Homogeneous Optical and Electronic Properties of Graphene Due to the Suppression of Multilayer Patches During CVD on Copper Foils

A synthesis method of strictly monolayer and fully homogeneous graphene across tens of centimeter squares, by chemical vapour deposition onto standard copper foils, is presented. The growth technique involves cyclic injection of a carbon precursor separated by idle times with constant hydrogen expos...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 24; no. 7; pp. 964 - 970
Main Authors Han, Zheng, Kimouche, Amina, Kalita, Dipankar, Allain, Adrien, Arjmandi-Tash, Hadi, Reserbat-Plantey, Antoine, Marty, Laëtitia, Pairis, Sébastien, Reita, Valérie, Bendiab, Nedjma, Coraux, Johann, Bouchiat, Vincent
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.02.2014
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A synthesis method of strictly monolayer and fully homogeneous graphene across tens of centimeter squares, by chemical vapour deposition onto standard copper foils, is presented. The growth technique involves cyclic injection of a carbon precursor separated by idle times with constant hydrogen exposure. The formation of spurious multilayer patches, which accompanies the standard growth techniques based on continuous exposure to methane, is inhibited here, in a broad range of pressure and gas composition, including in two pressure regimes which are known to yield distinctive grain morphologies (dendritic versus hexagonal). Raman spectra confirm the absence of defects within the graphene films. A mechanism for growth/suppression of the multilayer patches based on the carbon storage at defective regions is proposed. The importance of multilayer suppression is highlighted in a comparative study showing the detrimental effect of patches on the performances of graphene transistors and on the optical transparency of stacked layers. The full‐layer graphene sheets are superiorly homogeneous in terms of their optical and electronic properties, and are thus suited for applications for high‐density integration as well as transparent electrodes with spatially continuous optical absorbance. Graphene transistors fabricated by the pulsed CVD method exhibit room‐temperature mobilities with a mean value of 5000 cm2 V−1 s−1. A pulsed chemical vapor deposition (CVD) process for graphene growth on copper foils is introduced. The pulsed injection of carbon precursor efficiently prevents the formation of multilayer patches that is found to affect optical and electronic properties of graphene and leads to homogenous macroscopic graphene sheets.
AbstractList A synthesis method of strictly monolayer and fully homogeneous graphene across tens of centimeter squares, by chemical vapour deposition onto standard copper foils, is presented. The growth technique involves cyclic injection of a carbon precursor separated by idle times with constant hydrogen exposure. The formation of spurious multilayer patches, which accompanies the standard growth techniques based on continuous exposure to methane, is inhibited here, in a broad range of pressure and gas composition, including in two pressure regimes which are known to yield distinctive grain morphologies (dendritic versus hexagonal). Raman spectra confirm the absence of defects within the graphene films. A mechanism for growth/suppression of the multilayer patches based on the carbon storage at defective regions is proposed. The importance of multilayer suppression is highlighted in a comparative study showing the detrimental effect of patches on the performances of graphene transistors and on the optical transparency of stacked layers. The full‐layer graphene sheets are superiorly homogeneous in terms of their optical and electronic properties, and are thus suited for applications for high‐density integration as well as transparent electrodes with spatially continuous optical absorbance. Graphene transistors fabricated by the pulsed CVD method exhibit room‐temperature mobilities with a mean value of 5000 cm 2 V −1 s −1 .
A synthesis method of strictly monolayer and fully homogeneous graphene across tens of centimeter squares, by chemical vapour deposition onto standard copper foils, is presented. The growth technique involves cyclic injection of a carbon precursor separated by idle times with constant hydrogen exposure. The formation of spurious multilayer patches, which accompanies the standard growth techniques based on continuous exposure to methane, is inhibited here, in a broad range of pressure and gas composition, including in two pressure regimes which are known to yield distinctive grain morphologies (dendritic versus hexagonal). Raman spectra confirm the absence of defects within the graphene films. A mechanism for growth/suppression of the multilayer patches based on the carbon storage at defective regions is proposed. The importance of multilayer suppression is highlighted in a comparative study showing the detrimental effect of patches on the performances of graphene transistors and on the optical transparency of stacked layers. The full‐layer graphene sheets are superiorly homogeneous in terms of their optical and electronic properties, and are thus suited for applications for high‐density integration as well as transparent electrodes with spatially continuous optical absorbance. Graphene transistors fabricated by the pulsed CVD method exhibit room‐temperature mobilities with a mean value of 5000 cm2 V−1 s−1. A pulsed chemical vapor deposition (CVD) process for graphene growth on copper foils is introduced. The pulsed injection of carbon precursor efficiently prevents the formation of multilayer patches that is found to affect optical and electronic properties of graphene and leads to homogenous macroscopic graphene sheets.
A synthesis method of strictly monolayer and fully homogeneous graphene across tens of centimeter squares, by chemical vapour deposition onto standard copper foils, is presented. The growth technique involves cyclic injection of a carbon precursor separated by idle times with constant hydrogen exposure. The formation of spurious multilayer patches, which accompanies the standard growth techniques based on continuous exposure to methane, is inhibited here, in a broad range of pressure and gas composition, including in two pressure regimes which are known to yield distinctive grain morphologies (dendritic versus hexagonal). Raman spectra confirm the absence of defects within the graphene films. A mechanism for growth/suppression of the multilayer patches based on the carbon storage at defective regions is proposed. The importance of multilayer suppression is highlighted in a comparative study showing the detrimental effect of patches on the performances of graphene transistors and on the optical transparency of stacked layers. The full-layer graphene sheets are superiorly homogeneous in terms of their optical and electronic properties, and are thus suited for applications for high-density integration as well as transparent electrodes with spatially continuous optical absorbance. Graphene transistors fabricated by the pulsed CVD method exhibit room-temperature mobilities with a mean value of 5000 cm super(2) V super(-1) s super(-1). A pulsed chemical vapor deposition (CVD) process for graphene growth on copper foils is introduced. The pulsed injection of carbon precursor efficiently prevents the formation of multilayer patches that is found to affect optical and electronic properties of graphene and leads to homogenous macroscopic graphene sheets.
A synthesis method of strictly monolayer and fully homogeneous graphene across tens of centimeter squares, by chemical vapour deposition onto standard copper foils, is presented. The growth technique involves cyclic injection of a carbon precursor separated by idle times with constant hydrogen exposure. The formation of spurious multilayer patches, which accompanies the standard growth techniques based on continuous exposure to methane, is inhibited here, in a broad range of pressure and gas composition, including in two pressure regimes which are known to yield distinctive grain morphologies (dendritic versus hexagonal). Raman spectra confi rm the absence of defects within the graphene fi lms. A mechanism for growth/suppression of the multilayer patches based on the carbon storage at defective regions is proposed. The importance of multilayer suppression is highlighted in a comparative study showing the detrimental effect of patches on the performances of graphene transistors and on the optical transparency of stacked layers. The full-layer graphene sheets are superiorly homogeneous in terms of their optical and electronic properties, and are thus suited for applications for high-density integration as well as transparent electrodes with spatially continuous optical absorbance. Graphene transistors fabricated by the pulsed CVD method exhibit room-temperature mobilities with a mean value of 5000 cm 2 V −1 s −1 .
Author Kalita, Dipankar
Arjmandi-Tash, Hadi
Coraux, Johann
Kimouche, Amina
Reserbat-Plantey, Antoine
Bouchiat, Vincent
Allain, Adrien
Marty, Laëtitia
Bendiab, Nedjma
Reita, Valérie
Han, Zheng
Pairis, Sébastien
Author_xml – sequence: 1
  givenname: Zheng
  surname: Han
  fullname: Han, Zheng
  organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France
– sequence: 2
  givenname: Amina
  surname: Kimouche
  fullname: Kimouche, Amina
  organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France
– sequence: 3
  givenname: Dipankar
  surname: Kalita
  fullname: Kalita, Dipankar
  organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France
– sequence: 4
  givenname: Adrien
  surname: Allain
  fullname: Allain, Adrien
  organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France
– sequence: 5
  givenname: Hadi
  surname: Arjmandi-Tash
  fullname: Arjmandi-Tash, Hadi
  organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France
– sequence: 6
  givenname: Antoine
  surname: Reserbat-Plantey
  fullname: Reserbat-Plantey, Antoine
  organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France
– sequence: 7
  givenname: Laëtitia
  surname: Marty
  fullname: Marty, Laëtitia
  organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France
– sequence: 8
  givenname: Sébastien
  surname: Pairis
  fullname: Pairis, Sébastien
  organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France
– sequence: 9
  givenname: Valérie
  surname: Reita
  fullname: Reita, Valérie
  organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France
– sequence: 10
  givenname: Nedjma
  surname: Bendiab
  fullname: Bendiab, Nedjma
  organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France
– sequence: 11
  givenname: Johann
  surname: Coraux
  fullname: Coraux, Johann
  organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France
– sequence: 12
  givenname: Vincent
  surname: Bouchiat
  fullname: Bouchiat, Vincent
  email: bouchiat@grenoble.cnrs.fr
  organization: Univ. Grenoble, Alpes, Inst. NEEL, F-38042 Grenoble France and CNRS, Inst. NEEL, F-38042, Grenoble, France
BackLink https://hal.science/hal-00880874$$DView record in HAL
BookMark eNqFkTtv2zAURokiBZqkXTtzbAe5fOk1GlJsF3WaAH15I2j5KmZLiwpJtfWYfx6qCoxsXUji4pwPuPwu0FlnO0DoLSUzSgj7oHbtYcYI5YTmnL1A5zSjWcIJK85Ob7p5hS68_0kik3Nxjh5W9mDvoAM7eHzTB90og1W3w1cGmuBspxt862wPLmjw2LZ46VS_jwKuB8DB4rAH_GXoewfea9uNyPVggjbqCA7fqtDso1gPTnd3uPpe48hUto-JeGG18a_Ry1YZD2-e7kv0bXH1tVol65vlx2q-ThqREZawPBVpuhWMtYTtyl3Jt0VaCNKWZJspKgSAiDu1TUoYyVicFkqUPAchxHjwS_R-yt0rI3unD8odpVVaruZrOc4IKQpS5OI3jey7ie2dvR_AB3nQvgFj1L-PkjRlpGQ5L8qIzia0cdZ7B-0pmxI59iLHXuSplyiUk_BHGzj-h5bzenH93E0mV_sAf0-ucr9klvM8lT8-L2W9WVWf0g2Tgj8CX2ShIQ
CitedBy_id crossref_primary_10_1021_acsmaterialsau_1c00047
crossref_primary_10_1088_2053_1583_aa57c6
crossref_primary_10_1088_2057_1976_ab42d6
crossref_primary_10_1155_2018_7610409
crossref_primary_10_1038_s41598_019_46713_8
crossref_primary_10_1039_C8NA00181B
crossref_primary_10_1021_acs_jpcc_5b03911
crossref_primary_10_1016_j_carbon_2020_11_047
crossref_primary_10_1016_j_carbon_2015_09_048
crossref_primary_10_1021_acs_langmuir_5b03273
crossref_primary_10_1016_j_carbon_2022_07_011
crossref_primary_10_1002_ange_201403572
crossref_primary_10_1021_acsami_8b01194
crossref_primary_10_1021_acs_chemmater_8b03393
crossref_primary_10_1039_C7CP01012E
crossref_primary_10_1016_j_carbon_2015_08_114
crossref_primary_10_1103_PhysRevApplied_6_064021
crossref_primary_10_1021_acs_chemmater_6b04432
crossref_primary_10_1103_PhysRevB_102_075436
crossref_primary_10_1016_j_carbon_2018_03_056
crossref_primary_10_1021_acs_jpcc_9b03808
crossref_primary_10_1039_C9TC04779D
crossref_primary_10_1007_s40843_020_1394_3
crossref_primary_10_1016_j_apsusc_2017_07_092
crossref_primary_10_1021_acsnano_6b08069
crossref_primary_10_1007_s11705_014_1450_x
crossref_primary_10_1021_acsanm_1c02050
crossref_primary_10_1038_s41586_021_03753_3
crossref_primary_10_1088_2043_6262_7_2_023001
crossref_primary_10_1002_adma_201903615
crossref_primary_10_1002_jrs_5267
crossref_primary_10_1103_PhysRevB_91_075426
crossref_primary_10_1021_acsami_9b01137
crossref_primary_10_1021_acsnano_0c00103
crossref_primary_10_1016_j_carbon_2017_07_024
crossref_primary_10_1021_acs_nanolett_6b02981
crossref_primary_10_1088_2515_7639_aac66e
crossref_primary_10_1002_adfm_202202584
crossref_primary_10_1088_2053_1591_ac9bd1
crossref_primary_10_1016_j_carbon_2017_08_032
crossref_primary_10_1002_smll_201502988
crossref_primary_10_3389_fnins_2017_00466
crossref_primary_10_1002_adfm_201700121
crossref_primary_10_1016_j_carbon_2017_03_014
crossref_primary_10_1016_j_carbon_2015_03_017
crossref_primary_10_3390_app10020446
crossref_primary_10_1016_j_jmat_2019_01_009
crossref_primary_10_1016_j_matlet_2021_130505
crossref_primary_10_1007_s11664_020_08201_y
crossref_primary_10_1021_acs_jpcc_7b01386
crossref_primary_10_1088_2053_1583_aad78f
crossref_primary_10_1021_ie501448p
crossref_primary_10_1021_nl5016552
crossref_primary_10_1063_1_4931370
crossref_primary_10_1016_j_biomaterials_2016_01_042
crossref_primary_10_1063_5_0170550
crossref_primary_10_1007_s10853_015_9440_z
crossref_primary_10_1002_anie_201403572
crossref_primary_10_1016_j_apsusc_2020_147650
crossref_primary_10_3390_en16020576
crossref_primary_10_1021_acsnano_2c09673
crossref_primary_10_1103_PhysRevB_90_115422
crossref_primary_10_1021_acsnano_6b06265
crossref_primary_10_1021_acs_jpcc_3c01131
crossref_primary_10_1016_j_physe_2021_115101
crossref_primary_10_1021_acs_chemmater_1c03402
crossref_primary_10_1038_srep20354
crossref_primary_10_1038_srep23663
crossref_primary_10_1038_srep45358
Cites_doi 10.1021/nl300039a
10.1016/0025-5416(72)90025-0
10.1038/nmat3010
10.1021/nl300563h
10.1103/PhysRevB.46.7185
10.1021/nl201980p
10.1021/nl102756r
10.1063/1.4751982
10.1038/nature11458
10.1021/nl104000b
10.1021/nn303352k
10.1039/c2nr30860f
10.1021/nn203775x
10.1021/nl204481s
10.1021/nl201362n
10.1021/nn202996r
10.1103/PhysRevB.84.035433
10.1088/0022-3727/45/15/154004
10.1016/j.carbon.2011.08.002
10.1038/ncomms1702
10.1126/science.1156965
10.1038/nnano.2010.132
10.1103/PhysRevLett.100.125504
10.1021/nl902515k
10.1021/jp205980d
10.1088/1367-2630/14/9/093028
10.1021/jz400400u
10.1103/PhysRevLett.98.206802
10.1021/nn201978y
10.1002/smll.200901173
10.1016/0079-6816(91)90002-L
10.1021/ja109793s
10.1021/nn203381k
ContentType Journal Article
Copyright 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
H8G
JG9
L7M
1XC
DOI 10.1002/adfm.201301732
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Copper Technical Reference Library
Materials Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Materials Research Database
Copper Technical Reference Library
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1616-3028
EndPage 970
ExternalDocumentID oai_HAL_hal_00880874v1
10_1002_adfm_201301732
ADFM201301732
ark_67375_WNG_DXHCK5X2_4
Genre article
GrantInformation_xml – fundername: EU
  funderid: NMP3‐SL‐2010–246073
– fundername: Région Rhône‐Alpes CIBLE program
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
H8G
JG9
L7M
1XC
ID FETCH-LOGICAL-c4602-275455b422f02d9d93b85840f90b6a144ee4177fc50206290b8a4937e4447e443
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Nov 15 06:43:24 EST 2024
Fri Aug 16 02:46:49 EDT 2024
Fri Aug 23 00:33:25 EDT 2024
Sat Aug 24 00:49:48 EDT 2024
Wed Oct 30 09:48:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4602-275455b422f02d9d93b85840f90b6a144ee4177fc50206290b8a4937e4447e443
Notes ark:/67375/WNG-DXHCK5X2-4
istex:8665739CAD2A0E0A4F1EE6D027A1EA1DF804E22B
Région Rhône-Alpes CIBLE program
ArticleID:ADFM201301732
EU - No. NMP3-SL-2010-246073
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-9831-9305
0000-0003-2373-3453
0000-0002-9106-8750
0000-0002-4245-9878
PQID 1520927389
PQPubID 23500
PageCount 7
ParticipantIDs hal_primary_oai_HAL_hal_00880874v1
proquest_miscellaneous_1520927389
crossref_primary_10_1002_adfm_201301732
wiley_primary_10_1002_adfm_201301732_ADFM201301732
istex_primary_ark_67375_WNG_DXHCK5X2_4
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, S. Smirnov, ACS Nano 2011, 5, 6069.
C.-Y. Su, A.-Y. Lu, C.-Y. Wu, Y.-T. Li, K.-K. Liu, W. Zhang, S.-Y. Lin, Z.-Y. Juang, Y.-L. Zhong, F.-R. Chen, L.-J. Li, Nano Lett. 2011, 11, 3612.
K. Yan, H. Peng, Y. Zhou, H. Li, Z. Liu, Nano Lett. 2011, 11, 1106.
Q. K. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. H. Su, H. L. Cao, Z. Z. Liu, D. Pandey, D. G. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. M. Bao, S. S. Pei, Y. P. Chen, Nat. Mater. 2011, 10, 443.
S. Choubak, M. Biron, P. L. Levesque, R. Martel, P. Desjardin, J. Phys. Chem. Lett. 2013, 4, 1100.
A. Ya. Tontegode et al., Progr. Surf. Sci. 1991, 38, 429.
G. X. Ni, Y. Zheng, S. Bae, H. R. Kim, A. Pachoud, Y. S. Kim, C. L. Tan, D. Im, J. H. Ahn, B. H. Hong, B. Özyilmaz, ACS Nano 2012, 6, 1158.
X. Li, C. W. Magnuso, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, Rodney S. Ruoff, J. Am. Chem. Soc. 2011, 133, 2816.
J. Oudar, H. Wise, Deactivation and Poisoning of Catalysts, Dekker, New York 1985.
S. Bae, H. K. Kim, Y. B. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Nat. Nanotechnol. 2010, 5, 574.
B. S. Hu, H. Ago, Y. Ito, K. Kawahara, M. Tsuji, E. Magome, K. Sumitani, N. Mizuta, K. Ikeda, S. Mizuno, Carbon 2012, 50, 57.
Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, J. T. L. Thong, Small 2010, 6, 195.
X. S. Li, W. W. Cai, L. Colombo, R. S. Ruoff, Nano Lett. 2009, 9, 4268.
E. V. Rut'kov, N. R. Gall, Physics and applications of graphene experiments (Ed: S. Mikhailov), Ch. 11, InTech, Rijeka, Croatia 2011.
S. Nie, W. Wu, S. Xing, Q. Yu, J. Bao, S. Pei, K. F. McCarty, New J. Phys. 2012, 14, 093028.
J. B. Butt, E. E. Petersen, Activation, deactivation, and poisoning of catalysts, Academic Press, Inc., San Diego, CA 1988.
X. Li, W. W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009, 324, 5932.
V. E. Calado, G. F. Schneider, A. M. M. G. Theulings, C. Dekker, L. M. K. Vandersypen, Appl. Phys. Lett. 2012, 101, 103116.
C. Hwang, K. Yoo, S. J. Kim, E. K. Seo, H. Yu, L. P. Biró, J. Phys. Chem. C 2011, 115, 22369.
Y. Zhang, L. Zhang, P. Kim, M. Ge, Z. Li, C. Zhou, Nano Lett. 2012, 12, 2810.
R. B. McLellan, Mater. Sci. Eng. 1972, 9, 121140.
J. Hass, F. Varchon, J. E. Millan-Otoya, M. Sprinkle, N. Sharma, W. A. de Heer, C. Berger, P. N. First, L. Magaud, E. H. Conrad, Phys. Rev. Lett. 2008, 100, 125504.
W. Zhu, T. Low, V. Perebeinos, A. A. Bol, Y. Zhu, H. Yan, J. Terso, P. Avouris, Nano Lett. 2012, 12, 3431.
Y. Zhang, Z. Li, P. Kim, L. Zhang, C. Zhou, ACS Nano 2012, 6, 126.
G. H. Han, F. Günes,, J. J. Bae, E. S. Kim, S. J. Chae, H.-J. Shin, J.-Y. Choi, D. Pribat, Y. H. Lee, Nano Lett. 2011, 11, 4144.
Z. Luo, S. Kim, N. Kawamoto, A. M. Rappe, A. T. C. Johnson, ACS Nano 2011, 5, 9154.
E. J. Mele, J. Phys. D: Appl. Phys. 2012, 45, 154004.
B. Wang, M.-L. Bocquet, Nanoscale 2012, 4, 4687.
O. Taisuke, A. Bostwick, J. L. McChesney, T. Seyller, K. Horn, E. Rotenberg, Phys. Rev. Lett. 2007, 98, 206802.
L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao, H.-M. Cheng, Nat. Commun. 2012, 3, 699.
M. C. Schabel, J. L. Martins, Physics Rev. B 1992, 46, 7185.
Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xi-ang, E. L. Samuel, C. Kittrell, J. M. Tour, ACS Nano 2012, 6, 9110.
P. Venezuela, M. Lazzeri, F. Mauri, Phys. Rev. B 2011, 84, 035433.
K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, K. K. M. G. Schwab, Nature 2012, 490, 192.
H. Y. Chiu, V. Perebeinos, Y.-M. Lin, P. Avouris, Nano Lett. 2010, 10, 4634.
R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Science 2008, 320, 1308.
N. Petrone, C. R. Dean, I. Meric, A. M. van der Zande, P. Y. Huang, L. Wang, D. Muller, K. L. Shepard, J. Hone, Nano Lett. 2012, 12, 2751.
2011; 115
2010; 10
1991; 38
1972; 9
2013; 4
2012; 101
2012
2011
2011; 84
2011; 11
2011; 10
2012; 14
2007; 98
2008; 100
2008; 320
2012; 12
2011; 5
2011; 133
2012; 50
2012; 3
2012; 490
1985
2009; 9
1992; 46
2013
2012; 6
2010; 5
2012; 4
2012; 45
2009; 324
2010; 6
1988
Oudar J. (e_1_2_11_24_1) 1985
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
Li X. (e_1_2_11_2_1) 2009; 324
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_3_1
e_1_2_11_1_1
Rut'kov E. V. (e_1_2_11_26_1) 2011
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_40_1
Butt J. B. (e_1_2_11_25_1) 1988
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
References_xml – year: 1985
– year: 2011
– volume: 98
  start-page: 206802
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 324
  start-page: 5932
  year: 2009
  publication-title: Science
– volume: 50
  start-page: 57
  year: 2012
  publication-title: Carbon
– volume: 5
  start-page: 574
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 4
  start-page: 4687
  year: 2012
  publication-title: Nanoscale
– volume: 101
  start-page: 103116
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 45
  start-page: 154004
  year: 2012
  publication-title: J. Phys. D: Appl. Phys.
– volume: 11
  start-page: 4144
  year: 2011
  publication-title: Nano Lett.
– volume: 320
  start-page: 1308
  year: 2008
  publication-title: Science
– volume: 4
  start-page: 1100
  year: 2013
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  start-page: 699
  year: 2012
  publication-title: Nat. Commun.
– volume: 6
  start-page: 9110
  year: 2012
  publication-title: ACS Nano
– volume: 133
  start-page: 2816
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 126
  year: 2012
  publication-title: ACS Nano
– volume: 6
  start-page: 195
  year: 2010
  publication-title: Small
– year: 2012
– volume: 46
  start-page: 7185
  year: 1992
  publication-title: Physics Rev. B
– volume: 5
  start-page: 9154
  year: 2011
  publication-title: ACS Nano
– volume: 115
  start-page: 22369
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 121140
  year: 1972
  publication-title: Mater. Sci. Eng.
– volume: 100
  start-page: 125504
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 1158
  year: 2012
  publication-title: ACS Nano
– volume: 9
  start-page: 4268
  year: 2009
  publication-title: Nano Lett.
– volume: 38
  start-page: 429
  year: 1991
  publication-title: Progr. Surf. Sci.
– year: 1988
– volume: 490
  start-page: 192
  year: 2012
  publication-title: Nature
– volume: 12
  start-page: 3431
  year: 2012
  publication-title: Nano Lett.
– volume: 5
  start-page: 6069
  year: 2011
  publication-title: ACS Nano
– volume: 11
  start-page: 1106
  year: 2011
  publication-title: Nano Lett.
– volume: 14
  start-page: 093028
  year: 2012
  publication-title: New J. Phys.
– volume: 11
  start-page: 3612
  year: 2011
  publication-title: Nano Lett.
– volume: 84
  start-page: 035433
  year: 2011
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 4634
  year: 2010
  publication-title: Nano Lett.
– volume: 12
  start-page: 2751
  year: 2012
  publication-title: Nano Lett.
– volume: 12
  start-page: 2810
  year: 2012
  publication-title: Nano Lett.
– volume: 10
  start-page: 443
  year: 2011
  publication-title: Nat. Mater.
– year: 2013
– ident: e_1_2_11_18_1
  doi: 10.1021/nl300039a
– ident: e_1_2_11_27_1
  doi: 10.1016/0025-5416(72)90025-0
– ident: e_1_2_11_8_1
  doi: 10.1038/nmat3010
– ident: e_1_2_11_6_1
  doi: 10.1021/nl300563h
– ident: e_1_2_11_16_1
– ident: e_1_2_11_33_1
  doi: 10.1103/PhysRevB.46.7185
– ident: e_1_2_11_17_1
  doi: 10.1021/nl201980p
– ident: e_1_2_11_34_1
  doi: 10.1021/nl102756r
– ident: e_1_2_11_7_1
  doi: 10.1063/1.4751982
– volume-title: Activation, deactivation, and poisoning of catalysts
  year: 1988
  ident: e_1_2_11_25_1
  contributor:
    fullname: Butt J. B.
– ident: e_1_2_11_1_1
  doi: 10.1038/nature11458
– ident: e_1_2_11_11_1
  doi: 10.1021/nl104000b
– ident: e_1_2_11_10_1
  doi: 10.1021/nn303352k
– ident: e_1_2_11_36_1
  doi: 10.1039/c2nr30860f
– ident: e_1_2_11_5_1
  doi: 10.1021/nn203775x
– volume-title: Physics and applications of graphene experiments
  year: 2011
  ident: e_1_2_11_26_1
  contributor:
    fullname: Rut'kov E. V.
– volume: 324
  start-page: 5932
  year: 2009
  ident: e_1_2_11_2_1
  publication-title: Science
  contributor:
    fullname: Li X.
– ident: e_1_2_11_15_1
  doi: 10.1021/nl204481s
– ident: e_1_2_11_30_1
  doi: 10.1021/nl201362n
– ident: e_1_2_11_31_1
  doi: 10.1021/nn202996r
– ident: e_1_2_11_21_1
  doi: 10.1103/PhysRevB.84.035433
– ident: e_1_2_11_35_1
– ident: e_1_2_11_39_1
  doi: 10.1088/0022-3727/45/15/154004
– ident: e_1_2_11_12_1
  doi: 10.1016/j.carbon.2011.08.002
– ident: e_1_2_11_9_1
  doi: 10.1038/ncomms1702
– ident: e_1_2_11_40_1
  doi: 10.1126/science.1156965
– ident: e_1_2_11_3_1
  doi: 10.1038/nnano.2010.132
– ident: e_1_2_11_38_1
  doi: 10.1103/PhysRevLett.100.125504
– ident: e_1_2_11_28_1
  doi: 10.1021/nl902515k
– ident: e_1_2_11_4_1
– ident: e_1_2_11_13_1
  doi: 10.1021/jp205980d
– ident: e_1_2_11_29_1
  doi: 10.1088/1367-2630/14/9/093028
– ident: e_1_2_11_32_1
  doi: 10.1021/jz400400u
– ident: e_1_2_11_37_1
  doi: 10.1103/PhysRevLett.98.206802
– ident: e_1_2_11_19_1
  doi: 10.1021/nn201978y
– ident: e_1_2_11_22_1
  doi: 10.1002/smll.200901173
– ident: e_1_2_11_23_1
  doi: 10.1016/0079-6816(91)90002-L
– ident: e_1_2_11_14_1
  doi: 10.1021/ja109793s
– volume-title: Deactivation and Poisoning of Catalysts
  year: 1985
  ident: e_1_2_11_24_1
  contributor:
    fullname: Oudar J.
– ident: e_1_2_11_20_1
  doi: 10.1021/nn203381k
SSID ssj0017734
Score 2.4469712
Snippet A synthesis method of strictly monolayer and fully homogeneous graphene across tens of centimeter squares, by chemical vapour deposition onto standard copper...
SourceID hal
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 964
SubjectTerms 2D nanomaterials
Carbon
CHEMICAL VAPOR DEPOSITION
Copper
DEPOSITION
ELECTRICAL PROPERTIES
Electronic properties
FOIL
Foils
General Physics
Graphene
growth
INTERLAYERS
Multilayers
nucleation
Optical properties
Physics
PROPERTIES
transparent electrodes
VAPOR DEPOSITION
Title Homogeneous Optical and Electronic Properties of Graphene Due to the Suppression of Multilayer Patches During CVD on Copper Foils
URI https://api.istex.fr/ark:/67375/WNG-DXHCK5X2-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201301732
https://search.proquest.com/docview/1520927389
https://hal.science/hal-00880874
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFLcGXNhh41PrNpBB0zgFEseJk2PVUCJgDCE-erPs1NamsqTqxzTtxn_OezENLZdJ49K00XOT-D07vzi_93uEfEmKVADsFh7Wf_R4WChP85B7WHXbT6zWhSPIXsT5DT_tRb25LH6nD9EsuOHIqOdrHOBKj4-eRUNV32ImOczBgQhxEg5CgZyu7KrRjwqEcK-V4wAJXkFvptros6PF5gt3paUfyIlcwW7-swA85-Frff_pvidqduaOdjI4nE70YfH3hajjay5tjbx7Aqe07aJpnbwx5QZ5OydZuEke8upXBUFnqumYfh_WK-FUlX163NTToZe4wD9CpVZaWXqCktjQgGZTQycVBcRJsZaoI-CWaFJnAd8rQP_0UmEYjcEYj0c7txkFm041hH-k3ern_XiL3HSPrzu591TGwSt4jMnfAlBapDlj1mf9tJ-GOgHY49vU17GCBzpjOHjKFhFA15jB3kRxQE2Gc44f4TZZLqvSfCA0Yqk1YZwwbi3XxqSR8LGAk880bAPeIgczN8qhU-uQTpeZSexU2XRqi-yDlxsjFNnO2-cS9wEqSvxE8N9Bi3ytg6AxU6MBEuFEJO8uTmTWyztn8LAv4bh7syiRMDzxnYuqHSEDpBlh-lPaIqz2-T9OTLaz7rfm18f_afSJrMJ37rjln8nyZDQ1OwCdJnq3Hh6PsvkMUg
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZaOLQc6FtdoK1bVe0pkDhOnBxXG5a0LFtUQbs3y87aAgHJah8IceOfdyYmgeVSqb1stNY4D8-M89mZ-YaQz0mRCoDdwsP6jx4PC-VpHnIPq277idW6cAGywzg_5t9HURNNiLkwjh-i3XBDz6jna3Rw3JDeuWMNVWOLqeQwCQcihFl4FXw-xOoN2c-WQSoQwn1YjgMM8QpGDW-jz3aW-y-9lx6fYFTkKg701RL0vA9g6zdQ_xnRzb27wJOz7cVcbxfXD2gd_-vhnpP1W3xKu86gXpBHpnxJ1u6xFr4iN3l1UYHdmWoxoz8m9WY4VeWY7rYldegh7vFPkayVVpbuISs2dKDZwtB5RQF0Uiwn6mJwSxSpE4HPFSwA6KFCS5qBMF6P9n5lFGR61QTOSPvV6fnsNTnu7x71cu-2koNX8BjzvwUAtUhzxqzPxuk4DXUCyMe3qa9jBWs6YzioyhYRoNeYQWuiOAAnwznHn_ANWSmr0rwlNGKpNWGcMG4t18akkfCxhpPPNBwD3iFfGz3KiSPskI6amUkcVNkOaod8AjW3QsiznXcHEtsAGCV-Ivhl0CFfaitoxdT0DGPhRCR_D_dkNsp7-7Del3Ddj42ZSPBQ_OyiakXIACONMAMq7RBWK_0vNya7Wf-g_bfxL50-kCf50cFADr4N9zfJU2jnLtR8i6zMpwvzDpDUXL-vfeUPdXQQag
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglRA98CgglvIwVQWntInjxMlxtWkaaFlWFYW9WXZiq1XbZLWPCnHjnzMTd8MuFyS4JIo1jhPP2P7izHxDyF5SpgJgt_Aw_6PHw1J5mofcw6zbfmK1Lp2D7DAuzvjHcTReieJ3_BDdhhuOjHa-xgE-qezBb9JQVVmMJIc5OBAhTMKbPAb4i7DotCOQCoRw_5XjAD28gvGSttFnB-v115alu-foFLmJ_fx9DXmu4td2AcofErV8dOd3crm_mOv98scfrI7_826PyINbdEr7zpwekzum3iZbK5yFT8jPorluwOpMs5jRz5N2K5yquqKHXUIdOsId_ilStdLG0iPkxIYKNFsYOm8oQE6KyUSdB26NIm0Y8JUC-E9HCu1oBsLYHh18zSjIDJoJ3JHmzcXV7Ck5yw-_DArvNo-DV_IYo78FwLRIc8asz6q0SkOdAO7xberrWMEXnTEcNGXLCLBrzKA0URxgk-Gc4yF8RjbqpjbPCY1Yak0YJ4xby7UxaSR8zODkMw3ngPfI-6Ua5cTRdUhHzMwkdqrsOrVHdkHLnRCybBf9E4llAIsSPxH8JuiRd60RdGJqeomecCKS34ZHMhsXg2P42pfQ7tullUgYn_jTRbWKkAH6GWH8U9ojrNX5Xx5M9rP8U3f14l8qvSH3RlkuTz4Mj3fIfSjmzs_8JdmYTxfmFcCouX7djpRfKVkPGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homogeneous+Optical+and+Electronic+Properties+of+Graphene+Due+to+the+Suppression+of+Multilayer+Patches+During+CVD+on+Copper+Foils&rft.jtitle=Advanced+functional+materials&rft.au=Han%2C+Zheng&rft.au=Kimouche%2C+Amina&rft.au=Kalita%2C+Dipankar&rft.au=Allain%2C+Adrien&rft.date=2014-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=24&rft.issue=7&rft.spage=964&rft.epage=970&rft_id=info:doi/10.1002%2Fadfm.201301732&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_DXHCK5X2_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon