Multilayered Lipid Membrane Stacks for Biocatalysis Using Membrane Enzymes

Multilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single‐lipid membranes, such as their ability to spatially organize processes, compartmentalize molecules, and greatly increase surface area and hence membrane protein concent...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 27; no. 17
Main Authors Heath, George R., Li, Mengqiu, Rong, Honling, Radu, Valentin, Frielingsdorf, Stefan, Lenz, Oliver, Butt, Julea N., Jeuken, Lars J. C.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 04.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single‐lipid membranes, such as their ability to spatially organize processes, compartmentalize molecules, and greatly increase surface area and hence membrane protein concentration. Here, a supramolecular assembly of a multilayered lipid membrane system is reported in which poly‐l‐lysine electrostatically links negatively charged lipid membranes. When suitable membrane enzymes are incorporated, either an ubiquinol oxidase (cytochrome bo 3 from Escherichia coli) or an oxygen tolerant hydrogenase (the membrane‐bound hydrogenase from Ralstonia eutropha), cyclic voltammetry (CV) reveals a linear increase in biocatalytic activity with each additional membrane layer. Electron transfer between the enzymes and the electrode is mediated by the quinone pool that is present in the lipid phase. Using atomic force microscopy, CV, and fluorescence microscopy it is deduced that quinones are able to diffuse between the stacked lipid membrane layers via defect sites where the lipid membranes are interconnected. This assembly is akin to that of interconnected thylakoid membranes or the folded lamella of mitochondria and has significant potential for mimicry in biotechnology applications such as energy production or biosensing. Layer‐by‐layer assembly of lipid bilayers is used to multiply the surface concentration of electroactive membrane enzymes at electrodes. The interconnected membrane multilayers, akin to that of thylakoid membranes, are investigated using cyclic voltammetry to reveal a linear increase in biocatalytic activity with each additional membrane layer containing a ubiquinol oxidase or an oxygen‐tolerant hydrogenase.
Bibliography:The copyright line of this paper was changed 5 April 2017 after initial publication.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201606265