Encapsulation of protein microfiber networks supporting pancreatic islets
Networks of discrete, genipin‐crosslinked gelatin microfibers enveloping pancreatic islets were incorporated within barium alginate microcapsules. This novel technique enabled encapsulation of cellular aggregates in a spherical fibrous matrix <300 μm in diameter. Microfibers were produced by vort...
Saved in:
Published in | Journal of biomedical materials research. Part A Vol. 100A; no. 12; pp. 3384 - 3391 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.12.2012
Wiley-Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1549-3296 1552-4965 1552-4965 |
DOI | 10.1002/jbm.a.34281 |
Cover
Loading…
Abstract | Networks of discrete, genipin‐crosslinked gelatin microfibers enveloping pancreatic islets were incorporated within barium alginate microcapsules. This novel technique enabled encapsulation of cellular aggregates in a spherical fibrous matrix <300 μm in diameter. Microfibers were produced by vortex‐drawn extrusion within an alginate support matrix. Optimization culminated in a hydrated fiber diameter of 22.3 ± 0.4 μm, a significant reduction relative to that available through current gelatin microfiber spinning techniques, while making the process more reliable and less labor intensive. Microfibers were encapsulated at 40 vol % within 294 ± 4 μm 1.6% barium alginate microparticles by electrostatic‐mediated dropwise extrusion. Pancreatic islets extracted from Sprague Dawley rats were encapsulated within the microparticles and analyzed over 21 days. Acridine orange and propidium iodide fluorescent viability staining and light microscopy indicated a significant increase in viability for islets within the fiber‐embedded particles relative to fiber‐free controls at days 7, 14, and 21. The fiber‐embedded system also promoted cellular aggregate cohesion, reducing the incidence of dispersed islet morphologies within the capsules from 31 to 8% at day 21. Further enquiry into benefits of islet encapsulation within a protein fiber network will be the subject of future investigation. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A:3384–3391, 2012. |
---|---|
AbstractList | Networks of discrete, genipin‐crosslinked gelatin microfibers enveloping pancreatic islets were incorporated within barium alginate microcapsules. This novel technique enabled encapsulation of cellular aggregates in a spherical fibrous matrix <300 μm in diameter. Microfibers were produced by vortex‐drawn extrusion within an alginate support matrix. Optimization culminated in a hydrated fiber diameter of 22.3 ± 0.4 μm, a significant reduction relative to that available through current gelatin microfiber spinning techniques, while making the process more reliable and less labor intensive. Microfibers were encapsulated at 40 vol % within 294 ± 4 μm 1.6% barium alginate microparticles by electrostatic‐mediated dropwise extrusion. Pancreatic islets extracted from Sprague Dawley rats were encapsulated within the microparticles and analyzed over 21 days. Acridine orange and propidium iodide fluorescent viability staining and light microscopy indicated a significant increase in viability for islets within the fiber‐embedded particles relative to fiber‐free controls at days 7, 14, and 21. The fiber‐embedded system also promoted cellular aggregate cohesion, reducing the incidence of dispersed islet morphologies within the capsules from 31 to 8% at day 21. Further enquiry into benefits of islet encapsulation within a protein fiber network will be the subject of future investigation. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A:3384–3391, 2012. Networks of discrete, genipin-crosslinked gelatin microfibers enveloping pancreatic islets were incorporated within barium alginate microcapsules. This novel technique enabled encapsulation of cellular aggregates in a spherical fibrous matrix <300 μm in diameter. Microfibers were produced by vortex-drawn extrusion within an alginate support matrix. Optimization culminated in a hydrated fiber diameter of 22.3 ± 0.4 μm, a significant reduction relative to that available through current gelatin microfiber spinning techniques, while making the process more reliable and less labor intensive. Microfibers were encapsulated at 40 vol % within 294 ± 4 μm 1.6% barium alginate microparticles by electrostatic-mediated dropwise extrusion. Pancreatic islets extracted from Sprague Dawley rats were encapsulated within the microparticles and analyzed over 21 days. Acridine orange and propidium iodide fluorescent viability staining and light microscopy indicated a significant increase in viability for islets within the fiber-embedded particles relative to fiber-free controls at days 7, 14, and 21. The fiber-embedded system also promoted cellular aggregate cohesion, reducing the incidence of dispersed islet morphologies within the capsules from 31 to 8% at day 21. Further enquiry into benefits of islet encapsulation within a protein fiber network will be the subject of future investigation. Networks of discrete, genipin-crosslinked gelatin microfibers enveloping pancreatic islets were incorporated within barium alginate microcapsules. This novel technique enabled encapsulation of cellular aggregates in a spherical fibrous matrix <300 μm in diameter. Microfibers were produced by vortex-drawn extrusion within an alginate support matrix. Optimization culminated in a hydrated fiber diameter of 22.3 ± 0.4 μm, a significant reduction relative to that available through current gelatin microfiber spinning techniques, while making the process more reliable and less labor intensive. Microfibers were encapsulated at 40 vol % within 294 ± 4 μm 1.6% barium alginate microparticles by electrostatic-mediated dropwise extrusion. Pancreatic islets extracted from Sprague Dawley rats were encapsulated within the microparticles and analyzed over 21 days. Acridine orange and propidium iodide fluorescent viability staining and light microscopy indicated a significant increase in viability for islets within the fiber-embedded particles relative to fiber-free controls at days 7, 14, and 21. The fiber-embedded system also promoted cellular aggregate cohesion, reducing the incidence of dispersed islet morphologies within the capsules from 31 to 8% at day 21. Further enquiry into benefits of islet encapsulation within a protein fiber network will be the subject of future investigation.Networks of discrete, genipin-crosslinked gelatin microfibers enveloping pancreatic islets were incorporated within barium alginate microcapsules. This novel technique enabled encapsulation of cellular aggregates in a spherical fibrous matrix <300 μm in diameter. Microfibers were produced by vortex-drawn extrusion within an alginate support matrix. Optimization culminated in a hydrated fiber diameter of 22.3 ± 0.4 μm, a significant reduction relative to that available through current gelatin microfiber spinning techniques, while making the process more reliable and less labor intensive. Microfibers were encapsulated at 40 vol % within 294 ± 4 μm 1.6% barium alginate microparticles by electrostatic-mediated dropwise extrusion. Pancreatic islets extracted from Sprague Dawley rats were encapsulated within the microparticles and analyzed over 21 days. Acridine orange and propidium iodide fluorescent viability staining and light microscopy indicated a significant increase in viability for islets within the fiber-embedded particles relative to fiber-free controls at days 7, 14, and 21. The fiber-embedded system also promoted cellular aggregate cohesion, reducing the incidence of dispersed islet morphologies within the capsules from 31 to 8% at day 21. Further enquiry into benefits of islet encapsulation within a protein fiber network will be the subject of future investigation. |
Author | Barron, Annelise E. Carmona, Euridice Steele, Joseph A. M. Neufeld, Ronald J. Hallé, Jean-Pierre |
Author_xml | – sequence: 1 givenname: Joseph A. M. surname: Steele fullname: Steele, Joseph A. M. organization: Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada, K7L 3N6 – sequence: 2 givenname: Annelise E. surname: Barron fullname: Barron, Annelise E. organization: Department of Bioengineering, Stanford University, Stanford, California 94305-5444 – sequence: 3 givenname: Euridice surname: Carmona fullname: Carmona, Euridice organization: Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada, H1T 2M4 – sequence: 4 givenname: Jean-Pierre surname: Hallé fullname: Hallé, Jean-Pierre organization: Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada, H1T 2M4 – sequence: 5 givenname: Ronald J. surname: Neufeld fullname: Neufeld, Ronald J. email: neufeld@queensu.ca organization: Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada, K7L 3N6 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26811268$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22767501$$D View this record in MEDLINE/PubMed |
BookMark | eNp90ctrFTEUB-AgFfvQlXsZEKEgc83JYx5L-7BWWkWpugxJJiO5nUmmSYa2_725vbctdNFNksX3O5ycs4u2nHcGobeAF4Ax-bRU40IuKCMNvEA7wDkpWVvxrdWbtSUlbbWNdmNcZlxhTl6hbULqquYYdtDpsdNyivMgk_Wu8H0xBZ-MdcVodfC9VSYUzqRrHy5jEedp8iFZ96-YpNPB5JQubBxMiq_Ry14O0bzZ3Hvo95fji8Ov5dmPk9PDz2elZhWGkvcUk4Zxo1uqMWZSatwBUbyDVhnNFGaMdEob1UjV8prrjijCa4qZgZ4Tuof213Vzo1eziUmMNmozDNIZP0cBAKzluKIr-v4JXfo5uNydIIwD8JrASr3bqFmNphNTsKMMt-J-SBl82AAZtRz6kL9u46OrGoB8ZPdx7fLgYgymfyCAxWpVIq9KSHG3qqzhidY23W0hBWmH5zPXdjC3z5UX3w7O7zPlOmNjMjcPGRkuRVXTmou_30_Erwv4-achR-KA_geW0bS9 |
CitedBy_id | crossref_primary_10_1007_s11892_017_0877_0 crossref_primary_10_1016_j_bcp_2015_08_107 crossref_primary_10_1177_2041731419884708 crossref_primary_10_1016_j_addr_2013_07_010 crossref_primary_10_1088_2053_1591_aaaedc crossref_primary_10_1007_s11427_014_4609_2 crossref_primary_10_1016_j_addr_2013_09_015 crossref_primary_10_1186_s13287_018_1130_8 |
Cites_doi | 10.1023/A:1016189724389 10.1007/BF00169416 10.1097/TP.0b013e31816fc0ea 10.3727/000000008783907107 10.1002/bit.10053 10.1055/s-2003-41802 10.1002/1097-4636(20010615)55:4<538::AID-JBM1047>3.0.CO;2-2 10.2337/diabetes.54.5.1253 10.1074/jbc.M411202200 10.1016/j.transproceed.2008.02.088 10.1002/jbm.a.10476 10.1016/0303-7207(93)90046-M 10.1002/bit.22959 10.1002/mabi.200600069 10.1021/am800063x 10.1126/science.6776628 10.1002/jbm.a.32344 10.1111/j.1463-1326.2007.00780.x 10.1016/j.biomaterials.2011.10.014 10.1177/0883911508099439 10.1210/en.2002-0185 10.1016/S0142-9612(98)00107-0 10.1002/app.28969 10.1007/BF00164768 10.1097/00007890-198510000-00018 10.1016/j.matchemphys.2003.08.027 10.1016/j.tibtech.2003.11.004 10.1007/s10856-005-0523-2 10.1016/j.diabres.2009.07.010 10.1002/(SICI)1097-4636(199901)44:1<116::AID-JBM13>3.0.CO;2-9 10.1080/10731190903041022 10.1021/bm900036s 10.1016/S0142-9612(01)00379-9 10.1016/j.actbio.2009.05.029 10.1002/(SICI)1097-4636(199904)45:1<20::AID-JBM3>3.0.CO;2-6 10.1002/(SICI)1097-4636(19990915)46:4<520::AID-JBM10>3.0.CO;2-9 10.1016/j.biomaterials.2010.10.036 |
ContentType | Journal Article |
Copyright | Copyright © 2012 Wiley Periodicals, Inc. 2014 INIST-CNRS Copyright Wiley Subscription Services, Inc. Dec 2012 |
Copyright_xml | – notice: Copyright © 2012 Wiley Periodicals, Inc. – notice: 2014 INIST-CNRS – notice: Copyright Wiley Subscription Services, Inc. Dec 2012 |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/jbm.a.34281 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-4965 |
EndPage | 3391 |
ExternalDocumentID | 22767501 26811268 10_1002_jbm_a_34281 JBM34281 ark_67375_WNG_RT1QV82D_B |
Genre | article Journal Article |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 4.4 4ZD 50Z 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZFZN BAFTC BDRZF BFHJK BROTX BRXPI BSCLL BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ J0M JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O9- OIG P2P P2W P2X P4D PQQKQ Q.N QB0 QRW R.K RNS ROL RWI RYL SUPJJ SV3 UB1 V2E W8V W99 WIH WIK WJL WQJ WRC WXSBR XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION IQODW AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c4601-5f302845ec93c004aac0d12b5d19bec4b0442dbceb8ab9575cd2b257304e1f523 |
IEDL.DBID | DR2 |
ISSN | 1549-3296 1552-4965 |
IngestDate | Thu Sep 04 18:25:05 EDT 2025 Wed Aug 13 09:24:08 EDT 2025 Mon Jul 21 06:03:30 EDT 2025 Wed Apr 02 07:26:16 EDT 2025 Thu Apr 24 23:06:05 EDT 2025 Tue Jul 01 01:11:33 EDT 2025 Wed Jan 22 16:57:35 EST 2025 Wed Oct 30 09:55:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Encapsulation Tissue engineering Biomaterial Scaffold Pancreas Protein pancreatic islets Biomedical engineering microfibers |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2012 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4601-5f302845ec93c004aac0d12b5d19bec4b0442dbceb8ab9575cd2b257304e1f523 |
Notes | How to cite this article: Steele JAM, Barron AE, Carmona E, Hallé J-P, Neufeld RJ. 2012. Encapsulation of protein microfiber networks supporting pancreatic islets. J Biomed Mater Res Part A 2012:100A:3384-3391. ark:/67375/WNG-RT1QV82D-B istex:1801EA4F9EB913B5EF61FBCD18A2EFAE25F4DDE4 ArticleID:JBM34281 Steele JAM, Barron AE, Carmona E, Hallé J‐P, Neufeld RJ. 2012. Encapsulation of protein microfiber networks supporting pancreatic islets. J Biomed Mater Res Part A 2012:100A:3384–3391. How to cite this article ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 22767501 |
PQID | 2451157212 |
PQPubID | 2034572 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1114950632 proquest_journals_2451157212 pubmed_primary_22767501 pascalfrancis_primary_26811268 crossref_primary_10_1002_jbm_a_34281 crossref_citationtrail_10_1002_jbm_a_34281 wiley_primary_10_1002_jbm_a_34281_JBM34281 istex_primary_ark_67375_WNG_RT1QV82D_B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2012 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: December 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: United States – name: Mount Laurel |
PublicationTitle | Journal of biomedical materials research. Part A |
PublicationTitleAlternate | J. Biomed. Mater. Res |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Blackwell – name: Wiley Subscription Services, Inc |
References | Atkinson MA. ADA Outstanding Scientific Achievement Lecture 2004. Thirty years of investigating the autoimmune basis for type 1 diabetes: Why can't we prevent or reverse this disease? Diabetes 2005; 54: 1253-1263. Yang CY, Chiu CT, Chang YP, Wang YJ. Fabrication of porous gelatin microfibers using an aqueous wet spinning process. Artif Cell Blood Substit Biotechnol 2009; 37: 173-176. Sung HW, Huang DM, Chang WH, Huang RN, Hsu JC. Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: In vitro study. J Biomed Mater Res 1999; 46: 520-530. Bavamian S, Klee P, Britan A, Populaire C, Caille D, Cancela J, Charollais A, Meda P. Islet-cell-to-cell communication as basis for normal insulin secretion. Diabetes Obes Metabol 2007; 9: 118-132. Orive G, Hernandez RM, Rodriguez Gascon A, Calafiore R, Chang TM, de Vos P, Hortelano G, Hunkeler D, Lacik I, Pedraz JL. History, challenges and perspectives of cell microencapsulation. Trends Biotechnol 2004; 22: 87-92. Robitaille R, Dusseault J, Henley N, Rosenberg L, Halle JP. Insulin-like growth factor II allows prolonged blood glucose normalization with a reduced islet cell mass transplantation. Endocrinology 2003; 144: 3037-3045. Yao CH, Liu BS, Chang CJ, Hsu SH, Chen YS. Preparation of networks of gelatin and genipin as degradable biomaterials. Mater Chem Phys 2004; 83: 204-208. Del Guerra S, Bracci C, Nilsson K, Belcourt A, Kessler L, Lupi R, Marselli L, De Vos P, Marchetti P. Entrapment of dispersed pancreatic islet cells in CultiSpher-S macroporous gelatin microcarriers: Preparation, in vitro characterization, and microencapsulation. Biotechnol Bioeng 2001; 75: 741-744. Chang Y, Tsai CC, Liang HC, Sung HW. In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin). Biomaterials 2002; 23: 2447-2457. Zimmermann H, Zimmermann D, Reuss R, Feilen PJ, Manz B, Katsen A, Weber M, Ihmig FR, Ehrhart F, Gessner P, Behringer M, Steinbach A, Wegner LH, Sukhorukov VL, Vásquez JA, Schneider S, Weber MM, Volke F, Wolf R, Zimmermann U. Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation. J Mater Sci Mater Med 2005; 16: 491-501. Liang HC, Chang WH, Lin KJ, Sung HW. Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: In vitro and in vivo studies. J Biomed Mater Res A 2003; 65A: 271-282. Fukae R, Midorikawa T. Preparation of gelatin fiber by gel spinning and its mechanical properties. J Appl Polym Sci 2008; 110: 4011-4015. Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999; 20: 45-53. Hou Y, Song C, Xie WJ, Wei Z, Huang RP, Liu W, Zhang ZL, Shi YB. Excellent effect of three-dimensional culture condition on pancreatic islets. Diabetes Res Clin Pract 2009; 86: 11-15. Poncelet D, Lencki R, Beaulieu C, Halle JP, Neufeld RJ, Fournier A. Production of alginate beads by emulsification internal gelation. 1. Methodology. Appl Microbiol Biotechnol 1992; 38: 39-45. Chun S, Huang Y, Xie WJ, Hou Y, Huang RP, Song YM, Liu XM, Zheng W, Shi Y, Song CF. Adhesive growth of pancreatic islet cells on a polyglycolic acid fibrous scaffold. Transplant Proc 2008; 40: 1658-1663. Daoud JT, Petropavlovskaia MS, Patapas JM, Degrandpre CE, DiRaddo RW, Rosenberg L, Tabrizian M. Long-term in vitro human pancreatic islet culture using three-dimensional microfabricated scaffolds. Biomaterials 2011; 32: 1536-1542. Landers R, Pfister A, Hubner U, John H, Schmelzeisen R, Mulhaupt R. Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J Mater Sci 2002; 37: 3107-3116. Sung HW, Liang IL, Chen CN, Huang RN, Liang HF. Stability of a biological tissue fixed with a naturally occurring crosslinking agent (genipin). J Biomed Mater Res 2001; 55: 538-546. Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science 1980; 210: 908-910. Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci 2006; 6: 623-633. Kaido T, Yebra M, Cirulli V, Montgomery AM. Regulation of human beta-cell adhesion, motility, and insulin secretion by collagen IV and its receptor alpha(1)beta(1). J Biol Chem 2004; 279: 53762-53769. Kawazoe N, Lin XT, Tateishi T, Chen GP. Three-dimensional cultures of rat pancreatic RIN-5F cells in porous PLGA-collagen hybrid scaffolds. J Bioact Compat Polym 2009; 24: 25-42. Ciardelli G, Gentile P, Chiono V, Mattioli-Belmonte M, Vozzi G, Barbani N, Giusti P. Enzymatically crosslinked porous composite matrices for bone tissue regeneration. J Biomed Mater Res A 2010; 92A: 137-151. Lucasclerc C, Massart C, Campion JP, Launois B, Nicol M. Long-term culture of human pancreatic-islets in an extracellular-matrix-Morphological and metabolic effects. Mol Cell Endocrinol 1993; 94: 9-20. Salvay DM, Rives CB, Zhang XM, Chen F, Kaufman DB, Lowe WL, Shea LD. Extracellular matrix protein-coated scaffolds promote the reversal of diabetes after extrahepatic islet transplantation. Transplantation 2008; 85: 1456-1464. Hoesli CA, Raghuram K, Kiang RLJ, Mocinecova D, Hu XK, Johnson JD, Lacik I, Kieffer TJ, Piret JM. Pancreatic cell immobilization in alginate beads produced by emulsion and internal gelation. Biotechnol Bioeng 2011; 108: 424-434. Kobayashi N. Bioartificial pancreas for the treatment of diabetes. Cell Transplant 2008; 17: 11-17. Lee BR, Hwang JW, Choi YY, Wong SF, Hwang YH, Lee DY, Lee SH. In situ formation and collagen-alginate composite encapsulation of pancreatic islet spheroids. Biomaterials 2012; 33: 837-845. Torres-Giner S, Gimeno-Alcaniz JV, Ocio MJ, Lagaron JM. Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods. ACS Appl Mater Interfaces 2009; 1: 218-223. Langlois G, Dusseault J, Bilodeau S, Tam SK, Magassouba D, Halle JP. Direct effect of alginate purification on the survival of islets immobilized in alginate-based microcapsules. Acta Biomater 2009; 5: 3433-3440. Hamamoto Y, Fujimoto S, Inada A, Takehiro M, Nabe K, Shimono D, Kajikawa M, Fujita J, Yamada Y, Seino Y. Beneficial effect of pretreatment of islets with fibronectin on glucose tolerance after islet transplantation. Horm Metabol Res 2003; 35: 460-465. Matsuda S, Iwata H, Se N, Ikada Y. Bioadhesion of gelatin films crosslinked with glutaraldehyde. J Biomed Mater Res 1999; 45: 20-27. Poncelet D, Desmet BP, Beaulieu C, Huguet ML, Fournier A, Neufeld RJ. Production of alginate beads by emulsification internal gelation. 2. Physicochemistry. Appl Microbiol Biotechnol 1995; 43: 644-650. Robitaille R, Pariseau JF, Leblond FA, Lamoureux M, Lepage Y, Halle JP. Studies on small (<350 μm) alginate-poly-L-lysine microcapsules. III. Biocompatibility of smaller versus standard microcapsules. J Biomed Mater Res 1999; 44: 116-120. Sisson K, Zhang C, Farach-Carson MC, Chase DB, Rabolt JF. Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. Biomacromolecules 2009; 10: 1675-1680. Gotoh M, Maki T, Kiyoizumi T, Satomi S, Monaco AP. An improved method for isolation of mouse pancreatic-islets. Transplantation 1985; 40: 437-438. 2004; 22 2009; 24 2002; 37 2004; 83 2009; 86 2003; 65A 2008; 17 2009 2003; 35 1999; 46 1999; 45 1999; 44 2006; 6 2011; 32 1999; 20 1985; 40 1992; 38 2012; 33 1980; 210 2011; 108 2004; 279 2009; 10 1993; 94 2002; 23 1995; 43 2007; 9 2005; 54 2009; 5 2008; 85 2010; 92A 2001; 55 2005; 16 2008; 40 2009; 1 2008; 110 2003; 144 2009; 37 2001; 75 e_1_2_6_31_2 e_1_2_6_30_2 Hallé J (e_1_2_6_4_2) 2009 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
References_xml | – reference: Hamamoto Y, Fujimoto S, Inada A, Takehiro M, Nabe K, Shimono D, Kajikawa M, Fujita J, Yamada Y, Seino Y. Beneficial effect of pretreatment of islets with fibronectin on glucose tolerance after islet transplantation. Horm Metabol Res 2003; 35: 460-465. – reference: Sisson K, Zhang C, Farach-Carson MC, Chase DB, Rabolt JF. Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. Biomacromolecules 2009; 10: 1675-1680. – reference: Langlois G, Dusseault J, Bilodeau S, Tam SK, Magassouba D, Halle JP. Direct effect of alginate purification on the survival of islets immobilized in alginate-based microcapsules. Acta Biomater 2009; 5: 3433-3440. – reference: Lucasclerc C, Massart C, Campion JP, Launois B, Nicol M. Long-term culture of human pancreatic-islets in an extracellular-matrix-Morphological and metabolic effects. Mol Cell Endocrinol 1993; 94: 9-20. – reference: Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci 2006; 6: 623-633. – reference: Fukae R, Midorikawa T. Preparation of gelatin fiber by gel spinning and its mechanical properties. J Appl Polym Sci 2008; 110: 4011-4015. – reference: Gotoh M, Maki T, Kiyoizumi T, Satomi S, Monaco AP. An improved method for isolation of mouse pancreatic-islets. Transplantation 1985; 40: 437-438. – reference: Matsuda S, Iwata H, Se N, Ikada Y. Bioadhesion of gelatin films crosslinked with glutaraldehyde. J Biomed Mater Res 1999; 45: 20-27. – reference: Zimmermann H, Zimmermann D, Reuss R, Feilen PJ, Manz B, Katsen A, Weber M, Ihmig FR, Ehrhart F, Gessner P, Behringer M, Steinbach A, Wegner LH, Sukhorukov VL, Vásquez JA, Schneider S, Weber MM, Volke F, Wolf R, Zimmermann U. Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation. J Mater Sci Mater Med 2005; 16: 491-501. – reference: Poncelet D, Lencki R, Beaulieu C, Halle JP, Neufeld RJ, Fournier A. Production of alginate beads by emulsification internal gelation. 1. Methodology. Appl Microbiol Biotechnol 1992; 38: 39-45. – reference: Robitaille R, Dusseault J, Henley N, Rosenberg L, Halle JP. Insulin-like growth factor II allows prolonged blood glucose normalization with a reduced islet cell mass transplantation. Endocrinology 2003; 144: 3037-3045. – reference: Lee BR, Hwang JW, Choi YY, Wong SF, Hwang YH, Lee DY, Lee SH. In situ formation and collagen-alginate composite encapsulation of pancreatic islet spheroids. Biomaterials 2012; 33: 837-845. – reference: Landers R, Pfister A, Hubner U, John H, Schmelzeisen R, Mulhaupt R. Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J Mater Sci 2002; 37: 3107-3116. – reference: Kobayashi N. Bioartificial pancreas for the treatment of diabetes. Cell Transplant 2008; 17: 11-17. – reference: Sung HW, Huang DM, Chang WH, Huang RN, Hsu JC. Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: In vitro study. J Biomed Mater Res 1999; 46: 520-530. – reference: Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999; 20: 45-53. – reference: Atkinson MA. ADA Outstanding Scientific Achievement Lecture 2004. Thirty years of investigating the autoimmune basis for type 1 diabetes: Why can't we prevent or reverse this disease? Diabetes 2005; 54: 1253-1263. – reference: Kaido T, Yebra M, Cirulli V, Montgomery AM. Regulation of human beta-cell adhesion, motility, and insulin secretion by collagen IV and its receptor alpha(1)beta(1). J Biol Chem 2004; 279: 53762-53769. – reference: Torres-Giner S, Gimeno-Alcaniz JV, Ocio MJ, Lagaron JM. Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods. ACS Appl Mater Interfaces 2009; 1: 218-223. – reference: Salvay DM, Rives CB, Zhang XM, Chen F, Kaufman DB, Lowe WL, Shea LD. Extracellular matrix protein-coated scaffolds promote the reversal of diabetes after extrahepatic islet transplantation. Transplantation 2008; 85: 1456-1464. – reference: Liang HC, Chang WH, Lin KJ, Sung HW. Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: In vitro and in vivo studies. J Biomed Mater Res A 2003; 65A: 271-282. – reference: Poncelet D, Desmet BP, Beaulieu C, Huguet ML, Fournier A, Neufeld RJ. Production of alginate beads by emulsification internal gelation. 2. Physicochemistry. Appl Microbiol Biotechnol 1995; 43: 644-650. – reference: Daoud JT, Petropavlovskaia MS, Patapas JM, Degrandpre CE, DiRaddo RW, Rosenberg L, Tabrizian M. Long-term in vitro human pancreatic islet culture using three-dimensional microfabricated scaffolds. Biomaterials 2011; 32: 1536-1542. – reference: Yao CH, Liu BS, Chang CJ, Hsu SH, Chen YS. Preparation of networks of gelatin and genipin as degradable biomaterials. Mater Chem Phys 2004; 83: 204-208. – reference: Robitaille R, Pariseau JF, Leblond FA, Lamoureux M, Lepage Y, Halle JP. Studies on small (<350 μm) alginate-poly-L-lysine microcapsules. III. Biocompatibility of smaller versus standard microcapsules. J Biomed Mater Res 1999; 44: 116-120. – reference: Hou Y, Song C, Xie WJ, Wei Z, Huang RP, Liu W, Zhang ZL, Shi YB. Excellent effect of three-dimensional culture condition on pancreatic islets. Diabetes Res Clin Pract 2009; 86: 11-15. – reference: Sung HW, Liang IL, Chen CN, Huang RN, Liang HF. Stability of a biological tissue fixed with a naturally occurring crosslinking agent (genipin). J Biomed Mater Res 2001; 55: 538-546. – reference: Yang CY, Chiu CT, Chang YP, Wang YJ. Fabrication of porous gelatin microfibers using an aqueous wet spinning process. Artif Cell Blood Substit Biotechnol 2009; 37: 173-176. – reference: Chang Y, Tsai CC, Liang HC, Sung HW. In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin). Biomaterials 2002; 23: 2447-2457. – reference: Orive G, Hernandez RM, Rodriguez Gascon A, Calafiore R, Chang TM, de Vos P, Hortelano G, Hunkeler D, Lacik I, Pedraz JL. History, challenges and perspectives of cell microencapsulation. Trends Biotechnol 2004; 22: 87-92. – reference: Ciardelli G, Gentile P, Chiono V, Mattioli-Belmonte M, Vozzi G, Barbani N, Giusti P. Enzymatically crosslinked porous composite matrices for bone tissue regeneration. J Biomed Mater Res A 2010; 92A: 137-151. – reference: Kawazoe N, Lin XT, Tateishi T, Chen GP. Three-dimensional cultures of rat pancreatic RIN-5F cells in porous PLGA-collagen hybrid scaffolds. J Bioact Compat Polym 2009; 24: 25-42. – reference: Bavamian S, Klee P, Britan A, Populaire C, Caille D, Cancela J, Charollais A, Meda P. Islet-cell-to-cell communication as basis for normal insulin secretion. Diabetes Obes Metabol 2007; 9: 118-132. – reference: Chun S, Huang Y, Xie WJ, Hou Y, Huang RP, Song YM, Liu XM, Zheng W, Shi Y, Song CF. Adhesive growth of pancreatic islet cells on a polyglycolic acid fibrous scaffold. Transplant Proc 2008; 40: 1658-1663. – reference: Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science 1980; 210: 908-910. – reference: Del Guerra S, Bracci C, Nilsson K, Belcourt A, Kessler L, Lupi R, Marselli L, De Vos P, Marchetti P. Entrapment of dispersed pancreatic islet cells in CultiSpher-S macroporous gelatin microcarriers: Preparation, in vitro characterization, and microencapsulation. Biotechnol Bioeng 2001; 75: 741-744. – reference: Hoesli CA, Raghuram K, Kiang RLJ, Mocinecova D, Hu XK, Johnson JD, Lacik I, Kieffer TJ, Piret JM. Pancreatic cell immobilization in alginate beads produced by emulsion and internal gelation. Biotechnol Bioeng 2011; 108: 424-434. – volume: 210 start-page: 908 year: 1980 end-page: 910 article-title: Microencapsulated islets as bioartificial endocrine pancreas publication-title: Science – volume: 108 start-page: 424 year: 2011 end-page: 434 article-title: Pancreatic cell immobilization in alginate beads produced by emulsion and internal gelation publication-title: Biotechnol Bioeng – volume: 17 start-page: 11 year: 2008 end-page: 17 article-title: Bioartificial pancreas for the treatment of diabetes publication-title: Cell Transplant – volume: 75 start-page: 741 year: 2001 end-page: 744 article-title: Entrapment of dispersed pancreatic islet cells in CultiSpher‐S macroporous gelatin microcarriers: Preparation, in vitro characterization, and microencapsulation publication-title: Biotechnol Bioeng – volume: 54 start-page: 1253 year: 2005 end-page: 1263 article-title: ADA Outstanding Scientific Achievement Lecture 2004. Thirty years of investigating the autoimmune basis for type 1 diabetes: Why can't we prevent or reverse this disease? publication-title: Diabetes – volume: 38 start-page: 39 year: 1992 end-page: 45 article-title: Production of alginate beads by emulsification internal gelation. 1. Methodology publication-title: Appl Microbiol Biotechnol – volume: 33 start-page: 837 year: 2012 end-page: 845 article-title: In situ formation and collagen‐alginate composite encapsulation of pancreatic islet spheroids publication-title: Biomaterials – volume: 44 start-page: 116 year: 1999 end-page: 120 article-title: Studies on small (<350 μm) alginate‐poly‐ ‐lysine microcapsules. III. Biocompatibility of smaller versus standard microcapsules publication-title: J Biomed Mater Res – volume: 9 start-page: 118 year: 2007 end-page: 132 article-title: Islet‐cell‐to‐cell communication as basis for normal insulin secretion publication-title: Diabetes Obes Metabol – volume: 86 start-page: 11 year: 2009 end-page: 15 article-title: Excellent effect of three‐dimensional culture condition on pancreatic islets publication-title: Diabetes Res Clin Pract – volume: 43 start-page: 644 year: 1995 end-page: 650 article-title: Production of alginate beads by emulsification internal gelation. 2. Physicochemistry publication-title: Appl Microbiol Biotechnol – volume: 65A start-page: 271 year: 2003 end-page: 282 article-title: Genipin‐crosslinked gelatin microspheres as a drug carrier for intramuscular administration: In vitro and in vivo studies publication-title: J Biomed Mater Res A – volume: 83 start-page: 204 year: 2004 end-page: 208 article-title: Preparation of networks of gelatin and genipin as degradable biomaterials publication-title: Mater Chem Phys – volume: 16 start-page: 491 year: 2005 end-page: 501 article-title: Towards a medically approved technology for alginate‐based microcapsules allowing long‐term immunoisolated transplantation publication-title: J Mater Sci Mater Med – volume: 40 start-page: 1658 year: 2008 end-page: 1663 article-title: Adhesive growth of pancreatic islet cells on a polyglycolic acid fibrous scaffold publication-title: Transplant Proc – volume: 37 start-page: 3107 year: 2002 end-page: 3116 article-title: Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques publication-title: J Mater Sci – volume: 46 start-page: 520 year: 1999 end-page: 530 article-title: Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: In vitro study publication-title: J Biomed Mater Res – volume: 6 start-page: 623 year: 2006 end-page: 633 article-title: Alginate hydrogels as biomaterials publication-title: Macromol Biosci – volume: 1 start-page: 218 year: 2009 end-page: 223 article-title: Comparative performance of electrospun collagen nanofibers cross‐linked by means of different methods publication-title: ACS Appl Mater Interfaces – volume: 40 start-page: 437 year: 1985 end-page: 438 article-title: An improved method for isolation of mouse pancreatic‐islets publication-title: Transplantation – volume: 92A start-page: 137 year: 2010 end-page: 151 article-title: Enzymatically crosslinked porous composite matrices for bone tissue regeneration publication-title: J Biomed Mater Res A – volume: 85 start-page: 1456 year: 2008 end-page: 1464 article-title: Extracellular matrix protein‐coated scaffolds promote the reversal of diabetes after extrahepatic islet transplantation publication-title: Transplantation – volume: 24 start-page: 25 year: 2009 end-page: 42 article-title: Three‐dimensional cultures of rat pancreatic RIN‐5F cells in porous PLGA‐collagen hybrid scaffolds publication-title: J Bioact Compat Polym – volume: 55 start-page: 538 year: 2001 end-page: 546 article-title: Stability of a biological tissue fixed with a naturally occurring crosslinking agent (genipin) publication-title: J Biomed Mater Res – volume: 279 start-page: 53762 year: 2004 end-page: 53769 article-title: Regulation of human beta‐cell adhesion, motility, and insulin secretion by collagen IV and its receptor alpha(1)beta(1) publication-title: J Biol Chem – volume: 10 start-page: 1675 year: 2009 end-page: 1680 article-title: Evaluation of cross‐linking methods for electrospun gelatin on cell growth and viability publication-title: Biomacromolecules – volume: 22 start-page: 87 year: 2004 end-page: 92 article-title: History, challenges and perspectives of cell microencapsulation publication-title: Trends Biotechnol – volume: 37 start-page: 173 year: 2009 end-page: 176 article-title: Fabrication of porous gelatin microfibers using an aqueous wet spinning process publication-title: Artif Cell Blood Substit Biotechnol – volume: 45 start-page: 20 year: 1999 end-page: 27 article-title: Bioadhesion of gelatin films crosslinked with glutaraldehyde publication-title: J Biomed Mater Res – volume: 94 start-page: 9 year: 1993 end-page: 20 article-title: Long‐term culture of human pancreatic‐islets in an extracellular‐matrix—Morphological and metabolic effects publication-title: Mol Cell Endocrinol – volume: 110 start-page: 4011 year: 2008 end-page: 4015 article-title: Preparation of gelatin fiber by gel spinning and its mechanical properties publication-title: J Appl Polym Sci – volume: 5 start-page: 3433 year: 2009 end-page: 3440 article-title: Direct effect of alginate purification on the survival of islets immobilized in alginate‐based microcapsules publication-title: Acta Biomater – volume: 32 start-page: 1536 year: 2011 end-page: 1542 article-title: Long‐term in vitro human pancreatic islet culture using three‐dimensional microfabricated scaffolds publication-title: Biomaterials – start-page: 1 year: 2009 end-page: 26 – volume: 35 start-page: 460 year: 2003 end-page: 465 article-title: Beneficial effect of pretreatment of islets with fibronectin on glucose tolerance after islet transplantation publication-title: Horm Metabol Res – volume: 144 start-page: 3037 year: 2003 end-page: 3045 article-title: Insulin‐like growth factor II allows prolonged blood glucose normalization with a reduced islet cell mass transplantation publication-title: Endocrinology – volume: 20 start-page: 45 year: 1999 end-page: 53 article-title: Alginate hydrogels as synthetic extracellular matrix materials publication-title: Biomaterials – volume: 23 start-page: 2447 year: 2002 end-page: 2457 article-title: In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin) publication-title: Biomaterials – start-page: 1 volume-title: The Bioartificial Pancreas and Other Biohybrid Techniques year: 2009 ident: e_1_2_6_4_2 – ident: e_1_2_6_21_2 doi: 10.1023/A:1016189724389 – ident: e_1_2_6_33_2 doi: 10.1007/BF00169416 – ident: e_1_2_6_13_2 doi: 10.1097/TP.0b013e31816fc0ea – ident: e_1_2_6_3_2 doi: 10.3727/000000008783907107 – ident: e_1_2_6_23_2 doi: 10.1002/bit.10053 – ident: e_1_2_6_11_2 doi: 10.1055/s-2003-41802 – ident: e_1_2_6_30_2 doi: 10.1002/1097-4636(20010615)55:4<538::AID-JBM1047>3.0.CO;2-2 – ident: e_1_2_6_2_2 doi: 10.2337/diabetes.54.5.1253 – ident: e_1_2_6_12_2 doi: 10.1074/jbc.M411202200 – ident: e_1_2_6_16_2 doi: 10.1016/j.transproceed.2008.02.088 – ident: e_1_2_6_29_2 doi: 10.1002/jbm.a.10476 – ident: e_1_2_6_20_2 doi: 10.1016/0303-7207(93)90046-M – ident: e_1_2_6_34_2 doi: 10.1002/bit.22959 – ident: e_1_2_6_9_2 doi: 10.1002/mabi.200600069 – ident: e_1_2_6_26_2 doi: 10.1021/am800063x – ident: e_1_2_6_5_2 doi: 10.1126/science.6776628 – ident: e_1_2_6_22_2 doi: 10.1002/jbm.a.32344 – ident: e_1_2_6_39_2 doi: 10.1111/j.1463-1326.2007.00780.x – ident: e_1_2_6_15_2 doi: 10.1016/j.biomaterials.2011.10.014 – ident: e_1_2_6_19_2 doi: 10.1177/0883911508099439 – ident: e_1_2_6_10_2 doi: 10.1210/en.2002-0185 – ident: e_1_2_6_14_2 doi: 10.1016/S0142-9612(98)00107-0 – ident: e_1_2_6_37_2 doi: 10.1002/app.28969 – ident: e_1_2_6_32_2 doi: 10.1007/BF00164768 – ident: e_1_2_6_35_2 doi: 10.1097/00007890-198510000-00018 – ident: e_1_2_6_36_2 doi: 10.1016/j.matchemphys.2003.08.027 – ident: e_1_2_6_6_2 doi: 10.1016/j.tibtech.2003.11.004 – ident: e_1_2_6_7_2 doi: 10.1007/s10856-005-0523-2 – ident: e_1_2_6_18_2 doi: 10.1016/j.diabres.2009.07.010 – ident: e_1_2_6_38_2 doi: 10.1002/(SICI)1097-4636(199901)44:1<116::AID-JBM13>3.0.CO;2-9 – ident: e_1_2_6_24_2 doi: 10.1080/10731190903041022 – ident: e_1_2_6_25_2 doi: 10.1021/bm900036s – ident: e_1_2_6_31_2 doi: 10.1016/S0142-9612(01)00379-9 – ident: e_1_2_6_8_2 doi: 10.1016/j.actbio.2009.05.029 – ident: e_1_2_6_27_2 doi: 10.1002/(SICI)1097-4636(199904)45:1<20::AID-JBM3>3.0.CO;2-6 – ident: e_1_2_6_28_2 doi: 10.1002/(SICI)1097-4636(19990915)46:4<520::AID-JBM10>3.0.CO;2-9 – ident: e_1_2_6_17_2 doi: 10.1016/j.biomaterials.2010.10.036 |
SSID | ssj0026052 |
Score | 2.090749 |
Snippet | Networks of discrete, genipin‐crosslinked gelatin microfibers enveloping pancreatic islets were incorporated within barium alginate microcapsules. This novel... Networks of discrete, genipin-crosslinked gelatin microfibers enveloping pancreatic islets were incorporated within barium alginate microcapsules. This novel... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3384 |
SubjectTerms | Acridine orange Adhesiveness Alginates Alginic acid Animals Barium Biological and medical sciences Biotechnology Capsules - chemistry Cross-Linking Reagents - pharmacology Crosslinking Embedded systems Encapsulation Extrusion Fluorescence Fundamental and applied biological sciences. Psychology Gelatin Gelatin - metabolism Genipin Health. Pharmaceutical industry Industrial applications and implications. Economical aspects Iodides Iridoids - pharmacology Islets of Langerhans - drug effects Islets of Langerhans - physiology Light microscopy Male Medical sciences Microcapsules Microencapsulation Microfibers Microparticles Microscopy, Electron, Scanning Miscellaneous Morphology Optical microscopy Optimization Pancreas pancreatic islets Propidium iodide Proteins Rats Rats, Sprague-Dawley scaffold Static Electricity Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology. Biomaterials. Equipments Tissue engineering Tissue Survival - drug effects |
Title | Encapsulation of protein microfiber networks supporting pancreatic islets |
URI | https://api.istex.fr/ark:/67375/WNG-RT1QV82D-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.34281 https://www.ncbi.nlm.nih.gov/pubmed/22767501 https://www.proquest.com/docview/2451157212 https://www.proquest.com/docview/1114950632 |
Volume | 100A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS90wFA7iXvTB6ea06iQD2YPQ622a9DaPOnUqKEzU-RaSNAV19oq5F2S_3nOSWr1DhPlW6Elp03OS72u_fCFko5AZrzTLUyOFTbkDumNqVqSDXGucsGpe4Wrk45Pi4JwfXYrLVpuDa2GiP0T3wQ0rI4zXWODa-K1n09Brc9vTvRzgM5IfVGshJDrtzKMQqId_ncCA0pzJol2dB2e2XrSdmI8-YNc-oD5Se-iiOu5t8Rr4nMSyYTLa_xh3XPXBwxA1KDe98cj07N9_HB7f_ZzzZK6FqXQ75tUCmXLNJzL7wrzwMznca6wGjh3FdHRY0-D5cNXQWxT51ShFoU1UmXvqx3eI9KElhfEnQlVLrzykjV8k5_t7Zz8O0nZjhtRyIHCpqHOAJVw4K3MLVaa17VcZM6LKJOQEN33OWWWsM6WGHBgIWzEDY0Pe5y6rgfp-IdPNsHHLhJYwhfKslBrGDu6ENAWkRynrQkprmK4Ssvn0epRtXctx84w_KvotMwX9o7QK_ZOQjS74Lpp1vB72PbznLkbf36C-bSDU75Of6vQs-3VRsl21k5D1iUToGrCixKVXZULWnjJDtbXvFUPLNwHMmiXkW3caqhZ_xejGDcceeRcwU4CHELMUM-r54gwNdvpwm5shL956FHW0cxwOVv4neJXMAO5jUZWzRqZH92P3FbDVyKyHEnoE7WQeAQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1VcGh76PdHKKWuhHpAyrJxnGx8LAW6UHaloqXlZtmOI1Egi8iuVPXXd8bOBrZCldpbpIyj2J6x37PHzwCbuUxEqXkaG5nZWDikO6bieTxItaYJqxIlnUYejfPhiTg8zU7bBTc6CxP0IboFN4oMP15TgNOC9PaNaugPc9nTvRTxM7KfVbrTmwJz97iTjyKo7nc7kQPFKZd5ez4P32zfKrw0I61S4_6kDEndYCNV4XaLu-DnMpr109H-Y1CLioQslPPefGZ69tcfGo__X9Mn8KhFquxjcK2ncM_Vz-DhLf3C53CwV1uNNDvk07Fpxbzsw1nNLinPr6JsFFaHRPOGNfMrAvtYkuEQFNCqZWcNek7zAk729yafhnF7N0NsBXK4OKtSRCYic1amFgNNa9svE26yMpHoFsL0heClsc4UGt1gkNmSGxwe0r5wSYXs9yWs1NPavQZW4CwqkkJqHD6Ey6TJ0UMKWeVSWsN1GcHWon-UbYXL6f6MCxUkl7nC9lFa-faJYLMzvgp6HXebffAd3dno63NKcRtk6vv4szqeJF-_FXxX7USwseQJXQGeF3T6qohgfeEaqg3_RnFSfcuQXPMI3nevMXBpN0bXbjpviHohOUWEiDavgkvdfJyTxk4ff3PLO8bfqqIOd0b-Ye1fjN_B_eFkdKSODsZf3sADhIE8JOmsw8rseu7eItSamQ0fT78Br2oiGg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXQJiF44PsjMIaRJh4mpUscO40fGV3ZBqtg2mBvlu3Y0hhLq6WVEL-ee-0sW9GEBG-Vcl01N_fa5zTHx4RslDLntWZFaqSwKXdAd4xnZTostMYFy_MadyMfTMrdY75_Ik46bQ7uhYn-EP0fbtgZYb7GBp_VfuvKNPS7OR_oQQHwGcjPKi-zCrnX6LB3j0KkHl52AgVKCybLbnseXNm6NnhpQVrF3P5EgaRuIUc-Hm5xE_pcBrNhNRrfj0eutsHEEEUoZ4PF3Azsrz8sHv_7Rh-Qex1Ope9iYT0kt1zziNy95l74mOztNFYDyY5qOjr1NJg-nDb0HFV-HrUotIky85a2ixlCfRhJYQKKWNXS0xbqpn1Cjsc7R-930-5khtRCovNU-AJwCRfOysJCm2ltszpnRtS5hKLgJuOc1cY6U2kogqGwNTMwORQZd7kH7vuUrDTTxj0ntII1lOeV1DB5cCekKaE-KulLKa1huk7I5uXjUbazLcfTM36oaLjMFORHaRXyk5CNPngW3TpuDnsbnnMfoy_OUOA2FOrb5IM6PMq_fK3YSG0nZH2pEPoBrKxw71WVkLXLylBd87eKoeebAGrNEvKmvwxti-9idOOmixaJF1BTwIcQ8yxW1NWXM3TYyeBnboa6-NutqP3tg_Dhxb8Evya3P4_G6tPe5ONLcgcwIIsKnTWyMr9YuFeAs-ZmPXTTb0-BINI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Encapsulation+of+protein+microfiber+networks+supporting+pancreatic+islets&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=STEELE%2C+Joseph+A.+M&rft.au=BARRON%2C+Annelise+E&rft.au=CARMONA%2C+Euridice&rft.au=HALLE%2C+Jean-Pierre&rft.date=2012-12-01&rft.pub=Wiley-Blackwell&rft.issn=1549-3296&rft.volume=100&rft.issue=12&rft.spage=3384&rft.epage=3391&rft_id=info:doi/10.1002%2Fjbm.a.34281&rft.externalDBID=n%2Fa&rft.externalDocID=26811268 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon |