Homogeneous Optical and Electronic Properties of Graphene Due to the Suppression of Multilayer Patches During CVD on Copper Foils
A synthesis method of strictly monolayer and fully homogeneous graphene across tens of centimeter squares, by chemical vapour deposition onto standard copper foils, is presented. The growth technique involves cyclic injection of a carbon precursor separated by idle times with constant hydrogen expos...
Saved in:
Published in | Advanced functional materials Vol. 24; no. 7; pp. 964 - 970 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.02.2014
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A synthesis method of strictly monolayer and fully homogeneous graphene across tens of centimeter squares, by chemical vapour deposition onto standard copper foils, is presented. The growth technique involves cyclic injection of a carbon precursor separated by idle times with constant hydrogen exposure. The formation of spurious multilayer patches, which accompanies the standard growth techniques based on continuous exposure to methane, is inhibited here, in a broad range of pressure and gas composition, including in two pressure regimes which are known to yield distinctive grain morphologies (dendritic versus hexagonal). Raman spectra confirm the absence of defects within the graphene films. A mechanism for growth/suppression of the multilayer patches based on the carbon storage at defective regions is proposed. The importance of multilayer suppression is highlighted in a comparative study showing the detrimental effect of patches on the performances of graphene transistors and on the optical transparency of stacked layers. The full‐layer graphene sheets are superiorly homogeneous in terms of their optical and electronic properties, and are thus suited for applications for high‐density integration as well as transparent electrodes with spatially continuous optical absorbance. Graphene transistors fabricated by the pulsed CVD method exhibit room‐temperature mobilities with a mean value of 5000 cm2 V−1 s−1.
A pulsed chemical vapor deposition (CVD) process for graphene growth on copper foils is introduced. The pulsed injection of carbon precursor efficiently prevents the formation of multilayer patches that is found to affect optical and electronic properties of graphene and leads to homogenous macroscopic graphene sheets. |
---|---|
AbstractList | A synthesis method of strictly monolayer and fully homogeneous graphene across tens of centimeter squares, by chemical vapour deposition onto standard copper foils, is presented. The growth technique involves cyclic injection of a carbon precursor separated by idle times with constant hydrogen exposure. The formation of spurious multilayer patches, which accompanies the standard growth techniques based on continuous exposure to methane, is inhibited here, in a broad range of pressure and gas composition, including in two pressure regimes which are known to yield distinctive grain morphologies (dendritic versus hexagonal). Raman spectra confirm the absence of defects within the graphene films. A mechanism for growth/suppression of the multilayer patches based on the carbon storage at defective regions is proposed. The importance of multilayer suppression is highlighted in a comparative study showing the detrimental effect of patches on the performances of graphene transistors and on the optical transparency of stacked layers. The full‐layer graphene sheets are superiorly homogeneous in terms of their optical and electronic properties, and are thus suited for applications for high‐density integration as well as transparent electrodes with spatially continuous optical absorbance. Graphene transistors fabricated by the pulsed CVD method exhibit room‐temperature mobilities with a mean value of 5000 cm
2
V
−1
s
−1
. A synthesis method of strictly monolayer and fully homogeneous graphene across tens of centimeter squares, by chemical vapour deposition onto standard copper foils, is presented. The growth technique involves cyclic injection of a carbon precursor separated by idle times with constant hydrogen exposure. The formation of spurious multilayer patches, which accompanies the standard growth techniques based on continuous exposure to methane, is inhibited here, in a broad range of pressure and gas composition, including in two pressure regimes which are known to yield distinctive grain morphologies (dendritic versus hexagonal). Raman spectra confirm the absence of defects within the graphene films. A mechanism for growth/suppression of the multilayer patches based on the carbon storage at defective regions is proposed. The importance of multilayer suppression is highlighted in a comparative study showing the detrimental effect of patches on the performances of graphene transistors and on the optical transparency of stacked layers. The full‐layer graphene sheets are superiorly homogeneous in terms of their optical and electronic properties, and are thus suited for applications for high‐density integration as well as transparent electrodes with spatially continuous optical absorbance. Graphene transistors fabricated by the pulsed CVD method exhibit room‐temperature mobilities with a mean value of 5000 cm2 V−1 s−1. A pulsed chemical vapor deposition (CVD) process for graphene growth on copper foils is introduced. The pulsed injection of carbon precursor efficiently prevents the formation of multilayer patches that is found to affect optical and electronic properties of graphene and leads to homogenous macroscopic graphene sheets. A synthesis method of strictly monolayer and fully homogeneous graphene across tens of centimeter squares, by chemical vapour deposition onto standard copper foils, is presented. The growth technique involves cyclic injection of a carbon precursor separated by idle times with constant hydrogen exposure. The formation of spurious multilayer patches, which accompanies the standard growth techniques based on continuous exposure to methane, is inhibited here, in a broad range of pressure and gas composition, including in two pressure regimes which are known to yield distinctive grain morphologies (dendritic versus hexagonal). Raman spectra confirm the absence of defects within the graphene films. A mechanism for growth/suppression of the multilayer patches based on the carbon storage at defective regions is proposed. The importance of multilayer suppression is highlighted in a comparative study showing the detrimental effect of patches on the performances of graphene transistors and on the optical transparency of stacked layers. The full-layer graphene sheets are superiorly homogeneous in terms of their optical and electronic properties, and are thus suited for applications for high-density integration as well as transparent electrodes with spatially continuous optical absorbance. Graphene transistors fabricated by the pulsed CVD method exhibit room-temperature mobilities with a mean value of 5000 cm super(2) V super(-1) s super(-1). A pulsed chemical vapor deposition (CVD) process for graphene growth on copper foils is introduced. The pulsed injection of carbon precursor efficiently prevents the formation of multilayer patches that is found to affect optical and electronic properties of graphene and leads to homogenous macroscopic graphene sheets. A synthesis method of strictly monolayer and fully homogeneous graphene across tens of centimeter squares, by chemical vapour deposition onto standard copper foils, is presented. The growth technique involves cyclic injection of a carbon precursor separated by idle times with constant hydrogen exposure. The formation of spurious multilayer patches, which accompanies the standard growth techniques based on continuous exposure to methane, is inhibited here, in a broad range of pressure and gas composition, including in two pressure regimes which are known to yield distinctive grain morphologies (dendritic versus hexagonal). Raman spectra confi rm the absence of defects within the graphene fi lms. A mechanism for growth/suppression of the multilayer patches based on the carbon storage at defective regions is proposed. The importance of multilayer suppression is highlighted in a comparative study showing the detrimental effect of patches on the performances of graphene transistors and on the optical transparency of stacked layers. The full-layer graphene sheets are superiorly homogeneous in terms of their optical and electronic properties, and are thus suited for applications for high-density integration as well as transparent electrodes with spatially continuous optical absorbance. Graphene transistors fabricated by the pulsed CVD method exhibit room-temperature mobilities with a mean value of 5000 cm 2 V −1 s −1 . |
Author | Kalita, Dipankar Arjmandi-Tash, Hadi Coraux, Johann Kimouche, Amina Reserbat-Plantey, Antoine Bouchiat, Vincent Allain, Adrien Marty, Laëtitia Bendiab, Nedjma Reita, Valérie Han, Zheng Pairis, Sébastien |
Author_xml | – sequence: 1 givenname: Zheng surname: Han fullname: Han, Zheng organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France – sequence: 2 givenname: Amina surname: Kimouche fullname: Kimouche, Amina organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France – sequence: 3 givenname: Dipankar surname: Kalita fullname: Kalita, Dipankar organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France – sequence: 4 givenname: Adrien surname: Allain fullname: Allain, Adrien organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France – sequence: 5 givenname: Hadi surname: Arjmandi-Tash fullname: Arjmandi-Tash, Hadi organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France – sequence: 6 givenname: Antoine surname: Reserbat-Plantey fullname: Reserbat-Plantey, Antoine organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France – sequence: 7 givenname: Laëtitia surname: Marty fullname: Marty, Laëtitia organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France – sequence: 8 givenname: Sébastien surname: Pairis fullname: Pairis, Sébastien organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France – sequence: 9 givenname: Valérie surname: Reita fullname: Reita, Valérie organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France – sequence: 10 givenname: Nedjma surname: Bendiab fullname: Bendiab, Nedjma organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France – sequence: 11 givenname: Johann surname: Coraux fullname: Coraux, Johann organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France – sequence: 12 givenname: Vincent surname: Bouchiat fullname: Bouchiat, Vincent email: bouchiat@grenoble.cnrs.fr organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France |
BackLink | https://hal.science/hal-00880874$$DView record in HAL |
BookMark | eNqFkTtv2zAURokiBZqkXTtzbAe5fOk1GlJsF3WaAH15I2j5KmZLiwpJtfWYfx6qCoxsXUji4pwPuPwu0FlnO0DoLSUzSgj7oHbtYcYI5YTmnL1A5zSjWcIJK85Ob7p5hS68_0kik3Nxjh5W9mDvoAM7eHzTB90og1W3w1cGmuBspxt862wPLmjw2LZ46VS_jwKuB8DB4rAH_GXoewfea9uNyPVggjbqCA7fqtDso1gPTnd3uPpe48hUto-JeGG18a_Ry1YZD2-e7kv0bXH1tVol65vlx2q-ThqREZawPBVpuhWMtYTtyl3Jt0VaCNKWZJspKgSAiDu1TUoYyVicFkqUPAchxHjwS_R-yt0rI3unD8odpVVaruZrOc4IKQpS5OI3jey7ie2dvR_AB3nQvgFj1L-PkjRlpGQ5L8qIzia0cdZ7B-0pmxI59iLHXuSplyiUk_BHGzj-h5bzenH93E0mV_sAf0-ucr9klvM8lT8-L2W9WVWf0g2Tgj8CX2ShIQ |
CitedBy_id | crossref_primary_10_1021_acsmaterialsau_1c00047 crossref_primary_10_1088_2053_1583_aa57c6 crossref_primary_10_1088_2057_1976_ab42d6 crossref_primary_10_1155_2018_7610409 crossref_primary_10_1038_s41598_019_46713_8 crossref_primary_10_1039_C8NA00181B crossref_primary_10_1021_acs_jpcc_5b03911 crossref_primary_10_1016_j_carbon_2020_11_047 crossref_primary_10_1016_j_carbon_2015_09_048 crossref_primary_10_1021_acs_langmuir_5b03273 crossref_primary_10_1016_j_carbon_2022_07_011 crossref_primary_10_1002_ange_201403572 crossref_primary_10_1021_acsami_8b01194 crossref_primary_10_1021_acs_chemmater_8b03393 crossref_primary_10_1039_C7CP01012E crossref_primary_10_1016_j_carbon_2015_08_114 crossref_primary_10_1103_PhysRevApplied_6_064021 crossref_primary_10_1021_acs_chemmater_6b04432 crossref_primary_10_1103_PhysRevB_102_075436 crossref_primary_10_1016_j_carbon_2018_03_056 crossref_primary_10_1021_acs_jpcc_9b03808 crossref_primary_10_1039_C9TC04779D crossref_primary_10_1007_s40843_020_1394_3 crossref_primary_10_1016_j_apsusc_2017_07_092 crossref_primary_10_1021_acsnano_6b08069 crossref_primary_10_1007_s11705_014_1450_x crossref_primary_10_1021_acsanm_1c02050 crossref_primary_10_1038_s41586_021_03753_3 crossref_primary_10_1088_2043_6262_7_2_023001 crossref_primary_10_1002_adma_201903615 crossref_primary_10_1002_jrs_5267 crossref_primary_10_1103_PhysRevB_91_075426 crossref_primary_10_1021_acsami_9b01137 crossref_primary_10_1021_acsnano_0c00103 crossref_primary_10_1016_j_carbon_2017_07_024 crossref_primary_10_1021_acs_nanolett_6b02981 crossref_primary_10_1088_2515_7639_aac66e crossref_primary_10_1002_adfm_202202584 crossref_primary_10_1088_2053_1591_ac9bd1 crossref_primary_10_1016_j_carbon_2017_08_032 crossref_primary_10_1002_smll_201502988 crossref_primary_10_3389_fnins_2017_00466 crossref_primary_10_1002_adfm_201700121 crossref_primary_10_1016_j_carbon_2017_03_014 crossref_primary_10_1016_j_carbon_2015_03_017 crossref_primary_10_3390_app10020446 crossref_primary_10_1016_j_jmat_2019_01_009 crossref_primary_10_1016_j_matlet_2021_130505 crossref_primary_10_1007_s11664_020_08201_y crossref_primary_10_1021_acs_jpcc_7b01386 crossref_primary_10_1088_2053_1583_aad78f crossref_primary_10_1021_ie501448p crossref_primary_10_1021_nl5016552 crossref_primary_10_1063_1_4931370 crossref_primary_10_1016_j_biomaterials_2016_01_042 crossref_primary_10_1063_5_0170550 crossref_primary_10_1007_s10853_015_9440_z crossref_primary_10_1002_anie_201403572 crossref_primary_10_1016_j_apsusc_2020_147650 crossref_primary_10_3390_en16020576 crossref_primary_10_1021_acsnano_2c09673 crossref_primary_10_1103_PhysRevB_90_115422 crossref_primary_10_1021_acsnano_6b06265 crossref_primary_10_1021_acs_jpcc_3c01131 crossref_primary_10_1016_j_physe_2021_115101 crossref_primary_10_1021_acs_chemmater_1c03402 crossref_primary_10_1038_srep20354 crossref_primary_10_1038_srep23663 crossref_primary_10_1038_srep45358 |
Cites_doi | 10.1021/nl300039a 10.1016/0025-5416(72)90025-0 10.1038/nmat3010 10.1021/nl300563h 10.1103/PhysRevB.46.7185 10.1021/nl201980p 10.1021/nl102756r 10.1063/1.4751982 10.1038/nature11458 10.1021/nl104000b 10.1021/nn303352k 10.1039/c2nr30860f 10.1021/nn203775x 10.1021/nl204481s 10.1021/nl201362n 10.1021/nn202996r 10.1103/PhysRevB.84.035433 10.1088/0022-3727/45/15/154004 10.1016/j.carbon.2011.08.002 10.1038/ncomms1702 10.1126/science.1156965 10.1038/nnano.2010.132 10.1103/PhysRevLett.100.125504 10.1021/nl902515k 10.1021/jp205980d 10.1088/1367-2630/14/9/093028 10.1021/jz400400u 10.1103/PhysRevLett.98.206802 10.1021/nn201978y 10.1002/smll.200901173 10.1016/0079-6816(91)90002-L 10.1021/ja109793s 10.1021/nn203381k |
ContentType | Journal Article |
Copyright | 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD H8G JG9 L7M 1XC |
DOI | 10.1002/adfm.201301732 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Copper Technical Reference Library Materials Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Materials Research Database Copper Technical Reference Library Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1616-3028 |
EndPage | 970 |
ExternalDocumentID | oai_HAL_hal_00880874v1 10_1002_adfm_201301732 ADFM201301732 ark_67375_WNG_DXHCK5X2_4 |
Genre | article |
GrantInformation_xml | – fundername: EU funderid: NMP3‐SL‐2010–246073 – fundername: Région Rhône‐Alpes CIBLE program |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD H8G JG9 L7M 1XC |
ID | FETCH-LOGICAL-c4602-275455b422f02d9d93b85840f90b6a144ee4177fc50206290b8a4937e4447e443 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Nov 15 06:43:24 EST 2024 Fri Aug 16 02:46:49 EDT 2024 Fri Aug 23 00:33:25 EDT 2024 Sat Aug 24 00:49:48 EDT 2024 Wed Oct 30 09:48:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4602-275455b422f02d9d93b85840f90b6a144ee4177fc50206290b8a4937e4447e443 |
Notes | ark:/67375/WNG-DXHCK5X2-4 istex:8665739CAD2A0E0A4F1EE6D027A1EA1DF804E22B Région Rhône-Alpes CIBLE program ArticleID:ADFM201301732 EU - No. NMP3-SL-2010-246073 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0002-9831-9305 0000-0003-2373-3453 0000-0002-9106-8750 0000-0002-4245-9878 |
PQID | 1520927389 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | hal_primary_oai_HAL_hal_00880874v1 proquest_miscellaneous_1520927389 crossref_primary_10_1002_adfm_201301732 wiley_primary_10_1002_adfm_201301732_ADFM201301732 istex_primary_ark_67375_WNG_DXHCK5X2_4 |
PublicationCentury | 2000 |
PublicationDate | 2014-02-01 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
References | I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, S. Smirnov, ACS Nano 2011, 5, 6069. C.-Y. Su, A.-Y. Lu, C.-Y. Wu, Y.-T. Li, K.-K. Liu, W. Zhang, S.-Y. Lin, Z.-Y. Juang, Y.-L. Zhong, F.-R. Chen, L.-J. Li, Nano Lett. 2011, 11, 3612. K. Yan, H. Peng, Y. Zhou, H. Li, Z. Liu, Nano Lett. 2011, 11, 1106. Q. K. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. H. Su, H. L. Cao, Z. Z. Liu, D. Pandey, D. G. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. M. Bao, S. S. Pei, Y. P. Chen, Nat. Mater. 2011, 10, 443. S. Choubak, M. Biron, P. L. Levesque, R. Martel, P. Desjardin, J. Phys. Chem. Lett. 2013, 4, 1100. A. Ya. Tontegode et al., Progr. Surf. Sci. 1991, 38, 429. G. X. Ni, Y. Zheng, S. Bae, H. R. Kim, A. Pachoud, Y. S. Kim, C. L. Tan, D. Im, J. H. Ahn, B. H. Hong, B. Özyilmaz, ACS Nano 2012, 6, 1158. X. Li, C. W. Magnuso, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, Rodney S. Ruoff, J. Am. Chem. Soc. 2011, 133, 2816. J. Oudar, H. Wise, Deactivation and Poisoning of Catalysts, Dekker, New York 1985. S. Bae, H. K. Kim, Y. B. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Nat. Nanotechnol. 2010, 5, 574. B. S. Hu, H. Ago, Y. Ito, K. Kawahara, M. Tsuji, E. Magome, K. Sumitani, N. Mizuta, K. Ikeda, S. Mizuno, Carbon 2012, 50, 57. Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, J. T. L. Thong, Small 2010, 6, 195. X. S. Li, W. W. Cai, L. Colombo, R. S. Ruoff, Nano Lett. 2009, 9, 4268. E. V. Rut'kov, N. R. Gall, Physics and applications of graphene experiments (Ed: S. Mikhailov), Ch. 11, InTech, Rijeka, Croatia 2011. S. Nie, W. Wu, S. Xing, Q. Yu, J. Bao, S. Pei, K. F. McCarty, New J. Phys. 2012, 14, 093028. J. B. Butt, E. E. Petersen, Activation, deactivation, and poisoning of catalysts, Academic Press, Inc., San Diego, CA 1988. X. Li, W. W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009, 324, 5932. V. E. Calado, G. F. Schneider, A. M. M. G. Theulings, C. Dekker, L. M. K. Vandersypen, Appl. Phys. Lett. 2012, 101, 103116. C. Hwang, K. Yoo, S. J. Kim, E. K. Seo, H. Yu, L. P. Biró, J. Phys. Chem. C 2011, 115, 22369. Y. Zhang, L. Zhang, P. Kim, M. Ge, Z. Li, C. Zhou, Nano Lett. 2012, 12, 2810. R. B. McLellan, Mater. Sci. Eng. 1972, 9, 121140. J. Hass, F. Varchon, J. E. Millan-Otoya, M. Sprinkle, N. Sharma, W. A. de Heer, C. Berger, P. N. First, L. Magaud, E. H. Conrad, Phys. Rev. Lett. 2008, 100, 125504. W. Zhu, T. Low, V. Perebeinos, A. A. Bol, Y. Zhu, H. Yan, J. Terso, P. Avouris, Nano Lett. 2012, 12, 3431. Y. Zhang, Z. Li, P. Kim, L. Zhang, C. Zhou, ACS Nano 2012, 6, 126. G. H. Han, F. Günes,, J. J. Bae, E. S. Kim, S. J. Chae, H.-J. Shin, J.-Y. Choi, D. Pribat, Y. H. Lee, Nano Lett. 2011, 11, 4144. Z. Luo, S. Kim, N. Kawamoto, A. M. Rappe, A. T. C. Johnson, ACS Nano 2011, 5, 9154. E. J. Mele, J. Phys. D: Appl. Phys. 2012, 45, 154004. B. Wang, M.-L. Bocquet, Nanoscale 2012, 4, 4687. O. Taisuke, A. Bostwick, J. L. McChesney, T. Seyller, K. Horn, E. Rotenberg, Phys. Rev. Lett. 2007, 98, 206802. L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao, H.-M. Cheng, Nat. Commun. 2012, 3, 699. M. C. Schabel, J. L. Martins, Physics Rev. B 1992, 46, 7185. Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xi-ang, E. L. Samuel, C. Kittrell, J. M. Tour, ACS Nano 2012, 6, 9110. P. Venezuela, M. Lazzeri, F. Mauri, Phys. Rev. B 2011, 84, 035433. K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, K. K. M. G. Schwab, Nature 2012, 490, 192. H. Y. Chiu, V. Perebeinos, Y.-M. Lin, P. Avouris, Nano Lett. 2010, 10, 4634. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Science 2008, 320, 1308. N. Petrone, C. R. Dean, I. Meric, A. M. van der Zande, P. Y. Huang, L. Wang, D. Muller, K. L. Shepard, J. Hone, Nano Lett. 2012, 12, 2751. 2011; 115 2010; 10 1991; 38 1972; 9 2013; 4 2012; 101 2012 2011 2011; 84 2011; 11 2011; 10 2012; 14 2007; 98 2008; 100 2008; 320 2012; 12 2011; 5 2011; 133 2012; 50 2012; 3 2012; 490 1985 2009; 9 1992; 46 2013 2012; 6 2010; 5 2012; 4 2012; 45 2009; 324 2010; 6 1988 Oudar J. (e_1_2_11_24_1) 1985 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 Li X. (e_1_2_11_2_1) 2009; 324 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_3_1 e_1_2_11_1_1 Rut'kov E. V. (e_1_2_11_26_1) 2011 e_1_2_11_21_1 e_1_2_11_20_1 e_1_2_11_40_1 Butt J. B. (e_1_2_11_25_1) 1988 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_39_1 e_1_2_11_19_1 |
References_xml | – year: 1985 – year: 2011 – volume: 98 start-page: 206802 year: 2007 publication-title: Phys. Rev. Lett. – volume: 324 start-page: 5932 year: 2009 publication-title: Science – volume: 50 start-page: 57 year: 2012 publication-title: Carbon – volume: 5 start-page: 574 year: 2010 publication-title: Nat. Nanotechnol. – volume: 4 start-page: 4687 year: 2012 publication-title: Nanoscale – volume: 101 start-page: 103116 year: 2012 publication-title: Appl. Phys. Lett. – volume: 45 start-page: 154004 year: 2012 publication-title: J. Phys. D: Appl. Phys. – volume: 11 start-page: 4144 year: 2011 publication-title: Nano Lett. – volume: 320 start-page: 1308 year: 2008 publication-title: Science – volume: 4 start-page: 1100 year: 2013 publication-title: J. Phys. Chem. Lett. – volume: 3 start-page: 699 year: 2012 publication-title: Nat. Commun. – volume: 6 start-page: 9110 year: 2012 publication-title: ACS Nano – volume: 133 start-page: 2816 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 126 year: 2012 publication-title: ACS Nano – volume: 6 start-page: 195 year: 2010 publication-title: Small – year: 2012 – volume: 46 start-page: 7185 year: 1992 publication-title: Physics Rev. B – volume: 5 start-page: 9154 year: 2011 publication-title: ACS Nano – volume: 115 start-page: 22369 year: 2011 publication-title: J. Phys. Chem. C – volume: 9 start-page: 121140 year: 1972 publication-title: Mater. Sci. Eng. – volume: 100 start-page: 125504 year: 2008 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 1158 year: 2012 publication-title: ACS Nano – volume: 9 start-page: 4268 year: 2009 publication-title: Nano Lett. – volume: 38 start-page: 429 year: 1991 publication-title: Progr. Surf. Sci. – year: 1988 – volume: 490 start-page: 192 year: 2012 publication-title: Nature – volume: 12 start-page: 3431 year: 2012 publication-title: Nano Lett. – volume: 5 start-page: 6069 year: 2011 publication-title: ACS Nano – volume: 11 start-page: 1106 year: 2011 publication-title: Nano Lett. – volume: 14 start-page: 093028 year: 2012 publication-title: New J. Phys. – volume: 11 start-page: 3612 year: 2011 publication-title: Nano Lett. – volume: 84 start-page: 035433 year: 2011 publication-title: Phys. Rev. B – volume: 10 start-page: 4634 year: 2010 publication-title: Nano Lett. – volume: 12 start-page: 2751 year: 2012 publication-title: Nano Lett. – volume: 12 start-page: 2810 year: 2012 publication-title: Nano Lett. – volume: 10 start-page: 443 year: 2011 publication-title: Nat. Mater. – year: 2013 – ident: e_1_2_11_18_1 doi: 10.1021/nl300039a – ident: e_1_2_11_27_1 doi: 10.1016/0025-5416(72)90025-0 – ident: e_1_2_11_8_1 doi: 10.1038/nmat3010 – ident: e_1_2_11_6_1 doi: 10.1021/nl300563h – ident: e_1_2_11_16_1 – ident: e_1_2_11_33_1 doi: 10.1103/PhysRevB.46.7185 – ident: e_1_2_11_17_1 doi: 10.1021/nl201980p – ident: e_1_2_11_34_1 doi: 10.1021/nl102756r – ident: e_1_2_11_7_1 doi: 10.1063/1.4751982 – volume-title: Activation, deactivation, and poisoning of catalysts year: 1988 ident: e_1_2_11_25_1 contributor: fullname: Butt J. B. – ident: e_1_2_11_1_1 doi: 10.1038/nature11458 – ident: e_1_2_11_11_1 doi: 10.1021/nl104000b – ident: e_1_2_11_10_1 doi: 10.1021/nn303352k – ident: e_1_2_11_36_1 doi: 10.1039/c2nr30860f – ident: e_1_2_11_5_1 doi: 10.1021/nn203775x – volume-title: Physics and applications of graphene experiments year: 2011 ident: e_1_2_11_26_1 contributor: fullname: Rut'kov E. V. – volume: 324 start-page: 5932 year: 2009 ident: e_1_2_11_2_1 publication-title: Science contributor: fullname: Li X. – ident: e_1_2_11_15_1 doi: 10.1021/nl204481s – ident: e_1_2_11_30_1 doi: 10.1021/nl201362n – ident: e_1_2_11_31_1 doi: 10.1021/nn202996r – ident: e_1_2_11_21_1 doi: 10.1103/PhysRevB.84.035433 – ident: e_1_2_11_35_1 – ident: e_1_2_11_39_1 doi: 10.1088/0022-3727/45/15/154004 – ident: e_1_2_11_12_1 doi: 10.1016/j.carbon.2011.08.002 – ident: e_1_2_11_9_1 doi: 10.1038/ncomms1702 – ident: e_1_2_11_40_1 doi: 10.1126/science.1156965 – ident: e_1_2_11_3_1 doi: 10.1038/nnano.2010.132 – ident: e_1_2_11_38_1 doi: 10.1103/PhysRevLett.100.125504 – ident: e_1_2_11_28_1 doi: 10.1021/nl902515k – ident: e_1_2_11_4_1 – ident: e_1_2_11_13_1 doi: 10.1021/jp205980d – ident: e_1_2_11_29_1 doi: 10.1088/1367-2630/14/9/093028 – ident: e_1_2_11_32_1 doi: 10.1021/jz400400u – ident: e_1_2_11_37_1 doi: 10.1103/PhysRevLett.98.206802 – ident: e_1_2_11_19_1 doi: 10.1021/nn201978y – ident: e_1_2_11_22_1 doi: 10.1002/smll.200901173 – ident: e_1_2_11_23_1 doi: 10.1016/0079-6816(91)90002-L – ident: e_1_2_11_14_1 doi: 10.1021/ja109793s – volume-title: Deactivation and Poisoning of Catalysts year: 1985 ident: e_1_2_11_24_1 contributor: fullname: Oudar J. – ident: e_1_2_11_20_1 doi: 10.1021/nn203381k |
SSID | ssj0017734 |
Score | 2.4469712 |
Snippet | A synthesis method of strictly monolayer and fully homogeneous graphene across tens of centimeter squares, by chemical vapour deposition onto standard copper... |
SourceID | hal proquest crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 964 |
SubjectTerms | 2D nanomaterials Carbon CHEMICAL VAPOR DEPOSITION Copper DEPOSITION ELECTRICAL PROPERTIES Electronic properties FOIL Foils General Physics Graphene growth INTERLAYERS Multilayers nucleation Optical properties Physics PROPERTIES transparent electrodes VAPOR DEPOSITION |
Title | Homogeneous Optical and Electronic Properties of Graphene Due to the Suppression of Multilayer Patches During CVD on Copper Foils |
URI | https://api.istex.fr/ark:/67375/WNG-DXHCK5X2-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201301732 https://search.proquest.com/docview/1520927389 https://hal.science/hal-00880874 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFLcGXNhh41PrNpBB0zgFEseJk2PVUCJgDCE-erPs1NamsqTqxzTtxn_OezENLZdJ49K00XOT-D07vzi_93uEfEmKVADsFh7Wf_R4WChP85B7WHXbT6zWhSPIXsT5DT_tRb25LH6nD9EsuOHIqOdrHOBKj4-eRUNV32ImOczBgQhxEg5CgZyu7KrRjwqEcK-V4wAJXkFvptros6PF5gt3paUfyIlcwW7-swA85-Frff_pvidqduaOdjI4nE70YfH3hajjay5tjbx7Aqe07aJpnbwx5QZ5OydZuEke8upXBUFnqumYfh_WK-FUlX163NTToZe4wD9CpVZaWXqCktjQgGZTQycVBcRJsZaoI-CWaFJnAd8rQP_0UmEYjcEYj0c7txkFm041hH-k3ern_XiL3HSPrzu591TGwSt4jMnfAlBapDlj1mf9tJ-GOgHY49vU17GCBzpjOHjKFhFA15jB3kRxQE2Gc44f4TZZLqvSfCA0Yqk1YZwwbi3XxqSR8LGAk880bAPeIgczN8qhU-uQTpeZSexU2XRqi-yDlxsjFNnO2-cS9wEqSvxE8N9Bi3ytg6AxU6MBEuFEJO8uTmTWyztn8LAv4bh7syiRMDzxnYuqHSEDpBlh-lPaIqz2-T9OTLaz7rfm18f_afSJrMJ37rjln8nyZDQ1OwCdJnq3Hh6PsvkMUg |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZaOLQc6FtdoK1bVe0pkDhOnBxXG5a0LFtUQbs3y87aAgHJah8IceOfdyYmgeVSqb1stNY4D8-M89mZ-YaQz0mRCoDdwsP6jx4PC-VpHnIPq277idW6cAGywzg_5t9HURNNiLkwjh-i3XBDz6jna3Rw3JDeuWMNVWOLqeQwCQcihFl4FXw-xOoN2c-WQSoQwn1YjgMM8QpGDW-jz3aW-y-9lx6fYFTkKg701RL0vA9g6zdQ_xnRzb27wJOz7cVcbxfXD2gd_-vhnpP1W3xKu86gXpBHpnxJ1u6xFr4iN3l1UYHdmWoxoz8m9WY4VeWY7rYldegh7vFPkayVVpbuISs2dKDZwtB5RQF0Uiwn6mJwSxSpE4HPFSwA6KFCS5qBMF6P9n5lFGR61QTOSPvV6fnsNTnu7x71cu-2koNX8BjzvwUAtUhzxqzPxuk4DXUCyMe3qa9jBWs6YzioyhYRoNeYQWuiOAAnwznHn_ANWSmr0rwlNGKpNWGcMG4t18akkfCxhpPPNBwD3iFfGz3KiSPskI6amUkcVNkOaod8AjW3QsiznXcHEtsAGCV-Ivhl0CFfaitoxdT0DGPhRCR_D_dkNsp7-7Del3Ddj42ZSPBQ_OyiakXIACONMAMq7RBWK_0vNya7Wf-g_bfxL50-kCf50cFADr4N9zfJU2jnLtR8i6zMpwvzDpDUXL-vfeUPdXQQag |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglRA98CgglvIwVQWntInjxMlxtWkaaFlWFYW9WXZiq1XbZLWPCnHjnzMTd8MuFyS4JIo1jhPP2P7izHxDyF5SpgJgt_Aw_6PHw1J5mofcw6zbfmK1Lp2D7DAuzvjHcTReieJ3_BDdhhuOjHa-xgE-qezBb9JQVVmMJIc5OBAhTMKbPAb4i7DotCOQCoRw_5XjAD28gvGSttFnB-v115alu-foFLmJ_fx9DXmu4td2AcofErV8dOd3crm_mOv98scfrI7_826PyINbdEr7zpwekzum3iZbK5yFT8jPorluwOpMs5jRz5N2K5yquqKHXUIdOsId_ilStdLG0iPkxIYKNFsYOm8oQE6KyUSdB26NIm0Y8JUC-E9HCu1oBsLYHh18zSjIDJoJ3JHmzcXV7Ck5yw-_DArvNo-DV_IYo78FwLRIc8asz6q0SkOdAO7xberrWMEXnTEcNGXLCLBrzKA0URxgk-Gc4yF8RjbqpjbPCY1Yak0YJ4xby7UxaSR8zODkMw3ngPfI-6Ua5cTRdUhHzMwkdqrsOrVHdkHLnRCybBf9E4llAIsSPxH8JuiRd60RdGJqeomecCKS34ZHMhsXg2P42pfQ7tullUgYn_jTRbWKkAH6GWH8U9ojrNX5Xx5M9rP8U3f14l8qvSH3RlkuTz4Mj3fIfSjmzs_8JdmYTxfmFcCouX7djpRfKVkPGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homogeneous+Optical+and+Electronic+Properties+of+Graphene+Due+to+the+Suppression+of+Multilayer+Patches+During+CVD+on+Copper+Foils&rft.jtitle=Advanced+functional+materials&rft.au=Han%2C+Zheng&rft.au=Kimouche%2C+Amina&rft.au=Kalita%2C+Dipankar&rft.au=Allain%2C+Adrien&rft.date=2014-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=24&rft.issue=7&rft.spage=964&rft.epage=970&rft_id=info:doi/10.1002%2Fadfm.201301732&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_DXHCK5X2_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |