Platelet-derived growth factor receptor α (PDGFRα)-expressing "fibroblast-like cells" in diabetic and idiopathic gastroparesis of humans
Background Emerging evidence suggests that “fibroblast‐like cells” (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are ultrastructurally distinct from other interstitial cells, including interstitial cells of Cajal (ICC), and express small‐conductance Ca2+‐activ...
Saved in:
Published in | Neurogastroenterology and motility Vol. 24; no. 9; pp. 844 - 852 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.09.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background Emerging evidence suggests that “fibroblast‐like cells” (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are ultrastructurally distinct from other interstitial cells, including interstitial cells of Cajal (ICC), and express small‐conductance Ca2+‐activated K+ channels (SK3). In mice, platelet‐derived growth factor receptor α (PDGFRα) antibody has also been shown to label FLC. The aims of this study were to determine the morphology and distribution of PDGFRα‐immunoreactive (ir) FLC in human gastric muscle and to determine if FLC are altered in gastroparesis, where ICC are reduced.
Methods Full thickness gastric body biopsies from five healthy subjects, 10 diabetic, and 10 idiopathic gastroparesis patients were immunolabeled using SK3 and PDGFRα staining for FLC and Kit staining for ICC. Intramuscular FLC and ICC were quantified.
Key Results Intramuscular PDGFRα‐ir cells had slender cell bodies and long, thin processes and were more abundant in the longitudinal compared with the circular muscle. In the region of myenteric plexus, FLC had smaller, rounder cell bodies with 3–4 processes and formed networks, often around ganglia. All SK3‐ir cell structures showed complete overlap with PDGFRα‐ir. FLC were in close proximity to ICC, but their cell bodies did not overlap. No differences were seen in the distribution, morphology, or overall numbers of FLC in gastroparesis patients.
Conclusions & Inferences In conclusion, PDGFRα identifies FLC in human gastric smooth muscle. FLC were not altered in distribution or overall numbers in gastroparesis. Additional studies are required to determine their role in human GI function. |
---|---|
AbstractList | Emerging evidence suggests that "fibroblast-like cells" (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are ultrastructurally distinct from other interstitial cells, including interstitial cells of Cajal (ICC), and express small-conductance Ca(2+) -activated K(+) channels (SK3). In mice, platelet-derived growth factor receptor α (PDGFRα) antibody has also been shown to label FLC. The aims of this study were to determine the morphology and distribution of PDGFRα-immunoreactive (ir) FLC in human gastric muscle and to determine if FLC are altered in gastroparesis, where ICC are reduced.BACKGROUNDEmerging evidence suggests that "fibroblast-like cells" (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are ultrastructurally distinct from other interstitial cells, including interstitial cells of Cajal (ICC), and express small-conductance Ca(2+) -activated K(+) channels (SK3). In mice, platelet-derived growth factor receptor α (PDGFRα) antibody has also been shown to label FLC. The aims of this study were to determine the morphology and distribution of PDGFRα-immunoreactive (ir) FLC in human gastric muscle and to determine if FLC are altered in gastroparesis, where ICC are reduced.Full thickness gastric body biopsies from five healthy subjects, 10 diabetic, and 10 idiopathic gastroparesis patients were immunolabeled using SK3 and PDGFRα staining for FLC and Kit staining for ICC. Intramuscular FLC and ICC were quantified.METHODSFull thickness gastric body biopsies from five healthy subjects, 10 diabetic, and 10 idiopathic gastroparesis patients were immunolabeled using SK3 and PDGFRα staining for FLC and Kit staining for ICC. Intramuscular FLC and ICC were quantified.Intramuscular PDGFRα-ir cells had slender cell bodies and long, thin processes and were more abundant in the longitudinal compared with the circular muscle. In the region of myenteric plexus, FLC had smaller, rounder cell bodies with 3-4 processes and formed networks, often around ganglia. All SK3-ir cell structures showed complete overlap with PDGFRα-ir. FLC were in close proximity to ICC, but their cell bodies did not overlap. No differences were seen in the distribution, morphology, or overall numbers of FLC in gastroparesis patients.KEY RESULTSIntramuscular PDGFRα-ir cells had slender cell bodies and long, thin processes and were more abundant in the longitudinal compared with the circular muscle. In the region of myenteric plexus, FLC had smaller, rounder cell bodies with 3-4 processes and formed networks, often around ganglia. All SK3-ir cell structures showed complete overlap with PDGFRα-ir. FLC were in close proximity to ICC, but their cell bodies did not overlap. No differences were seen in the distribution, morphology, or overall numbers of FLC in gastroparesis patients.In conclusion, PDGFRα identifies FLC in human gastric smooth muscle. FLC were not altered in distribution or overall numbers in gastroparesis. Additional studies are required to determine their role in human GI function.CONCLUSIONS & INFERENCESIn conclusion, PDGFRα identifies FLC in human gastric smooth muscle. FLC were not altered in distribution or overall numbers in gastroparesis. Additional studies are required to determine their role in human GI function. Background Emerging evidence suggests that “fibroblast‐like cells” (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are ultrastructurally distinct from other interstitial cells, including interstitial cells of Cajal (ICC), and express small‐conductance Ca2+‐activated K+ channels (SK3). In mice, platelet‐derived growth factor receptor α (PDGFRα) antibody has also been shown to label FLC. The aims of this study were to determine the morphology and distribution of PDGFRα‐immunoreactive (ir) FLC in human gastric muscle and to determine if FLC are altered in gastroparesis, where ICC are reduced. Methods Full thickness gastric body biopsies from five healthy subjects, 10 diabetic, and 10 idiopathic gastroparesis patients were immunolabeled using SK3 and PDGFRα staining for FLC and Kit staining for ICC. Intramuscular FLC and ICC were quantified. Key Results Intramuscular PDGFRα‐ir cells had slender cell bodies and long, thin processes and were more abundant in the longitudinal compared with the circular muscle. In the region of myenteric plexus, FLC had smaller, rounder cell bodies with 3–4 processes and formed networks, often around ganglia. All SK3‐ir cell structures showed complete overlap with PDGFRα‐ir. FLC were in close proximity to ICC, but their cell bodies did not overlap. No differences were seen in the distribution, morphology, or overall numbers of FLC in gastroparesis patients. Conclusions & Inferences In conclusion, PDGFRα identifies FLC in human gastric smooth muscle. FLC were not altered in distribution or overall numbers in gastroparesis. Additional studies are required to determine their role in human GI function. Emerging evidence suggests that "fibroblast-like cells" (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are ultrastructurally distinct from other interstitial cells, including interstitial cells of Cajal (ICC), and express small-conductance Ca(2+) -activated K(+) channels (SK3). In mice, platelet-derived growth factor receptor α (PDGFRα) antibody has also been shown to label FLC. The aims of this study were to determine the morphology and distribution of PDGFRα-immunoreactive (ir) FLC in human gastric muscle and to determine if FLC are altered in gastroparesis, where ICC are reduced. Full thickness gastric body biopsies from five healthy subjects, 10 diabetic, and 10 idiopathic gastroparesis patients were immunolabeled using SK3 and PDGFRα staining for FLC and Kit staining for ICC. Intramuscular FLC and ICC were quantified. Intramuscular PDGFRα-ir cells had slender cell bodies and long, thin processes and were more abundant in the longitudinal compared with the circular muscle. In the region of myenteric plexus, FLC had smaller, rounder cell bodies with 3-4 processes and formed networks, often around ganglia. All SK3-ir cell structures showed complete overlap with PDGFRα-ir. FLC were in close proximity to ICC, but their cell bodies did not overlap. No differences were seen in the distribution, morphology, or overall numbers of FLC in gastroparesis patients. In conclusion, PDGFRα identifies FLC in human gastric smooth muscle. FLC were not altered in distribution or overall numbers in gastroparesis. Additional studies are required to determine their role in human GI function. Background Emerging evidence suggests that "fibroblast-like cells" (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are ultrastructurally distinct from other interstitial cells, including interstitial cells of Cajal (ICC), and express small-conductance Ca2+-activated K+ channels (SK3). In mice, platelet-derived growth factor receptor alpha (PDGFR alpha ) antibody has also been shown to label FLC. The aims of this study were to determine the morphology and distribution of PDGFR alpha -immunoreactive (ir) FLC in human gastric muscle and to determine if FLC are altered in gastroparesis, where ICC are reduced. Methods Full thickness gastric body biopsies from five healthy subjects, 10 diabetic, and 10 idiopathic gastroparesis patients were immunolabeled using SK3 and PDGFR alpha staining for FLC and Kit staining for ICC. Intramuscular FLC and ICC were quantified. Key Results Intramuscular PDGFR alpha -ir cells had slender cell bodies and long, thin processes and were more abundant in the longitudinal compared with the circular muscle. In the region of myenteric plexus, FLC had smaller, rounder cell bodies with 3-4 processes and formed networks, often around ganglia. All SK3-ir cell structures showed complete overlap with PDGFR alpha -ir. FLC were in close proximity to ICC, but their cell bodies did not overlap. No differences were seen in the distribution, morphology, or overall numbers of FLC in gastroparesis patients. Conclusions & Inferences In conclusion, PDGFR alpha identifies FLC in human gastric smooth muscle. FLC were not altered in distribution or overall numbers in gastroparesis. Additional studies are required to determine their role in human GI function. Background Emerging evidence suggests that “fibroblast‐like cells” (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are ultrastructurally distinct from other interstitial cells, including interstitial cells of Cajal (ICC), and express small‐conductance Ca 2+ ‐activated K + channels (SK3). In mice, platelet‐derived growth factor receptor α (PDGFR α ) antibody has also been shown to label FLC. The aims of this study were to determine the morphology and distribution of PDGFR α ‐immunoreactive (ir) FLC in human gastric muscle and to determine if FLC are altered in gastroparesis, where ICC are reduced. Methods Full thickness gastric body biopsies from five healthy subjects, 10 diabetic, and 10 idiopathic gastroparesis patients were immunolabeled using SK3 and PDGFR α staining for FLC and Kit staining for ICC. Intramuscular FLC and ICC were quantified. Key Results Intramuscular PDGFR α ‐ir cells had slender cell bodies and long, thin processes and were more abundant in the longitudinal compared with the circular muscle. In the region of myenteric plexus, FLC had smaller, rounder cell bodies with 3–4 processes and formed networks, often around ganglia. All SK3‐ir cell structures showed complete overlap with PDGFR α ‐ir. FLC were in close proximity to ICC, but their cell bodies did not overlap. No differences were seen in the distribution, morphology, or overall numbers of FLC in gastroparesis patients. Conclusions & Inferences In conclusion, PDGFR α identifies FLC in human gastric smooth muscle. FLC were not altered in distribution or overall numbers in gastroparesis. Additional studies are required to determine their role in human GI function. |
Author | Pasricha, P. J. Parkman, H. P. Sarr, M. Bernard, C. E. Nguyen, L. A. Gibbons, S. Shen, K. R. Kendrick, M. Farrugia, G. Abell, T. L. Snape, W. Grover, M. Ordog, T. Swain, J. |
Author_xml | – sequence: 1 givenname: M. surname: Grover fullname: Grover, M. organization: Mayo Clinic, Rochester, MN, USA – sequence: 2 givenname: C. E. surname: Bernard fullname: Bernard, C. E. organization: Mayo Clinic, Rochester, MN, USA – sequence: 3 givenname: P. J. surname: Pasricha fullname: Pasricha, P. J. organization: Stanford University, Palo Alto, CA, USA – sequence: 4 givenname: H. P. surname: Parkman fullname: Parkman, H. P. organization: Temple University, Philadelphia, PA, USA – sequence: 5 givenname: T. L. surname: Abell fullname: Abell, T. L. organization: University of Mississippi, Jackson, MS, USA – sequence: 6 givenname: L. A. surname: Nguyen fullname: Nguyen, L. A. organization: California Pacific Medical Center, San Francisco, CA, USA – sequence: 7 givenname: W. surname: Snape fullname: Snape, W. organization: California Pacific Medical Center, San Francisco, CA, USA – sequence: 8 givenname: K. R. surname: Shen fullname: Shen, K. R. organization: Mayo Clinic, Rochester, MN, USA – sequence: 9 givenname: M. surname: Sarr fullname: Sarr, M. organization: Mayo Clinic, Rochester, MN, USA – sequence: 10 givenname: J. surname: Swain fullname: Swain, J. organization: Mayo Clinic, Rochester, MN, USA – sequence: 11 givenname: M. surname: Kendrick fullname: Kendrick, M. organization: Mayo Clinic, Rochester, MN, USA – sequence: 12 givenname: S. surname: Gibbons fullname: Gibbons, S. organization: Mayo Clinic, Rochester, MN, USA – sequence: 13 givenname: T. surname: Ordog fullname: Ordog, T. organization: Mayo Clinic, Rochester, MN, USA – sequence: 14 givenname: G. surname: Farrugia fullname: Farrugia, G. organization: Mayo Clinic, Rochester, MN, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22650155$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUtty0zAQ9TBl6AV-gdH0qTzYSLIkWw8wUwoNDCXNMFweNbK9SpQ6VpCUNv0F_qY_0m_CJiXAW_Si3dlzjnZ19jDZ61wHSYIIzkh_Xs4zkgueUlnSjGJCM0wkY9n6UXKwLewNMccpkZTvJ4chzDHGgjLxJNmnVHBMOD9Ifk5aHaGFmDbg7TU0aOrdTZwho-voPPJQw3II7u_QyeTt6Pzz_d2LFNZLDyHYboqOja28q1odYtraK0A1tG04RrZDjdUVRFsj3TXINtYtdZz16bTH-j7pJWxAzqDZaqG78DR5bHQb4NnDfZR8PX_35ex9enE5-nB2epHWTGCWApCKS200oySvRMGE5EZDmZcl0bkRDAswkskKZF4YXRha1NDgRktpiKFlfpS83uguV9UCmhq66HWrlt4utL9VTlv1f6WzMzV11yovuOCS9AInDwLe_VhBiGphwzC27sCtgiI4L7mUOdsJygopmOQ99Pm_bW37-eNVDyg3gNq7EDyYLYRgNayFmqvBfTW4r4a1UL_XQq3_jryl1jbqaN0woG13EXi1EbixLdzu_LAaf7ocop6fbvg2RFhv-dpfKVH0_6q-j0dqzN7wjxMyVt_yX-qi5FU |
CitedBy_id | crossref_primary_10_1007_s11894_013_0363_z crossref_primary_10_3390_ijms21124478 crossref_primary_10_5056_jnm_2013_19_1_18 crossref_primary_10_1002_gamm_201900001 crossref_primary_10_2337_db18_1064 crossref_primary_10_3748_wjg_v28_i29_3994 crossref_primary_10_1111_nmo_14237 crossref_primary_10_3390_ijms23158435 crossref_primary_10_1111_jcmm_15013 crossref_primary_10_3390_medicina59020308 crossref_primary_10_1113_jphysiol_2014_287599 crossref_primary_10_1016_j_neuropharm_2016_07_033 crossref_primary_10_1016_j_gtc_2020_04_009 crossref_primary_10_1515_bmc_2015_0034 crossref_primary_10_1002_ijc_29498 crossref_primary_10_1002_ueg2_12060 crossref_primary_10_1080_00365521_2020_1815079 crossref_primary_10_1038_s41572_018_0038_z crossref_primary_10_1111_nmo_13230 crossref_primary_10_1186_s12920_019_0550_3 crossref_primary_10_1111_jcmm_12134 crossref_primary_10_1152_physiol_00006_2016 crossref_primary_10_3390_ijms22073514 crossref_primary_10_1111_nmo_13528 crossref_primary_10_3389_fmed_2018_00001 crossref_primary_10_1113_jphysiol_2013_264747 crossref_primary_10_1371_journal_pone_0312413 crossref_primary_10_1007_s11894_023_00865_w crossref_primary_10_1016_j_gtc_2014_11_004 crossref_primary_10_1080_00365521_2018_1558280 crossref_primary_10_1152_ajpgi_00001_2013 |
Cites_doi | 10.1111/j.1365-2982.2008.01109.x 10.1046/j.1440-1681.2002.03601.x 10.1254/jphs.92.35 10.1016/S0028-3908(01)00028-4 10.1073/pnas.93.21.12008 10.1007/s00441-011-1138-1 10.1007/s00418-009-0580-6 10.1152/ajpgi.00266.2009 10.1111/j.1365-2982.2007.01055.x 10.1016/S0016-5085(98)70198-2 10.1053/gast.2001.25541 10.1152/ajpgi.00291.2002 10.1242/dev.127.16.3457 10.1038/ncpgasthep0838 10.1113/jphysiol.2010.201129 10.1097/00000478-200302000-00012 10.1007/s004410000264 10.1016/j.neuroscience.2007.12.044 10.1152/ajpgi.2001.281.4.G964 10.1152/ajpgi.00321.2005 10.1016/0016-5085(91)70033-T 10.1679/aohc.72.107 10.1016/S0165-1838(00)00089-8 10.1152/ajpcell.2001.281.5.C1727 10.1016/j.gassur.2004.06.004 10.1136/gut.2009.199703 10.1111/j.1469-7793.2001.00323.x 10.1053/j.gastro.2011.01.046 10.1053/j.gastro.2011.01.038 10.1101/gad.1653708 10.1242/dev.00721 10.1126/science.289.5486.1942 10.1002/ar.1092030112 10.1007/s00441-002-0638-4 10.1111/j.1365-2982.2007.00936.x |
ContentType | Journal Article |
Copyright | 2012 Blackwell Publishing Ltd 2012 Blackwell Publishing Ltd. |
Copyright_xml | – notice: 2012 Blackwell Publishing Ltd – notice: 2012 Blackwell Publishing Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1111/j.1365-2982.2012.01944.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Neurosciences Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1365-2982 |
EndPage | 852 |
ExternalDocumentID | PMC3756591 22650155 10_1111_j_1365_2982_2012_01944_x NMO1944 ark_67375_WNG_N4B5KP1N_V |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: U01DK07-3975 – fundername: NIDDK NIH HHS grantid: R01DK57061 – fundername: NIDDK NIH HHS grantid: U01DK073985 – fundername: NIDDK NIH HHS grantid: R01 DK057061 – fundername: NIDDK NIH HHS grantid: U01DK074007 – fundername: NIDDK NIH HHS grantid: U01 DK073983 – fundername: NIDDK NIH HHS grantid: U01 DK074007 – fundername: NIDDK NIH HHS grantid: P01DK68055 – fundername: NIDDK NIH HHS grantid: U01 DK074035 – fundername: NIDDK NIH HHS grantid: U01 DK073975 – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: U01 DK073983 || DK – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: U01 DK073974 || DK – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: U01 DK073975 || DK – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: P01 DK068055 || DK – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: U01 DK074007 || DK – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: U01 DK074008 || DK – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: R01 DK057061 || DK – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: P30 DK084567 || DK – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: U01 DK073985 || DK |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29N 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DTERQ DU5 EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPT ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7TK 5PM |
ID | FETCH-LOGICAL-c4604-ee1b59afa4213b674695fae83881a3f6406ef949be937fa7f27ced0da99f1f283 |
IEDL.DBID | DR2 |
ISSN | 1350-1925 1365-2982 |
IngestDate | Thu Aug 21 13:41:10 EDT 2025 Fri Jul 11 02:42:08 EDT 2025 Fri Jul 11 05:42:05 EDT 2025 Wed Feb 19 01:51:29 EST 2025 Thu Apr 24 23:09:02 EDT 2025 Tue Jul 01 00:43:22 EDT 2025 Wed Jan 22 16:46:04 EST 2025 Wed Oct 30 09:51:05 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2012 Blackwell Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4604-ee1b59afa4213b674695fae83881a3f6406ef949be937fa7f27ced0da99f1f283 |
Notes | istex:8657C6E946545CF3C1ED8BD3F15A5029999727B0 ark:/67375/WNG-N4B5KP1N-V ArticleID:NMO1944 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2982.2012.01944.x |
PMID | 22650155 |
PQID | 1034796495 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3756591 proquest_miscellaneous_1038599341 proquest_miscellaneous_1034796495 pubmed_primary_22650155 crossref_primary_10_1111_j_1365_2982_2012_01944_x crossref_citationtrail_10_1111_j_1365_2982_2012_01944_x wiley_primary_10_1111_j_1365_2982_2012_01944_x_NMO1944 istex_primary_ark_67375_WNG_N4B5KP1N_V |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2012 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: September 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | Neurogastroenterology and motility |
PublicationTitleAlternate | Neurogastroenterol Motil |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Zhang Y, Carmichael SA, Wang XY, Huizinga JD, Paterson WG. Neurotransmission in lower esophageal sphincter of W/Wv mutant mice. Am J Physiol Gastrointest Liver Physiol 2010; 298: G14-24. Vanderwinden JM, Rumessen JJ, De Laet MH, Vanderhaeghen JJ, Schiffmann SN. CD34 immunoreactivity and interstitial cells of Cajal in the human and mouse gastrointestinal tract. Cell Tissue Res 2000; 302: 145-53. Iino S, Nojyo Y. Immunohistochemical demonstration of c-Kit-negative fibroblast-like cells in murine gastrointestinal musculature. Arch Histol Cytol 2009; 72: 107-15. Vanderwinden JM, Rumessen JJ, de Kerchove d'Exaerde A Jr et al. Kit-negative fibroblast-like cells expressing SK3, a Ca2+-activated K+ channel, in the gut musculature in health and disease. Cell Tissue Res 2002; 310: 349-58. Cobine CA, Hennig GW, Kurahashi M, Sanders KM, Ward SM, Keef KD. Relationship between interstitial cells of Cajal, fibroblast-like cells and inhibitory motor nerves in the internal anal sphincter. Cell Tissue Res 2011; 344: 17-30. Faussone-Pellegrini MS, Grover M, Pasricha P et al. Ultrastructural differences between diabetic and idiopathic gastroparesis: The NIDDK gastroparesis clinical research consortium (GpCRC). J Cell Mol Med 2011; doi: 10.1111/j.1582-4934.2011.01451.x. Groneberg D, Konig P, Koesling D, Friebe A. Nitric oxide-sensitive guanylyl cyclase is dispensable for nitrergic signaling and gut motility in mouse intestinal smooth muscle. Gastroenterology 2011; 140: 1608-17. Ro S, Hatton WJ, Koh SD, Horowitz B. Molecular properties of small-conductance Ca2+-activated K+ channels expressed in murine colonic smooth muscle. Am J Physiol Gastrointest Liver Physiol 2001; 281: G964-73. Fujita A, Takeuchi T, Jun H, Hata F. Localization of Ca2+-activated K+ channel, SK3, in fibroblast-like cells forming gap junctions with smooth muscle cells in the mouse small intestine. J Pharmacol Sci 2003; 92: 35-42. Hoch RV, Soriano P. Roles of PDGF in animal development. Development 2003; 130: 4769-84. Grover M, Farrugia G, Lurken MS et al. Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterology 2011; 140: 1575-85. e8. Ueno T, Duenes JA, Zarroug AE, Sarr MG. Nitrergic mechanisms mediating inhibitory control of longitudinal smooth muscle contraction in mouse small intestine. J Gastrointest Surg 2004; 8: 831-41. Rumessen JJ, Thuneberg L. Interstitial cells of Cajal in human small intestine. Ultrastructural identification and organization between the main smooth muscle layers. Gastroenterology 1991; 100: 1417-31. Hosseini R, Benton DC, Dunn PM, Jenkinson DH, Moss GW. SK3 is an important component of K(+) channels mediating the afterhyperpolarization in cultured rat SCG neurones. J Physiol 2001; 535: 323-34. Grunnet M, Jespersen T, Angelo K et al. Pharmacological modulation of SK3 channels. Neuropharmacology 2001; 40: 879-87. Karlsson L, Lindahl P, Heath JK, Betsholtz C. Abnormal gastrointestinal development in PDGF-A and PDGFR-(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. Development 2000; 127: 3457-66. Kashyap P, Farrugia G. Diabetic gastroparesis: what we have learned and had to unlearn in the past 5 years. Gut 2010; 59: 1716-26. Vanderwinden JM, Rumessen JJ, De Laet MH, Vanderhaeghen JJ, Schiffmann SN. CD34+ cells in human intestine are fibroblasts adjacent to, but distinct from, interstitial cells of Cajal. Lab Invest 1999; 79: 59-65. Iino S, Horiguchi K, Nojyo Y. Interstitial cells of Cajal are innervated by nitrergic nerves and express nitric oxide-sensitive guanylate cyclase in the guinea-pig gastrointestinal tract. Neuroscience 2008; 152: 437-48. El-Yazbi AF, Cho WJ, Boddy G, Schulz R, Daniel EE. Impact of caveolin-1 knockout on NANC relaxation in circular muscles of the mouse small intestine compared with longitudinal muscles. Am J Physiol Gastrointest Liver Physiol 2006; 290: G394-403. Kurahashi M, Zheng H, Dwyer L, Ward SM, Don Koh S, Sanders KM. A functional role for the 'fibroblast-like cells' in gastrointestinal smooth muscles. J Physiol 2011; 589: 697-710. Burns AJ, Lomax AE, Torihashi S, Sanders KM, Ward SM. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Sci USA 1996; 93: 12008-13. Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev 2008; 22: 1276-312. Horiguchi K, Komuro T. Ultrastructural observations of fibroblast-like cells forming gap junctions in the W/W(nu) mouse small intestine. J Auton Nerv Syst 2000; 80: 142-7. Bond CT, Sprengel R, Bissonnette JM et al. Respiration and parturition affected by conditional overexpression of the Ca2+-activated K+ channel subunit, SK3. Science 2000; 289: 1942-6. Ward SM, Morris G, Reese L, Wang XY, Sanders KM. Interstitial cells of Cajal mediate enteric inhibitory neurotransmission in the lower esophageal and pyloric sphincters. Gastroenterology 1998; 115: 314-29. Streutker CJ, Huizinga JD, Campbell F, Ho J, Riddell RH. Loss of CD117 (c-kit)- and CD34-positive ICC and associated CD34-positive fibroblasts defines a subpopulation of chronic intestinal pseudo-obstruction. Am J Surg Pathol 2003; 27: 228-35. Choi KM, Gibbons SJ, Roeder JL et al. Regulation of interstitial cells of Cajal in the mouse gastric body by neuronal nitric oxide. Neurogastroenterol Motil 2007; 19: 585-95. Farrugia G. Interstitial cells of Cajal in health and disease. Neurogastroenterol Motil 2008; 20(Suppl. 1): 54-63. Rumessen JJ, Thuneberg L, Mikkelsen HB. Plexus muscularis profundus and associated interstitial cells. II. Ultrastructural studies of mouse small intestine. Anat Rec 1982; 203: 129-46. Vittal H, Farrugia G, Gomez G, Pasricha PJ. Mechanisms of disease: the pathological basis of gastroparesis--a review of experimental and clinical studies. Nat Clin Pract Gastroenterol Hepatol 2007; 4: 336-46. Fujita A, Takeuchi T, Saitoh N, Hanai J, Hata F. Expression of Ca(2+)-activated K(+) channels, SK3, in the interstitial cells of Cajal in the gastrointestinal tract. Am J Physiol Cell Physiol 2001; 281: C1727-33. Spencer NJ, Hennig GW, Smith TK. Stretch-activated neuronal pathways to longitudinal and circular muscle in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 2003; 284: G231-41. Sivarao DV, Mashimo HL, Thatte HS, Goyal RK. Lower esophageal sphincter is achalasic in nNOS(−/−) and hypotensive in W/W(v) mutant mice. Gastroenterology 2001; 121: 34-42. Kurahashi M, Niwa Y, Cheng J et al. Platelet-derived growth factor signals play critical roles in differentiation of longitudinal smooth muscle cells in mouse embryonic gut. Neurogastroenterol Motil 2008; 20: 521-31. Iino S, Horiguchi K, Horiguchi S, Nojyo Y. c-Kit-negative fibroblast-like cells express platelet-derived growth factor receptor alpha in the murine gastrointestinal musculature. Histochem Cell Biol 2009; 131: 691-702. Klemm MF, Lang RJ. Distribution of Ca2+-activated K+ channel (SK2 and SK3) immunoreactivity in intestinal smooth muscles of the guinea-pig. Clin Exp Pharmacol Physiol 2002; 29: 18-25. 2001; 121 2007; 19 2010; 59 2011 2001; 281 2004; 8 2002; 310 1996; 93 1982; 203 1998; 115 2006; 290 2009; 131 2001; 40 2003; 130 2011; 589 2011; 344 2002; 29 1991; 100 2003; 92 2000; 289 2000; 302 2009; 72 2000; 127 1999; 79 2010; 298 2003; 27 2007; 4 2008; 22 2000; 80 2008; 20 2011; 140 2008; 152 2001; 535 2003; 284 e_1_2_9_30_2 Vanderwinden JM (e_1_2_9_12_2) 1999; 79 e_1_2_9_10_2 e_1_2_9_33_2 e_1_2_9_34_2 e_1_2_9_31_2 e_1_2_9_11_2 e_1_2_9_32_2 Faussone‐Pellegrini MS (e_1_2_9_25_2) 2011 e_1_2_9_14_2 e_1_2_9_37_2 e_1_2_9_13_2 e_1_2_9_38_2 e_1_2_9_16_2 e_1_2_9_35_2 e_1_2_9_15_2 e_1_2_9_36_2 e_1_2_9_18_2 e_1_2_9_17_2 e_1_2_9_19_2 e_1_2_9_21_2 e_1_2_9_20_2 e_1_2_9_23_2 e_1_2_9_22_2 e_1_2_9_7_2 e_1_2_9_6_2 e_1_2_9_5_2 e_1_2_9_4_2 e_1_2_9_3_2 e_1_2_9_2_2 e_1_2_9_9_2 e_1_2_9_8_2 e_1_2_9_24_2 e_1_2_9_27_2 e_1_2_9_26_2 e_1_2_9_29_2 e_1_2_9_28_2 11557517 - Am J Physiol Gastrointest Liver Physiol. 2001 Oct;281(4):G964-73 11600437 - Am J Physiol Cell Physiol. 2001 Nov;281(5):C1727-33 2013387 - Gastroenterology. 1991 May;100(5 Pt 1):1417-31 20871131 - Gut. 2010 Dec;59(12):1716-26 21914127 - J Cell Mol Med. 2012 Jul;16(7):1573-81 21337122 - Cell Tissue Res. 2011 Apr;344(1):17-30 11378158 - Neuropharmacology. 2001 Jun;40(7):879-87 17541447 - Nat Clin Pract Gastroenterol Hepatol. 2007 Jun;4(6):336-46 19850967 - Am J Physiol Gastrointest Liver Physiol. 2010 Jan;298(1):G14-24 21277853 - Gastroenterology. 2011 May;140(5):1608-17 12832853 - J Pharmacol Sci. 2003 May;92(1):35-42 18402642 - Neurogastroenterol Motil. 2008 May;20 Suppl 1:54-63 21173079 - J Physiol. 2011 Feb 1;589(Pt 3):697-710 11131126 - Cell Tissue Res. 2000 Nov;302(2):145-53 9952111 - Lab Invest. 1999 Jan;79(1):59-65 8876253 - Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):12008-13 10988076 - Science. 2000 Sep 15;289(5486):1942-6 20009347 - Arch Histol Cytol. 2009 Jul;72(2):107-15 11906457 - Clin Exp Pharmacol Physiol. 2002 Jan-Feb;29(1-2):18-25 15531236 - J Gastrointest Surg. 2004 Nov;8(7):831-41 19280210 - Histochem Cell Biol. 2009 Jun;131(6):691-702 10785280 - J Auton Nerv Syst. 2000 May 12;80(3):142-7 11533126 - J Physiol. 2001 Sep 1;535(Pt 2):323-34 12952899 - Development. 2003 Oct;130(20):4769-84 11438492 - Gastroenterology. 2001 Jul;121(1):34-42 10903171 - Development. 2000 Aug;127(16):3457-66 12548170 - Am J Surg Pathol. 2003 Feb;27(2):228-35 17593140 - Neurogastroenterol Motil. 2007 Jul;19(7):585-95 21300066 - Gastroenterology. 2011 May;140(5):1575-85.e8 9679037 - Gastroenterology. 1998 Aug;115(2):314-29 18280665 - Neuroscience. 2008 Mar 18;152(2):437-48 7103120 - Anat Rec. 1982 May;203(1):129-46 12388186 - Am J Physiol Gastrointest Liver Physiol. 2003 Feb;284(2):G231-41 12457234 - Cell Tissue Res. 2002 Dec;310(3):349-58 18483217 - Genes Dev. 2008 May 15;22(10):1276-312 18194151 - Neurogastroenterol Motil. 2008 May;20(5):521-31 16166342 - Am J Physiol Gastrointest Liver Physiol. 2006 Feb;290(2):G394-403 |
References_xml | – reference: Kashyap P, Farrugia G. Diabetic gastroparesis: what we have learned and had to unlearn in the past 5 years. Gut 2010; 59: 1716-26. – reference: Rumessen JJ, Thuneberg L, Mikkelsen HB. Plexus muscularis profundus and associated interstitial cells. II. Ultrastructural studies of mouse small intestine. Anat Rec 1982; 203: 129-46. – reference: Fujita A, Takeuchi T, Jun H, Hata F. Localization of Ca2+-activated K+ channel, SK3, in fibroblast-like cells forming gap junctions with smooth muscle cells in the mouse small intestine. J Pharmacol Sci 2003; 92: 35-42. – reference: Cobine CA, Hennig GW, Kurahashi M, Sanders KM, Ward SM, Keef KD. Relationship between interstitial cells of Cajal, fibroblast-like cells and inhibitory motor nerves in the internal anal sphincter. Cell Tissue Res 2011; 344: 17-30. – reference: Ro S, Hatton WJ, Koh SD, Horowitz B. Molecular properties of small-conductance Ca2+-activated K+ channels expressed in murine colonic smooth muscle. Am J Physiol Gastrointest Liver Physiol 2001; 281: G964-73. – reference: Ueno T, Duenes JA, Zarroug AE, Sarr MG. Nitrergic mechanisms mediating inhibitory control of longitudinal smooth muscle contraction in mouse small intestine. J Gastrointest Surg 2004; 8: 831-41. – reference: Vanderwinden JM, Rumessen JJ, De Laet MH, Vanderhaeghen JJ, Schiffmann SN. CD34+ cells in human intestine are fibroblasts adjacent to, but distinct from, interstitial cells of Cajal. Lab Invest 1999; 79: 59-65. – reference: Vanderwinden JM, Rumessen JJ, de Kerchove d'Exaerde A Jr et al. Kit-negative fibroblast-like cells expressing SK3, a Ca2+-activated K+ channel, in the gut musculature in health and disease. Cell Tissue Res 2002; 310: 349-58. – reference: Kurahashi M, Niwa Y, Cheng J et al. Platelet-derived growth factor signals play critical roles in differentiation of longitudinal smooth muscle cells in mouse embryonic gut. Neurogastroenterol Motil 2008; 20: 521-31. – reference: Hoch RV, Soriano P. Roles of PDGF in animal development. Development 2003; 130: 4769-84. – reference: Groneberg D, Konig P, Koesling D, Friebe A. Nitric oxide-sensitive guanylyl cyclase is dispensable for nitrergic signaling and gut motility in mouse intestinal smooth muscle. Gastroenterology 2011; 140: 1608-17. – reference: Vittal H, Farrugia G, Gomez G, Pasricha PJ. Mechanisms of disease: the pathological basis of gastroparesis--a review of experimental and clinical studies. Nat Clin Pract Gastroenterol Hepatol 2007; 4: 336-46. – reference: Streutker CJ, Huizinga JD, Campbell F, Ho J, Riddell RH. Loss of CD117 (c-kit)- and CD34-positive ICC and associated CD34-positive fibroblasts defines a subpopulation of chronic intestinal pseudo-obstruction. Am J Surg Pathol 2003; 27: 228-35. – reference: Spencer NJ, Hennig GW, Smith TK. Stretch-activated neuronal pathways to longitudinal and circular muscle in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 2003; 284: G231-41. – reference: Sivarao DV, Mashimo HL, Thatte HS, Goyal RK. Lower esophageal sphincter is achalasic in nNOS(−/−) and hypotensive in W/W(v) mutant mice. Gastroenterology 2001; 121: 34-42. – reference: Choi KM, Gibbons SJ, Roeder JL et al. Regulation of interstitial cells of Cajal in the mouse gastric body by neuronal nitric oxide. Neurogastroenterol Motil 2007; 19: 585-95. – reference: Zhang Y, Carmichael SA, Wang XY, Huizinga JD, Paterson WG. Neurotransmission in lower esophageal sphincter of W/Wv mutant mice. Am J Physiol Gastrointest Liver Physiol 2010; 298: G14-24. – reference: Hosseini R, Benton DC, Dunn PM, Jenkinson DH, Moss GW. SK3 is an important component of K(+) channels mediating the afterhyperpolarization in cultured rat SCG neurones. J Physiol 2001; 535: 323-34. – reference: Ward SM, Morris G, Reese L, Wang XY, Sanders KM. Interstitial cells of Cajal mediate enteric inhibitory neurotransmission in the lower esophageal and pyloric sphincters. Gastroenterology 1998; 115: 314-29. – reference: Farrugia G. Interstitial cells of Cajal in health and disease. Neurogastroenterol Motil 2008; 20(Suppl. 1): 54-63. – reference: Karlsson L, Lindahl P, Heath JK, Betsholtz C. Abnormal gastrointestinal development in PDGF-A and PDGFR-(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. Development 2000; 127: 3457-66. – reference: Faussone-Pellegrini MS, Grover M, Pasricha P et al. Ultrastructural differences between diabetic and idiopathic gastroparesis: The NIDDK gastroparesis clinical research consortium (GpCRC). J Cell Mol Med 2011; doi: 10.1111/j.1582-4934.2011.01451.x. – reference: Iino S, Horiguchi K, Nojyo Y. Interstitial cells of Cajal are innervated by nitrergic nerves and express nitric oxide-sensitive guanylate cyclase in the guinea-pig gastrointestinal tract. Neuroscience 2008; 152: 437-48. – reference: Grover M, Farrugia G, Lurken MS et al. Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterology 2011; 140: 1575-85. e8. – reference: Bond CT, Sprengel R, Bissonnette JM et al. Respiration and parturition affected by conditional overexpression of the Ca2+-activated K+ channel subunit, SK3. Science 2000; 289: 1942-6. – reference: Vanderwinden JM, Rumessen JJ, De Laet MH, Vanderhaeghen JJ, Schiffmann SN. CD34 immunoreactivity and interstitial cells of Cajal in the human and mouse gastrointestinal tract. Cell Tissue Res 2000; 302: 145-53. – reference: Kurahashi M, Zheng H, Dwyer L, Ward SM, Don Koh S, Sanders KM. A functional role for the 'fibroblast-like cells' in gastrointestinal smooth muscles. J Physiol 2011; 589: 697-710. – reference: El-Yazbi AF, Cho WJ, Boddy G, Schulz R, Daniel EE. Impact of caveolin-1 knockout on NANC relaxation in circular muscles of the mouse small intestine compared with longitudinal muscles. Am J Physiol Gastrointest Liver Physiol 2006; 290: G394-403. – reference: Rumessen JJ, Thuneberg L. Interstitial cells of Cajal in human small intestine. Ultrastructural identification and organization between the main smooth muscle layers. Gastroenterology 1991; 100: 1417-31. – reference: Horiguchi K, Komuro T. Ultrastructural observations of fibroblast-like cells forming gap junctions in the W/W(nu) mouse small intestine. J Auton Nerv Syst 2000; 80: 142-7. – reference: Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev 2008; 22: 1276-312. – reference: Klemm MF, Lang RJ. Distribution of Ca2+-activated K+ channel (SK2 and SK3) immunoreactivity in intestinal smooth muscles of the guinea-pig. Clin Exp Pharmacol Physiol 2002; 29: 18-25. – reference: Grunnet M, Jespersen T, Angelo K et al. Pharmacological modulation of SK3 channels. Neuropharmacology 2001; 40: 879-87. – reference: Fujita A, Takeuchi T, Saitoh N, Hanai J, Hata F. Expression of Ca(2+)-activated K(+) channels, SK3, in the interstitial cells of Cajal in the gastrointestinal tract. Am J Physiol Cell Physiol 2001; 281: C1727-33. – reference: Iino S, Horiguchi K, Horiguchi S, Nojyo Y. c-Kit-negative fibroblast-like cells express platelet-derived growth factor receptor alpha in the murine gastrointestinal musculature. Histochem Cell Biol 2009; 131: 691-702. – reference: Burns AJ, Lomax AE, Torihashi S, Sanders KM, Ward SM. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Sci USA 1996; 93: 12008-13. – reference: Iino S, Nojyo Y. Immunohistochemical demonstration of c-Kit-negative fibroblast-like cells in murine gastrointestinal musculature. Arch Histol Cytol 2009; 72: 107-15. – volume: 281 start-page: G964 year: 2001 end-page: 73 article-title: Molecular properties of small‐conductance Ca2+‐activated K+ channels expressed in murine colonic smooth muscle publication-title: Am J Physiol Gastrointest Liver Physiol – year: 2011 article-title: Ultrastructural differences between diabetic and idiopathic gastroparesis: The NIDDK gastroparesis clinical research consortium (GpCRC) publication-title: J Cell Mol Med – volume: 281 start-page: C1727 year: 2001 end-page: 33 article-title: Expression of Ca(2+)‐activated K(+) channels, SK3, in the interstitial cells of Cajal in the gastrointestinal tract publication-title: Am J Physiol Cell Physiol – volume: 152 start-page: 437 year: 2008 end-page: 48 article-title: Interstitial cells of Cajal are innervated by nitrergic nerves and express nitric oxide‐sensitive guanylate cyclase in the guinea‐pig gastrointestinal tract publication-title: Neuroscience – volume: 22 start-page: 1276 year: 2008 end-page: 312 article-title: Role of platelet‐derived growth factors in physiology and medicine publication-title: Genes Dev – volume: 344 start-page: 17 year: 2011 end-page: 30 article-title: Relationship between interstitial cells of Cajal, fibroblast‐like cells and inhibitory motor nerves in the internal anal sphincter publication-title: Cell Tissue Res – volume: 29 start-page: 18 year: 2002 end-page: 25 article-title: Distribution of Ca2+‐activated K+ channel (SK2 and SK3) immunoreactivity in intestinal smooth muscles of the guinea‐pig publication-title: Clin Exp Pharmacol Physiol – volume: 589 start-page: 697 year: 2011 end-page: 710 article-title: A functional role for the ‘fibroblast‐like cells’ in gastrointestinal smooth muscles publication-title: J Physiol – volume: 298 start-page: G14 year: 2010 end-page: 24 article-title: Neurotransmission in lower esophageal sphincter of W/W mutant mice publication-title: Am J Physiol Gastrointest Liver Physiol – volume: 115 start-page: 314 year: 1998 end-page: 29 article-title: Interstitial cells of Cajal mediate enteric inhibitory neurotransmission in the lower esophageal and pyloric sphincters publication-title: Gastroenterology – volume: 310 start-page: 349 year: 2002 end-page: 58 article-title: Kit‐negative fibroblast‐like cells expressing SK3, a Ca2+‐activated K+ channel, in the gut musculature in health and disease publication-title: Cell Tissue Res – volume: 302 start-page: 145 year: 2000 end-page: 53 article-title: CD34 immunoreactivity and interstitial cells of Cajal in the human and mouse gastrointestinal tract publication-title: Cell Tissue Res – volume: 40 start-page: 879 year: 2001 end-page: 87 article-title: Pharmacological modulation of SK3 channels publication-title: Neuropharmacology – volume: 290 start-page: G394 year: 2006 end-page: 403 article-title: Impact of caveolin‐1 knockout on NANC relaxation in circular muscles of the mouse small intestine compared with longitudinal muscles publication-title: Am J Physiol Gastrointest Liver Physiol – volume: 140 start-page: 1575 year: 2011 end-page: 85 article-title: Cellular changes in diabetic and idiopathic gastroparesis publication-title: Gastroenterology – volume: 27 start-page: 228 year: 2003 end-page: 35 article-title: Loss of CD117 (c‐kit)‐ and CD34‐positive ICC and associated CD34‐positive fibroblasts defines a subpopulation of chronic intestinal pseudo‐obstruction publication-title: Am J Surg Pathol – volume: 127 start-page: 3457 year: 2000 end-page: 66 article-title: Abnormal gastrointestinal development in PDGF‐A and PDGFR‐(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis publication-title: Development – volume: 535 start-page: 323 year: 2001 end-page: 34 article-title: SK3 is an important component of K(+) channels mediating the afterhyperpolarization in cultured rat SCG neurones publication-title: J Physiol – volume: 19 start-page: 585 year: 2007 end-page: 95 article-title: Regulation of interstitial cells of Cajal in the mouse gastric body by neuronal nitric oxide publication-title: Neurogastroenterol Motil – volume: 121 start-page: 34 year: 2001 end-page: 42 article-title: Lower esophageal sphincter is achalasic in nNOS(−/−) and hypotensive in W/W mutant mice publication-title: Gastroenterology – volume: 59 start-page: 1716 year: 2010 end-page: 26 article-title: Diabetic gastroparesis: what we have learned and had to unlearn in the past 5 years publication-title: Gut – volume: 20 start-page: 521 year: 2008 end-page: 31 article-title: Platelet‐derived growth factor signals play critical roles in differentiation of longitudinal smooth muscle cells in mouse embryonic gut publication-title: Neurogastroenterol Motil – volume: 140 start-page: 1608 year: 2011 end-page: 17 article-title: Nitric oxide‐sensitive guanylyl cyclase is dispensable for nitrergic signaling and gut motility in mouse intestinal smooth muscle publication-title: Gastroenterology – volume: 131 start-page: 691 year: 2009 end-page: 702 article-title: c‐Kit‐negative fibroblast‐like cells express platelet‐derived growth factor receptor alpha in the murine gastrointestinal musculature publication-title: Histochem Cell Biol – volume: 80 start-page: 142 year: 2000 end-page: 7 article-title: Ultrastructural observations of fibroblast‐like cells forming gap junctions in the W/W(nu) mouse small intestine publication-title: J Auton Nerv Syst – volume: 130 start-page: 4769 year: 2003 end-page: 84 article-title: Roles of PDGF in animal development publication-title: Development – volume: 203 start-page: 129 year: 1982 end-page: 46 article-title: Plexus muscularis profundus and associated interstitial cells. II. Ultrastructural studies of mouse small intestine publication-title: Anat Rec – volume: 20 start-page: 54 issue: Suppl. 1 year: 2008 end-page: 63 article-title: Interstitial cells of Cajal in health and disease publication-title: Neurogastroenterol Motil – volume: 93 start-page: 12008 year: 1996 end-page: 13 article-title: Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach publication-title: Proc Natl Acad Sci USA – volume: 79 start-page: 59 year: 1999 end-page: 65 article-title: CD34 cells in human intestine are fibroblasts adjacent to, but distinct from, interstitial cells of Cajal publication-title: Lab Invest – volume: 8 start-page: 831 year: 2004 end-page: 41 article-title: Nitrergic mechanisms mediating inhibitory control of longitudinal smooth muscle contraction in mouse small intestine publication-title: J Gastrointest Surg – volume: 100 start-page: 1417 year: 1991 end-page: 31 article-title: Interstitial cells of Cajal in human small intestine. Ultrastructural identification and organization between the main smooth muscle layers publication-title: Gastroenterology – volume: 4 start-page: 336 year: 2007 end-page: 46 article-title: Mechanisms of disease: the pathological basis of gastroparesis‐‐a review of experimental and clinical studies publication-title: Nat Clin Pract Gastroenterol Hepatol – volume: 289 start-page: 1942 year: 2000 end-page: 6 article-title: Respiration and parturition affected by conditional overexpression of the Ca2+‐activated K+ channel subunit, SK3 publication-title: Science – volume: 72 start-page: 107 year: 2009 end-page: 15 article-title: Immunohistochemical demonstration of c‐Kit‐negative fibroblast‐like cells in murine gastrointestinal musculature publication-title: Arch Histol Cytol – volume: 92 start-page: 35 year: 2003 end-page: 42 article-title: Localization of Ca2+‐activated K+ channel, SK3, in fibroblast‐like cells forming gap junctions with smooth muscle cells in the mouse small intestine publication-title: J Pharmacol Sci – volume: 284 start-page: G231 year: 2003 end-page: 41 article-title: Stretch‐activated neuronal pathways to longitudinal and circular muscle in guinea pig distal colon publication-title: Am J Physiol Gastrointest Liver Physiol – ident: e_1_2_9_4_2 doi: 10.1111/j.1365-2982.2008.01109.x – ident: e_1_2_9_27_2 doi: 10.1046/j.1440-1681.2002.03601.x – ident: e_1_2_9_19_2 doi: 10.1254/jphs.92.35 – ident: e_1_2_9_16_2 doi: 10.1016/S0028-3908(01)00028-4 – ident: e_1_2_9_29_2 doi: 10.1073/pnas.93.21.12008 – ident: e_1_2_9_24_2 doi: 10.1007/s00441-011-1138-1 – ident: e_1_2_9_21_2 doi: 10.1007/s00418-009-0580-6 – ident: e_1_2_9_32_2 doi: 10.1152/ajpgi.00266.2009 – ident: e_1_2_9_6_2 doi: 10.1111/j.1365-2982.2007.01055.x – ident: e_1_2_9_28_2 doi: 10.1016/S0016-5085(98)70198-2 – ident: e_1_2_9_31_2 doi: 10.1053/gast.2001.25541 – ident: e_1_2_9_36_2 doi: 10.1152/ajpgi.00291.2002 – ident: e_1_2_9_8_2 doi: 10.1242/dev.127.16.3457 – ident: e_1_2_9_3_2 doi: 10.1038/ncpgasthep0838 – ident: e_1_2_9_23_2 doi: 10.1113/jphysiol.2010.201129 – ident: e_1_2_9_38_2 doi: 10.1097/00000478-200302000-00012 – ident: e_1_2_9_13_2 doi: 10.1007/s004410000264 – ident: e_1_2_9_33_2 doi: 10.1016/j.neuroscience.2007.12.044 – ident: e_1_2_9_17_2 doi: 10.1152/ajpgi.2001.281.4.G964 – ident: e_1_2_9_35_2 doi: 10.1152/ajpgi.00321.2005 – ident: e_1_2_9_9_2 doi: 10.1016/0016-5085(91)70033-T – ident: e_1_2_9_22_2 doi: 10.1679/aohc.72.107 – year: 2011 ident: e_1_2_9_25_2 article-title: Ultrastructural differences between diabetic and idiopathic gastroparesis: The NIDDK gastroparesis clinical research consortium (GpCRC) publication-title: J Cell Mol Med – ident: e_1_2_9_11_2 doi: 10.1016/S0165-1838(00)00089-8 – ident: e_1_2_9_18_2 doi: 10.1152/ajpcell.2001.281.5.C1727 – ident: e_1_2_9_37_2 doi: 10.1016/j.gassur.2004.06.004 – ident: e_1_2_9_2_2 doi: 10.1136/gut.2009.199703 – ident: e_1_2_9_15_2 doi: 10.1111/j.1469-7793.2001.00323.x – ident: e_1_2_9_26_2 doi: 10.1053/j.gastro.2011.01.046 – ident: e_1_2_9_34_2 doi: 10.1053/j.gastro.2011.01.038 – ident: e_1_2_9_5_2 doi: 10.1101/gad.1653708 – ident: e_1_2_9_7_2 doi: 10.1242/dev.00721 – ident: e_1_2_9_20_2 doi: 10.1126/science.289.5486.1942 – volume: 79 start-page: 59 year: 1999 ident: e_1_2_9_12_2 article-title: CD34+ cells in human intestine are fibroblasts adjacent to, but distinct from, interstitial cells of Cajal publication-title: Lab Invest – ident: e_1_2_9_10_2 doi: 10.1002/ar.1092030112 – ident: e_1_2_9_14_2 doi: 10.1007/s00441-002-0638-4 – ident: e_1_2_9_30_2 doi: 10.1111/j.1365-2982.2007.00936.x – reference: 21337122 - Cell Tissue Res. 2011 Apr;344(1):17-30 – reference: 11438492 - Gastroenterology. 2001 Jul;121(1):34-42 – reference: 17593140 - Neurogastroenterol Motil. 2007 Jul;19(7):585-95 – reference: 21914127 - J Cell Mol Med. 2012 Jul;16(7):1573-81 – reference: 12952899 - Development. 2003 Oct;130(20):4769-84 – reference: 20871131 - Gut. 2010 Dec;59(12):1716-26 – reference: 11378158 - Neuropharmacology. 2001 Jun;40(7):879-87 – reference: 11906457 - Clin Exp Pharmacol Physiol. 2002 Jan-Feb;29(1-2):18-25 – reference: 21277853 - Gastroenterology. 2011 May;140(5):1608-17 – reference: 16166342 - Am J Physiol Gastrointest Liver Physiol. 2006 Feb;290(2):G394-403 – reference: 12388186 - Am J Physiol Gastrointest Liver Physiol. 2003 Feb;284(2):G231-41 – reference: 12457234 - Cell Tissue Res. 2002 Dec;310(3):349-58 – reference: 12548170 - Am J Surg Pathol. 2003 Feb;27(2):228-35 – reference: 10903171 - Development. 2000 Aug;127(16):3457-66 – reference: 19850967 - Am J Physiol Gastrointest Liver Physiol. 2010 Jan;298(1):G14-24 – reference: 19280210 - Histochem Cell Biol. 2009 Jun;131(6):691-702 – reference: 7103120 - Anat Rec. 1982 May;203(1):129-46 – reference: 18194151 - Neurogastroenterol Motil. 2008 May;20(5):521-31 – reference: 21173079 - J Physiol. 2011 Feb 1;589(Pt 3):697-710 – reference: 18483217 - Genes Dev. 2008 May 15;22(10):1276-312 – reference: 18280665 - Neuroscience. 2008 Mar 18;152(2):437-48 – reference: 21300066 - Gastroenterology. 2011 May;140(5):1575-85.e8 – reference: 11131126 - Cell Tissue Res. 2000 Nov;302(2):145-53 – reference: 11600437 - Am J Physiol Cell Physiol. 2001 Nov;281(5):C1727-33 – reference: 20009347 - Arch Histol Cytol. 2009 Jul;72(2):107-15 – reference: 9679037 - Gastroenterology. 1998 Aug;115(2):314-29 – reference: 18402642 - Neurogastroenterol Motil. 2008 May;20 Suppl 1:54-63 – reference: 8876253 - Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):12008-13 – reference: 11557517 - Am J Physiol Gastrointest Liver Physiol. 2001 Oct;281(4):G964-73 – reference: 2013387 - Gastroenterology. 1991 May;100(5 Pt 1):1417-31 – reference: 10785280 - J Auton Nerv Syst. 2000 May 12;80(3):142-7 – reference: 9952111 - Lab Invest. 1999 Jan;79(1):59-65 – reference: 17541447 - Nat Clin Pract Gastroenterol Hepatol. 2007 Jun;4(6):336-46 – reference: 12832853 - J Pharmacol Sci. 2003 May;92(1):35-42 – reference: 10988076 - Science. 2000 Sep 15;289(5486):1942-6 – reference: 11533126 - J Physiol. 2001 Sep 1;535(Pt 2):323-34 – reference: 15531236 - J Gastrointest Surg. 2004 Nov;8(7):831-41 |
SSID | ssj0006246 |
Score | 2.2056665 |
Snippet | Background Emerging evidence suggests that “fibroblast‐like cells” (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are... Background Emerging evidence suggests that “fibroblast‐like cells” (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are... Emerging evidence suggests that "fibroblast-like cells" (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are... Background Emerging evidence suggests that "fibroblast-like cells" (FLC) may play a role in the regulation of gastrointestinal (GI) motor function. FLC are... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 844 |
SubjectTerms | Adult Antibodies Biopsy Case-Control Studies Cell body Cytology Diabetes Complications - metabolism Diabetes mellitus Enteric nervous system Female fibroblast-like cells Ganglia Gastric Emptying gastroparesis Gastroparesis - metabolism Humans Immunohistochemistry Interstitial cells interstitial cells of Cajal Male Muscle, Smooth - cytology Muscle, Smooth - metabolism myenteric plexus Myenteric Plexus - metabolism Nervous system platelet-derived growth factor receptor Platelet-derived growth factor receptors Potassium channels (calcium-gated) Receptor, Platelet-Derived Growth Factor alpha - metabolism Small-Conductance Calcium-Activated Potassium Channels - metabolism Smooth muscle Stomach - cytology Stomach - metabolism |
Title | Platelet-derived growth factor receptor α (PDGFRα)-expressing "fibroblast-like cells" in diabetic and idiopathic gastroparesis of humans |
URI | https://api.istex.fr/ark:/67375/WNG-N4B5KP1N-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2982.2012.01944.x https://www.ncbi.nlm.nih.gov/pubmed/22650155 https://www.proquest.com/docview/1034796495 https://www.proquest.com/docview/1038599341 https://pubmed.ncbi.nlm.nih.gov/PMC3756591 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFLbQkBA3_GzAugEyEprgIlXS2Pm5HD_dBGqoJga7s5zE7qKWZGpaKFz1EbjgEh5iL7KH6JNwjpOWBSY0Ie6sxE5sn2PnO853ziHkcegpxlOXW8rFo5vADqzYg5JkIHC7I1MnQd_hXuTtH7JXR_yo5j-hL0wVH2J14IYrw-zXuMBlXDYXuWFohQH6U-GRHtjjrI14Em8gPjr4FUnK61SORi63LQA1vEnqufBBjS_VVZz02UUw9E825XmUaz5T3ZtkuBxgxU4ZtqeTuJ18-S324_-ZgVvkRo1m6W6lfrfJFZWvk43dHCz5D5_pDjX8UnNwv06u9erf-BvkW38EEBc0ZjH_msIS-KhSOhgXnybHtMr_Q2EfVidYODulT_ov9roHZ6dPobaaVcTdfEAX8-8aul_EgP_xQaNsqCj-hygX8x80y2l1rJwlVOYpzdKsMNmXEzqA-uMCmfdlVtJCU5OnsLxDDrsv3z7ft-r0EFbCPJtZSjkxD6WWrOO4seeDoc-1VIEbBI50tQdQRemQhbECCKalrzt-olI7lWGoHQ2w6i5Zy4tcbRIqFea9CVym3JS5gY5TR2keOjy2FUuSsEX8pSqIpI6djik8RuKcDQWyECgLgbIQRhZi1iLOquVJFT_kEm12jLatGsjxEPl3Phfvoz0RsWf8dd-JxLsWebRURwG7Ak6xzFUxLeEV6CHsgfX71zoBB3jKnBa5V6nw6o0AyjmiaRh4Q7lXFTAqefNOnh2b6OTQTQ-mrkU8o7uXHrWIem-wtPWvDbfJdbxcEQDvk7XJeKoeAGKcxA_NXvATnxZkgQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQJgEvXDYu5WokNMFDqqSx0-RxMLrC1lBNG-zNchK7i1qSqRcoPPUn8MAj_Ij9kf2I_hLOcdKywIQmxJulHMexz7H9nZNzIeRp4CnGE5dbykXTjW_7VuRBSzJguN2QiRNj7HAn9NoH7M0hPyzLAWEsTJEfYmlww51hzmvc4GiQru5y46IV-BhQhTY9UMhZHQDlKhb4xkT6W3u_ckl5jSLUyOW2BbCGV916zn1T5a5axWWfngdE__SnPItzzUXVuk4GiykW_in9-mQc1eMvv2V__E9rcINcKwEt3Swk8Ca5pLI1sr6ZgTL_4TPdoMbF1Nju18jlTvknf5186w4A5YLQzGdfE9gFH1VCe8P80_iIFiWAKBzF6hgbpyf0WXdru7V3evIcqNW08N3NenQ--67h-_MIVAB80SDtK4q_Ikbz2Q-aZrSwLKcxlVlC0yTNTQHmmPaAfpij8_0oHdFcU1OqcHSLHLRe7b9sW2WFCCtmns0spZyIB1JL1nDcyGuCrs-1VL7r-450tQdoRemABZECFKZlUzeasUrsRAaBdjQgq9tkJcszdZdQqbD0je8y5SbM9XWUOErzwOGRrVgcBzXSXMiCiMv06VjFYyDOqFHAC4G8EMgLYXghpjXiLHseFylELtBnw4jbsoMc9tEFr8nF-3BbhOwF3-k6oXhXI08W8ijgYMAllpnKJyMYAoOEPVCA_0rjc0CozKmRO4UML0cEXM4RUMPEK9K9JMDE5NUnWXpkEpTDZ3qwdDXiGeG98KxF2HmLrXv_2vExudLe7-yK3dfhzn1yFUkKf8AHZGU8nKiHACDH0SNzMPwErqFonQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF6hVqq48NPyE34XCVVwcGTHu459LIS0UGKiikJvq7V3N7US7Cg_EDjlEThwhIfoi_Qh8iTMrJPQQIUqxG0l79rendn1N-NvZgh5HAWaceVzR_vougnd0EkCaEkGAndrUnkpxg634mDvkL064kdz_hPGwpT5IZYON9wZ9rzGDd5XZnWTW4ZWFGI8Fbr0wB5nVcCT6yxwIyzj0Dj4lUoqqJWRRj53HUA1fJXVc-6dVj5V67jqk_Nw6J90yrMw136nmldJdzHDkp7SrY5HSTX98lvyx_-zBNfIlTmcpTul_l0nl3S-SbZ2cjDlP3ym29QSTK3nfpNstOb_8bfIt3YPMC6ozGz6VcEe-KgV7QyKT6NjWhYAonAQ6z42Tk_ok3Zjt3lwevIUeutJydzNO3Q2_W7g9YsEDAC8US_raoo_Ioaz6Q-a5bT0K2cplbmimcoKW345pR3oPyiQej_MhrQw1BYqHN4gh80Xb5_vOfP6EE4KEmaO1l7CI2kkq3l-EtTB0udG6tAPQ0_6JgCsok3EokQDBjOybmr1VCtXySgyngFcdZOs5UWubxMqNRa-CX2mfcX80CTK04ZHHk9czdI0qpD6QhVEOk-ejjU8euKMEQWyECgLgbIQVhZiUiHecmS_TCBygTHbVtuWA-SgiwS8Ohfv410Rs2d8v-3F4l2FPFqoo4BjAZdY5roYD-ERGCIcgPn71z4hB3zKvAq5Varw8omAyjnCaZj4inIvO2Ba8tUreXZs05PDawawdBUSWN298KxF3HqDrTv_OvAh2Wg3muL1y3j_LrmMPUoy4D2yNhqM9X1Aj6PkgT0WfgImQGdM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Platelet-derived+growth+factor+receptor+%CE%B1+%28PDGFR%CE%B1%29-expressing+%22fibroblast-like+cells%22+in+diabetic+and+idiopathic+gastroparesis+of+humans&rft.jtitle=Neurogastroenterology+and+motility&rft.au=Grover%2C+M&rft.au=Bernard%2C+C+E&rft.au=Pasricha%2C+P+J&rft.au=Parkman%2C+H+P&rft.date=2012-09-01&rft.issn=1365-2982&rft.eissn=1365-2982&rft.volume=24&rft.issue=9&rft.spage=844&rft_id=info:doi/10.1111%2Fj.1365-2982.2012.01944.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-1925&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-1925&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-1925&client=summon |