Platelet-derived growth factor receptor α (PDGFRα)-expressing "fibroblast-like cells" in diabetic and idiopathic gastroparesis of humans

Background  Emerging evidence suggests that “fibroblast‐like cells” (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are ultrastructurally distinct from other interstitial cells, including interstitial cells of Cajal (ICC), and express small‐conductance Ca2+‐activ...

Full description

Saved in:
Bibliographic Details
Published inNeurogastroenterology and motility Vol. 24; no. 9; pp. 844 - 852
Main Authors Grover, M., Bernard, C. E., Pasricha, P. J., Parkman, H. P., Abell, T. L., Nguyen, L. A., Snape, W., Shen, K. R., Sarr, M., Swain, J., Kendrick, M., Gibbons, S., Ordog, T., Farrugia, G.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.09.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background  Emerging evidence suggests that “fibroblast‐like cells” (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are ultrastructurally distinct from other interstitial cells, including interstitial cells of Cajal (ICC), and express small‐conductance Ca2+‐activated K+ channels (SK3). In mice, platelet‐derived growth factor receptor α (PDGFRα) antibody has also been shown to label FLC. The aims of this study were to determine the morphology and distribution of PDGFRα‐immunoreactive (ir) FLC in human gastric muscle and to determine if FLC are altered in gastroparesis, where ICC are reduced. Methods  Full thickness gastric body biopsies from five healthy subjects, 10 diabetic, and 10 idiopathic gastroparesis patients were immunolabeled using SK3 and PDGFRα staining for FLC and Kit staining for ICC. Intramuscular FLC and ICC were quantified. Key Results  Intramuscular PDGFRα‐ir cells had slender cell bodies and long, thin processes and were more abundant in the longitudinal compared with the circular muscle. In the region of myenteric plexus, FLC had smaller, rounder cell bodies with 3–4 processes and formed networks, often around ganglia. All SK3‐ir cell structures showed complete overlap with PDGFRα‐ir. FLC were in close proximity to ICC, but their cell bodies did not overlap. No differences were seen in the distribution, morphology, or overall numbers of FLC in gastroparesis patients. Conclusions & Inferences  In conclusion, PDGFRα identifies FLC in human gastric smooth muscle. FLC were not altered in distribution or overall numbers in gastroparesis. Additional studies are required to determine their role in human GI function.
AbstractList Emerging evidence suggests that "fibroblast-like cells" (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are ultrastructurally distinct from other interstitial cells, including interstitial cells of Cajal (ICC), and express small-conductance Ca(2+) -activated K(+) channels (SK3). In mice, platelet-derived growth factor receptor α (PDGFRα) antibody has also been shown to label FLC. The aims of this study were to determine the morphology and distribution of PDGFRα-immunoreactive (ir) FLC in human gastric muscle and to determine if FLC are altered in gastroparesis, where ICC are reduced.BACKGROUNDEmerging evidence suggests that "fibroblast-like cells" (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are ultrastructurally distinct from other interstitial cells, including interstitial cells of Cajal (ICC), and express small-conductance Ca(2+) -activated K(+) channels (SK3). In mice, platelet-derived growth factor receptor α (PDGFRα) antibody has also been shown to label FLC. The aims of this study were to determine the morphology and distribution of PDGFRα-immunoreactive (ir) FLC in human gastric muscle and to determine if FLC are altered in gastroparesis, where ICC are reduced.Full thickness gastric body biopsies from five healthy subjects, 10 diabetic, and 10 idiopathic gastroparesis patients were immunolabeled using SK3 and PDGFRα staining for FLC and Kit staining for ICC. Intramuscular FLC and ICC were quantified.METHODSFull thickness gastric body biopsies from five healthy subjects, 10 diabetic, and 10 idiopathic gastroparesis patients were immunolabeled using SK3 and PDGFRα staining for FLC and Kit staining for ICC. Intramuscular FLC and ICC were quantified.Intramuscular PDGFRα-ir cells had slender cell bodies and long, thin processes and were more abundant in the longitudinal compared with the circular muscle. In the region of myenteric plexus, FLC had smaller, rounder cell bodies with 3-4 processes and formed networks, often around ganglia. All SK3-ir cell structures showed complete overlap with PDGFRα-ir. FLC were in close proximity to ICC, but their cell bodies did not overlap. No differences were seen in the distribution, morphology, or overall numbers of FLC in gastroparesis patients.KEY RESULTSIntramuscular PDGFRα-ir cells had slender cell bodies and long, thin processes and were more abundant in the longitudinal compared with the circular muscle. In the region of myenteric plexus, FLC had smaller, rounder cell bodies with 3-4 processes and formed networks, often around ganglia. All SK3-ir cell structures showed complete overlap with PDGFRα-ir. FLC were in close proximity to ICC, but their cell bodies did not overlap. No differences were seen in the distribution, morphology, or overall numbers of FLC in gastroparesis patients.In conclusion, PDGFRα identifies FLC in human gastric smooth muscle. FLC were not altered in distribution or overall numbers in gastroparesis. Additional studies are required to determine their role in human GI function.CONCLUSIONS & INFERENCESIn conclusion, PDGFRα identifies FLC in human gastric smooth muscle. FLC were not altered in distribution or overall numbers in gastroparesis. Additional studies are required to determine their role in human GI function.
Background  Emerging evidence suggests that “fibroblast‐like cells” (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are ultrastructurally distinct from other interstitial cells, including interstitial cells of Cajal (ICC), and express small‐conductance Ca2+‐activated K+ channels (SK3). In mice, platelet‐derived growth factor receptor α (PDGFRα) antibody has also been shown to label FLC. The aims of this study were to determine the morphology and distribution of PDGFRα‐immunoreactive (ir) FLC in human gastric muscle and to determine if FLC are altered in gastroparesis, where ICC are reduced. Methods  Full thickness gastric body biopsies from five healthy subjects, 10 diabetic, and 10 idiopathic gastroparesis patients were immunolabeled using SK3 and PDGFRα staining for FLC and Kit staining for ICC. Intramuscular FLC and ICC were quantified. Key Results  Intramuscular PDGFRα‐ir cells had slender cell bodies and long, thin processes and were more abundant in the longitudinal compared with the circular muscle. In the region of myenteric plexus, FLC had smaller, rounder cell bodies with 3–4 processes and formed networks, often around ganglia. All SK3‐ir cell structures showed complete overlap with PDGFRα‐ir. FLC were in close proximity to ICC, but their cell bodies did not overlap. No differences were seen in the distribution, morphology, or overall numbers of FLC in gastroparesis patients. Conclusions & Inferences  In conclusion, PDGFRα identifies FLC in human gastric smooth muscle. FLC were not altered in distribution or overall numbers in gastroparesis. Additional studies are required to determine their role in human GI function.
Emerging evidence suggests that "fibroblast-like cells" (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are ultrastructurally distinct from other interstitial cells, including interstitial cells of Cajal (ICC), and express small-conductance Ca(2+) -activated K(+) channels (SK3). In mice, platelet-derived growth factor receptor α (PDGFRα) antibody has also been shown to label FLC. The aims of this study were to determine the morphology and distribution of PDGFRα-immunoreactive (ir) FLC in human gastric muscle and to determine if FLC are altered in gastroparesis, where ICC are reduced. Full thickness gastric body biopsies from five healthy subjects, 10 diabetic, and 10 idiopathic gastroparesis patients were immunolabeled using SK3 and PDGFRα staining for FLC and Kit staining for ICC. Intramuscular FLC and ICC were quantified. Intramuscular PDGFRα-ir cells had slender cell bodies and long, thin processes and were more abundant in the longitudinal compared with the circular muscle. In the region of myenteric plexus, FLC had smaller, rounder cell bodies with 3-4 processes and formed networks, often around ganglia. All SK3-ir cell structures showed complete overlap with PDGFRα-ir. FLC were in close proximity to ICC, but their cell bodies did not overlap. No differences were seen in the distribution, morphology, or overall numbers of FLC in gastroparesis patients. In conclusion, PDGFRα identifies FLC in human gastric smooth muscle. FLC were not altered in distribution or overall numbers in gastroparesis. Additional studies are required to determine their role in human GI function.
Background Emerging evidence suggests that "fibroblast-like cells" (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are ultrastructurally distinct from other interstitial cells, including interstitial cells of Cajal (ICC), and express small-conductance Ca2+-activated K+ channels (SK3). In mice, platelet-derived growth factor receptor alpha (PDGFR alpha ) antibody has also been shown to label FLC. The aims of this study were to determine the morphology and distribution of PDGFR alpha -immunoreactive (ir) FLC in human gastric muscle and to determine if FLC are altered in gastroparesis, where ICC are reduced. Methods Full thickness gastric body biopsies from five healthy subjects, 10 diabetic, and 10 idiopathic gastroparesis patients were immunolabeled using SK3 and PDGFR alpha staining for FLC and Kit staining for ICC. Intramuscular FLC and ICC were quantified. Key Results Intramuscular PDGFR alpha -ir cells had slender cell bodies and long, thin processes and were more abundant in the longitudinal compared with the circular muscle. In the region of myenteric plexus, FLC had smaller, rounder cell bodies with 3-4 processes and formed networks, often around ganglia. All SK3-ir cell structures showed complete overlap with PDGFR alpha -ir. FLC were in close proximity to ICC, but their cell bodies did not overlap. No differences were seen in the distribution, morphology, or overall numbers of FLC in gastroparesis patients. Conclusions & Inferences In conclusion, PDGFR alpha identifies FLC in human gastric smooth muscle. FLC were not altered in distribution or overall numbers in gastroparesis. Additional studies are required to determine their role in human GI function.
Background  Emerging evidence suggests that “fibroblast‐like cells” (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are ultrastructurally distinct from other interstitial cells, including interstitial cells of Cajal (ICC), and express small‐conductance Ca 2+ ‐activated K + channels (SK3). In mice, platelet‐derived growth factor receptor α (PDGFR α ) antibody has also been shown to label FLC. The aims of this study were to determine the morphology and distribution of PDGFR α ‐immunoreactive (ir) FLC in human gastric muscle and to determine if FLC are altered in gastroparesis, where ICC are reduced. Methods  Full thickness gastric body biopsies from five healthy subjects, 10 diabetic, and 10 idiopathic gastroparesis patients were immunolabeled using SK3 and PDGFR α staining for FLC and Kit staining for ICC. Intramuscular FLC and ICC were quantified. Key Results  Intramuscular PDGFR α ‐ir cells had slender cell bodies and long, thin processes and were more abundant in the longitudinal compared with the circular muscle. In the region of myenteric plexus, FLC had smaller, rounder cell bodies with 3–4 processes and formed networks, often around ganglia. All SK3‐ir cell structures showed complete overlap with PDGFR α ‐ir. FLC were in close proximity to ICC, but their cell bodies did not overlap. No differences were seen in the distribution, morphology, or overall numbers of FLC in gastroparesis patients. Conclusions & Inferences  In conclusion, PDGFR α identifies FLC in human gastric smooth muscle. FLC were not altered in distribution or overall numbers in gastroparesis. Additional studies are required to determine their role in human GI function.
Author Pasricha, P. J.
Parkman, H. P.
Sarr, M.
Bernard, C. E.
Nguyen, L. A.
Gibbons, S.
Shen, K. R.
Kendrick, M.
Farrugia, G.
Abell, T. L.
Snape, W.
Grover, M.
Ordog, T.
Swain, J.
Author_xml – sequence: 1
  givenname: M.
  surname: Grover
  fullname: Grover, M.
  organization: Mayo Clinic, Rochester, MN, USA
– sequence: 2
  givenname: C. E.
  surname: Bernard
  fullname: Bernard, C. E.
  organization: Mayo Clinic, Rochester, MN, USA
– sequence: 3
  givenname: P. J.
  surname: Pasricha
  fullname: Pasricha, P. J.
  organization: Stanford University, Palo Alto, CA, USA
– sequence: 4
  givenname: H. P.
  surname: Parkman
  fullname: Parkman, H. P.
  organization: Temple University, Philadelphia, PA, USA
– sequence: 5
  givenname: T. L.
  surname: Abell
  fullname: Abell, T. L.
  organization: University of Mississippi, Jackson, MS, USA
– sequence: 6
  givenname: L. A.
  surname: Nguyen
  fullname: Nguyen, L. A.
  organization: California Pacific Medical Center, San Francisco, CA, USA
– sequence: 7
  givenname: W.
  surname: Snape
  fullname: Snape, W.
  organization: California Pacific Medical Center, San Francisco, CA, USA
– sequence: 8
  givenname: K. R.
  surname: Shen
  fullname: Shen, K. R.
  organization: Mayo Clinic, Rochester, MN, USA
– sequence: 9
  givenname: M.
  surname: Sarr
  fullname: Sarr, M.
  organization: Mayo Clinic, Rochester, MN, USA
– sequence: 10
  givenname: J.
  surname: Swain
  fullname: Swain, J.
  organization: Mayo Clinic, Rochester, MN, USA
– sequence: 11
  givenname: M.
  surname: Kendrick
  fullname: Kendrick, M.
  organization: Mayo Clinic, Rochester, MN, USA
– sequence: 12
  givenname: S.
  surname: Gibbons
  fullname: Gibbons, S.
  organization: Mayo Clinic, Rochester, MN, USA
– sequence: 13
  givenname: T.
  surname: Ordog
  fullname: Ordog, T.
  organization: Mayo Clinic, Rochester, MN, USA
– sequence: 14
  givenname: G.
  surname: Farrugia
  fullname: Farrugia, G.
  organization: Mayo Clinic, Rochester, MN, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22650155$$D View this record in MEDLINE/PubMed
BookMark eNqNUtty0zAQ9TBl6AV-gdH0qTzYSLIkWw8wUwoNDCXNMFweNbK9SpQ6VpCUNv0F_qY_0m_CJiXAW_Si3dlzjnZ19jDZ61wHSYIIzkh_Xs4zkgueUlnSjGJCM0wkY9n6UXKwLewNMccpkZTvJ4chzDHGgjLxJNmnVHBMOD9Ifk5aHaGFmDbg7TU0aOrdTZwho-voPPJQw3II7u_QyeTt6Pzz_d2LFNZLDyHYboqOja28q1odYtraK0A1tG04RrZDjdUVRFsj3TXINtYtdZz16bTH-j7pJWxAzqDZaqG78DR5bHQb4NnDfZR8PX_35ex9enE5-nB2epHWTGCWApCKS200oySvRMGE5EZDmZcl0bkRDAswkskKZF4YXRha1NDgRktpiKFlfpS83uguV9UCmhq66HWrlt4utL9VTlv1f6WzMzV11yovuOCS9AInDwLe_VhBiGphwzC27sCtgiI4L7mUOdsJygopmOQ99Pm_bW37-eNVDyg3gNq7EDyYLYRgNayFmqvBfTW4r4a1UL_XQq3_jryl1jbqaN0woG13EXi1EbixLdzu_LAaf7ocop6fbvg2RFhv-dpfKVH0_6q-j0dqzN7wjxMyVt_yX-qi5FU
CitedBy_id crossref_primary_10_1007_s11894_013_0363_z
crossref_primary_10_3390_ijms21124478
crossref_primary_10_5056_jnm_2013_19_1_18
crossref_primary_10_1002_gamm_201900001
crossref_primary_10_2337_db18_1064
crossref_primary_10_3748_wjg_v28_i29_3994
crossref_primary_10_1111_nmo_14237
crossref_primary_10_3390_ijms23158435
crossref_primary_10_1111_jcmm_15013
crossref_primary_10_3390_medicina59020308
crossref_primary_10_1113_jphysiol_2014_287599
crossref_primary_10_1016_j_neuropharm_2016_07_033
crossref_primary_10_1016_j_gtc_2020_04_009
crossref_primary_10_1515_bmc_2015_0034
crossref_primary_10_1002_ijc_29498
crossref_primary_10_1002_ueg2_12060
crossref_primary_10_1080_00365521_2020_1815079
crossref_primary_10_1038_s41572_018_0038_z
crossref_primary_10_1111_nmo_13230
crossref_primary_10_1186_s12920_019_0550_3
crossref_primary_10_1111_jcmm_12134
crossref_primary_10_1152_physiol_00006_2016
crossref_primary_10_3390_ijms22073514
crossref_primary_10_1111_nmo_13528
crossref_primary_10_3389_fmed_2018_00001
crossref_primary_10_1113_jphysiol_2013_264747
crossref_primary_10_1371_journal_pone_0312413
crossref_primary_10_1007_s11894_023_00865_w
crossref_primary_10_1016_j_gtc_2014_11_004
crossref_primary_10_1080_00365521_2018_1558280
crossref_primary_10_1152_ajpgi_00001_2013
Cites_doi 10.1111/j.1365-2982.2008.01109.x
10.1046/j.1440-1681.2002.03601.x
10.1254/jphs.92.35
10.1016/S0028-3908(01)00028-4
10.1073/pnas.93.21.12008
10.1007/s00441-011-1138-1
10.1007/s00418-009-0580-6
10.1152/ajpgi.00266.2009
10.1111/j.1365-2982.2007.01055.x
10.1016/S0016-5085(98)70198-2
10.1053/gast.2001.25541
10.1152/ajpgi.00291.2002
10.1242/dev.127.16.3457
10.1038/ncpgasthep0838
10.1113/jphysiol.2010.201129
10.1097/00000478-200302000-00012
10.1007/s004410000264
10.1016/j.neuroscience.2007.12.044
10.1152/ajpgi.2001.281.4.G964
10.1152/ajpgi.00321.2005
10.1016/0016-5085(91)70033-T
10.1679/aohc.72.107
10.1016/S0165-1838(00)00089-8
10.1152/ajpcell.2001.281.5.C1727
10.1016/j.gassur.2004.06.004
10.1136/gut.2009.199703
10.1111/j.1469-7793.2001.00323.x
10.1053/j.gastro.2011.01.046
10.1053/j.gastro.2011.01.038
10.1101/gad.1653708
10.1242/dev.00721
10.1126/science.289.5486.1942
10.1002/ar.1092030112
10.1007/s00441-002-0638-4
10.1111/j.1365-2982.2007.00936.x
ContentType Journal Article
Copyright 2012 Blackwell Publishing Ltd
2012 Blackwell Publishing Ltd.
Copyright_xml – notice: 2012 Blackwell Publishing Ltd
– notice: 2012 Blackwell Publishing Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1111/j.1365-2982.2012.01944.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE - Academic

MEDLINE
Neurosciences Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1365-2982
EndPage 852
ExternalDocumentID PMC3756591
22650155
10_1111_j_1365_2982_2012_01944_x
NMO1944
ark_67375_WNG_N4B5KP1N_V
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: U01DK07-3975
– fundername: NIDDK NIH HHS
  grantid: R01DK57061
– fundername: NIDDK NIH HHS
  grantid: U01DK073985
– fundername: NIDDK NIH HHS
  grantid: R01 DK057061
– fundername: NIDDK NIH HHS
  grantid: U01DK074007
– fundername: NIDDK NIH HHS
  grantid: U01 DK073983
– fundername: NIDDK NIH HHS
  grantid: U01 DK074007
– fundername: NIDDK NIH HHS
  grantid: P01DK68055
– fundername: NIDDK NIH HHS
  grantid: U01 DK074035
– fundername: NIDDK NIH HHS
  grantid: U01 DK073975
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: U01 DK073983 || DK
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: U01 DK073974 || DK
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: U01 DK073975 || DK
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: P01 DK068055 || DK
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: U01 DK074007 || DK
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: U01 DK074008 || DK
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: R01 DK057061 || DK
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: P30 DK084567 || DK
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: U01 DK073985 || DK
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29N
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DTERQ
DU5
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPT
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7TK
5PM
ID FETCH-LOGICAL-c4604-ee1b59afa4213b674695fae83881a3f6406ef949be937fa7f27ced0da99f1f283
IEDL.DBID DR2
ISSN 1350-1925
1365-2982
IngestDate Thu Aug 21 13:41:10 EDT 2025
Fri Jul 11 02:42:08 EDT 2025
Fri Jul 11 05:42:05 EDT 2025
Wed Feb 19 01:51:29 EST 2025
Thu Apr 24 23:09:02 EDT 2025
Tue Jul 01 00:43:22 EDT 2025
Wed Jan 22 16:46:04 EST 2025
Wed Oct 30 09:51:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2012 Blackwell Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4604-ee1b59afa4213b674695fae83881a3f6406ef949be937fa7f27ced0da99f1f283
Notes istex:8657C6E946545CF3C1ED8BD3F15A5029999727B0
ark:/67375/WNG-N4B5KP1N-V
ArticleID:NMO1944
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2982.2012.01944.x
PMID 22650155
PQID 1034796495
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3756591
proquest_miscellaneous_1038599341
proquest_miscellaneous_1034796495
pubmed_primary_22650155
crossref_primary_10_1111_j_1365_2982_2012_01944_x
crossref_citationtrail_10_1111_j_1365_2982_2012_01944_x
wiley_primary_10_1111_j_1365_2982_2012_01944_x_NMO1944
istex_primary_ark_67375_WNG_N4B5KP1N_V
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2012
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: September 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Neurogastroenterology and motility
PublicationTitleAlternate Neurogastroenterol Motil
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Zhang Y, Carmichael SA, Wang XY, Huizinga JD, Paterson WG. Neurotransmission in lower esophageal sphincter of W/Wv mutant mice. Am J Physiol Gastrointest Liver Physiol 2010; 298: G14-24.
Vanderwinden JM, Rumessen JJ, De Laet MH, Vanderhaeghen JJ, Schiffmann SN. CD34 immunoreactivity and interstitial cells of Cajal in the human and mouse gastrointestinal tract. Cell Tissue Res 2000; 302: 145-53.
Iino S, Nojyo Y. Immunohistochemical demonstration of c-Kit-negative fibroblast-like cells in murine gastrointestinal musculature. Arch Histol Cytol 2009; 72: 107-15.
Vanderwinden JM, Rumessen JJ, de Kerchove d'Exaerde A Jr et al. Kit-negative fibroblast-like cells expressing SK3, a Ca2+-activated K+ channel, in the gut musculature in health and disease. Cell Tissue Res 2002; 310: 349-58.
Cobine CA, Hennig GW, Kurahashi M, Sanders KM, Ward SM, Keef KD. Relationship between interstitial cells of Cajal, fibroblast-like cells and inhibitory motor nerves in the internal anal sphincter. Cell Tissue Res 2011; 344: 17-30.
Faussone-Pellegrini MS, Grover M, Pasricha P et al. Ultrastructural differences between diabetic and idiopathic gastroparesis: The NIDDK gastroparesis clinical research consortium (GpCRC). J Cell Mol Med 2011; doi: 10.1111/j.1582-4934.2011.01451.x.
Groneberg D, Konig P, Koesling D, Friebe A. Nitric oxide-sensitive guanylyl cyclase is dispensable for nitrergic signaling and gut motility in mouse intestinal smooth muscle. Gastroenterology 2011; 140: 1608-17.
Ro S, Hatton WJ, Koh SD, Horowitz B. Molecular properties of small-conductance Ca2+-activated K+ channels expressed in murine colonic smooth muscle. Am J Physiol Gastrointest Liver Physiol 2001; 281: G964-73.
Fujita A, Takeuchi T, Jun H, Hata F. Localization of Ca2+-activated K+ channel, SK3, in fibroblast-like cells forming gap junctions with smooth muscle cells in the mouse small intestine. J Pharmacol Sci 2003; 92: 35-42.
Hoch RV, Soriano P. Roles of PDGF in animal development. Development 2003; 130: 4769-84.
Grover M, Farrugia G, Lurken MS et al. Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterology 2011; 140: 1575-85. e8.
Ueno T, Duenes JA, Zarroug AE, Sarr MG. Nitrergic mechanisms mediating inhibitory control of longitudinal smooth muscle contraction in mouse small intestine. J Gastrointest Surg 2004; 8: 831-41.
Rumessen JJ, Thuneberg L. Interstitial cells of Cajal in human small intestine. Ultrastructural identification and organization between the main smooth muscle layers. Gastroenterology 1991; 100: 1417-31.
Hosseini R, Benton DC, Dunn PM, Jenkinson DH, Moss GW. SK3 is an important component of K(+) channels mediating the afterhyperpolarization in cultured rat SCG neurones. J Physiol 2001; 535: 323-34.
Grunnet M, Jespersen T, Angelo K et al. Pharmacological modulation of SK3 channels. Neuropharmacology 2001; 40: 879-87.
Karlsson L, Lindahl P, Heath JK, Betsholtz C. Abnormal gastrointestinal development in PDGF-A and PDGFR-(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. Development 2000; 127: 3457-66.
Kashyap P, Farrugia G. Diabetic gastroparesis: what we have learned and had to unlearn in the past 5 years. Gut 2010; 59: 1716-26.
Vanderwinden JM, Rumessen JJ, De Laet MH, Vanderhaeghen JJ, Schiffmann SN. CD34+ cells in human intestine are fibroblasts adjacent to, but distinct from, interstitial cells of Cajal. Lab Invest 1999; 79: 59-65.
Iino S, Horiguchi K, Nojyo Y. Interstitial cells of Cajal are innervated by nitrergic nerves and express nitric oxide-sensitive guanylate cyclase in the guinea-pig gastrointestinal tract. Neuroscience 2008; 152: 437-48.
El-Yazbi AF, Cho WJ, Boddy G, Schulz R, Daniel EE. Impact of caveolin-1 knockout on NANC relaxation in circular muscles of the mouse small intestine compared with longitudinal muscles. Am J Physiol Gastrointest Liver Physiol 2006; 290: G394-403.
Kurahashi M, Zheng H, Dwyer L, Ward SM, Don Koh S, Sanders KM. A functional role for the 'fibroblast-like cells' in gastrointestinal smooth muscles. J Physiol 2011; 589: 697-710.
Burns AJ, Lomax AE, Torihashi S, Sanders KM, Ward SM. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Sci USA 1996; 93: 12008-13.
Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev 2008; 22: 1276-312.
Horiguchi K, Komuro T. Ultrastructural observations of fibroblast-like cells forming gap junctions in the W/W(nu) mouse small intestine. J Auton Nerv Syst 2000; 80: 142-7.
Bond CT, Sprengel R, Bissonnette JM et al. Respiration and parturition affected by conditional overexpression of the Ca2+-activated K+ channel subunit, SK3. Science 2000; 289: 1942-6.
Ward SM, Morris G, Reese L, Wang XY, Sanders KM. Interstitial cells of Cajal mediate enteric inhibitory neurotransmission in the lower esophageal and pyloric sphincters. Gastroenterology 1998; 115: 314-29.
Streutker CJ, Huizinga JD, Campbell F, Ho J, Riddell RH. Loss of CD117 (c-kit)- and CD34-positive ICC and associated CD34-positive fibroblasts defines a subpopulation of chronic intestinal pseudo-obstruction. Am J Surg Pathol 2003; 27: 228-35.
Choi KM, Gibbons SJ, Roeder JL et al. Regulation of interstitial cells of Cajal in the mouse gastric body by neuronal nitric oxide. Neurogastroenterol Motil 2007; 19: 585-95.
Farrugia G. Interstitial cells of Cajal in health and disease. Neurogastroenterol Motil 2008; 20(Suppl. 1): 54-63.
Rumessen JJ, Thuneberg L, Mikkelsen HB. Plexus muscularis profundus and associated interstitial cells. II. Ultrastructural studies of mouse small intestine. Anat Rec 1982; 203: 129-46.
Vittal H, Farrugia G, Gomez G, Pasricha PJ. Mechanisms of disease: the pathological basis of gastroparesis--a review of experimental and clinical studies. Nat Clin Pract Gastroenterol Hepatol 2007; 4: 336-46.
Fujita A, Takeuchi T, Saitoh N, Hanai J, Hata F. Expression of Ca(2+)-activated K(+) channels, SK3, in the interstitial cells of Cajal in the gastrointestinal tract. Am J Physiol Cell Physiol 2001; 281: C1727-33.
Spencer NJ, Hennig GW, Smith TK. Stretch-activated neuronal pathways to longitudinal and circular muscle in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 2003; 284: G231-41.
Sivarao DV, Mashimo HL, Thatte HS, Goyal RK. Lower esophageal sphincter is achalasic in nNOS(−/−) and hypotensive in W/W(v) mutant mice. Gastroenterology 2001; 121: 34-42.
Kurahashi M, Niwa Y, Cheng J et al. Platelet-derived growth factor signals play critical roles in differentiation of longitudinal smooth muscle cells in mouse embryonic gut. Neurogastroenterol Motil 2008; 20: 521-31.
Iino S, Horiguchi K, Horiguchi S, Nojyo Y. c-Kit-negative fibroblast-like cells express platelet-derived growth factor receptor alpha in the murine gastrointestinal musculature. Histochem Cell Biol 2009; 131: 691-702.
Klemm MF, Lang RJ. Distribution of Ca2+-activated K+ channel (SK2 and SK3) immunoreactivity in intestinal smooth muscles of the guinea-pig. Clin Exp Pharmacol Physiol 2002; 29: 18-25.
2001; 121
2007; 19
2010; 59
2011
2001; 281
2004; 8
2002; 310
1996; 93
1982; 203
1998; 115
2006; 290
2009; 131
2001; 40
2003; 130
2011; 589
2011; 344
2002; 29
1991; 100
2003; 92
2000; 289
2000; 302
2009; 72
2000; 127
1999; 79
2010; 298
2003; 27
2007; 4
2008; 22
2000; 80
2008; 20
2011; 140
2008; 152
2001; 535
2003; 284
e_1_2_9_30_2
Vanderwinden JM (e_1_2_9_12_2) 1999; 79
e_1_2_9_10_2
e_1_2_9_33_2
e_1_2_9_34_2
e_1_2_9_31_2
e_1_2_9_11_2
e_1_2_9_32_2
Faussone‐Pellegrini MS (e_1_2_9_25_2) 2011
e_1_2_9_14_2
e_1_2_9_37_2
e_1_2_9_13_2
e_1_2_9_38_2
e_1_2_9_16_2
e_1_2_9_35_2
e_1_2_9_15_2
e_1_2_9_36_2
e_1_2_9_18_2
e_1_2_9_17_2
e_1_2_9_19_2
e_1_2_9_21_2
e_1_2_9_20_2
e_1_2_9_23_2
e_1_2_9_22_2
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
e_1_2_9_2_2
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_24_2
e_1_2_9_27_2
e_1_2_9_26_2
e_1_2_9_29_2
e_1_2_9_28_2
11557517 - Am J Physiol Gastrointest Liver Physiol. 2001 Oct;281(4):G964-73
11600437 - Am J Physiol Cell Physiol. 2001 Nov;281(5):C1727-33
2013387 - Gastroenterology. 1991 May;100(5 Pt 1):1417-31
20871131 - Gut. 2010 Dec;59(12):1716-26
21914127 - J Cell Mol Med. 2012 Jul;16(7):1573-81
21337122 - Cell Tissue Res. 2011 Apr;344(1):17-30
11378158 - Neuropharmacology. 2001 Jun;40(7):879-87
17541447 - Nat Clin Pract Gastroenterol Hepatol. 2007 Jun;4(6):336-46
19850967 - Am J Physiol Gastrointest Liver Physiol. 2010 Jan;298(1):G14-24
21277853 - Gastroenterology. 2011 May;140(5):1608-17
12832853 - J Pharmacol Sci. 2003 May;92(1):35-42
18402642 - Neurogastroenterol Motil. 2008 May;20 Suppl 1:54-63
21173079 - J Physiol. 2011 Feb 1;589(Pt 3):697-710
11131126 - Cell Tissue Res. 2000 Nov;302(2):145-53
9952111 - Lab Invest. 1999 Jan;79(1):59-65
8876253 - Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):12008-13
10988076 - Science. 2000 Sep 15;289(5486):1942-6
20009347 - Arch Histol Cytol. 2009 Jul;72(2):107-15
11906457 - Clin Exp Pharmacol Physiol. 2002 Jan-Feb;29(1-2):18-25
15531236 - J Gastrointest Surg. 2004 Nov;8(7):831-41
19280210 - Histochem Cell Biol. 2009 Jun;131(6):691-702
10785280 - J Auton Nerv Syst. 2000 May 12;80(3):142-7
11533126 - J Physiol. 2001 Sep 1;535(Pt 2):323-34
12952899 - Development. 2003 Oct;130(20):4769-84
11438492 - Gastroenterology. 2001 Jul;121(1):34-42
10903171 - Development. 2000 Aug;127(16):3457-66
12548170 - Am J Surg Pathol. 2003 Feb;27(2):228-35
17593140 - Neurogastroenterol Motil. 2007 Jul;19(7):585-95
21300066 - Gastroenterology. 2011 May;140(5):1575-85.e8
9679037 - Gastroenterology. 1998 Aug;115(2):314-29
18280665 - Neuroscience. 2008 Mar 18;152(2):437-48
7103120 - Anat Rec. 1982 May;203(1):129-46
12388186 - Am J Physiol Gastrointest Liver Physiol. 2003 Feb;284(2):G231-41
12457234 - Cell Tissue Res. 2002 Dec;310(3):349-58
18483217 - Genes Dev. 2008 May 15;22(10):1276-312
18194151 - Neurogastroenterol Motil. 2008 May;20(5):521-31
16166342 - Am J Physiol Gastrointest Liver Physiol. 2006 Feb;290(2):G394-403
References_xml – reference: Kashyap P, Farrugia G. Diabetic gastroparesis: what we have learned and had to unlearn in the past 5 years. Gut 2010; 59: 1716-26.
– reference: Rumessen JJ, Thuneberg L, Mikkelsen HB. Plexus muscularis profundus and associated interstitial cells. II. Ultrastructural studies of mouse small intestine. Anat Rec 1982; 203: 129-46.
– reference: Fujita A, Takeuchi T, Jun H, Hata F. Localization of Ca2+-activated K+ channel, SK3, in fibroblast-like cells forming gap junctions with smooth muscle cells in the mouse small intestine. J Pharmacol Sci 2003; 92: 35-42.
– reference: Cobine CA, Hennig GW, Kurahashi M, Sanders KM, Ward SM, Keef KD. Relationship between interstitial cells of Cajal, fibroblast-like cells and inhibitory motor nerves in the internal anal sphincter. Cell Tissue Res 2011; 344: 17-30.
– reference: Ro S, Hatton WJ, Koh SD, Horowitz B. Molecular properties of small-conductance Ca2+-activated K+ channels expressed in murine colonic smooth muscle. Am J Physiol Gastrointest Liver Physiol 2001; 281: G964-73.
– reference: Ueno T, Duenes JA, Zarroug AE, Sarr MG. Nitrergic mechanisms mediating inhibitory control of longitudinal smooth muscle contraction in mouse small intestine. J Gastrointest Surg 2004; 8: 831-41.
– reference: Vanderwinden JM, Rumessen JJ, De Laet MH, Vanderhaeghen JJ, Schiffmann SN. CD34+ cells in human intestine are fibroblasts adjacent to, but distinct from, interstitial cells of Cajal. Lab Invest 1999; 79: 59-65.
– reference: Vanderwinden JM, Rumessen JJ, de Kerchove d'Exaerde A Jr et al. Kit-negative fibroblast-like cells expressing SK3, a Ca2+-activated K+ channel, in the gut musculature in health and disease. Cell Tissue Res 2002; 310: 349-58.
– reference: Kurahashi M, Niwa Y, Cheng J et al. Platelet-derived growth factor signals play critical roles in differentiation of longitudinal smooth muscle cells in mouse embryonic gut. Neurogastroenterol Motil 2008; 20: 521-31.
– reference: Hoch RV, Soriano P. Roles of PDGF in animal development. Development 2003; 130: 4769-84.
– reference: Groneberg D, Konig P, Koesling D, Friebe A. Nitric oxide-sensitive guanylyl cyclase is dispensable for nitrergic signaling and gut motility in mouse intestinal smooth muscle. Gastroenterology 2011; 140: 1608-17.
– reference: Vittal H, Farrugia G, Gomez G, Pasricha PJ. Mechanisms of disease: the pathological basis of gastroparesis--a review of experimental and clinical studies. Nat Clin Pract Gastroenterol Hepatol 2007; 4: 336-46.
– reference: Streutker CJ, Huizinga JD, Campbell F, Ho J, Riddell RH. Loss of CD117 (c-kit)- and CD34-positive ICC and associated CD34-positive fibroblasts defines a subpopulation of chronic intestinal pseudo-obstruction. Am J Surg Pathol 2003; 27: 228-35.
– reference: Spencer NJ, Hennig GW, Smith TK. Stretch-activated neuronal pathways to longitudinal and circular muscle in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 2003; 284: G231-41.
– reference: Sivarao DV, Mashimo HL, Thatte HS, Goyal RK. Lower esophageal sphincter is achalasic in nNOS(−/−) and hypotensive in W/W(v) mutant mice. Gastroenterology 2001; 121: 34-42.
– reference: Choi KM, Gibbons SJ, Roeder JL et al. Regulation of interstitial cells of Cajal in the mouse gastric body by neuronal nitric oxide. Neurogastroenterol Motil 2007; 19: 585-95.
– reference: Zhang Y, Carmichael SA, Wang XY, Huizinga JD, Paterson WG. Neurotransmission in lower esophageal sphincter of W/Wv mutant mice. Am J Physiol Gastrointest Liver Physiol 2010; 298: G14-24.
– reference: Hosseini R, Benton DC, Dunn PM, Jenkinson DH, Moss GW. SK3 is an important component of K(+) channels mediating the afterhyperpolarization in cultured rat SCG neurones. J Physiol 2001; 535: 323-34.
– reference: Ward SM, Morris G, Reese L, Wang XY, Sanders KM. Interstitial cells of Cajal mediate enteric inhibitory neurotransmission in the lower esophageal and pyloric sphincters. Gastroenterology 1998; 115: 314-29.
– reference: Farrugia G. Interstitial cells of Cajal in health and disease. Neurogastroenterol Motil 2008; 20(Suppl. 1): 54-63.
– reference: Karlsson L, Lindahl P, Heath JK, Betsholtz C. Abnormal gastrointestinal development in PDGF-A and PDGFR-(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. Development 2000; 127: 3457-66.
– reference: Faussone-Pellegrini MS, Grover M, Pasricha P et al. Ultrastructural differences between diabetic and idiopathic gastroparesis: The NIDDK gastroparesis clinical research consortium (GpCRC). J Cell Mol Med 2011; doi: 10.1111/j.1582-4934.2011.01451.x.
– reference: Iino S, Horiguchi K, Nojyo Y. Interstitial cells of Cajal are innervated by nitrergic nerves and express nitric oxide-sensitive guanylate cyclase in the guinea-pig gastrointestinal tract. Neuroscience 2008; 152: 437-48.
– reference: Grover M, Farrugia G, Lurken MS et al. Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterology 2011; 140: 1575-85. e8.
– reference: Bond CT, Sprengel R, Bissonnette JM et al. Respiration and parturition affected by conditional overexpression of the Ca2+-activated K+ channel subunit, SK3. Science 2000; 289: 1942-6.
– reference: Vanderwinden JM, Rumessen JJ, De Laet MH, Vanderhaeghen JJ, Schiffmann SN. CD34 immunoreactivity and interstitial cells of Cajal in the human and mouse gastrointestinal tract. Cell Tissue Res 2000; 302: 145-53.
– reference: Kurahashi M, Zheng H, Dwyer L, Ward SM, Don Koh S, Sanders KM. A functional role for the 'fibroblast-like cells' in gastrointestinal smooth muscles. J Physiol 2011; 589: 697-710.
– reference: El-Yazbi AF, Cho WJ, Boddy G, Schulz R, Daniel EE. Impact of caveolin-1 knockout on NANC relaxation in circular muscles of the mouse small intestine compared with longitudinal muscles. Am J Physiol Gastrointest Liver Physiol 2006; 290: G394-403.
– reference: Rumessen JJ, Thuneberg L. Interstitial cells of Cajal in human small intestine. Ultrastructural identification and organization between the main smooth muscle layers. Gastroenterology 1991; 100: 1417-31.
– reference: Horiguchi K, Komuro T. Ultrastructural observations of fibroblast-like cells forming gap junctions in the W/W(nu) mouse small intestine. J Auton Nerv Syst 2000; 80: 142-7.
– reference: Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev 2008; 22: 1276-312.
– reference: Klemm MF, Lang RJ. Distribution of Ca2+-activated K+ channel (SK2 and SK3) immunoreactivity in intestinal smooth muscles of the guinea-pig. Clin Exp Pharmacol Physiol 2002; 29: 18-25.
– reference: Grunnet M, Jespersen T, Angelo K et al. Pharmacological modulation of SK3 channels. Neuropharmacology 2001; 40: 879-87.
– reference: Fujita A, Takeuchi T, Saitoh N, Hanai J, Hata F. Expression of Ca(2+)-activated K(+) channels, SK3, in the interstitial cells of Cajal in the gastrointestinal tract. Am J Physiol Cell Physiol 2001; 281: C1727-33.
– reference: Iino S, Horiguchi K, Horiguchi S, Nojyo Y. c-Kit-negative fibroblast-like cells express platelet-derived growth factor receptor alpha in the murine gastrointestinal musculature. Histochem Cell Biol 2009; 131: 691-702.
– reference: Burns AJ, Lomax AE, Torihashi S, Sanders KM, Ward SM. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Sci USA 1996; 93: 12008-13.
– reference: Iino S, Nojyo Y. Immunohistochemical demonstration of c-Kit-negative fibroblast-like cells in murine gastrointestinal musculature. Arch Histol Cytol 2009; 72: 107-15.
– volume: 281
  start-page: G964
  year: 2001
  end-page: 73
  article-title: Molecular properties of small‐conductance Ca2+‐activated K+ channels expressed in murine colonic smooth muscle
  publication-title: Am J Physiol Gastrointest Liver Physiol
– year: 2011
  article-title: Ultrastructural differences between diabetic and idiopathic gastroparesis: The NIDDK gastroparesis clinical research consortium (GpCRC)
  publication-title: J Cell Mol Med
– volume: 281
  start-page: C1727
  year: 2001
  end-page: 33
  article-title: Expression of Ca(2+)‐activated K(+) channels, SK3, in the interstitial cells of Cajal in the gastrointestinal tract
  publication-title: Am J Physiol Cell Physiol
– volume: 152
  start-page: 437
  year: 2008
  end-page: 48
  article-title: Interstitial cells of Cajal are innervated by nitrergic nerves and express nitric oxide‐sensitive guanylate cyclase in the guinea‐pig gastrointestinal tract
  publication-title: Neuroscience
– volume: 22
  start-page: 1276
  year: 2008
  end-page: 312
  article-title: Role of platelet‐derived growth factors in physiology and medicine
  publication-title: Genes Dev
– volume: 344
  start-page: 17
  year: 2011
  end-page: 30
  article-title: Relationship between interstitial cells of Cajal, fibroblast‐like cells and inhibitory motor nerves in the internal anal sphincter
  publication-title: Cell Tissue Res
– volume: 29
  start-page: 18
  year: 2002
  end-page: 25
  article-title: Distribution of Ca2+‐activated K+ channel (SK2 and SK3) immunoreactivity in intestinal smooth muscles of the guinea‐pig
  publication-title: Clin Exp Pharmacol Physiol
– volume: 589
  start-page: 697
  year: 2011
  end-page: 710
  article-title: A functional role for the ‘fibroblast‐like cells’ in gastrointestinal smooth muscles
  publication-title: J Physiol
– volume: 298
  start-page: G14
  year: 2010
  end-page: 24
  article-title: Neurotransmission in lower esophageal sphincter of W/W mutant mice
  publication-title: Am J Physiol Gastrointest Liver Physiol
– volume: 115
  start-page: 314
  year: 1998
  end-page: 29
  article-title: Interstitial cells of Cajal mediate enteric inhibitory neurotransmission in the lower esophageal and pyloric sphincters
  publication-title: Gastroenterology
– volume: 310
  start-page: 349
  year: 2002
  end-page: 58
  article-title: Kit‐negative fibroblast‐like cells expressing SK3, a Ca2+‐activated K+ channel, in the gut musculature in health and disease
  publication-title: Cell Tissue Res
– volume: 302
  start-page: 145
  year: 2000
  end-page: 53
  article-title: CD34 immunoreactivity and interstitial cells of Cajal in the human and mouse gastrointestinal tract
  publication-title: Cell Tissue Res
– volume: 40
  start-page: 879
  year: 2001
  end-page: 87
  article-title: Pharmacological modulation of SK3 channels
  publication-title: Neuropharmacology
– volume: 290
  start-page: G394
  year: 2006
  end-page: 403
  article-title: Impact of caveolin‐1 knockout on NANC relaxation in circular muscles of the mouse small intestine compared with longitudinal muscles
  publication-title: Am J Physiol Gastrointest Liver Physiol
– volume: 140
  start-page: 1575
  year: 2011
  end-page: 85
  article-title: Cellular changes in diabetic and idiopathic gastroparesis
  publication-title: Gastroenterology
– volume: 27
  start-page: 228
  year: 2003
  end-page: 35
  article-title: Loss of CD117 (c‐kit)‐ and CD34‐positive ICC and associated CD34‐positive fibroblasts defines a subpopulation of chronic intestinal pseudo‐obstruction
  publication-title: Am J Surg Pathol
– volume: 127
  start-page: 3457
  year: 2000
  end-page: 66
  article-title: Abnormal gastrointestinal development in PDGF‐A and PDGFR‐(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis
  publication-title: Development
– volume: 535
  start-page: 323
  year: 2001
  end-page: 34
  article-title: SK3 is an important component of K(+) channels mediating the afterhyperpolarization in cultured rat SCG neurones
  publication-title: J Physiol
– volume: 19
  start-page: 585
  year: 2007
  end-page: 95
  article-title: Regulation of interstitial cells of Cajal in the mouse gastric body by neuronal nitric oxide
  publication-title: Neurogastroenterol Motil
– volume: 121
  start-page: 34
  year: 2001
  end-page: 42
  article-title: Lower esophageal sphincter is achalasic in nNOS(−/−) and hypotensive in W/W mutant mice
  publication-title: Gastroenterology
– volume: 59
  start-page: 1716
  year: 2010
  end-page: 26
  article-title: Diabetic gastroparesis: what we have learned and had to unlearn in the past 5 years
  publication-title: Gut
– volume: 20
  start-page: 521
  year: 2008
  end-page: 31
  article-title: Platelet‐derived growth factor signals play critical roles in differentiation of longitudinal smooth muscle cells in mouse embryonic gut
  publication-title: Neurogastroenterol Motil
– volume: 140
  start-page: 1608
  year: 2011
  end-page: 17
  article-title: Nitric oxide‐sensitive guanylyl cyclase is dispensable for nitrergic signaling and gut motility in mouse intestinal smooth muscle
  publication-title: Gastroenterology
– volume: 131
  start-page: 691
  year: 2009
  end-page: 702
  article-title: c‐Kit‐negative fibroblast‐like cells express platelet‐derived growth factor receptor alpha in the murine gastrointestinal musculature
  publication-title: Histochem Cell Biol
– volume: 80
  start-page: 142
  year: 2000
  end-page: 7
  article-title: Ultrastructural observations of fibroblast‐like cells forming gap junctions in the W/W(nu) mouse small intestine
  publication-title: J Auton Nerv Syst
– volume: 130
  start-page: 4769
  year: 2003
  end-page: 84
  article-title: Roles of PDGF in animal development
  publication-title: Development
– volume: 203
  start-page: 129
  year: 1982
  end-page: 46
  article-title: Plexus muscularis profundus and associated interstitial cells. II. Ultrastructural studies of mouse small intestine
  publication-title: Anat Rec
– volume: 20
  start-page: 54
  issue: Suppl. 1
  year: 2008
  end-page: 63
  article-title: Interstitial cells of Cajal in health and disease
  publication-title: Neurogastroenterol Motil
– volume: 93
  start-page: 12008
  year: 1996
  end-page: 13
  article-title: Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach
  publication-title: Proc Natl Acad Sci USA
– volume: 79
  start-page: 59
  year: 1999
  end-page: 65
  article-title: CD34 cells in human intestine are fibroblasts adjacent to, but distinct from, interstitial cells of Cajal
  publication-title: Lab Invest
– volume: 8
  start-page: 831
  year: 2004
  end-page: 41
  article-title: Nitrergic mechanisms mediating inhibitory control of longitudinal smooth muscle contraction in mouse small intestine
  publication-title: J Gastrointest Surg
– volume: 100
  start-page: 1417
  year: 1991
  end-page: 31
  article-title: Interstitial cells of Cajal in human small intestine. Ultrastructural identification and organization between the main smooth muscle layers
  publication-title: Gastroenterology
– volume: 4
  start-page: 336
  year: 2007
  end-page: 46
  article-title: Mechanisms of disease: the pathological basis of gastroparesis‐‐a review of experimental and clinical studies
  publication-title: Nat Clin Pract Gastroenterol Hepatol
– volume: 289
  start-page: 1942
  year: 2000
  end-page: 6
  article-title: Respiration and parturition affected by conditional overexpression of the Ca2+‐activated K+ channel subunit, SK3
  publication-title: Science
– volume: 72
  start-page: 107
  year: 2009
  end-page: 15
  article-title: Immunohistochemical demonstration of c‐Kit‐negative fibroblast‐like cells in murine gastrointestinal musculature
  publication-title: Arch Histol Cytol
– volume: 92
  start-page: 35
  year: 2003
  end-page: 42
  article-title: Localization of Ca2+‐activated K+ channel, SK3, in fibroblast‐like cells forming gap junctions with smooth muscle cells in the mouse small intestine
  publication-title: J Pharmacol Sci
– volume: 284
  start-page: G231
  year: 2003
  end-page: 41
  article-title: Stretch‐activated neuronal pathways to longitudinal and circular muscle in guinea pig distal colon
  publication-title: Am J Physiol Gastrointest Liver Physiol
– ident: e_1_2_9_4_2
  doi: 10.1111/j.1365-2982.2008.01109.x
– ident: e_1_2_9_27_2
  doi: 10.1046/j.1440-1681.2002.03601.x
– ident: e_1_2_9_19_2
  doi: 10.1254/jphs.92.35
– ident: e_1_2_9_16_2
  doi: 10.1016/S0028-3908(01)00028-4
– ident: e_1_2_9_29_2
  doi: 10.1073/pnas.93.21.12008
– ident: e_1_2_9_24_2
  doi: 10.1007/s00441-011-1138-1
– ident: e_1_2_9_21_2
  doi: 10.1007/s00418-009-0580-6
– ident: e_1_2_9_32_2
  doi: 10.1152/ajpgi.00266.2009
– ident: e_1_2_9_6_2
  doi: 10.1111/j.1365-2982.2007.01055.x
– ident: e_1_2_9_28_2
  doi: 10.1016/S0016-5085(98)70198-2
– ident: e_1_2_9_31_2
  doi: 10.1053/gast.2001.25541
– ident: e_1_2_9_36_2
  doi: 10.1152/ajpgi.00291.2002
– ident: e_1_2_9_8_2
  doi: 10.1242/dev.127.16.3457
– ident: e_1_2_9_3_2
  doi: 10.1038/ncpgasthep0838
– ident: e_1_2_9_23_2
  doi: 10.1113/jphysiol.2010.201129
– ident: e_1_2_9_38_2
  doi: 10.1097/00000478-200302000-00012
– ident: e_1_2_9_13_2
  doi: 10.1007/s004410000264
– ident: e_1_2_9_33_2
  doi: 10.1016/j.neuroscience.2007.12.044
– ident: e_1_2_9_17_2
  doi: 10.1152/ajpgi.2001.281.4.G964
– ident: e_1_2_9_35_2
  doi: 10.1152/ajpgi.00321.2005
– ident: e_1_2_9_9_2
  doi: 10.1016/0016-5085(91)70033-T
– ident: e_1_2_9_22_2
  doi: 10.1679/aohc.72.107
– year: 2011
  ident: e_1_2_9_25_2
  article-title: Ultrastructural differences between diabetic and idiopathic gastroparesis: The NIDDK gastroparesis clinical research consortium (GpCRC)
  publication-title: J Cell Mol Med
– ident: e_1_2_9_11_2
  doi: 10.1016/S0165-1838(00)00089-8
– ident: e_1_2_9_18_2
  doi: 10.1152/ajpcell.2001.281.5.C1727
– ident: e_1_2_9_37_2
  doi: 10.1016/j.gassur.2004.06.004
– ident: e_1_2_9_2_2
  doi: 10.1136/gut.2009.199703
– ident: e_1_2_9_15_2
  doi: 10.1111/j.1469-7793.2001.00323.x
– ident: e_1_2_9_26_2
  doi: 10.1053/j.gastro.2011.01.046
– ident: e_1_2_9_34_2
  doi: 10.1053/j.gastro.2011.01.038
– ident: e_1_2_9_5_2
  doi: 10.1101/gad.1653708
– ident: e_1_2_9_7_2
  doi: 10.1242/dev.00721
– ident: e_1_2_9_20_2
  doi: 10.1126/science.289.5486.1942
– volume: 79
  start-page: 59
  year: 1999
  ident: e_1_2_9_12_2
  article-title: CD34+ cells in human intestine are fibroblasts adjacent to, but distinct from, interstitial cells of Cajal
  publication-title: Lab Invest
– ident: e_1_2_9_10_2
  doi: 10.1002/ar.1092030112
– ident: e_1_2_9_14_2
  doi: 10.1007/s00441-002-0638-4
– ident: e_1_2_9_30_2
  doi: 10.1111/j.1365-2982.2007.00936.x
– reference: 21337122 - Cell Tissue Res. 2011 Apr;344(1):17-30
– reference: 11438492 - Gastroenterology. 2001 Jul;121(1):34-42
– reference: 17593140 - Neurogastroenterol Motil. 2007 Jul;19(7):585-95
– reference: 21914127 - J Cell Mol Med. 2012 Jul;16(7):1573-81
– reference: 12952899 - Development. 2003 Oct;130(20):4769-84
– reference: 20871131 - Gut. 2010 Dec;59(12):1716-26
– reference: 11378158 - Neuropharmacology. 2001 Jun;40(7):879-87
– reference: 11906457 - Clin Exp Pharmacol Physiol. 2002 Jan-Feb;29(1-2):18-25
– reference: 21277853 - Gastroenterology. 2011 May;140(5):1608-17
– reference: 16166342 - Am J Physiol Gastrointest Liver Physiol. 2006 Feb;290(2):G394-403
– reference: 12388186 - Am J Physiol Gastrointest Liver Physiol. 2003 Feb;284(2):G231-41
– reference: 12457234 - Cell Tissue Res. 2002 Dec;310(3):349-58
– reference: 12548170 - Am J Surg Pathol. 2003 Feb;27(2):228-35
– reference: 10903171 - Development. 2000 Aug;127(16):3457-66
– reference: 19850967 - Am J Physiol Gastrointest Liver Physiol. 2010 Jan;298(1):G14-24
– reference: 19280210 - Histochem Cell Biol. 2009 Jun;131(6):691-702
– reference: 7103120 - Anat Rec. 1982 May;203(1):129-46
– reference: 18194151 - Neurogastroenterol Motil. 2008 May;20(5):521-31
– reference: 21173079 - J Physiol. 2011 Feb 1;589(Pt 3):697-710
– reference: 18483217 - Genes Dev. 2008 May 15;22(10):1276-312
– reference: 18280665 - Neuroscience. 2008 Mar 18;152(2):437-48
– reference: 21300066 - Gastroenterology. 2011 May;140(5):1575-85.e8
– reference: 11131126 - Cell Tissue Res. 2000 Nov;302(2):145-53
– reference: 11600437 - Am J Physiol Cell Physiol. 2001 Nov;281(5):C1727-33
– reference: 20009347 - Arch Histol Cytol. 2009 Jul;72(2):107-15
– reference: 9679037 - Gastroenterology. 1998 Aug;115(2):314-29
– reference: 18402642 - Neurogastroenterol Motil. 2008 May;20 Suppl 1:54-63
– reference: 8876253 - Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):12008-13
– reference: 11557517 - Am J Physiol Gastrointest Liver Physiol. 2001 Oct;281(4):G964-73
– reference: 2013387 - Gastroenterology. 1991 May;100(5 Pt 1):1417-31
– reference: 10785280 - J Auton Nerv Syst. 2000 May 12;80(3):142-7
– reference: 9952111 - Lab Invest. 1999 Jan;79(1):59-65
– reference: 17541447 - Nat Clin Pract Gastroenterol Hepatol. 2007 Jun;4(6):336-46
– reference: 12832853 - J Pharmacol Sci. 2003 May;92(1):35-42
– reference: 10988076 - Science. 2000 Sep 15;289(5486):1942-6
– reference: 11533126 - J Physiol. 2001 Sep 1;535(Pt 2):323-34
– reference: 15531236 - J Gastrointest Surg. 2004 Nov;8(7):831-41
SSID ssj0006246
Score 2.2056665
Snippet Background  Emerging evidence suggests that “fibroblast‐like cells” (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are...
Background  Emerging evidence suggests that “fibroblast‐like cells” (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are...
Emerging evidence suggests that "fibroblast-like cells" (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are...
Background Emerging evidence suggests that "fibroblast-like cells" (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 844
SubjectTerms Adult
Antibodies
Biopsy
Case-Control Studies
Cell body
Cytology
Diabetes Complications - metabolism
Diabetes mellitus
Enteric nervous system
Female
fibroblast-like cells
Ganglia
Gastric Emptying
gastroparesis
Gastroparesis - metabolism
Humans
Immunohistochemistry
Interstitial cells
interstitial cells of Cajal
Male
Muscle, Smooth - cytology
Muscle, Smooth - metabolism
myenteric plexus
Myenteric Plexus - metabolism
Nervous system
platelet-derived growth factor receptor
Platelet-derived growth factor receptors
Potassium channels (calcium-gated)
Receptor, Platelet-Derived Growth Factor alpha - metabolism
Small-Conductance Calcium-Activated Potassium Channels - metabolism
Smooth muscle
Stomach - cytology
Stomach - metabolism
Title Platelet-derived growth factor receptor α (PDGFRα)-expressing "fibroblast-like cells" in diabetic and idiopathic gastroparesis of humans
URI https://api.istex.fr/ark:/67375/WNG-N4B5KP1N-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2982.2012.01944.x
https://www.ncbi.nlm.nih.gov/pubmed/22650155
https://www.proquest.com/docview/1034796495
https://www.proquest.com/docview/1038599341
https://pubmed.ncbi.nlm.nih.gov/PMC3756591
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFLbQkBA3_GzAugEyEprgIlXS2Pm5HD_dBGqoJga7s5zE7qKWZGpaKFz1EbjgEh5iL7KH6JNwjpOWBSY0Ie6sxE5sn2PnO853ziHkcegpxlOXW8rFo5vADqzYg5JkIHC7I1MnQd_hXuTtH7JXR_yo5j-hL0wVH2J14IYrw-zXuMBlXDYXuWFohQH6U-GRHtjjrI14Em8gPjr4FUnK61SORi63LQA1vEnqufBBjS_VVZz02UUw9E825XmUaz5T3ZtkuBxgxU4ZtqeTuJ18-S324_-ZgVvkRo1m6W6lfrfJFZWvk43dHCz5D5_pDjX8UnNwv06u9erf-BvkW38EEBc0ZjH_msIS-KhSOhgXnybHtMr_Q2EfVidYODulT_ov9roHZ6dPobaaVcTdfEAX8-8aul_EgP_xQaNsqCj-hygX8x80y2l1rJwlVOYpzdKsMNmXEzqA-uMCmfdlVtJCU5OnsLxDDrsv3z7ft-r0EFbCPJtZSjkxD6WWrOO4seeDoc-1VIEbBI50tQdQRemQhbECCKalrzt-olI7lWGoHQ2w6i5Zy4tcbRIqFea9CVym3JS5gY5TR2keOjy2FUuSsEX8pSqIpI6djik8RuKcDQWyECgLgbIQRhZi1iLOquVJFT_kEm12jLatGsjxEPl3Phfvoz0RsWf8dd-JxLsWebRURwG7Ak6xzFUxLeEV6CHsgfX71zoBB3jKnBa5V6nw6o0AyjmiaRh4Q7lXFTAqefNOnh2b6OTQTQ-mrkU8o7uXHrWIem-wtPWvDbfJdbxcEQDvk7XJeKoeAGKcxA_NXvATnxZkgQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQJgEvXDYu5WokNMFDqqSx0-RxMLrC1lBNG-zNchK7i1qSqRcoPPUn8MAj_Ij9kf2I_hLOcdKywIQmxJulHMexz7H9nZNzIeRp4CnGE5dbykXTjW_7VuRBSzJguN2QiRNj7HAn9NoH7M0hPyzLAWEsTJEfYmlww51hzmvc4GiQru5y46IV-BhQhTY9UMhZHQDlKhb4xkT6W3u_ckl5jSLUyOW2BbCGV916zn1T5a5axWWfngdE__SnPItzzUXVuk4GiykW_in9-mQc1eMvv2V__E9rcINcKwEt3Swk8Ca5pLI1sr6ZgTL_4TPdoMbF1Nju18jlTvknf5186w4A5YLQzGdfE9gFH1VCe8P80_iIFiWAKBzF6hgbpyf0WXdru7V3evIcqNW08N3NenQ--67h-_MIVAB80SDtK4q_Ikbz2Q-aZrSwLKcxlVlC0yTNTQHmmPaAfpij8_0oHdFcU1OqcHSLHLRe7b9sW2WFCCtmns0spZyIB1JL1nDcyGuCrs-1VL7r-450tQdoRemABZECFKZlUzeasUrsRAaBdjQgq9tkJcszdZdQqbD0je8y5SbM9XWUOErzwOGRrVgcBzXSXMiCiMv06VjFYyDOqFHAC4G8EMgLYXghpjXiLHseFylELtBnw4jbsoMc9tEFr8nF-3BbhOwF3-k6oXhXI08W8ijgYMAllpnKJyMYAoOEPVCA_0rjc0CozKmRO4UML0cEXM4RUMPEK9K9JMDE5NUnWXpkEpTDZ3qwdDXiGeG98KxF2HmLrXv_2vExudLe7-yK3dfhzn1yFUkKf8AHZGU8nKiHACDH0SNzMPwErqFonQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF6hVqq48NPyE34XCVVwcGTHu459LIS0UGKiikJvq7V3N7US7Cg_EDjlEThwhIfoi_Qh8iTMrJPQQIUqxG0l79rendn1N-NvZgh5HAWaceVzR_vougnd0EkCaEkGAndrUnkpxg634mDvkL064kdz_hPGwpT5IZYON9wZ9rzGDd5XZnWTW4ZWFGI8Fbr0wB5nVcCT6yxwIyzj0Dj4lUoqqJWRRj53HUA1fJXVc-6dVj5V67jqk_Nw6J90yrMw136nmldJdzHDkp7SrY5HSTX98lvyx_-zBNfIlTmcpTul_l0nl3S-SbZ2cjDlP3ym29QSTK3nfpNstOb_8bfIt3YPMC6ozGz6VcEe-KgV7QyKT6NjWhYAonAQ6z42Tk_ok3Zjt3lwevIUeutJydzNO3Q2_W7g9YsEDAC8US_raoo_Ioaz6Q-a5bT0K2cplbmimcoKW345pR3oPyiQej_MhrQw1BYqHN4gh80Xb5_vOfP6EE4KEmaO1l7CI2kkq3l-EtTB0udG6tAPQ0_6JgCsok3EokQDBjOybmr1VCtXySgyngFcdZOs5UWubxMqNRa-CX2mfcX80CTK04ZHHk9czdI0qpD6QhVEOk-ejjU8euKMEQWyECgLgbIQVhZiUiHecmS_TCBygTHbVtuWA-SgiwS8Ohfv410Rs2d8v-3F4l2FPFqoo4BjAZdY5roYD-ERGCIcgPn71z4hB3zKvAq5Varw8omAyjnCaZj4inIvO2Ba8tUreXZs05PDawawdBUSWN298KxF3HqDrTv_OvAh2Wg3muL1y3j_LrmMPUoy4D2yNhqM9X1Aj6PkgT0WfgImQGdM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Platelet-derived+growth+factor+receptor+%CE%B1+%28PDGFR%CE%B1%29-expressing+%22fibroblast-like+cells%22+in+diabetic+and+idiopathic+gastroparesis+of+humans&rft.jtitle=Neurogastroenterology+and+motility&rft.au=Grover%2C+M&rft.au=Bernard%2C+C+E&rft.au=Pasricha%2C+P+J&rft.au=Parkman%2C+H+P&rft.date=2012-09-01&rft.issn=1365-2982&rft.eissn=1365-2982&rft.volume=24&rft.issue=9&rft.spage=844&rft_id=info:doi/10.1111%2Fj.1365-2982.2012.01944.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-1925&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-1925&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-1925&client=summon