Encapsulation of protein microfiber networks supporting pancreatic islets

Networks of discrete, genipin‐crosslinked gelatin microfibers enveloping pancreatic islets were incorporated within barium alginate microcapsules. This novel technique enabled encapsulation of cellular aggregates in a spherical fibrous matrix <300 μm in diameter. Microfibers were produced by vort...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part A Vol. 100A; no. 12; pp. 3384 - 3391
Main Authors Steele, Joseph A. M., Barron, Annelise E., Carmona, Euridice, Hallé, Jean-Pierre, Neufeld, Ronald J.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.12.2012
Wiley-Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1549-3296
1552-4965
1552-4965
DOI10.1002/jbm.a.34281

Cover

Loading…
Abstract Networks of discrete, genipin‐crosslinked gelatin microfibers enveloping pancreatic islets were incorporated within barium alginate microcapsules. This novel technique enabled encapsulation of cellular aggregates in a spherical fibrous matrix <300 μm in diameter. Microfibers were produced by vortex‐drawn extrusion within an alginate support matrix. Optimization culminated in a hydrated fiber diameter of 22.3 ± 0.4 μm, a significant reduction relative to that available through current gelatin microfiber spinning techniques, while making the process more reliable and less labor intensive. Microfibers were encapsulated at 40 vol % within 294 ± 4 μm 1.6% barium alginate microparticles by electrostatic‐mediated dropwise extrusion. Pancreatic islets extracted from Sprague Dawley rats were encapsulated within the microparticles and analyzed over 21 days. Acridine orange and propidium iodide fluorescent viability staining and light microscopy indicated a significant increase in viability for islets within the fiber‐embedded particles relative to fiber‐free controls at days 7, 14, and 21. The fiber‐embedded system also promoted cellular aggregate cohesion, reducing the incidence of dispersed islet morphologies within the capsules from 31 to 8% at day 21. Further enquiry into benefits of islet encapsulation within a protein fiber network will be the subject of future investigation. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A:3384–3391, 2012.
AbstractList Networks of discrete, genipin‐crosslinked gelatin microfibers enveloping pancreatic islets were incorporated within barium alginate microcapsules. This novel technique enabled encapsulation of cellular aggregates in a spherical fibrous matrix <300 μm in diameter. Microfibers were produced by vortex‐drawn extrusion within an alginate support matrix. Optimization culminated in a hydrated fiber diameter of 22.3 ± 0.4 μm, a significant reduction relative to that available through current gelatin microfiber spinning techniques, while making the process more reliable and less labor intensive. Microfibers were encapsulated at 40 vol % within 294 ± 4 μm 1.6% barium alginate microparticles by electrostatic‐mediated dropwise extrusion. Pancreatic islets extracted from Sprague Dawley rats were encapsulated within the microparticles and analyzed over 21 days. Acridine orange and propidium iodide fluorescent viability staining and light microscopy indicated a significant increase in viability for islets within the fiber‐embedded particles relative to fiber‐free controls at days 7, 14, and 21. The fiber‐embedded system also promoted cellular aggregate cohesion, reducing the incidence of dispersed islet morphologies within the capsules from 31 to 8% at day 21. Further enquiry into benefits of islet encapsulation within a protein fiber network will be the subject of future investigation. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A:3384–3391, 2012.
Networks of discrete, genipin-crosslinked gelatin microfibers enveloping pancreatic islets were incorporated within barium alginate microcapsules. This novel technique enabled encapsulation of cellular aggregates in a spherical fibrous matrix <300 μm in diameter. Microfibers were produced by vortex-drawn extrusion within an alginate support matrix. Optimization culminated in a hydrated fiber diameter of 22.3 ± 0.4 μm, a significant reduction relative to that available through current gelatin microfiber spinning techniques, while making the process more reliable and less labor intensive. Microfibers were encapsulated at 40 vol % within 294 ± 4 μm 1.6% barium alginate microparticles by electrostatic-mediated dropwise extrusion. Pancreatic islets extracted from Sprague Dawley rats were encapsulated within the microparticles and analyzed over 21 days. Acridine orange and propidium iodide fluorescent viability staining and light microscopy indicated a significant increase in viability for islets within the fiber-embedded particles relative to fiber-free controls at days 7, 14, and 21. The fiber-embedded system also promoted cellular aggregate cohesion, reducing the incidence of dispersed islet morphologies within the capsules from 31 to 8% at day 21. Further enquiry into benefits of islet encapsulation within a protein fiber network will be the subject of future investigation.
Networks of discrete, genipin-crosslinked gelatin microfibers enveloping pancreatic islets were incorporated within barium alginate microcapsules. This novel technique enabled encapsulation of cellular aggregates in a spherical fibrous matrix <300 μm in diameter. Microfibers were produced by vortex-drawn extrusion within an alginate support matrix. Optimization culminated in a hydrated fiber diameter of 22.3 ± 0.4 μm, a significant reduction relative to that available through current gelatin microfiber spinning techniques, while making the process more reliable and less labor intensive. Microfibers were encapsulated at 40 vol % within 294 ± 4 μm 1.6% barium alginate microparticles by electrostatic-mediated dropwise extrusion. Pancreatic islets extracted from Sprague Dawley rats were encapsulated within the microparticles and analyzed over 21 days. Acridine orange and propidium iodide fluorescent viability staining and light microscopy indicated a significant increase in viability for islets within the fiber-embedded particles relative to fiber-free controls at days 7, 14, and 21. The fiber-embedded system also promoted cellular aggregate cohesion, reducing the incidence of dispersed islet morphologies within the capsules from 31 to 8% at day 21. Further enquiry into benefits of islet encapsulation within a protein fiber network will be the subject of future investigation.Networks of discrete, genipin-crosslinked gelatin microfibers enveloping pancreatic islets were incorporated within barium alginate microcapsules. This novel technique enabled encapsulation of cellular aggregates in a spherical fibrous matrix <300 μm in diameter. Microfibers were produced by vortex-drawn extrusion within an alginate support matrix. Optimization culminated in a hydrated fiber diameter of 22.3 ± 0.4 μm, a significant reduction relative to that available through current gelatin microfiber spinning techniques, while making the process more reliable and less labor intensive. Microfibers were encapsulated at 40 vol % within 294 ± 4 μm 1.6% barium alginate microparticles by electrostatic-mediated dropwise extrusion. Pancreatic islets extracted from Sprague Dawley rats were encapsulated within the microparticles and analyzed over 21 days. Acridine orange and propidium iodide fluorescent viability staining and light microscopy indicated a significant increase in viability for islets within the fiber-embedded particles relative to fiber-free controls at days 7, 14, and 21. The fiber-embedded system also promoted cellular aggregate cohesion, reducing the incidence of dispersed islet morphologies within the capsules from 31 to 8% at day 21. Further enquiry into benefits of islet encapsulation within a protein fiber network will be the subject of future investigation.
Author Barron, Annelise E.
Carmona, Euridice
Steele, Joseph A. M.
Neufeld, Ronald J.
Hallé, Jean-Pierre
Author_xml – sequence: 1
  givenname: Joseph A. M.
  surname: Steele
  fullname: Steele, Joseph A. M.
  organization: Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada, K7L 3N6
– sequence: 2
  givenname: Annelise E.
  surname: Barron
  fullname: Barron, Annelise E.
  organization: Department of Bioengineering, Stanford University, Stanford, California 94305-5444
– sequence: 3
  givenname: Euridice
  surname: Carmona
  fullname: Carmona, Euridice
  organization: Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada, H1T 2M4
– sequence: 4
  givenname: Jean-Pierre
  surname: Hallé
  fullname: Hallé, Jean-Pierre
  organization: Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada, H1T 2M4
– sequence: 5
  givenname: Ronald J.
  surname: Neufeld
  fullname: Neufeld, Ronald J.
  email: neufeld@queensu.ca
  organization: Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada, K7L 3N6
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26811268$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22767501$$D View this record in MEDLINE/PubMed
BookMark eNp90ctrFTEUB-AgFfvQlXsZEKEgc83JYx5L-7BWWkWpugxJJiO5nUmmSYa2_725vbctdNFNksX3O5ycs4u2nHcGobeAF4Ax-bRU40IuKCMNvEA7wDkpWVvxrdWbtSUlbbWNdmNcZlxhTl6hbULqquYYdtDpsdNyivMgk_Wu8H0xBZ-MdcVodfC9VSYUzqRrHy5jEedp8iFZ96-YpNPB5JQubBxMiq_Ry14O0bzZ3Hvo95fji8Ov5dmPk9PDz2elZhWGkvcUk4Zxo1uqMWZSatwBUbyDVhnNFGaMdEob1UjV8prrjijCa4qZgZ4Tuof213Vzo1eziUmMNmozDNIZP0cBAKzluKIr-v4JXfo5uNydIIwD8JrASr3bqFmNphNTsKMMt-J-SBl82AAZtRz6kL9u46OrGoB8ZPdx7fLgYgymfyCAxWpVIq9KSHG3qqzhidY23W0hBWmH5zPXdjC3z5UX3w7O7zPlOmNjMjcPGRkuRVXTmou_30_Erwv4-achR-KA_geW0bS9
CitedBy_id crossref_primary_10_1007_s11892_017_0877_0
crossref_primary_10_1016_j_bcp_2015_08_107
crossref_primary_10_1177_2041731419884708
crossref_primary_10_1016_j_addr_2013_07_010
crossref_primary_10_1088_2053_1591_aaaedc
crossref_primary_10_1007_s11427_014_4609_2
crossref_primary_10_1016_j_addr_2013_09_015
crossref_primary_10_1186_s13287_018_1130_8
Cites_doi 10.1023/A:1016189724389
10.1007/BF00169416
10.1097/TP.0b013e31816fc0ea
10.3727/000000008783907107
10.1002/bit.10053
10.1055/s-2003-41802
10.1002/1097-4636(20010615)55:4<538::AID-JBM1047>3.0.CO;2-2
10.2337/diabetes.54.5.1253
10.1074/jbc.M411202200
10.1016/j.transproceed.2008.02.088
10.1002/jbm.a.10476
10.1016/0303-7207(93)90046-M
10.1002/bit.22959
10.1002/mabi.200600069
10.1021/am800063x
10.1126/science.6776628
10.1002/jbm.a.32344
10.1111/j.1463-1326.2007.00780.x
10.1016/j.biomaterials.2011.10.014
10.1177/0883911508099439
10.1210/en.2002-0185
10.1016/S0142-9612(98)00107-0
10.1002/app.28969
10.1007/BF00164768
10.1097/00007890-198510000-00018
10.1016/j.matchemphys.2003.08.027
10.1016/j.tibtech.2003.11.004
10.1007/s10856-005-0523-2
10.1016/j.diabres.2009.07.010
10.1002/(SICI)1097-4636(199901)44:1<116::AID-JBM13>3.0.CO;2-9
10.1080/10731190903041022
10.1021/bm900036s
10.1016/S0142-9612(01)00379-9
10.1016/j.actbio.2009.05.029
10.1002/(SICI)1097-4636(199904)45:1<20::AID-JBM3>3.0.CO;2-6
10.1002/(SICI)1097-4636(19990915)46:4<520::AID-JBM10>3.0.CO;2-9
10.1016/j.biomaterials.2010.10.036
ContentType Journal Article
Copyright Copyright © 2012 Wiley Periodicals, Inc.
2014 INIST-CNRS
Copyright Wiley Subscription Services, Inc. Dec 2012
Copyright_xml – notice: Copyright © 2012 Wiley Periodicals, Inc.
– notice: 2014 INIST-CNRS
– notice: Copyright Wiley Subscription Services, Inc. Dec 2012
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/jbm.a.34281
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4965
EndPage 3391
ExternalDocumentID 22767501
26811268
10_1002_jbm_a_34281
JBM34281
ark_67375_WNG_RT1QV82D_B
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
4.4
4ZD
50Z
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BROTX
BRXPI
BSCLL
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
J0M
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WIH
WIK
WJL
WQJ
WRC
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
IQODW
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c4601-5f302845ec93c004aac0d12b5d19bec4b0442dbceb8ab9575cd2b257304e1f523
IEDL.DBID DR2
ISSN 1549-3296
1552-4965
IngestDate Thu Sep 04 18:25:05 EDT 2025
Wed Aug 13 09:24:08 EDT 2025
Mon Jul 21 06:03:30 EDT 2025
Wed Apr 02 07:26:16 EDT 2025
Thu Apr 24 23:06:05 EDT 2025
Tue Jul 01 01:11:33 EDT 2025
Wed Jan 22 16:57:35 EST 2025
Wed Oct 30 09:55:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Encapsulation
Tissue engineering
Biomaterial
Scaffold
Pancreas
Protein
pancreatic islets
Biomedical engineering
microfibers
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2012 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4601-5f302845ec93c004aac0d12b5d19bec4b0442dbceb8ab9575cd2b257304e1f523
Notes How to cite this article: Steele JAM, Barron AE, Carmona E, Hallé J-P, Neufeld RJ. 2012. Encapsulation of protein microfiber networks supporting pancreatic islets. J Biomed Mater Res Part A 2012:100A:3384-3391.
ark:/67375/WNG-RT1QV82D-B
istex:1801EA4F9EB913B5EF61FBCD18A2EFAE25F4DDE4
ArticleID:JBM34281
Steele JAM, Barron AE, Carmona E, Hallé J‐P, Neufeld RJ. 2012. Encapsulation of protein microfiber networks supporting pancreatic islets. J Biomed Mater Res Part A 2012:100A:3384–3391.
How to cite this article
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 22767501
PQID 2451157212
PQPubID 2034572
PageCount 8
ParticipantIDs proquest_miscellaneous_1114950632
proquest_journals_2451157212
pubmed_primary_22767501
pascalfrancis_primary_26811268
crossref_primary_10_1002_jbm_a_34281
crossref_citationtrail_10_1002_jbm_a_34281
wiley_primary_10_1002_jbm_a_34281_JBM34281
istex_primary_ark_67375_WNG_RT1QV82D_B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2012
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: December 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
– name: Mount Laurel
PublicationTitle Journal of biomedical materials research. Part A
PublicationTitleAlternate J. Biomed. Mater. Res
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Blackwell
– name: Wiley Subscription Services, Inc
References Atkinson MA. ADA Outstanding Scientific Achievement Lecture 2004. Thirty years of investigating the autoimmune basis for type 1 diabetes: Why can't we prevent or reverse this disease? Diabetes 2005; 54: 1253-1263.
Yang CY, Chiu CT, Chang YP, Wang YJ. Fabrication of porous gelatin microfibers using an aqueous wet spinning process. Artif Cell Blood Substit Biotechnol 2009; 37: 173-176.
Sung HW, Huang DM, Chang WH, Huang RN, Hsu JC. Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: In vitro study. J Biomed Mater Res 1999; 46: 520-530.
Bavamian S, Klee P, Britan A, Populaire C, Caille D, Cancela J, Charollais A, Meda P. Islet-cell-to-cell communication as basis for normal insulin secretion. Diabetes Obes Metabol 2007; 9: 118-132.
Orive G, Hernandez RM, Rodriguez Gascon A, Calafiore R, Chang TM, de Vos P, Hortelano G, Hunkeler D, Lacik I, Pedraz JL. History, challenges and perspectives of cell microencapsulation. Trends Biotechnol 2004; 22: 87-92.
Robitaille R, Dusseault J, Henley N, Rosenberg L, Halle JP. Insulin-like growth factor II allows prolonged blood glucose normalization with a reduced islet cell mass transplantation. Endocrinology 2003; 144: 3037-3045.
Yao CH, Liu BS, Chang CJ, Hsu SH, Chen YS. Preparation of networks of gelatin and genipin as degradable biomaterials. Mater Chem Phys 2004; 83: 204-208.
Del Guerra S, Bracci C, Nilsson K, Belcourt A, Kessler L, Lupi R, Marselli L, De Vos P, Marchetti P. Entrapment of dispersed pancreatic islet cells in CultiSpher-S macroporous gelatin microcarriers: Preparation, in vitro characterization, and microencapsulation. Biotechnol Bioeng 2001; 75: 741-744.
Chang Y, Tsai CC, Liang HC, Sung HW. In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin). Biomaterials 2002; 23: 2447-2457.
Zimmermann H, Zimmermann D, Reuss R, Feilen PJ, Manz B, Katsen A, Weber M, Ihmig FR, Ehrhart F, Gessner P, Behringer M, Steinbach A, Wegner LH, Sukhorukov VL, Vásquez JA, Schneider S, Weber MM, Volke F, Wolf R, Zimmermann U. Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation. J Mater Sci Mater Med 2005; 16: 491-501.
Liang HC, Chang WH, Lin KJ, Sung HW. Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: In vitro and in vivo studies. J Biomed Mater Res A 2003; 65A: 271-282.
Fukae R, Midorikawa T. Preparation of gelatin fiber by gel spinning and its mechanical properties. J Appl Polym Sci 2008; 110: 4011-4015.
Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999; 20: 45-53.
Hou Y, Song C, Xie WJ, Wei Z, Huang RP, Liu W, Zhang ZL, Shi YB. Excellent effect of three-dimensional culture condition on pancreatic islets. Diabetes Res Clin Pract 2009; 86: 11-15.
Poncelet D, Lencki R, Beaulieu C, Halle JP, Neufeld RJ, Fournier A. Production of alginate beads by emulsification internal gelation. 1. Methodology. Appl Microbiol Biotechnol 1992; 38: 39-45.
Chun S, Huang Y, Xie WJ, Hou Y, Huang RP, Song YM, Liu XM, Zheng W, Shi Y, Song CF. Adhesive growth of pancreatic islet cells on a polyglycolic acid fibrous scaffold. Transplant Proc 2008; 40: 1658-1663.
Daoud JT, Petropavlovskaia MS, Patapas JM, Degrandpre CE, DiRaddo RW, Rosenberg L, Tabrizian M. Long-term in vitro human pancreatic islet culture using three-dimensional microfabricated scaffolds. Biomaterials 2011; 32: 1536-1542.
Landers R, Pfister A, Hubner U, John H, Schmelzeisen R, Mulhaupt R. Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J Mater Sci 2002; 37: 3107-3116.
Sung HW, Liang IL, Chen CN, Huang RN, Liang HF. Stability of a biological tissue fixed with a naturally occurring crosslinking agent (genipin). J Biomed Mater Res 2001; 55: 538-546.
Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science 1980; 210: 908-910.
Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci 2006; 6: 623-633.
Kaido T, Yebra M, Cirulli V, Montgomery AM. Regulation of human beta-cell adhesion, motility, and insulin secretion by collagen IV and its receptor alpha(1)beta(1). J Biol Chem 2004; 279: 53762-53769.
Kawazoe N, Lin XT, Tateishi T, Chen GP. Three-dimensional cultures of rat pancreatic RIN-5F cells in porous PLGA-collagen hybrid scaffolds. J Bioact Compat Polym 2009; 24: 25-42.
Ciardelli G, Gentile P, Chiono V, Mattioli-Belmonte M, Vozzi G, Barbani N, Giusti P. Enzymatically crosslinked porous composite matrices for bone tissue regeneration. J Biomed Mater Res A 2010; 92A: 137-151.
Lucasclerc C, Massart C, Campion JP, Launois B, Nicol M. Long-term culture of human pancreatic-islets in an extracellular-matrix-Morphological and metabolic effects. Mol Cell Endocrinol 1993; 94: 9-20.
Salvay DM, Rives CB, Zhang XM, Chen F, Kaufman DB, Lowe WL, Shea LD. Extracellular matrix protein-coated scaffolds promote the reversal of diabetes after extrahepatic islet transplantation. Transplantation 2008; 85: 1456-1464.
Hoesli CA, Raghuram K, Kiang RLJ, Mocinecova D, Hu XK, Johnson JD, Lacik I, Kieffer TJ, Piret JM. Pancreatic cell immobilization in alginate beads produced by emulsion and internal gelation. Biotechnol Bioeng 2011; 108: 424-434.
Kobayashi N. Bioartificial pancreas for the treatment of diabetes. Cell Transplant 2008; 17: 11-17.
Lee BR, Hwang JW, Choi YY, Wong SF, Hwang YH, Lee DY, Lee SH. In situ formation and collagen-alginate composite encapsulation of pancreatic islet spheroids. Biomaterials 2012; 33: 837-845.
Torres-Giner S, Gimeno-Alcaniz JV, Ocio MJ, Lagaron JM. Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods. ACS Appl Mater Interfaces 2009; 1: 218-223.
Langlois G, Dusseault J, Bilodeau S, Tam SK, Magassouba D, Halle JP. Direct effect of alginate purification on the survival of islets immobilized in alginate-based microcapsules. Acta Biomater 2009; 5: 3433-3440.
Hamamoto Y, Fujimoto S, Inada A, Takehiro M, Nabe K, Shimono D, Kajikawa M, Fujita J, Yamada Y, Seino Y. Beneficial effect of pretreatment of islets with fibronectin on glucose tolerance after islet transplantation. Horm Metabol Res 2003; 35: 460-465.
Matsuda S, Iwata H, Se N, Ikada Y. Bioadhesion of gelatin films crosslinked with glutaraldehyde. J Biomed Mater Res 1999; 45: 20-27.
Poncelet D, Desmet BP, Beaulieu C, Huguet ML, Fournier A, Neufeld RJ. Production of alginate beads by emulsification internal gelation. 2. Physicochemistry. Appl Microbiol Biotechnol 1995; 43: 644-650.
Robitaille R, Pariseau JF, Leblond FA, Lamoureux M, Lepage Y, Halle JP. Studies on small (<350 μm) alginate-poly-L-lysine microcapsules. III. Biocompatibility of smaller versus standard microcapsules. J Biomed Mater Res 1999; 44: 116-120.
Sisson K, Zhang C, Farach-Carson MC, Chase DB, Rabolt JF. Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. Biomacromolecules 2009; 10: 1675-1680.
Gotoh M, Maki T, Kiyoizumi T, Satomi S, Monaco AP. An improved method for isolation of mouse pancreatic-islets. Transplantation 1985; 40: 437-438.
2004; 22
2009; 24
2002; 37
2004; 83
2009; 86
2003; 65A
2008; 17
2009
2003; 35
1999; 46
1999; 45
1999; 44
2006; 6
2011; 32
1999; 20
1985; 40
1992; 38
2012; 33
1980; 210
2011; 108
2004; 279
2009; 10
1993; 94
2002; 23
1995; 43
2007; 9
2005; 54
2009; 5
2008; 85
2010; 92A
2001; 55
2005; 16
2008; 40
2009; 1
2008; 110
2003; 144
2009; 37
2001; 75
e_1_2_6_31_2
e_1_2_6_30_2
Hallé J (e_1_2_6_4_2) 2009
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – reference: Hamamoto Y, Fujimoto S, Inada A, Takehiro M, Nabe K, Shimono D, Kajikawa M, Fujita J, Yamada Y, Seino Y. Beneficial effect of pretreatment of islets with fibronectin on glucose tolerance after islet transplantation. Horm Metabol Res 2003; 35: 460-465.
– reference: Sisson K, Zhang C, Farach-Carson MC, Chase DB, Rabolt JF. Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. Biomacromolecules 2009; 10: 1675-1680.
– reference: Langlois G, Dusseault J, Bilodeau S, Tam SK, Magassouba D, Halle JP. Direct effect of alginate purification on the survival of islets immobilized in alginate-based microcapsules. Acta Biomater 2009; 5: 3433-3440.
– reference: Lucasclerc C, Massart C, Campion JP, Launois B, Nicol M. Long-term culture of human pancreatic-islets in an extracellular-matrix-Morphological and metabolic effects. Mol Cell Endocrinol 1993; 94: 9-20.
– reference: Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci 2006; 6: 623-633.
– reference: Fukae R, Midorikawa T. Preparation of gelatin fiber by gel spinning and its mechanical properties. J Appl Polym Sci 2008; 110: 4011-4015.
– reference: Gotoh M, Maki T, Kiyoizumi T, Satomi S, Monaco AP. An improved method for isolation of mouse pancreatic-islets. Transplantation 1985; 40: 437-438.
– reference: Matsuda S, Iwata H, Se N, Ikada Y. Bioadhesion of gelatin films crosslinked with glutaraldehyde. J Biomed Mater Res 1999; 45: 20-27.
– reference: Zimmermann H, Zimmermann D, Reuss R, Feilen PJ, Manz B, Katsen A, Weber M, Ihmig FR, Ehrhart F, Gessner P, Behringer M, Steinbach A, Wegner LH, Sukhorukov VL, Vásquez JA, Schneider S, Weber MM, Volke F, Wolf R, Zimmermann U. Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation. J Mater Sci Mater Med 2005; 16: 491-501.
– reference: Poncelet D, Lencki R, Beaulieu C, Halle JP, Neufeld RJ, Fournier A. Production of alginate beads by emulsification internal gelation. 1. Methodology. Appl Microbiol Biotechnol 1992; 38: 39-45.
– reference: Robitaille R, Dusseault J, Henley N, Rosenberg L, Halle JP. Insulin-like growth factor II allows prolonged blood glucose normalization with a reduced islet cell mass transplantation. Endocrinology 2003; 144: 3037-3045.
– reference: Lee BR, Hwang JW, Choi YY, Wong SF, Hwang YH, Lee DY, Lee SH. In situ formation and collagen-alginate composite encapsulation of pancreatic islet spheroids. Biomaterials 2012; 33: 837-845.
– reference: Landers R, Pfister A, Hubner U, John H, Schmelzeisen R, Mulhaupt R. Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J Mater Sci 2002; 37: 3107-3116.
– reference: Kobayashi N. Bioartificial pancreas for the treatment of diabetes. Cell Transplant 2008; 17: 11-17.
– reference: Sung HW, Huang DM, Chang WH, Huang RN, Hsu JC. Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: In vitro study. J Biomed Mater Res 1999; 46: 520-530.
– reference: Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999; 20: 45-53.
– reference: Atkinson MA. ADA Outstanding Scientific Achievement Lecture 2004. Thirty years of investigating the autoimmune basis for type 1 diabetes: Why can't we prevent or reverse this disease? Diabetes 2005; 54: 1253-1263.
– reference: Kaido T, Yebra M, Cirulli V, Montgomery AM. Regulation of human beta-cell adhesion, motility, and insulin secretion by collagen IV and its receptor alpha(1)beta(1). J Biol Chem 2004; 279: 53762-53769.
– reference: Torres-Giner S, Gimeno-Alcaniz JV, Ocio MJ, Lagaron JM. Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods. ACS Appl Mater Interfaces 2009; 1: 218-223.
– reference: Salvay DM, Rives CB, Zhang XM, Chen F, Kaufman DB, Lowe WL, Shea LD. Extracellular matrix protein-coated scaffolds promote the reversal of diabetes after extrahepatic islet transplantation. Transplantation 2008; 85: 1456-1464.
– reference: Liang HC, Chang WH, Lin KJ, Sung HW. Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: In vitro and in vivo studies. J Biomed Mater Res A 2003; 65A: 271-282.
– reference: Poncelet D, Desmet BP, Beaulieu C, Huguet ML, Fournier A, Neufeld RJ. Production of alginate beads by emulsification internal gelation. 2. Physicochemistry. Appl Microbiol Biotechnol 1995; 43: 644-650.
– reference: Daoud JT, Petropavlovskaia MS, Patapas JM, Degrandpre CE, DiRaddo RW, Rosenberg L, Tabrizian M. Long-term in vitro human pancreatic islet culture using three-dimensional microfabricated scaffolds. Biomaterials 2011; 32: 1536-1542.
– reference: Yao CH, Liu BS, Chang CJ, Hsu SH, Chen YS. Preparation of networks of gelatin and genipin as degradable biomaterials. Mater Chem Phys 2004; 83: 204-208.
– reference: Robitaille R, Pariseau JF, Leblond FA, Lamoureux M, Lepage Y, Halle JP. Studies on small (<350 μm) alginate-poly-L-lysine microcapsules. III. Biocompatibility of smaller versus standard microcapsules. J Biomed Mater Res 1999; 44: 116-120.
– reference: Hou Y, Song C, Xie WJ, Wei Z, Huang RP, Liu W, Zhang ZL, Shi YB. Excellent effect of three-dimensional culture condition on pancreatic islets. Diabetes Res Clin Pract 2009; 86: 11-15.
– reference: Sung HW, Liang IL, Chen CN, Huang RN, Liang HF. Stability of a biological tissue fixed with a naturally occurring crosslinking agent (genipin). J Biomed Mater Res 2001; 55: 538-546.
– reference: Yang CY, Chiu CT, Chang YP, Wang YJ. Fabrication of porous gelatin microfibers using an aqueous wet spinning process. Artif Cell Blood Substit Biotechnol 2009; 37: 173-176.
– reference: Chang Y, Tsai CC, Liang HC, Sung HW. In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin). Biomaterials 2002; 23: 2447-2457.
– reference: Orive G, Hernandez RM, Rodriguez Gascon A, Calafiore R, Chang TM, de Vos P, Hortelano G, Hunkeler D, Lacik I, Pedraz JL. History, challenges and perspectives of cell microencapsulation. Trends Biotechnol 2004; 22: 87-92.
– reference: Ciardelli G, Gentile P, Chiono V, Mattioli-Belmonte M, Vozzi G, Barbani N, Giusti P. Enzymatically crosslinked porous composite matrices for bone tissue regeneration. J Biomed Mater Res A 2010; 92A: 137-151.
– reference: Kawazoe N, Lin XT, Tateishi T, Chen GP. Three-dimensional cultures of rat pancreatic RIN-5F cells in porous PLGA-collagen hybrid scaffolds. J Bioact Compat Polym 2009; 24: 25-42.
– reference: Bavamian S, Klee P, Britan A, Populaire C, Caille D, Cancela J, Charollais A, Meda P. Islet-cell-to-cell communication as basis for normal insulin secretion. Diabetes Obes Metabol 2007; 9: 118-132.
– reference: Chun S, Huang Y, Xie WJ, Hou Y, Huang RP, Song YM, Liu XM, Zheng W, Shi Y, Song CF. Adhesive growth of pancreatic islet cells on a polyglycolic acid fibrous scaffold. Transplant Proc 2008; 40: 1658-1663.
– reference: Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science 1980; 210: 908-910.
– reference: Del Guerra S, Bracci C, Nilsson K, Belcourt A, Kessler L, Lupi R, Marselli L, De Vos P, Marchetti P. Entrapment of dispersed pancreatic islet cells in CultiSpher-S macroporous gelatin microcarriers: Preparation, in vitro characterization, and microencapsulation. Biotechnol Bioeng 2001; 75: 741-744.
– reference: Hoesli CA, Raghuram K, Kiang RLJ, Mocinecova D, Hu XK, Johnson JD, Lacik I, Kieffer TJ, Piret JM. Pancreatic cell immobilization in alginate beads produced by emulsion and internal gelation. Biotechnol Bioeng 2011; 108: 424-434.
– volume: 210
  start-page: 908
  year: 1980
  end-page: 910
  article-title: Microencapsulated islets as bioartificial endocrine pancreas
  publication-title: Science
– volume: 108
  start-page: 424
  year: 2011
  end-page: 434
  article-title: Pancreatic cell immobilization in alginate beads produced by emulsion and internal gelation
  publication-title: Biotechnol Bioeng
– volume: 17
  start-page: 11
  year: 2008
  end-page: 17
  article-title: Bioartificial pancreas for the treatment of diabetes
  publication-title: Cell Transplant
– volume: 75
  start-page: 741
  year: 2001
  end-page: 744
  article-title: Entrapment of dispersed pancreatic islet cells in CultiSpher‐S macroporous gelatin microcarriers: Preparation, in vitro characterization, and microencapsulation
  publication-title: Biotechnol Bioeng
– volume: 54
  start-page: 1253
  year: 2005
  end-page: 1263
  article-title: ADA Outstanding Scientific Achievement Lecture 2004. Thirty years of investigating the autoimmune basis for type 1 diabetes: Why can't we prevent or reverse this disease?
  publication-title: Diabetes
– volume: 38
  start-page: 39
  year: 1992
  end-page: 45
  article-title: Production of alginate beads by emulsification internal gelation. 1. Methodology
  publication-title: Appl Microbiol Biotechnol
– volume: 33
  start-page: 837
  year: 2012
  end-page: 845
  article-title: In situ formation and collagen‐alginate composite encapsulation of pancreatic islet spheroids
  publication-title: Biomaterials
– volume: 44
  start-page: 116
  year: 1999
  end-page: 120
  article-title: Studies on small (<350 μm) alginate‐poly‐ ‐lysine microcapsules. III. Biocompatibility of smaller versus standard microcapsules
  publication-title: J Biomed Mater Res
– volume: 9
  start-page: 118
  year: 2007
  end-page: 132
  article-title: Islet‐cell‐to‐cell communication as basis for normal insulin secretion
  publication-title: Diabetes Obes Metabol
– volume: 86
  start-page: 11
  year: 2009
  end-page: 15
  article-title: Excellent effect of three‐dimensional culture condition on pancreatic islets
  publication-title: Diabetes Res Clin Pract
– volume: 43
  start-page: 644
  year: 1995
  end-page: 650
  article-title: Production of alginate beads by emulsification internal gelation. 2. Physicochemistry
  publication-title: Appl Microbiol Biotechnol
– volume: 65A
  start-page: 271
  year: 2003
  end-page: 282
  article-title: Genipin‐crosslinked gelatin microspheres as a drug carrier for intramuscular administration: In vitro and in vivo studies
  publication-title: J Biomed Mater Res A
– volume: 83
  start-page: 204
  year: 2004
  end-page: 208
  article-title: Preparation of networks of gelatin and genipin as degradable biomaterials
  publication-title: Mater Chem Phys
– volume: 16
  start-page: 491
  year: 2005
  end-page: 501
  article-title: Towards a medically approved technology for alginate‐based microcapsules allowing long‐term immunoisolated transplantation
  publication-title: J Mater Sci Mater Med
– volume: 40
  start-page: 1658
  year: 2008
  end-page: 1663
  article-title: Adhesive growth of pancreatic islet cells on a polyglycolic acid fibrous scaffold
  publication-title: Transplant Proc
– volume: 37
  start-page: 3107
  year: 2002
  end-page: 3116
  article-title: Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques
  publication-title: J Mater Sci
– volume: 46
  start-page: 520
  year: 1999
  end-page: 530
  article-title: Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: In vitro study
  publication-title: J Biomed Mater Res
– volume: 6
  start-page: 623
  year: 2006
  end-page: 633
  article-title: Alginate hydrogels as biomaterials
  publication-title: Macromol Biosci
– volume: 1
  start-page: 218
  year: 2009
  end-page: 223
  article-title: Comparative performance of electrospun collagen nanofibers cross‐linked by means of different methods
  publication-title: ACS Appl Mater Interfaces
– volume: 40
  start-page: 437
  year: 1985
  end-page: 438
  article-title: An improved method for isolation of mouse pancreatic‐islets
  publication-title: Transplantation
– volume: 92A
  start-page: 137
  year: 2010
  end-page: 151
  article-title: Enzymatically crosslinked porous composite matrices for bone tissue regeneration
  publication-title: J Biomed Mater Res A
– volume: 85
  start-page: 1456
  year: 2008
  end-page: 1464
  article-title: Extracellular matrix protein‐coated scaffolds promote the reversal of diabetes after extrahepatic islet transplantation
  publication-title: Transplantation
– volume: 24
  start-page: 25
  year: 2009
  end-page: 42
  article-title: Three‐dimensional cultures of rat pancreatic RIN‐5F cells in porous PLGA‐collagen hybrid scaffolds
  publication-title: J Bioact Compat Polym
– volume: 55
  start-page: 538
  year: 2001
  end-page: 546
  article-title: Stability of a biological tissue fixed with a naturally occurring crosslinking agent (genipin)
  publication-title: J Biomed Mater Res
– volume: 279
  start-page: 53762
  year: 2004
  end-page: 53769
  article-title: Regulation of human beta‐cell adhesion, motility, and insulin secretion by collagen IV and its receptor alpha(1)beta(1)
  publication-title: J Biol Chem
– volume: 10
  start-page: 1675
  year: 2009
  end-page: 1680
  article-title: Evaluation of cross‐linking methods for electrospun gelatin on cell growth and viability
  publication-title: Biomacromolecules
– volume: 22
  start-page: 87
  year: 2004
  end-page: 92
  article-title: History, challenges and perspectives of cell microencapsulation
  publication-title: Trends Biotechnol
– volume: 37
  start-page: 173
  year: 2009
  end-page: 176
  article-title: Fabrication of porous gelatin microfibers using an aqueous wet spinning process
  publication-title: Artif Cell Blood Substit Biotechnol
– volume: 45
  start-page: 20
  year: 1999
  end-page: 27
  article-title: Bioadhesion of gelatin films crosslinked with glutaraldehyde
  publication-title: J Biomed Mater Res
– volume: 94
  start-page: 9
  year: 1993
  end-page: 20
  article-title: Long‐term culture of human pancreatic‐islets in an extracellular‐matrix—Morphological and metabolic effects
  publication-title: Mol Cell Endocrinol
– volume: 110
  start-page: 4011
  year: 2008
  end-page: 4015
  article-title: Preparation of gelatin fiber by gel spinning and its mechanical properties
  publication-title: J Appl Polym Sci
– volume: 5
  start-page: 3433
  year: 2009
  end-page: 3440
  article-title: Direct effect of alginate purification on the survival of islets immobilized in alginate‐based microcapsules
  publication-title: Acta Biomater
– volume: 32
  start-page: 1536
  year: 2011
  end-page: 1542
  article-title: Long‐term in vitro human pancreatic islet culture using three‐dimensional microfabricated scaffolds
  publication-title: Biomaterials
– start-page: 1
  year: 2009
  end-page: 26
– volume: 35
  start-page: 460
  year: 2003
  end-page: 465
  article-title: Beneficial effect of pretreatment of islets with fibronectin on glucose tolerance after islet transplantation
  publication-title: Horm Metabol Res
– volume: 144
  start-page: 3037
  year: 2003
  end-page: 3045
  article-title: Insulin‐like growth factor II allows prolonged blood glucose normalization with a reduced islet cell mass transplantation
  publication-title: Endocrinology
– volume: 20
  start-page: 45
  year: 1999
  end-page: 53
  article-title: Alginate hydrogels as synthetic extracellular matrix materials
  publication-title: Biomaterials
– volume: 23
  start-page: 2447
  year: 2002
  end-page: 2457
  article-title: In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin)
  publication-title: Biomaterials
– start-page: 1
  volume-title: The Bioartificial Pancreas and Other Biohybrid Techniques
  year: 2009
  ident: e_1_2_6_4_2
– ident: e_1_2_6_21_2
  doi: 10.1023/A:1016189724389
– ident: e_1_2_6_33_2
  doi: 10.1007/BF00169416
– ident: e_1_2_6_13_2
  doi: 10.1097/TP.0b013e31816fc0ea
– ident: e_1_2_6_3_2
  doi: 10.3727/000000008783907107
– ident: e_1_2_6_23_2
  doi: 10.1002/bit.10053
– ident: e_1_2_6_11_2
  doi: 10.1055/s-2003-41802
– ident: e_1_2_6_30_2
  doi: 10.1002/1097-4636(20010615)55:4<538::AID-JBM1047>3.0.CO;2-2
– ident: e_1_2_6_2_2
  doi: 10.2337/diabetes.54.5.1253
– ident: e_1_2_6_12_2
  doi: 10.1074/jbc.M411202200
– ident: e_1_2_6_16_2
  doi: 10.1016/j.transproceed.2008.02.088
– ident: e_1_2_6_29_2
  doi: 10.1002/jbm.a.10476
– ident: e_1_2_6_20_2
  doi: 10.1016/0303-7207(93)90046-M
– ident: e_1_2_6_34_2
  doi: 10.1002/bit.22959
– ident: e_1_2_6_9_2
  doi: 10.1002/mabi.200600069
– ident: e_1_2_6_26_2
  doi: 10.1021/am800063x
– ident: e_1_2_6_5_2
  doi: 10.1126/science.6776628
– ident: e_1_2_6_22_2
  doi: 10.1002/jbm.a.32344
– ident: e_1_2_6_39_2
  doi: 10.1111/j.1463-1326.2007.00780.x
– ident: e_1_2_6_15_2
  doi: 10.1016/j.biomaterials.2011.10.014
– ident: e_1_2_6_19_2
  doi: 10.1177/0883911508099439
– ident: e_1_2_6_10_2
  doi: 10.1210/en.2002-0185
– ident: e_1_2_6_14_2
  doi: 10.1016/S0142-9612(98)00107-0
– ident: e_1_2_6_37_2
  doi: 10.1002/app.28969
– ident: e_1_2_6_32_2
  doi: 10.1007/BF00164768
– ident: e_1_2_6_35_2
  doi: 10.1097/00007890-198510000-00018
– ident: e_1_2_6_36_2
  doi: 10.1016/j.matchemphys.2003.08.027
– ident: e_1_2_6_6_2
  doi: 10.1016/j.tibtech.2003.11.004
– ident: e_1_2_6_7_2
  doi: 10.1007/s10856-005-0523-2
– ident: e_1_2_6_18_2
  doi: 10.1016/j.diabres.2009.07.010
– ident: e_1_2_6_38_2
  doi: 10.1002/(SICI)1097-4636(199901)44:1<116::AID-JBM13>3.0.CO;2-9
– ident: e_1_2_6_24_2
  doi: 10.1080/10731190903041022
– ident: e_1_2_6_25_2
  doi: 10.1021/bm900036s
– ident: e_1_2_6_31_2
  doi: 10.1016/S0142-9612(01)00379-9
– ident: e_1_2_6_8_2
  doi: 10.1016/j.actbio.2009.05.029
– ident: e_1_2_6_27_2
  doi: 10.1002/(SICI)1097-4636(199904)45:1<20::AID-JBM3>3.0.CO;2-6
– ident: e_1_2_6_28_2
  doi: 10.1002/(SICI)1097-4636(19990915)46:4<520::AID-JBM10>3.0.CO;2-9
– ident: e_1_2_6_17_2
  doi: 10.1016/j.biomaterials.2010.10.036
SSID ssj0026052
Score 2.090749
Snippet Networks of discrete, genipin‐crosslinked gelatin microfibers enveloping pancreatic islets were incorporated within barium alginate microcapsules. This novel...
Networks of discrete, genipin-crosslinked gelatin microfibers enveloping pancreatic islets were incorporated within barium alginate microcapsules. This novel...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3384
SubjectTerms Acridine orange
Adhesiveness
Alginates
Alginic acid
Animals
Barium
Biological and medical sciences
Biotechnology
Capsules - chemistry
Cross-Linking Reagents - pharmacology
Crosslinking
Embedded systems
Encapsulation
Extrusion
Fluorescence
Fundamental and applied biological sciences. Psychology
Gelatin
Gelatin - metabolism
Genipin
Health. Pharmaceutical industry
Industrial applications and implications. Economical aspects
Iodides
Iridoids - pharmacology
Islets of Langerhans - drug effects
Islets of Langerhans - physiology
Light microscopy
Male
Medical sciences
Microcapsules
Microencapsulation
Microfibers
Microparticles
Microscopy, Electron, Scanning
Miscellaneous
Morphology
Optical microscopy
Optimization
Pancreas
pancreatic islets
Propidium iodide
Proteins
Rats
Rats, Sprague-Dawley
scaffold
Static Electricity
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
Tissue engineering
Tissue Survival - drug effects
Title Encapsulation of protein microfiber networks supporting pancreatic islets
URI https://api.istex.fr/ark:/67375/WNG-RT1QV82D-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.34281
https://www.ncbi.nlm.nih.gov/pubmed/22767501
https://www.proquest.com/docview/2451157212
https://www.proquest.com/docview/1114950632
Volume 100A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS90wFA7iXvTB6ea06iQD2YPQ622a9DaPOnUqKEzU-RaSNAV19oq5F2S_3nOSWr1DhPlW6Elp03OS72u_fCFko5AZrzTLUyOFTbkDumNqVqSDXGucsGpe4Wrk45Pi4JwfXYrLVpuDa2GiP0T3wQ0rI4zXWODa-K1n09Brc9vTvRzgM5IfVGshJDrtzKMQqId_ncCA0pzJol2dB2e2XrSdmI8-YNc-oD5Se-iiOu5t8Rr4nMSyYTLa_xh3XPXBwxA1KDe98cj07N9_HB7f_ZzzZK6FqXQ75tUCmXLNJzL7wrzwMznca6wGjh3FdHRY0-D5cNXQWxT51ShFoU1UmXvqx3eI9KElhfEnQlVLrzykjV8k5_t7Zz8O0nZjhtRyIHCpqHOAJVw4K3MLVaa17VcZM6LKJOQEN33OWWWsM6WGHBgIWzEDY0Pe5y6rgfp-IdPNsHHLhJYwhfKslBrGDu6ENAWkRynrQkprmK4Ssvn0epRtXctx84w_KvotMwX9o7QK_ZOQjS74Lpp1vB72PbznLkbf36C-bSDU75Of6vQs-3VRsl21k5D1iUToGrCixKVXZULWnjJDtbXvFUPLNwHMmiXkW3caqhZ_xejGDcceeRcwU4CHELMUM-r54gwNdvpwm5shL956FHW0cxwOVv4neJXMAO5jUZWzRqZH92P3FbDVyKyHEnoE7WQeAQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1VcGh76PdHKKWuhHpAyrJxnGx8LAW6UHaloqXlZtmOI1Egi8iuVPXXd8bOBrZCldpbpIyj2J6x37PHzwCbuUxEqXkaG5nZWDikO6bieTxItaYJqxIlnUYejfPhiTg8zU7bBTc6CxP0IboFN4oMP15TgNOC9PaNaugPc9nTvRTxM7KfVbrTmwJz97iTjyKo7nc7kQPFKZd5ez4P32zfKrw0I61S4_6kDEndYCNV4XaLu-DnMpr109H-Y1CLioQslPPefGZ69tcfGo__X9Mn8KhFquxjcK2ncM_Vz-DhLf3C53CwV1uNNDvk07Fpxbzsw1nNLinPr6JsFFaHRPOGNfMrAvtYkuEQFNCqZWcNek7zAk729yafhnF7N0NsBXK4OKtSRCYic1amFgNNa9svE26yMpHoFsL0heClsc4UGt1gkNmSGxwe0r5wSYXs9yWs1NPavQZW4CwqkkJqHD6Ey6TJ0UMKWeVSWsN1GcHWon-UbYXL6f6MCxUkl7nC9lFa-faJYLMzvgp6HXebffAd3dno63NKcRtk6vv4szqeJF-_FXxX7USwseQJXQGeF3T6qohgfeEaqg3_RnFSfcuQXPMI3nevMXBpN0bXbjpviHohOUWEiDavgkvdfJyTxk4ff3PLO8bfqqIOd0b-Ye1fjN_B_eFkdKSODsZf3sADhIE8JOmsw8rseu7eItSamQ0fT78Br2oiGg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXQJiF44PsjMIaRJh4mpUscO40fGV3ZBqtg2mBvlu3Y0hhLq6WVEL-ee-0sW9GEBG-Vcl01N_fa5zTHx4RslDLntWZFaqSwKXdAd4xnZTostMYFy_MadyMfTMrdY75_Ik46bQ7uhYn-EP0fbtgZYb7GBp_VfuvKNPS7OR_oQQHwGcjPKi-zCrnX6LB3j0KkHl52AgVKCybLbnseXNm6NnhpQVrF3P5EgaRuIUc-Hm5xE_pcBrNhNRrfj0eutsHEEEUoZ4PF3Azsrz8sHv_7Rh-Qex1Ope9iYT0kt1zziNy95l74mOztNFYDyY5qOjr1NJg-nDb0HFV-HrUotIky85a2ixlCfRhJYQKKWNXS0xbqpn1Cjsc7R-930-5khtRCovNU-AJwCRfOysJCm2ltszpnRtS5hKLgJuOc1cY6U2kogqGwNTMwORQZd7kH7vuUrDTTxj0ntII1lOeV1DB5cCekKaE-KulLKa1huk7I5uXjUbazLcfTM36oaLjMFORHaRXyk5CNPngW3TpuDnsbnnMfoy_OUOA2FOrb5IM6PMq_fK3YSG0nZH2pEPoBrKxw71WVkLXLylBd87eKoeebAGrNEvKmvwxti-9idOOmixaJF1BTwIcQ8yxW1NWXM3TYyeBnboa6-NutqP3tg_Dhxb8Evya3P4_G6tPe5ONLcgcwIIsKnTWyMr9YuFeAs-ZmPXTTb0-BINI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Encapsulation+of+protein+microfiber+networks+supporting+pancreatic+islets&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=STEELE%2C+Joseph+A.+M&rft.au=BARRON%2C+Annelise+E&rft.au=CARMONA%2C+Euridice&rft.au=HALLE%2C+Jean-Pierre&rft.date=2012-12-01&rft.pub=Wiley-Blackwell&rft.issn=1549-3296&rft.volume=100&rft.issue=12&rft.spage=3384&rft.epage=3391&rft_id=info:doi/10.1002%2Fjbm.a.34281&rft.externalDBID=n%2Fa&rft.externalDocID=26811268
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon