: 176 start-page: 5587 year: 1994 publication-title: J. Bacteriol. – volume: 7 start-page: 310 year: 2011 publication-title: Nat. Chem. Biol. – volume: 153 start-page: 115 year: 2011 publication-title: Biophys. Chem. – volume: 11 start-page: 557 year: 1999 publication-title: Plant Cell – volume: 32 start-page: 10144 year: 2016 publication-title: Langmuir – volume: 50 start-page: 10836 year: 2011 publication-title: Biochemistry – volume: 92 start-page: 4254 year: 2007 publication-title: Biophys. J. – volume: 17 start-page: 324 year: 2016 publication-title: Biomacromolecules – volume: 51 start-page: 14223 year: 2015 publication-title: Chem. Commun. – volume: 479 start-page: 249 year: 2011 publication-title: Nature – volume: 11 start-page: 106 year: 2013 publication-title: Nat. Rev. Microbiol. – volume: 136 start-page: 8512 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 550 year: 2009 publication-title: Chem. Commun. – volume: 3 start-page: 2179 year: 2016 publication-title: ChemElectroChem – volume: 13 start-page: 751 year: 1997 publication-title: Langmuir – volume: 85 start-page: 1585 year: 2003 publication-title: Biophys. J. – volume: 76 start-page: 4665 year: 2004 publication-title: Anal. Chem. – volume: 11 start-page: 1005 year: 2012 publication-title: Nat. Mater. – volume: 106 start-page: 2395 year: 2014 publication-title: Biophys. J. – volume: 116 start-page: 89 year: 2000 publication-title: Faraday Discuss. – volume: 4 start-page: 5216 year: 2014 publication-title: Sci. Rep. – volume: 271 start-page: 43 year: 1996 publication-title: Science – volume: 9 start-page: 2970 year: 2013 publication-title: Small – volume: 11 start-page: 1 year: 2012 publication-title: Nat. Mater. – volume: 8 start-page: 866 year: 2002 publication-title: Chem. Commun. – volume: 54 start-page: 12329 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 46 start-page: 249 year: 1955 publication-title: J. Cell. Comp. Physiol. – volume: 128 start-page: 1711 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 2632 year: 2016 publication-title: Chem. Commun. – volume: 8 start-page: 10695 year: 2016 publication-title: Nanoscale – volume: 106 start-page: 20681 year: 2009 publication-title: Proc. Natl. Acad. Sci. USA – volume: 114 start-page: 12003 year: 2010 publication-title: J. Phys. Chem. C – volume: 947 start-page: 367 year: 1988 publication-title: Biochim. Biophys. Acta, Rev. Biomembr. – volume: 20 start-page: 2783 year: 1981 publication-title: Biochemistry – volume: 14 start-page: 21561 year: 2013 publication-title: Int. J. Mol. Sci. – volume: 437 start-page: 656 year: 2005 publication-title: Nature – volume: 1797 start-page: 1917 year: 2010 publication-title: Biochim. Biophys. Acta – ident: e_1_2_6_25_1 doi: 10.1021/bi00513a012 – ident: e_1_2_6_40_1 doi: 10.1038/srep05216 – ident: e_1_2_6_12_1 doi: 10.1002/jcp.1030460205 – ident: e_1_2_6_18_1 doi: 10.1039/C6NR03817D – ident: e_1_2_6_23_1 doi: 10.1016/j.sbi.2008.03.008 – ident: e_1_2_6_29_1 doi: 10.1016/j.bbabio.2010.01.012 – ident: e_1_2_6_26_1 doi: 10.1016/S0006-3495(98)77902-0 – ident: e_1_2_6_27_1 doi: 10.1128/jb.176.18.5587-5600.1994 – ident: e_1_2_6_9_1 doi: 10.1016/j.bpc.2010.11.002 – ident: e_1_2_6_49_1 doi: 10.1021/nl070519u – ident: e_1_2_6_48_1 doi: 10.1038/nchem.2022 – volume-title: Mitochondria: Structure and Role in Respiration year: 2001 ident: e_1_2_6_1_1 contributor: fullname: Fontanesi F. – ident: e_1_2_6_8_1 doi: 10.1038/nnano.2008.274 – ident: e_1_2_6_10_1 doi: 10.1016/0304-4157(88)90015-9 – ident: e_1_2_6_39_1 doi: 10.1039/C6NR00097E – ident: e_1_2_6_5_1 doi: 10.3390/ijms141121561 – ident: e_1_2_6_2_1 doi: 10.1105/tpc.11.4.557 – ident: e_1_2_6_33_1 doi: 10.1021/ja503138p – ident: e_1_2_6_3_1 doi: 10.1038/nmat3451 – ident: e_1_2_6_17_1 doi: 10.1529/biophysj.106.103572 – ident: e_1_2_6_20_1 doi: 10.1021/la960805d – ident: e_1_2_6_45_1 doi: 10.1002/anie.201502364 – ident: e_1_2_6_42_1 doi: 10.1021/jp102616m – ident: e_1_2_6_44_1 doi: 10.1002/anie.201502776 – ident: e_1_2_6_19_1 doi: 10.1021/ja056972u – ident: e_1_2_6_38_1 doi: 10.1002/smll.201300051 – ident: e_1_2_6_50_1 doi: 10.1038/nchembio.555 – ident: e_1_2_6_37_1 doi: 10.1021/ac049738f – ident: e_1_2_6_4_1 doi: 10.1038/nmat3507 – ident: e_1_2_6_7_1 doi: 10.1126/science.271.5245.43 – ident: e_1_2_6_28_1 doi: 10.1042/BJ20081345 – ident: e_1_2_6_31_1 doi: 10.1039/b201337a – ident: e_1_2_6_35_1 doi: 10.1038/nature10505 – ident: e_1_2_6_36_1 doi: 10.1021/bi201594m – ident: e_1_2_6_22_1 doi: 10.1016/j.snb.2007.01.014 – ident: e_1_2_6_6_1 doi: 10.1038/nature04164 – ident: e_1_2_6_51_1 doi: 10.1016/j.jsb.2009.07.008 – ident: e_1_2_6_16_1 doi: 10.1016/S0006-3495(03)74590-1 – volume-title: Encyclopedia of Neuroscience year: 2009 ident: e_1_2_6_13_1 contributor: fullname: Hopkins C. D. – ident: e_1_2_6_43_1 doi: 10.1002/celc.201600460 – ident: e_1_2_6_46_1 doi: 10.1039/C5CC05930E – ident: e_1_2_6_34_1 doi: 10.1039/C5CC10382G – ident: e_1_2_6_41_1 doi: 10.1039/c2sc01103d – ident: e_1_2_6_14_1 doi: 10.1016/j.bpj.2014.04.016 – ident: e_1_2_6_32_1 doi: 10.1073/pnas.0905959106 – ident: e_1_2_6_47_1 doi: 10.1039/B817371K – ident: e_1_2_6_11_1 doi: 10.1021/acs.biomac.5b01434 – ident: e_1_2_6_15_1 doi: 10.1021/acs.langmuir.6b02575 – ident: e_1_2_6_30_1 doi: 10.1038/nrmicro2940 – ident: e_1_2_6_52_1 doi: 10.1016/S0006-3495(76)85755-4 – ident: e_1_2_6_24_1 doi: 10.1021/bi00513a028 – ident: e_1_2_6_21_1 doi: 10.1039/b004379f |
SSID | ssj0017734 |
Score | 2.4425051 |
Snippet | Multilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single‐lipid membranes, such as... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Assembly Atomic force microscopy biocatalysis biomimicry Biotechnology E coli Electron transfer Enzymes Fluorescence Hydrogenase Lamella layer‐by‐layer assembly Links Lipids Lysine Materials science Membranes Microscopy Mimicry Mitochondria Oxidase Phase (cyclic) Quinones self‐assembly solid supported membranes Stacks Surface area Voltammetry |
Title | Multilayered Lipid Membrane Stacks for Biocatalysis Using Membrane Enzymes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201606265 https://www.proquest.com/docview/1920412511 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50vuiD-BOnU_Ig-FTWZGnaPk63MQYTEQd7K0mTgOg6sfNh_vVe0q2bT4IvhUIu0Guv913u7juAW-uGOaQ2CTh6z4AzJYI0x6hVRzphNpGh9nPIxo9iOOGjaTTd6uKv-CHqAzdnGf5_7QxcqrK9IQ2V2rpOcooInIloF_YQ2wg3w4DxpzqPEMdVXllQV-FFp2vaxpC1f8v_dksbrLmNWL3LGRzB4Qorkm71co9hxxQncLDFIHgKI99A-y6XbuQmcYOoNRmbGT5XYQgCyfytJAhLyf3r3B_UOP4R4ssENsv6xfdyZsozmAz6Lw_DYDUeIchdMjPgUuXuGJNTHVojZCeRHYX4jKbSqFAlnJso1lZQmioRaeGDuTwXXKa42MSdc2gU88JcAEm1siiLoSHiIxonqdJCxSqXluEeQjbhbq2d7KNiwcgqvmOWOT1mtR6b0ForL1tZQ5khinS0XojtmsC8Qv_YJev2BuP67vI_Qlewz5wHdrWJvAWNxeeXuUb8sFA3_hPBa--Z_QCG3rxc |
link.rule.ids | 314,780,784,1375,11562,27924,27925,46052,46294,46476,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9RPKgHv40o6g4mngZ0dN12RIEgAgcDCbelXbvEIMMIHOCvt69jfHgx0eOSvnZr-_Z-7_X19wAeYizmEMS-TbX1tKkjmB1E2muVrvSd2OdlaeqQdbqs2aetgZtlE-JdmJQfYhVwQ80w_2tUcAxIl9asoVzGeJWcaAjuMHcX9rTOE8zqqr2tGKSI56UHy4xgihcZZLyNZae0Lb9tl9ZgcxOyGpvTOAaRvW2aajIszqaiGC1-EDn-63NO4GiJSK1quoVOYUclZ3C4wVN4Di1zTfeDz7Gwp4XlrqXVUSM9XKIsDVej4cTS4Nd6eh-bcBCynFgmGWHdrJ4s5iM1uYB-o957btrLIgx2hEemNuUiwmApJbIcK8YrPq8IjQJJwJUoC59S5XoyZoQEgrmSGZcxihjlgW6svMol5JJxoq7ACqSItax2QDUKI54fCMmEJyIeO7oPxvPwmC1B-JlybYQpq7IT4uyEq9nJQyFboXCpc5NQY1UkD9MIMg-OmepfegmrtUZn9XT9F6F72G_2Ou2w_dJ9vYEDB20-ZkPSAuSmXzN1qxHLVNyZPfkN9vngxA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9RTIwe_DaiqDuYeBrQ0nXbEQWCKMQYSbgt7domBhlE4AB_vW0HA7yY6HFJP7bXvr1fX9_7PYA7ZYo5hCpwibaeLsGcumGsT63CEwFWASsLW4es3aHNLmn1vN5aFn_KD5E53Ixm2P-1UfCRUKUVaSgTymSSI43AMfW2YYdQHBr2_NpbRiCFfD-9V6bIRHih3pK2sYxLm_03zdIKa64jVmtyGofAli-bRpr0i9MJL8bzHzyO__maIzhY4FGnmm6gY9iSyQnsr7EUnkLLJul-spkp6-mYYtfCacuBni2RjgarcX_saOjrPHwMrTPIcJw4NhRh1ayezGcDOT6DbqP-_th0FyUY3NhcmLqE8di4SgkSZSUpqwSswjUGRCGTvMwDQqTnC0URCjn1BLUHxjimhIW6sfQr55BLhom8ACcUXOm--vipMRjyg5ALyn0eM4X1GJTl4X65AtEoZdqIUk5lHBnpRJl08lBYLlC00LhxpJGqoQ7T-DEP2Er6l1Giaq3Rzp4u_9LpFnZfa43o5anzfAV72Bh8EwpJCpCbfE3ltYYrE35jd-Q3aITfcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilayered+Lipid+Membrane+Stacks+for+Biocatalysis+Using+Membrane+Enzymes&rft.jtitle=Advanced+functional+materials&rft.au=Heath%2C+George+R.&rft.au=Li%2C+Mengqiu&rft.au=Rong%2C+Honling&rft.au=Radu%2C+Valentin&rft.date=2017-05-04&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201606265&rft.externalDBID=10.1002%252Fadfm.201606265&rft.externalDocID=ADFM201606265 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |