Multilayered Lipid Membrane Stacks for Biocatalysis Using Membrane Enzymes

Multilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single‐lipid membranes, such as their ability to spatially organize processes, compartmentalize molecules, and greatly increase surface area and hence membrane protein concent...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 27; no. 17
Main Authors Heath, George R., Li, Mengqiu, Rong, Honling, Radu, Valentin, Frielingsdorf, Stefan, Lenz, Oliver, Butt, Julea N., Jeuken, Lars J. C.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 04.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single‐lipid membranes, such as their ability to spatially organize processes, compartmentalize molecules, and greatly increase surface area and hence membrane protein concentration. Here, a supramolecular assembly of a multilayered lipid membrane system is reported in which poly‐l‐lysine electrostatically links negatively charged lipid membranes. When suitable membrane enzymes are incorporated, either an ubiquinol oxidase (cytochrome bo 3 from Escherichia coli) or an oxygen tolerant hydrogenase (the membrane‐bound hydrogenase from Ralstonia eutropha), cyclic voltammetry (CV) reveals a linear increase in biocatalytic activity with each additional membrane layer. Electron transfer between the enzymes and the electrode is mediated by the quinone pool that is present in the lipid phase. Using atomic force microscopy, CV, and fluorescence microscopy it is deduced that quinones are able to diffuse between the stacked lipid membrane layers via defect sites where the lipid membranes are interconnected. This assembly is akin to that of interconnected thylakoid membranes or the folded lamella of mitochondria and has significant potential for mimicry in biotechnology applications such as energy production or biosensing. Layer‐by‐layer assembly of lipid bilayers is used to multiply the surface concentration of electroactive membrane enzymes at electrodes. The interconnected membrane multilayers, akin to that of thylakoid membranes, are investigated using cyclic voltammetry to reveal a linear increase in biocatalytic activity with each additional membrane layer containing a ubiquinol oxidase or an oxygen‐tolerant hydrogenase.
AbstractList Multilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single‐lipid membranes, such as their ability to spatially organize processes, compartmentalize molecules, and greatly increase surface area and hence membrane protein concentration. Here, a supramolecular assembly of a multilayered lipid membrane system is reported in which poly‐l‐lysine electrostatically links negatively charged lipid membranes. When suitable membrane enzymes are incorporated, either an ubiquinol oxidase (cytochrome bo 3 from Escherichia coli) or an oxygen tolerant hydrogenase (the membrane‐bound hydrogenase from Ralstonia eutropha), cyclic voltammetry (CV) reveals a linear increase in biocatalytic activity with each additional membrane layer. Electron transfer between the enzymes and the electrode is mediated by the quinone pool that is present in the lipid phase. Using atomic force microscopy, CV, and fluorescence microscopy it is deduced that quinones are able to diffuse between the stacked lipid membrane layers via defect sites where the lipid membranes are interconnected. This assembly is akin to that of interconnected thylakoid membranes or the folded lamella of mitochondria and has significant potential for mimicry in biotechnology applications such as energy production or biosensing. Layer‐by‐layer assembly of lipid bilayers is used to multiply the surface concentration of electroactive membrane enzymes at electrodes. The interconnected membrane multilayers, akin to that of thylakoid membranes, are investigated using cyclic voltammetry to reveal a linear increase in biocatalytic activity with each additional membrane layer containing a ubiquinol oxidase or an oxygen‐tolerant hydrogenase.
Multilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single‐lipid membranes, such as their ability to spatially organize processes, compartmentalize molecules, and greatly increase surface area and hence membrane protein concentration. Here, a supramolecular assembly of a multilayered lipid membrane system is reported in which poly‐l‐lysine electrostatically links negatively charged lipid membranes. When suitable membrane enzymes are incorporated, either an ubiquinol oxidase (cytochrome bo3 from Escherichia coli) or an oxygen tolerant hydrogenase (the membrane‐bound hydrogenase from Ralstonia eutropha), cyclic voltammetry (CV) reveals a linear increase in biocatalytic activity with each additional membrane layer. Electron transfer between the enzymes and the electrode is mediated by the quinone pool that is present in the lipid phase. Using atomic force microscopy, CV, and fluorescence microscopy it is deduced that quinones are able to diffuse between the stacked lipid membrane layers via defect sites where the lipid membranes are interconnected. This assembly is akin to that of interconnected thylakoid membranes or the folded lamella of mitochondria and has significant potential for mimicry in biotechnology applications such as energy production or biosensing.
Multilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single‐lipid membranes, such as their ability to spatially organize processes, compartmentalize molecules, and greatly increase surface area and hence membrane protein concentration. Here, a supramolecular assembly of a multilayered lipid membrane system is reported in which poly‐ l ‐lysine electrostatically links negatively charged lipid membranes. When suitable membrane enzymes are incorporated, either an ubiquinol oxidase (cytochrome bo 3 from Escherichia coli ) or an oxygen tolerant hydrogenase (the membrane‐bound hydrogenase from Ralstonia eutropha ), cyclic voltammetry (CV) reveals a linear increase in biocatalytic activity with each additional membrane layer. Electron transfer between the enzymes and the electrode is mediated by the quinone pool that is present in the lipid phase. Using atomic force microscopy, CV, and fluorescence microscopy it is deduced that quinones are able to diffuse between the stacked lipid membrane layers via defect sites where the lipid membranes are interconnected. This assembly is akin to that of interconnected thylakoid membranes or the folded lamella of mitochondria and has significant potential for mimicry in biotechnology applications such as energy production or biosensing.
Author Lenz, Oliver
Radu, Valentin
Jeuken, Lars J. C.
Rong, Honling
Heath, George R.
Li, Mengqiu
Butt, Julea N.
Frielingsdorf, Stefan
Author_xml – sequence: 1
  givenname: George R.
  surname: Heath
  fullname: Heath, George R.
  organization: University of Leeds
– sequence: 2
  givenname: Mengqiu
  surname: Li
  fullname: Li, Mengqiu
  organization: University of Leeds
– sequence: 3
  givenname: Honling
  surname: Rong
  fullname: Rong, Honling
  organization: University of Leeds
– sequence: 4
  givenname: Valentin
  surname: Radu
  fullname: Radu, Valentin
  organization: University of Leeds
– sequence: 5
  givenname: Stefan
  surname: Frielingsdorf
  fullname: Frielingsdorf, Stefan
  organization: Technische Universität Berlin
– sequence: 6
  givenname: Oliver
  surname: Lenz
  fullname: Lenz, Oliver
  organization: Technische Universität Berlin
– sequence: 7
  givenname: Julea N.
  surname: Butt
  fullname: Butt, Julea N.
  organization: University of East Anglia
– sequence: 8
  givenname: Lars J. C.
  surname: Jeuken
  fullname: Jeuken, Lars J. C.
  email: l.j.c.jeuken@leeds.ac.uk
  organization: University of Leeds
BookMark eNqFkD1PwzAQQC1UJNrCyhyJOeXOsZ1kLKXlQ60YoBKb5TgOcslHsVOh8OtJVdSOTHfDe3fSG5FB3dSGkGuECQLQW5UX1YQCChBU8DMyRIEijIAmg-OO7xdk5P0GAOM4YkPyvNqVrS1VZ5zJg6Xd2jxYmSpzqjbBa6v0pw-KxgV3ttGqVWXnrQ_W3tYfJ2xe_3SV8ZfkvFClN1d_c0zWi_nb7DFcvjw8zabLUDMBPGQq05ABMsyhMEJFiYoyLjimymSQJYwZHueFQEwzwXNBMWGgtWAq7WETR2Nyc7i7dc3XzvhWbpqdq_uXElMKDClH7KnJgdKu8d6ZQm6drZTrJILc95L7XvLYqxfSg_BtS9P9Q8vp_WJ1cn8B9BhwMA
CitedBy_id crossref_primary_10_1002_adfm_201704356
crossref_primary_10_1016_j_surfin_2022_101762
crossref_primary_10_1021_acs_jpclett_3c00705
crossref_primary_10_1021_acs_chemrev_0c00249
crossref_primary_10_1080_10408347_2022_2088226
crossref_primary_10_1002_smll_202006608
crossref_primary_10_1016_j_bbabio_2018_06_011
crossref_primary_10_1038_s42004_019_0155_y
crossref_primary_10_1098_rsob_210177
crossref_primary_10_3390_catal10121427
crossref_primary_10_1016_j_ab_2018_03_006
crossref_primary_10_1039_C8SM00052B
crossref_primary_10_1021_acsnano_9b03326
crossref_primary_10_1016_j_coelec_2018_03_021
crossref_primary_10_1039_C8SC03302A
crossref_primary_10_1002_adma_201707482
crossref_primary_10_1016_j_isci_2018_09_020
crossref_primary_10_1002_jbio_202200034
crossref_primary_10_1107_S2059798322008701
crossref_primary_10_1002_chem_202003391
crossref_primary_10_1016_j_coelec_2020_06_011
crossref_primary_10_3390_s20123393
crossref_primary_10_3390_mi14020372
crossref_primary_10_3390_app9091745
crossref_primary_10_1021_acsami_1c15166
crossref_primary_10_1002_admi_202100257
crossref_primary_10_1016_j_bbagen_2020_129542
crossref_primary_10_1021_acsami_0c21662
crossref_primary_10_1016_j_jelechem_2023_117881
crossref_primary_10_1016_j_coelec_2017_09_002
crossref_primary_10_1021_acs_chemmater_7b02845
crossref_primary_10_1016_j_coelec_2018_05_020
crossref_primary_10_1016_j_chemphyslip_2019_04_004
Cites_doi 10.1021/bi00513a012
10.1038/srep05216
10.1002/jcp.1030460205
10.1039/C6NR03817D
10.1016/j.sbi.2008.03.008
10.1016/j.bbabio.2010.01.012
10.1016/S0006-3495(98)77902-0
10.1128/jb.176.18.5587-5600.1994
10.1016/j.bpc.2010.11.002
10.1021/nl070519u
10.1038/nchem.2022
10.1038/nnano.2008.274
10.1016/0304-4157(88)90015-9
10.1039/C6NR00097E
10.3390/ijms141121561
10.1105/tpc.11.4.557
10.1021/ja503138p
10.1038/nmat3451
10.1529/biophysj.106.103572
10.1021/la960805d
10.1002/anie.201502364
10.1021/jp102616m
10.1002/anie.201502776
10.1021/ja056972u
10.1002/smll.201300051
10.1038/nchembio.555
10.1021/ac049738f
10.1038/nmat3507
10.1126/science.271.5245.43
10.1042/BJ20081345
10.1039/b201337a
10.1038/nature10505
10.1021/bi201594m
10.1016/j.snb.2007.01.014
10.1038/nature04164
10.1016/j.jsb.2009.07.008
10.1016/S0006-3495(03)74590-1
10.1002/celc.201600460
10.1039/C5CC05930E
10.1039/C5CC10382G
10.1039/c2sc01103d
10.1016/j.bpj.2014.04.016
10.1073/pnas.0905959106
10.1039/B817371K
10.1021/acs.biomac.5b01434
10.1021/acs.langmuir.6b02575
10.1038/nrmicro2940
10.1016/S0006-3495(76)85755-4
10.1021/bi00513a028
10.1039/b004379f
ContentType Journal Article
Copyright 2017 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2017 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201606265
DatabaseName Wiley Online Library
Wiley Online Library Open Access
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201606265
ADFM201606265
Genre article
GrantInformation_xml – fundername: European Research Council under the European Union's Seventh Framework Programme
  funderid: FP/2007‐2013; 280518
– fundername: BBSRC
  funderid: BB/L020130/1; BB/L022176/1
– fundername: German Research Foundation
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMNL
AAYXX
ACBWZ
ACRPL
ACYXJ
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4605-4abc0b0141d0fe6a38a3b56519aeb0b844e57df6119b65d621840cc64a96a3e73
IEDL.DBID 24P
ISSN 1616-301X
IngestDate Thu Oct 10 20:25:14 EDT 2024
Fri Dec 06 00:57:04 EST 2024
Sat Aug 24 00:57:18 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4605-4abc0b0141d0fe6a38a3b56519aeb0b844e57df6119b65d621840cc64a96a3e73
Notes The copyright line of this paper was changed 5 April 2017 after initial publication.
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201606265
PQID 1920412511
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_1920412511
crossref_primary_10_1002_adfm_201606265
wiley_primary_10_1002_adfm_201606265_ADFM201606265
PublicationCentury 2000
PublicationDate May 4, 2017
PublicationDateYYYYMMDD 2017-05-04
PublicationDate_xml – month: 05
  year: 2017
  text: May 4, 2017
  day: 04
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 479
1994; 176
2007; 124
2015; 51
2000; 116
2008; 18
2002; 8
2015; 54
2005; 437
2009
2016; 32
2016; 52
2007; 92
2008; 3
1988; 947
2016; 17
2009; 417
2012; 11
1955; 46
2014; 136
1981; 20
2011; 7
2013; 9
2011; 153
2010; 1797
2004; 76
2014; 106
2013; 14
2014; 4
2012; 3
2016; 3
2001
2013; 11
2010; 114
1997; 13
2011; 50
1996; 271
1999; 11
2007; 7
2009; 168
2009; 5
1998; 74
1976; 16
2003; 85
2006; 128
2014; 6
2016; 8
2009; 106
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Hopkins C. D. (e_1_2_6_13_1) 2009
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Fontanesi F. (e_1_2_6_1_1) 2001
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – year: 2009
– volume: 6
  start-page: 822
  year: 2014
  publication-title: Nat. Chem.
– volume: 54
  start-page: 12303
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 666
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 417
  start-page: 555
  year: 2009
  publication-title: Biochem. J.
– volume: 168
  start-page: 200
  year: 2009
  publication-title: J. Struct. Biol.
– year: 2001
– volume: 8
  start-page: 13513
  year: 2016
  publication-title: Nanoscale
– volume: 3
  start-page: 1015
  year: 2012
  publication-title: Chem. Sci.
– volume: 124
  start-page: 501
  year: 2007
  publication-title: Sens. Actuators, B
– volume: 18
  start-page: 406
  year: 2008
  publication-title: Curr. Opin. Struct. Biol.
– volume: 20
  start-page: 2893
  year: 1981
  publication-title: Biochemistry
– volume: 16
  start-page: 1055
  year: 1976
  publication-title: Biophys. J.
– volume: 7
  start-page: 1603
  year: 2007
  publication-title: Nano Lett.
– volume: 74
  start-page: 1937
  year: 1998
  publication-title: Biophys. J.
– volume: 176
  start-page: 5587
  year: 1994
  publication-title: J. Bacteriol.
– volume: 7
  start-page: 310
  year: 2011
  publication-title: Nat. Chem. Biol.
– volume: 153
  start-page: 115
  year: 2011
  publication-title: Biophys. Chem.
– volume: 11
  start-page: 557
  year: 1999
  publication-title: Plant Cell
– volume: 32
  start-page: 10144
  year: 2016
  publication-title: Langmuir
– volume: 50
  start-page: 10836
  year: 2011
  publication-title: Biochemistry
– volume: 92
  start-page: 4254
  year: 2007
  publication-title: Biophys. J.
– volume: 17
  start-page: 324
  year: 2016
  publication-title: Biomacromolecules
– volume: 51
  start-page: 14223
  year: 2015
  publication-title: Chem. Commun.
– volume: 479
  start-page: 249
  year: 2011
  publication-title: Nature
– volume: 11
  start-page: 106
  year: 2013
  publication-title: Nat. Rev. Microbiol.
– volume: 136
  start-page: 8512
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 550
  year: 2009
  publication-title: Chem. Commun.
– volume: 3
  start-page: 2179
  year: 2016
  publication-title: ChemElectroChem
– volume: 13
  start-page: 751
  year: 1997
  publication-title: Langmuir
– volume: 85
  start-page: 1585
  year: 2003
  publication-title: Biophys. J.
– volume: 76
  start-page: 4665
  year: 2004
  publication-title: Anal. Chem.
– volume: 11
  start-page: 1005
  year: 2012
  publication-title: Nat. Mater.
– volume: 106
  start-page: 2395
  year: 2014
  publication-title: Biophys. J.
– volume: 116
  start-page: 89
  year: 2000
  publication-title: Faraday Discuss.
– volume: 4
  start-page: 5216
  year: 2014
  publication-title: Sci. Rep.
– volume: 271
  start-page: 43
  year: 1996
  publication-title: Science
– volume: 9
  start-page: 2970
  year: 2013
  publication-title: Small
– volume: 11
  start-page: 1
  year: 2012
  publication-title: Nat. Mater.
– volume: 8
  start-page: 866
  year: 2002
  publication-title: Chem. Commun.
– volume: 54
  start-page: 12329
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 46
  start-page: 249
  year: 1955
  publication-title: J. Cell. Comp. Physiol.
– volume: 128
  start-page: 1711
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 2632
  year: 2016
  publication-title: Chem. Commun.
– volume: 8
  start-page: 10695
  year: 2016
  publication-title: Nanoscale
– volume: 106
  start-page: 20681
  year: 2009
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 114
  start-page: 12003
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 947
  start-page: 367
  year: 1988
  publication-title: Biochim. Biophys. Acta, Rev. Biomembr.
– volume: 20
  start-page: 2783
  year: 1981
  publication-title: Biochemistry
– volume: 14
  start-page: 21561
  year: 2013
  publication-title: Int. J. Mol. Sci.
– volume: 437
  start-page: 656
  year: 2005
  publication-title: Nature
– volume: 1797
  start-page: 1917
  year: 2010
  publication-title: Biochim. Biophys. Acta
– ident: e_1_2_6_25_1
  doi: 10.1021/bi00513a012
– ident: e_1_2_6_40_1
  doi: 10.1038/srep05216
– ident: e_1_2_6_12_1
  doi: 10.1002/jcp.1030460205
– ident: e_1_2_6_18_1
  doi: 10.1039/C6NR03817D
– ident: e_1_2_6_23_1
  doi: 10.1016/j.sbi.2008.03.008
– ident: e_1_2_6_29_1
  doi: 10.1016/j.bbabio.2010.01.012
– ident: e_1_2_6_26_1
  doi: 10.1016/S0006-3495(98)77902-0
– ident: e_1_2_6_27_1
  doi: 10.1128/jb.176.18.5587-5600.1994
– ident: e_1_2_6_9_1
  doi: 10.1016/j.bpc.2010.11.002
– ident: e_1_2_6_49_1
  doi: 10.1021/nl070519u
– ident: e_1_2_6_48_1
  doi: 10.1038/nchem.2022
– volume-title: Mitochondria: Structure and Role in Respiration
  year: 2001
  ident: e_1_2_6_1_1
  contributor:
    fullname: Fontanesi F.
– ident: e_1_2_6_8_1
  doi: 10.1038/nnano.2008.274
– ident: e_1_2_6_10_1
  doi: 10.1016/0304-4157(88)90015-9
– ident: e_1_2_6_39_1
  doi: 10.1039/C6NR00097E
– ident: e_1_2_6_5_1
  doi: 10.3390/ijms141121561
– ident: e_1_2_6_2_1
  doi: 10.1105/tpc.11.4.557
– ident: e_1_2_6_33_1
  doi: 10.1021/ja503138p
– ident: e_1_2_6_3_1
  doi: 10.1038/nmat3451
– ident: e_1_2_6_17_1
  doi: 10.1529/biophysj.106.103572
– ident: e_1_2_6_20_1
  doi: 10.1021/la960805d
– ident: e_1_2_6_45_1
  doi: 10.1002/anie.201502364
– ident: e_1_2_6_42_1
  doi: 10.1021/jp102616m
– ident: e_1_2_6_44_1
  doi: 10.1002/anie.201502776
– ident: e_1_2_6_19_1
  doi: 10.1021/ja056972u
– ident: e_1_2_6_38_1
  doi: 10.1002/smll.201300051
– ident: e_1_2_6_50_1
  doi: 10.1038/nchembio.555
– ident: e_1_2_6_37_1
  doi: 10.1021/ac049738f
– ident: e_1_2_6_4_1
  doi: 10.1038/nmat3507
– ident: e_1_2_6_7_1
  doi: 10.1126/science.271.5245.43
– ident: e_1_2_6_28_1
  doi: 10.1042/BJ20081345
– ident: e_1_2_6_31_1
  doi: 10.1039/b201337a
– ident: e_1_2_6_35_1
  doi: 10.1038/nature10505
– ident: e_1_2_6_36_1
  doi: 10.1021/bi201594m
– ident: e_1_2_6_22_1
  doi: 10.1016/j.snb.2007.01.014
– ident: e_1_2_6_6_1
  doi: 10.1038/nature04164
– ident: e_1_2_6_51_1
  doi: 10.1016/j.jsb.2009.07.008
– ident: e_1_2_6_16_1
  doi: 10.1016/S0006-3495(03)74590-1
– volume-title: Encyclopedia of Neuroscience
  year: 2009
  ident: e_1_2_6_13_1
  contributor:
    fullname: Hopkins C. D.
– ident: e_1_2_6_43_1
  doi: 10.1002/celc.201600460
– ident: e_1_2_6_46_1
  doi: 10.1039/C5CC05930E
– ident: e_1_2_6_34_1
  doi: 10.1039/C5CC10382G
– ident: e_1_2_6_41_1
  doi: 10.1039/c2sc01103d
– ident: e_1_2_6_14_1
  doi: 10.1016/j.bpj.2014.04.016
– ident: e_1_2_6_32_1
  doi: 10.1073/pnas.0905959106
– ident: e_1_2_6_47_1
  doi: 10.1039/B817371K
– ident: e_1_2_6_11_1
  doi: 10.1021/acs.biomac.5b01434
– ident: e_1_2_6_15_1
  doi: 10.1021/acs.langmuir.6b02575
– ident: e_1_2_6_30_1
  doi: 10.1038/nrmicro2940
– ident: e_1_2_6_52_1
  doi: 10.1016/S0006-3495(76)85755-4
– ident: e_1_2_6_24_1
  doi: 10.1021/bi00513a028
– ident: e_1_2_6_21_1
  doi: 10.1039/b004379f
SSID ssj0017734
Score 2.4425051
Snippet Multilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single‐lipid membranes, such as...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Assembly
Atomic force microscopy
biocatalysis
biomimicry
Biotechnology
E coli
Electron transfer
Enzymes
Fluorescence
Hydrogenase
Lamella
layer‐by‐layer assembly
Links
Lipids
Lysine
Materials science
Membranes
Microscopy
Mimicry
Mitochondria
Oxidase
Phase (cyclic)
Quinones
self‐assembly
solid supported membranes
Stacks
Surface area
Voltammetry
Title Multilayered Lipid Membrane Stacks for Biocatalysis Using Membrane Enzymes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201606265
https://www.proquest.com/docview/1920412511
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50vuiD-BOnU_Ig-FTWZGnaPk63MQYTEQd7K0mTgOg6sfNh_vVe0q2bT4IvhUIu0Guv913u7juAW-uGOaQ2CTh6z4AzJYI0x6hVRzphNpGh9nPIxo9iOOGjaTTd6uKv-CHqAzdnGf5_7QxcqrK9IQ2V2rpOcooInIloF_YQ2wg3w4DxpzqPEMdVXllQV-FFp2vaxpC1f8v_dksbrLmNWL3LGRzB4Qorkm71co9hxxQncLDFIHgKI99A-y6XbuQmcYOoNRmbGT5XYQgCyfytJAhLyf3r3B_UOP4R4ssENsv6xfdyZsozmAz6Lw_DYDUeIchdMjPgUuXuGJNTHVojZCeRHYX4jKbSqFAlnJso1lZQmioRaeGDuTwXXKa42MSdc2gU88JcAEm1siiLoSHiIxonqdJCxSqXluEeQjbhbq2d7KNiwcgqvmOWOT1mtR6b0ForL1tZQ5khinS0XojtmsC8Qv_YJev2BuP67vI_Qlewz5wHdrWJvAWNxeeXuUb8sFA3_hPBa--Z_QCG3rxc
link.rule.ids 314,780,784,1375,11562,27924,27925,46052,46294,46476,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9RPKgHv40o6g4mngZ0dN12RIEgAgcDCbelXbvEIMMIHOCvt69jfHgx0eOSvnZr-_Z-7_X19wAeYizmEMS-TbX1tKkjmB1E2muVrvSd2OdlaeqQdbqs2aetgZtlE-JdmJQfYhVwQ80w_2tUcAxIl9asoVzGeJWcaAjuMHcX9rTOE8zqqr2tGKSI56UHy4xgihcZZLyNZae0Lb9tl9ZgcxOyGpvTOAaRvW2aajIszqaiGC1-EDn-63NO4GiJSK1quoVOYUclZ3C4wVN4Di1zTfeDz7Gwp4XlrqXVUSM9XKIsDVej4cTS4Nd6eh-bcBCynFgmGWHdrJ4s5iM1uYB-o957btrLIgx2hEemNuUiwmApJbIcK8YrPq8IjQJJwJUoC59S5XoyZoQEgrmSGZcxihjlgW6svMol5JJxoq7ACqSItax2QDUKI54fCMmEJyIeO7oPxvPwmC1B-JlybYQpq7IT4uyEq9nJQyFboXCpc5NQY1UkD9MIMg-OmepfegmrtUZn9XT9F6F72G_2Ou2w_dJ9vYEDB20-ZkPSAuSmXzN1qxHLVNyZPfkN9vngxA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9RTIwe_DaiqDuYeBrQ0nXbEQWCKMQYSbgt7domBhlE4AB_vW0HA7yY6HFJP7bXvr1fX9_7PYA7ZYo5hCpwibaeLsGcumGsT63CEwFWASsLW4es3aHNLmn1vN5aFn_KD5E53Ixm2P-1UfCRUKUVaSgTymSSI43AMfW2YYdQHBr2_NpbRiCFfD-9V6bIRHih3pK2sYxLm_03zdIKa64jVmtyGofAli-bRpr0i9MJL8bzHzyO__maIzhY4FGnmm6gY9iSyQnsr7EUnkLLJul-spkp6-mYYtfCacuBni2RjgarcX_saOjrPHwMrTPIcJw4NhRh1ayezGcDOT6DbqP-_th0FyUY3NhcmLqE8di4SgkSZSUpqwSswjUGRCGTvMwDQqTnC0URCjn1BLUHxjimhIW6sfQr55BLhom8ACcUXOm--vipMRjyg5ALyn0eM4X1GJTl4X65AtEoZdqIUk5lHBnpRJl08lBYLlC00LhxpJGqoQ7T-DEP2Er6l1Giaq3Rzp4u_9LpFnZfa43o5anzfAV72Bh8EwpJCpCbfE3ltYYrE35jd-Q3aITfcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilayered+Lipid+Membrane+Stacks+for+Biocatalysis+Using+Membrane+Enzymes&rft.jtitle=Advanced+functional+materials&rft.au=Heath%2C+George+R.&rft.au=Li%2C+Mengqiu&rft.au=Rong%2C+Honling&rft.au=Radu%2C+Valentin&rft.date=2017-05-04&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201606265&rft.externalDBID=10.1002%252Fadfm.201606265&rft.externalDocID=ADFM201606265
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon