Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode

Polycrystalline cathode materials that contain a combination of nickel, manganese, and cobalt have been used for advanced lithium batteries. These materials fracture at high voltage, which increases surface area and leads to more side reactions and shorter cycle life. Using single-crystalline sample...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 370; no. 6522; pp. 1313 - 1317
Main Authors Bi, Yujing, Tao, Jinhui, Wu, Yuqin, Li, Linze, Xu, Yaobin, Hu, Enyuan, Wu, Bingbin, Hu, Jiangtao, Wang, Chongmin, Zhang, Ji-Guang, Qi, Yue, Xiao, Jie
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 11.12.2020
AAAS
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polycrystalline cathode materials that contain a combination of nickel, manganese, and cobalt have been used for advanced lithium batteries. These materials fracture at high voltage, which increases surface area and leads to more side reactions and shorter cycle life. Using single-crystalline samples as model materials, Bi et al. observed changes in nickel-rich cathodes to study the fracture behavior under well-characterized conditions. As the material is charged and lithium is removed, specific planes glide over one another and microcracks are observed. However, this process is reversed on discharge, removing all traces of the microcracking. The authors developed a diffusion-induced stress model to understand the origin of the planar gliding and propose ways to stabilize these nickel-rich cathodes in working batteries. Science , this issue p. 1313 Reversible gliding and microcracking of lattice planes are observed in single-crystalline Ni-rich cathode materials. High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Single-crystalline Ni-rich cathode has a great potential to address the challenges present in its polycrystalline counterpart by reducing phase boundaries and materials surfaces. However, synthesis of high-performance single-crystalline Ni-rich cathode is very challenging, notwithstanding a fundamental linkage between overpotential, microstructure, and electrochemical behaviors in single-crystalline Ni-rich cathodes. We observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. The reversible formation of microstructure defects is correlated with the localized stresses induced by a concentration gradient of Li atoms in the lattice, providing clues to mitigate particle fracture from synthesis modifications.
AbstractList Cracking the problem of cracking cathodesPolycrystalline cathode materials that contain a combination of nickel, manganese, and cobalt have been used for advanced lithium batteries. These materials fracture at high voltage, which increases surface area and leads to more side reactions and shorter cycle life. Using single-crystalline samples as model materials, Bi et al. observed changes in nickel-rich cathodes to study the fracture behavior under well-characterized conditions. As the material is charged and lithium is removed, specific planes glide over one another and microcracks are observed. However, this process is reversed on discharge, removing all traces of the microcracking. The authors developed a diffusion-induced stress model to understand the origin of the planar gliding and propose ways to stabilize these nickel-rich cathodes in working batteries.Science, this issue p. 1313High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Single-crystalline Ni-rich cathode has a great potential to address the challenges present in its polycrystalline counterpart by reducing phase boundaries and materials surfaces. However, synthesis of high-performance single-crystalline Ni-rich cathode is very challenging, notwithstanding a fundamental linkage between overpotential, microstructure, and electrochemical behaviors in single-crystalline Ni-rich cathodes. We observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. The reversible formation of microstructure defects is correlated with the localized stresses induced by a concentration gradient of Li atoms in the lattice, providing clues to mitigate particle fracture from synthesis modifications.
Polycrystalline cathode materials that contain a combination of nickel, manganese, and cobalt have been used for advanced lithium batteries. These materials fracture at high voltage, which increases surface area and leads to more side reactions and shorter cycle life. Using single-crystalline samples as model materials, Bi et al. observed changes in nickel-rich cathodes to study the fracture behavior under well-characterized conditions. As the material is charged and lithium is removed, specific planes glide over one another and microcracks are observed. However, this process is reversed on discharge, removing all traces of the microcracking. The authors developed a diffusion-induced stress model to understand the origin of the planar gliding and propose ways to stabilize these nickel-rich cathodes in working batteries. Science , this issue p. 1313 Reversible gliding and microcracking of lattice planes are observed in single-crystalline Ni-rich cathode materials. High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Single-crystalline Ni-rich cathode has a great potential to address the challenges present in its polycrystalline counterpart by reducing phase boundaries and materials surfaces. However, synthesis of high-performance single-crystalline Ni-rich cathode is very challenging, notwithstanding a fundamental linkage between overpotential, microstructure, and electrochemical behaviors in single-crystalline Ni-rich cathodes. We observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. The reversible formation of microstructure defects is correlated with the localized stresses induced by a concentration gradient of Li atoms in the lattice, providing clues to mitigate particle fracture from synthesis modifications.
High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Single-crystalline Ni-rich cathode has a great potential to address the challenges present in its polycrystalline counterpart by reducing phase boundaries and materials surfaces. However, synthesis of high-performance single-crystalline Ni-rich cathode is very challenging, notwithstanding a fundamental linkage between overpotential, microstructure, and electrochemical behaviors in single-crystalline Ni-rich cathodes. In this study, we observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. The reversible formation of microstructure defects is correlated with the localized stresses induced by a concentration gradient of Li atoms in the lattice, providing clues to mitigate particle fracture from synthesis modifications.
High-energy nickel (Ni)-rich cathode will play a key role in advanced lithium (Li)-ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Single-crystalline Ni-rich cathode has a great potential to address the challenges present in its polycrystalline counterpart by reducing phase boundaries and materials surfaces. However, synthesis of high-performance single-crystalline Ni-rich cathode is very challenging, notwithstanding a fundamental linkage between overpotential, microstructure, and electrochemical behaviors in single-crystalline Ni-rich cathodes. We observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. The reversible formation of microstructure defects is correlated with the localized stresses induced by a concentration gradient of Li atoms in the lattice, providing clues to mitigate particle fracture from synthesis modifications.High-energy nickel (Ni)-rich cathode will play a key role in advanced lithium (Li)-ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Single-crystalline Ni-rich cathode has a great potential to address the challenges present in its polycrystalline counterpart by reducing phase boundaries and materials surfaces. However, synthesis of high-performance single-crystalline Ni-rich cathode is very challenging, notwithstanding a fundamental linkage between overpotential, microstructure, and electrochemical behaviors in single-crystalline Ni-rich cathodes. We observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. The reversible formation of microstructure defects is correlated with the localized stresses induced by a concentration gradient of Li atoms in the lattice, providing clues to mitigate particle fracture from synthesis modifications.
High-energy nickel (Ni)-rich cathode will play a key role in advanced lithium (Li)-ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Single-crystalline Ni-rich cathode has a great potential to address the challenges present in its polycrystalline counterpart by reducing phase boundaries and materials surfaces. However, synthesis of high-performance single-crystalline Ni-rich cathode is very challenging, notwithstanding a fundamental linkage between overpotential, microstructure, and electrochemical behaviors in single-crystalline Ni-rich cathodes. We observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. The reversible formation of microstructure defects is correlated with the localized stresses induced by a concentration gradient of Li atoms in the lattice, providing clues to mitigate particle fracture from synthesis modifications.
Author Xiao, Jie
Li, Linze
Bi, Yujing
Tao, Jinhui
Zhang, Ji-Guang
Xu, Yaobin
Hu, Jiangtao
Wang, Chongmin
Qi, Yue
Wu, Yuqin
Hu, Enyuan
Wu, Bingbin
Author_xml – sequence: 1
  givenname: Yujing
  orcidid: 0000-0002-1228-9628
  surname: Bi
  fullname: Bi, Yujing
  organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA
– sequence: 2
  givenname: Jinhui
  orcidid: 0000-0002-1156-9396
  surname: Tao
  fullname: Tao, Jinhui
  organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA
– sequence: 3
  givenname: Yuqin
  orcidid: 0000-0002-3140-1689
  surname: Wu
  fullname: Wu, Yuqin
  organization: School of Engineering, Brown University, Providence, RI 02912, USA., Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
– sequence: 4
  givenname: Linze
  orcidid: 0000-0001-5362-8991
  surname: Li
  fullname: Li, Linze
  organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA
– sequence: 5
  givenname: Yaobin
  orcidid: 0000-0002-9945-3514
  surname: Xu
  fullname: Xu, Yaobin
  organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA
– sequence: 6
  givenname: Enyuan
  orcidid: 0000-0002-1881-4534
  surname: Hu
  fullname: Hu, Enyuan
  organization: Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA
– sequence: 7
  givenname: Bingbin
  orcidid: 0000-0001-7559-9968
  surname: Wu
  fullname: Wu, Bingbin
  organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA
– sequence: 8
  givenname: Jiangtao
  orcidid: 0000-0002-2725-7581
  surname: Hu
  fullname: Hu, Jiangtao
  organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA
– sequence: 9
  givenname: Chongmin
  orcidid: 0000-0003-3327-0958
  surname: Wang
  fullname: Wang, Chongmin
  organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA
– sequence: 10
  givenname: Ji-Guang
  orcidid: 0000-0001-7343-4609
  surname: Zhang
  fullname: Zhang, Ji-Guang
  organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA
– sequence: 11
  givenname: Yue
  orcidid: 0000-0001-5331-1193
  surname: Qi
  fullname: Qi, Yue
  organization: School of Engineering, Brown University, Providence, RI 02912, USA., Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
– sequence: 12
  givenname: Jie
  orcidid: 0000-0002-5520-5439
  surname: Xiao
  fullname: Xiao, Jie
  organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA., Materials Science and Engineering Department, University of Washington, Seattle, WA 98195, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33303612$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1734972$$D View this record in Osti.gov
BookMark eNp1kc1rVDEUxYNU7HR07U4eunHz2ny8JC9LKdUKRcGPdci7775OaiYZk4zQ_96UGbsouMol93cunHPOyElMEQl5zeg5Y1xdFPAYAc_dBIIp_YysGDWyN5yKE7KiVKh-pFqekrNS7ihtOyNekFMhRFsxviLfv-EfzMVPAbtdcNHl7jb42cfbzsW523rICbKDXw8_PnauK20K2EO-L9WF4CN2X3yfPWw6cHWTZnxJni8uFHx1fNfk58erH5fX_c3XT58vP9z0MEhT-0WLYRCOzVKYSYNCDuM4Kw0gOKNyWqSYBiWGceESx8Uw5SYzcSMVcFzGRazJ28PdVKq3LYqKsIEUI0K1rF03mjfo_QHa5fR7j6XarS-AoXnFtC-WD1pzxTUTDX33BL1L-xybhUYpw6TgLb41eXOk9tMWZ7vLfuvyvf2XaQMuDkCLrpSMyyPCqH1ozR5bs8fWmkI-UTQvrvoUa3Y-_Ff3FyvbnXI
CitedBy_id crossref_primary_10_1016_j_electacta_2024_143882
crossref_primary_10_1002_smll_202306160
crossref_primary_10_1038_s41560_024_01639_y
crossref_primary_10_1002_adma_202108353
crossref_primary_10_1002_advs_202106003
crossref_primary_10_1002_adma_202204835
crossref_primary_10_1103_PhysRevMaterials_6_070201
crossref_primary_10_1021_acsenergylett_1c02135
crossref_primary_10_1002_adfm_202410241
crossref_primary_10_1039_D1TA05600J
crossref_primary_10_3103_S1062873823703471
crossref_primary_10_1002_ange_202211626
crossref_primary_10_1021_jacs_2c09725
crossref_primary_10_31613_ceramist_2022_25_1_03
crossref_primary_10_1093_nsr_nwac226
crossref_primary_10_1016_j_nanoen_2024_110500
crossref_primary_10_1016_j_ceramint_2022_07_081
crossref_primary_10_1002_admt_202400753
crossref_primary_10_1002_adma_202204845
crossref_primary_10_1016_j_xcrp_2021_100642
crossref_primary_10_1002_anie_202202731
crossref_primary_10_1007_s12598_022_02252_2
crossref_primary_10_1039_D2TA09633A
crossref_primary_10_1016_j_trechm_2022_04_010
crossref_primary_10_1016_j_jpowsour_2024_234522
crossref_primary_10_1002_aenm_202202795
crossref_primary_10_1002_aenm_202303490
crossref_primary_10_1016_j_ensm_2023_102801
crossref_primary_10_1039_D1TA08046F
crossref_primary_10_1016_j_partic_2021_05_006
crossref_primary_10_1039_D3NJ02493H
crossref_primary_10_1002_adfm_202409372
crossref_primary_10_1016_j_est_2022_105324
crossref_primary_10_1039_D1EE02987H
crossref_primary_10_1002_ange_202313437
crossref_primary_10_1016_j_coco_2022_101356
crossref_primary_10_1002_ange_202419903
crossref_primary_10_1016_j_ceramint_2024_11_273
crossref_primary_10_1002_anie_202314457
crossref_primary_10_1016_j_cej_2023_142656
crossref_primary_10_1038_s41467_023_42335_x
crossref_primary_10_1002_ange_202207225
crossref_primary_10_1016_j_jechem_2024_10_015
crossref_primary_10_1016_j_electacta_2024_143861
crossref_primary_10_1007_s11581_021_04293_6
crossref_primary_10_1016_j_jpowsour_2024_235967
crossref_primary_10_1016_j_jpowsour_2024_234998
crossref_primary_10_1016_j_ceramint_2024_02_221
crossref_primary_10_1021_acs_energyfuels_4c04598
crossref_primary_10_1002_anie_202302547
crossref_primary_10_1021_acsnano_4c09918
crossref_primary_10_1149_1945_7111_ac5f7f
crossref_primary_10_1038_s41467_024_54637_9
crossref_primary_10_1016_j_gee_2022_09_003
crossref_primary_10_1016_j_jpowsour_2022_231963
crossref_primary_10_1038_s41467_024_54331_w
crossref_primary_10_1039_D4TA05975A
crossref_primary_10_1016_j_jpowsour_2022_231726
crossref_primary_10_1002_adfm_202401300
crossref_primary_10_1149_1945_7111_ac315e
crossref_primary_10_1016_j_jeurceramsoc_2023_08_021
crossref_primary_10_1016_j_isci_2024_109557
crossref_primary_10_1039_D3TA06881A
crossref_primary_10_1021_acsenergylett_5c00324
crossref_primary_10_1002_ange_202302547
crossref_primary_10_1016_j_ensm_2023_102947
crossref_primary_10_1016_j_matt_2023_02_001
crossref_primary_10_1016_j_cej_2024_153821
crossref_primary_10_1126_sciadv_adp4906
crossref_primary_10_1093_nsr_nwab146
crossref_primary_10_1016_j_cej_2024_149574
crossref_primary_10_1016_j_ensm_2023_102828
crossref_primary_10_1016_j_ijmecsci_2024_109034
crossref_primary_10_1021_acs_iecr_2c04021
crossref_primary_10_1002_advs_202105119
crossref_primary_10_1021_acsenergylett_1c01089
crossref_primary_10_1039_D4EE01777C
crossref_primary_10_1021_acsami_1c05591
crossref_primary_10_1021_acs_chemrev_2c00251
crossref_primary_10_1021_jacs_4c02198
crossref_primary_10_1002_adfm_202423888
crossref_primary_10_1002_adfm_202303191
crossref_primary_10_1149_1945_7111_ac60ee
crossref_primary_10_1039_D4TA04307C
crossref_primary_10_1016_j_est_2024_111666
crossref_primary_10_1021_acs_chemmater_1c00962
crossref_primary_10_1039_D3EE03884J
crossref_primary_10_1002_ange_202216155
crossref_primary_10_1002_er_7395
crossref_primary_10_1016_j_actamat_2022_118229
crossref_primary_10_1039_D3CS00254C
crossref_primary_10_1007_s12598_024_03199_2
crossref_primary_10_1021_acsami_4c02885
crossref_primary_10_1002_adma_202301096
crossref_primary_10_1016_j_ensm_2021_02_003
crossref_primary_10_1016_j_ensm_2022_05_054
crossref_primary_10_1021_acsami_3c06472
crossref_primary_10_1016_j_joule_2023_10_016
crossref_primary_10_1039_D1QM00627D
crossref_primary_10_1142_S1793604721500053
crossref_primary_10_1126_science_adm9223
crossref_primary_10_1002_adma_202405238
crossref_primary_10_1016_j_esci_2022_02_006
crossref_primary_10_1007_s11581_023_04941_z
crossref_primary_10_1016_j_jallcom_2024_174564
crossref_primary_10_1016_j_jpowsour_2021_230028
crossref_primary_10_1021_acs_chemmater_3c00924
crossref_primary_10_1021_acsenergylett_3c00324
crossref_primary_10_1016_j_est_2022_106405
crossref_primary_10_1021_acsami_1c03195
crossref_primary_10_1016_j_nanoen_2024_110413
crossref_primary_10_3390_batteries9030156
crossref_primary_10_1021_acsami_1c20406
crossref_primary_10_1002_celc_202200814
crossref_primary_10_1002_aenm_202200136
crossref_primary_10_1039_D2TA02865D
crossref_primary_10_1002_anie_202300209
crossref_primary_10_1016_j_jechem_2024_10_051
crossref_primary_10_1002_aenm_202200022
crossref_primary_10_1093_nsr_nwad252
crossref_primary_10_1002_aenm_202300378
crossref_primary_10_1007_s42765_023_00347_8
crossref_primary_10_1002_adma_202107353
crossref_primary_10_1007_s40843_023_2715_8
crossref_primary_10_1002_adfm_202104730
crossref_primary_10_1016_j_jmst_2022_01_037
crossref_primary_10_1149_1945_7111_ace4f7
crossref_primary_10_1021_acsenergylett_2c01521
crossref_primary_10_1002_adma_202419856
crossref_primary_10_2139_ssrn_3917206
crossref_primary_10_1016_j_ssi_2024_116556
crossref_primary_10_1016_j_jallcom_2022_166375
crossref_primary_10_1088_0256_307X_41_7_078201
crossref_primary_10_1016_j_jmst_2023_02_005
crossref_primary_10_1039_D1DT02379A
crossref_primary_10_1039_D3QM00366C
crossref_primary_10_1007_s12274_022_4768_6
crossref_primary_10_1016_j_jechem_2024_03_039
crossref_primary_10_1021_acs_jpcc_1c08022
crossref_primary_10_1149_1945_7111_ac4e5d
crossref_primary_10_3390_coatings11080932
crossref_primary_10_1002_ange_202300209
crossref_primary_10_1039_D4EB00022F
crossref_primary_10_1149_1945_7111_abf7e8
crossref_primary_10_1016_j_ensm_2023_102906
crossref_primary_10_1016_j_jallcom_2022_164204
crossref_primary_10_1002_aenm_202303758
crossref_primary_10_1016_j_ensm_2024_103332
crossref_primary_10_1016_j_ensm_2023_103050
crossref_primary_10_1016_j_cej_2023_147607
crossref_primary_10_1149_1945_7111_ac8ee3
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121380
crossref_primary_10_1021_acs_nanolett_1c03285
crossref_primary_10_1063_5_0096766
crossref_primary_10_1039_D3TA02279J
crossref_primary_10_1002_adfm_202301642
crossref_primary_10_1016_j_jechem_2025_02_004
crossref_primary_10_1080_10667857_2023_2204292
crossref_primary_10_1002_adfm_202311564
crossref_primary_10_1016_j_nanoen_2025_110749
crossref_primary_10_1021_acsami_4c13570
crossref_primary_10_1016_S1003_6326_22_66047_3
crossref_primary_10_2139_ssrn_4185643
crossref_primary_10_1115_1_4054584
crossref_primary_10_1002_aenm_202303764
crossref_primary_10_1002_eom2_12141
crossref_primary_10_1002_anie_202419903
crossref_primary_10_1002_bte2_20220036
crossref_primary_10_1002_ange_202314457
crossref_primary_10_1093_micmic_ozad067_653
crossref_primary_10_1002_ange_202403189
crossref_primary_10_1021_acsenergylett_4c03221
crossref_primary_10_1016_j_jechem_2021_06_017
crossref_primary_10_1002_adfm_202212150
crossref_primary_10_1016_j_jallcom_2024_173954
crossref_primary_10_1016_j_jcis_2024_06_027
crossref_primary_10_1021_accountsmr_1c00282
crossref_primary_10_1016_j_cej_2025_161243
crossref_primary_10_1149_1945_7111_abf9c2
crossref_primary_10_1039_D1EE00590A
crossref_primary_10_1039_D0EE03581E
crossref_primary_10_1016_j_cej_2023_146733
crossref_primary_10_1016_j_fmre_2022_03_001
crossref_primary_10_1016_j_ceramint_2022_10_306
crossref_primary_10_1002_ange_202202731
crossref_primary_10_1007_s40820_023_01269_1
crossref_primary_10_1016_j_ceramint_2022_06_087
crossref_primary_10_3390_nano12111888
crossref_primary_10_1002_anie_202214880
crossref_primary_10_1021_acsami_2c17419
crossref_primary_10_1038_s41586_022_05115_z
crossref_primary_10_1016_j_cej_2024_155617
crossref_primary_10_1016_j_jechem_2024_09_056
crossref_primary_10_1021_acsami_1c06550
crossref_primary_10_1038_s41586_022_05281_0
crossref_primary_10_1016_j_apmate_2024_100185
crossref_primary_10_1016_j_jcis_2022_03_064
crossref_primary_10_1073_pnas_2120060119
crossref_primary_10_1002_elt2_27
crossref_primary_10_1016_j_ensm_2024_103788
crossref_primary_10_1002_adfm_202308257
crossref_primary_10_1002_smll_202200627
crossref_primary_10_1016_j_scib_2022_12_022
crossref_primary_10_1016_j_matt_2023_11_025
crossref_primary_10_1016_j_jechem_2022_05_027
crossref_primary_10_1021_acsami_4c11143
crossref_primary_10_1126_science_ado1675
crossref_primary_10_1002_ente_202200843
crossref_primary_10_1039_D3GC00116D
crossref_primary_10_1016_j_jallcom_2022_164489
crossref_primary_10_1016_j_xcrp_2021_100695
crossref_primary_10_1002_cjoc_202400806
crossref_primary_10_1021_acsenergylett_2c01216
crossref_primary_10_1016_j_jechem_2021_10_030
crossref_primary_10_1016_j_jpowsour_2024_234584
crossref_primary_10_1016_j_electacta_2022_141386
crossref_primary_10_1016_j_ensm_2021_01_031
crossref_primary_10_1016_j_nanoen_2024_110276
crossref_primary_10_1016_j_electacta_2023_142630
crossref_primary_10_1016_j_joule_2023_09_006
crossref_primary_10_1021_acsaem_2c00647
crossref_primary_10_1126_sciadv_abm5678
crossref_primary_10_1002_smll_202306807
crossref_primary_10_1126_sciadv_adn4441
crossref_primary_10_1039_D4CS00797B
crossref_primary_10_1016_j_esci_2024_100265
crossref_primary_10_1002_adfm_202009949
crossref_primary_10_1016_j_cej_2023_144890
crossref_primary_10_1016_j_jechem_2021_10_022
crossref_primary_10_1016_j_xcrp_2022_100741
crossref_primary_10_1002_adma_202212098
crossref_primary_10_1002_batt_202400691
crossref_primary_10_1038_s41565_024_01734_x
crossref_primary_10_1039_D2GC04620B
crossref_primary_10_1038_s41560_022_01020_x
crossref_primary_10_1002_cssc_202300417
crossref_primary_10_1002_aenm_202200569
crossref_primary_10_1016_j_jpowsour_2023_233260
crossref_primary_10_1002_ange_202104671
crossref_primary_10_1002_smll_202303526
crossref_primary_10_31857_S0367676523702472
crossref_primary_10_1016_j_cej_2022_134745
crossref_primary_10_1002_smll_202105833
crossref_primary_10_1021_acsnano_4c10454
crossref_primary_10_1016_j_cossms_2022_100990
crossref_primary_10_1016_j_nanoen_2022_106961
crossref_primary_10_1039_D3MH01151H
crossref_primary_10_1021_acsami_4c05609
crossref_primary_10_1007_s41918_022_00166_2
crossref_primary_10_1038_s41467_023_37122_7
crossref_primary_10_1002_aenm_202200656
crossref_primary_10_1016_j_seppur_2023_124280
crossref_primary_10_1016_j_jpowsour_2024_234439
crossref_primary_10_1038_s41586_022_05238_3
crossref_primary_10_1016_j_jallcom_2021_159839
crossref_primary_10_1016_j_cej_2022_134638
crossref_primary_10_1021_acsami_1c05535
crossref_primary_10_1016_j_applthermaleng_2023_121024
crossref_primary_10_1007_s10008_024_06048_5
crossref_primary_10_1016_j_ensm_2024_103346
crossref_primary_10_1016_j_jallcom_2022_164592
crossref_primary_10_1073_pnas_2317282121
crossref_primary_10_1002_aenm_202201510
crossref_primary_10_1016_j_ensm_2023_103167
crossref_primary_10_1002_anie_202409069
crossref_primary_10_1016_j_esci_2022_10_008
crossref_primary_10_1149_1945_7111_ad1d94
crossref_primary_10_3390_en17071746
crossref_primary_10_1021_acs_nanolett_4c04129
crossref_primary_10_1007_s12274_022_4242_5
crossref_primary_10_1039_D4EE03021D
crossref_primary_10_1021_acsaem_2c00658
crossref_primary_10_1002_bte2_20230045
crossref_primary_10_1016_j_mtcomm_2024_108449
crossref_primary_10_1016_j_nanoen_2021_106568
crossref_primary_10_1039_D3TA07840J
crossref_primary_10_1039_D4TA02355B
crossref_primary_10_1039_D2NA00097K
crossref_primary_10_1126_sciadv_ado4472
crossref_primary_10_1016_j_jechem_2021_05_048
crossref_primary_10_1016_j_cej_2022_136825
crossref_primary_10_1002_aenm_202402918
crossref_primary_10_1016_j_esci_2024_100251
crossref_primary_10_1016_j_nanoen_2022_106984
crossref_primary_10_2139_ssrn_4162770
crossref_primary_10_1002_ange_202419664
crossref_primary_10_1016_j_mattod_2022_10_021
crossref_primary_10_1021_acs_chemmater_3c00395
crossref_primary_10_1021_acs_jpcc_2c01940
crossref_primary_10_1016_j_actamat_2024_119751
crossref_primary_10_1039_D4RA00923A
crossref_primary_10_1016_j_jechem_2024_06_015
crossref_primary_10_1016_j_nanoen_2021_106096
crossref_primary_10_1149_1945_7111_acd47e
crossref_primary_10_1021_jacs_2c13787
crossref_primary_10_1016_j_jallcom_2023_170451
crossref_primary_10_1039_D2CP02750J
crossref_primary_10_1002_adsu_202400198
crossref_primary_10_1021_acsami_2c15054
crossref_primary_10_1021_acsami_2c22815
crossref_primary_10_1039_D3TA02784H
crossref_primary_10_1002_aenm_202401336
crossref_primary_10_1088_1674_1056_ad01a3
crossref_primary_10_1039_D3TA07156A
crossref_primary_10_1038_s41467_023_37033_7
crossref_primary_10_1016_j_mtener_2024_101787
crossref_primary_10_1021_acsaem_1c02419
crossref_primary_10_1073_pnas_2409494122
crossref_primary_10_1021_cbe_4c00097
crossref_primary_10_1039_D2TA08703K
crossref_primary_10_1016_j_ensm_2022_02_025
crossref_primary_10_1016_j_jcis_2022_01_011
crossref_primary_10_1016_j_cej_2022_139431
crossref_primary_10_1038_s41560_025_01738_4
crossref_primary_10_1016_j_cclet_2024_110729
crossref_primary_10_1002_smtd_202100234
crossref_primary_10_3390_ma16051818
crossref_primary_10_1021_acsaem_3c00308
crossref_primary_10_1039_D4CC04275A
crossref_primary_10_1007_s12598_022_01983_6
crossref_primary_10_1016_j_nanoen_2023_108846
crossref_primary_10_1016_j_cej_2021_132985
crossref_primary_10_1021_acsami_4c05206
crossref_primary_10_1016_j_jallcom_2022_164727
crossref_primary_10_3866_PKU_WHXB202308051
crossref_primary_10_1002_adfm_202110876
crossref_primary_10_1021_acs_nanolett_2c01103
crossref_primary_10_1038_s41467_024_52123_w
crossref_primary_10_1002_advs_202104841
crossref_primary_10_1002_adfm_202409956
crossref_primary_10_1002_smll_202305618
crossref_primary_10_1021_acssuschemeng_4c08856
crossref_primary_10_34133_energymatadv_0022
crossref_primary_10_1002_inf2_12359
crossref_primary_10_1021_acsami_0c18030
crossref_primary_10_1039_D3GC03997H
crossref_primary_10_1002_adfm_202415035
crossref_primary_10_1002_adma_202308380
crossref_primary_10_1016_j_jpowsour_2022_232014
crossref_primary_10_3390_ma16175769
crossref_primary_10_1016_j_ensm_2022_01_015
crossref_primary_10_1038_s41467_024_45490_x
crossref_primary_10_1016_j_cej_2023_142093
crossref_primary_10_1016_j_ensm_2024_103949
crossref_primary_10_1016_j_nanoen_2022_107123
crossref_primary_10_1039_D1TA02293H
crossref_primary_10_1002_aenm_202301647
crossref_primary_10_1002_adfm_202300127
crossref_primary_10_1002_adfm_202301336
crossref_primary_10_1002_batt_202400077
crossref_primary_10_1002_cssc_202201169
crossref_primary_10_1021_acsenergylett_1c01976
crossref_primary_10_1038_s41467_024_54641_z
crossref_primary_10_1007_s10483_024_3119_6
crossref_primary_10_1021_acsami_2c04249
crossref_primary_10_1002_cssc_202202252
crossref_primary_10_1021_acsami_2c09937
crossref_primary_10_1002_idm2_12043
crossref_primary_10_1038_s41563_022_01461_5
crossref_primary_10_1016_j_ensm_2024_103819
crossref_primary_10_1016_j_ensm_2022_08_011
crossref_primary_10_1021_acsami_1c06839
crossref_primary_10_1016_j_cej_2022_139336
crossref_primary_10_1016_j_nanoen_2022_107119
crossref_primary_10_1002_cey2_146
crossref_primary_10_1016_j_cej_2021_133731
crossref_primary_10_1016_j_ensm_2023_03_016
crossref_primary_10_1016_j_jcis_2021_07_027
crossref_primary_10_1021_acsami_2c19687
crossref_primary_10_1002_aenm_202103005
crossref_primary_10_1002_aenm_202203188
crossref_primary_10_14356_kona_2022015
crossref_primary_10_1016_j_apsusc_2022_152794
crossref_primary_10_1002_anie_202402625
crossref_primary_10_1021_accountsmr_2c00098
crossref_primary_10_1021_acsaem_1c02526
crossref_primary_10_1016_j_susmat_2021_e00305
crossref_primary_10_1016_j_cej_2023_144254
crossref_primary_10_1016_j_ensm_2024_103650
crossref_primary_10_1016_j_jcis_2022_01_105
crossref_primary_10_1007_s11581_021_04110_0
crossref_primary_10_1016_j_ensm_2022_01_032
crossref_primary_10_1016_j_nxener_2023_100091
crossref_primary_10_1007_s11814_023_00009_w
crossref_primary_10_1021_acsenergylett_3c02072
crossref_primary_10_1002_smll_202107048
crossref_primary_10_1016_j_cej_2024_154344
crossref_primary_10_1016_j_jpowsour_2023_232799
crossref_primary_10_1021_jacs_2c03549
crossref_primary_10_1002_anie_202318042
crossref_primary_10_1115_1_4054389
crossref_primary_10_1016_j_cej_2021_131109
crossref_primary_10_1021_acssuschemeng_1c03002
crossref_primary_10_1002_ange_202302170
crossref_primary_10_1021_acsnano_2c04959
crossref_primary_10_1002_adma_202409272
crossref_primary_10_1016_j_jcis_2024_05_239
crossref_primary_10_1021_acsenergylett_2c02032
crossref_primary_10_1088_2631_7990_ad97f6
crossref_primary_10_1002_tcr_202200119
crossref_primary_10_1016_j_cej_2024_148905
crossref_primary_10_1021_acsaem_3c01428
crossref_primary_10_1149_1945_7111_ad4919
crossref_primary_10_1016_j_jcis_2022_08_184
crossref_primary_10_1039_D1TA03141D
crossref_primary_10_1021_acsnano_3c10986
crossref_primary_10_1016_j_jechem_2023_05_027
crossref_primary_10_1002_aenm_202401644
crossref_primary_10_1016_j_chempr_2022_03_007
crossref_primary_10_1016_j_jcis_2025_01_079
crossref_primary_10_1002_ange_202214880
crossref_primary_10_1016_j_ensm_2024_103636
crossref_primary_10_1021_jacs_1c09429
crossref_primary_10_1016_j_solidstatesciences_2023_107224
crossref_primary_10_1016_j_partic_2023_05_001
crossref_primary_10_1016_j_mtsust_2021_100105
crossref_primary_10_1002_smll_202201522
crossref_primary_10_1038_s41560_022_01036_3
crossref_primary_10_1016_j_ensm_2022_11_016
crossref_primary_10_1016_j_mattod_2024_04_007
crossref_primary_10_1007_s11433_021_1697_2
crossref_primary_10_1021_acsami_2c00811
crossref_primary_10_1016_j_cclet_2023_108655
crossref_primary_10_1016_j_cej_2024_158800
crossref_primary_10_1021_acs_nanolett_3c01700
crossref_primary_10_1016_j_ensm_2022_01_056
crossref_primary_10_1038_s41467_022_28325_5
crossref_primary_10_1039_D2TA02169B
crossref_primary_10_1039_D3CS00741C
crossref_primary_10_1016_j_ceramint_2022_02_223
crossref_primary_10_1016_j_cej_2024_156866
crossref_primary_10_1016_j_est_2024_114033
crossref_primary_10_1002_admi_202102283
crossref_primary_10_1002_adfm_202406770
crossref_primary_10_1016_j_chempr_2022_04_012
crossref_primary_10_1021_acsnano_2c02557
crossref_primary_10_1007_s11426_023_1706_8
crossref_primary_10_1016_j_jechem_2022_08_010
crossref_primary_10_1039_D4DT03215B
crossref_primary_10_1021_acs_chemmater_2c03069
crossref_primary_10_1002_adfm_202105026
crossref_primary_10_1039_D3TA02369A
crossref_primary_10_1038_s41560_024_01465_2
crossref_primary_10_1039_D2EE02344J
crossref_primary_10_1149_1945_7111_ad63d1
crossref_primary_10_1016_j_cej_2024_152010
crossref_primary_10_1039_D1SE01880A
crossref_primary_10_1021_acsami_2c21841
crossref_primary_10_1021_acsami_1c01221
crossref_primary_10_1016_j_cclet_2022_07_061
crossref_primary_10_2139_ssrn_3995111
crossref_primary_10_1002_smll_202304677
crossref_primary_10_1016_j_cej_2022_134927
crossref_primary_10_1039_D1TA02262H
crossref_primary_10_1002_admi_202200800
crossref_primary_10_1002_anie_202302170
crossref_primary_10_1016_j_joule_2021_03_016
crossref_primary_10_1002_smll_202302086
crossref_primary_10_1002_smll_202205508
crossref_primary_10_1039_D3NA00201B
crossref_primary_10_1016_j_coelec_2021_100831
crossref_primary_10_1002_aenm_202202022
crossref_primary_10_1002_aenm_202102646
crossref_primary_10_1016_j_ensm_2023_102879
crossref_primary_10_1016_j_apenergy_2024_123630
crossref_primary_10_1016_j_jcis_2021_10_061
crossref_primary_10_1021_acsami_2c13832
crossref_primary_10_1038_s41560_022_01129_z
crossref_primary_10_1002_inf2_12292
crossref_primary_10_1038_s41467_021_24893_0
crossref_primary_10_1002_adma_202411311
crossref_primary_10_1038_s41467_022_30020_4
crossref_primary_10_1016_j_ensm_2021_10_022
crossref_primary_10_1039_D3GC00197K
crossref_primary_10_1016_j_ensm_2023_102775
crossref_primary_10_1039_D4TA04615C
crossref_primary_10_1002_aenm_202403117
crossref_primary_10_1002_anie_202207225
crossref_primary_10_1016_j_cej_2023_142946
crossref_primary_10_1016_j_jallcom_2023_171827
crossref_primary_10_1016_j_ensm_2022_11_007
crossref_primary_10_1016_j_jmst_2024_09_013
crossref_primary_10_1016_j_jpowsour_2024_234801
crossref_primary_10_1016_j_nanoen_2021_105854
crossref_primary_10_1021_acs_nanolett_1c03852
crossref_primary_10_1039_D1TA04476A
crossref_primary_10_1007_s10008_022_05212_z
crossref_primary_10_1021_acsami_3c10509
crossref_primary_10_1016_j_chempr_2022_09_003
crossref_primary_10_1002_smll_202304482
crossref_primary_10_1002_adma_202407029
crossref_primary_10_1002_ange_202402625
crossref_primary_10_1007_s40242_023_3128_8
crossref_primary_10_1002_anie_202216155
crossref_primary_10_1016_j_ensm_2025_104006
crossref_primary_10_1002_celc_202100125
crossref_primary_10_1002_smll_202400762
crossref_primary_10_1002_adfm_202418274
crossref_primary_10_1557_s43578_022_00678_z
crossref_primary_10_1016_j_ensm_2023_01_019
crossref_primary_10_1002_aenm_202100126
crossref_primary_10_1103_PRXEnergy_4_013009
crossref_primary_10_1039_D4TA06142J
crossref_primary_10_1039_D2NR00993E
crossref_primary_10_1002_adfm_202107769
crossref_primary_10_1021_acsenergylett_3c01954
crossref_primary_10_1002_eem2_12473
crossref_primary_10_1038_s41467_024_51168_1
crossref_primary_10_1038_s41467_023_43792_0
crossref_primary_10_1002_aenm_202103894
crossref_primary_10_1063_5_0051092
crossref_primary_10_1002_asia_202200213
crossref_primary_10_1039_D3EE04115H
crossref_primary_10_1002_aenm_202401197
crossref_primary_10_1002_smll_202104282
crossref_primary_10_1007_s11581_021_04224_5
crossref_primary_10_1021_acsami_3c06375
crossref_primary_10_1002_ange_202318042
crossref_primary_10_1002_ente_202201372
crossref_primary_10_1016_j_jpowsour_2022_231671
crossref_primary_10_1002_cnma_202300148
crossref_primary_10_1021_acsaem_1c00188
crossref_primary_10_1039_D3CC01338C
crossref_primary_10_1007_s42765_023_00372_7
crossref_primary_10_1021_acs_jpcc_3c01770
crossref_primary_10_1016_j_xcrp_2023_101480
crossref_primary_10_1021_acs_chemmater_3c02727
crossref_primary_10_1021_acsami_0c22356
crossref_primary_10_1016_j_cej_2023_148223
crossref_primary_10_1038_s41563_024_01899_9
crossref_primary_10_1016_j_nxener_2023_100015
crossref_primary_10_1016_j_jechem_2021_09_022
crossref_primary_10_1016_j_cej_2024_149827
crossref_primary_10_1007_s11581_023_04945_9
crossref_primary_10_1039_D3NR04586B
crossref_primary_10_1021_acsaem_4c00279
crossref_primary_10_1016_j_cjsc_2024_100390
crossref_primary_10_1002_anie_202403189
crossref_primary_10_1002_anie_202419664
crossref_primary_10_1039_D4TA04197F
crossref_primary_10_1002_eem2_12778
crossref_primary_10_1002_aenm_202101518
crossref_primary_10_1016_j_ensm_2022_08_024
crossref_primary_10_1002_anie_202313437
crossref_primary_10_1021_acs_iecr_4c01424
crossref_primary_10_1021_acsaem_4c02340
crossref_primary_10_1002_batt_202100174
crossref_primary_10_1002_celc_202100693
crossref_primary_10_1016_j_jallcom_2021_161480
crossref_primary_10_1016_j_ensm_2022_06_004
crossref_primary_10_1016_j_ensm_2023_102969
crossref_primary_10_1021_acsami_1c00755
crossref_primary_10_1016_j_ensm_2023_102965
crossref_primary_10_1016_j_nanoen_2023_108528
crossref_primary_10_1038_s41586_022_04689_y
crossref_primary_10_1039_D3TA00320E
crossref_primary_10_1002_adfm_202408642
crossref_primary_10_1016_j_nanoen_2021_106901
crossref_primary_10_1002_adma_202106402
crossref_primary_10_1038_s41467_021_25074_9
crossref_primary_10_1557_s43577_023_00627_z
crossref_primary_10_1016_j_ensm_2021_06_021
crossref_primary_10_1016_j_ensm_2022_06_002
crossref_primary_10_1016_j_jclepro_2023_136246
crossref_primary_10_1007_s10853_021_06579_6
crossref_primary_10_1016_j_jpowsour_2024_235092
crossref_primary_10_1021_acsaem_2c04111
crossref_primary_10_1002_adma_202200777
crossref_primary_10_1126_science_abo7670
crossref_primary_10_1016_j_matt_2022_08_003
crossref_primary_10_1039_D1NR05912B
crossref_primary_10_1016_j_jallcom_2022_168389
crossref_primary_10_1002_adma_202312292
crossref_primary_10_1002_adma_202209357
crossref_primary_10_1002_ange_202409069
crossref_primary_10_1016_j_jpowsour_2022_232210
crossref_primary_10_1039_D3SC02093B
crossref_primary_10_1016_j_cej_2022_138318
crossref_primary_10_1038_s41560_023_01233_8
crossref_primary_10_3390_en15239235
crossref_primary_10_1002_anie_202104671
crossref_primary_10_1016_j_pmatsci_2024_101247
crossref_primary_10_1007_s12598_022_02213_9
crossref_primary_10_1103_PRXEnergy_3_013004
crossref_primary_10_1016_j_mtener_2021_100873
crossref_primary_10_1016_j_jpowsour_2025_236473
crossref_primary_10_1038_s41467_024_55235_5
crossref_primary_10_1038_s41560_024_01605_8
crossref_primary_10_1016_j_ensm_2022_07_029
crossref_primary_10_1007_s00339_024_07897_7
crossref_primary_10_1039_D2MH01588A
crossref_primary_10_1016_j_mattod_2024_02_003
crossref_primary_10_1016_j_jechem_2024_11_016
crossref_primary_10_3390_cryst12030317
crossref_primary_10_1016_j_electacta_2021_139467
crossref_primary_10_1002_smll_202107357
crossref_primary_10_1149_1945_7111_ac6244
crossref_primary_10_3390_batteries9100485
crossref_primary_10_1016_j_jallcom_2023_170522
crossref_primary_10_1016_j_jpowsour_2022_232202
crossref_primary_10_2139_ssrn_4142144
crossref_primary_10_1002_adfm_202212607
crossref_primary_10_1039_D3LF00093A
crossref_primary_10_1039_D4TA03727H
crossref_primary_10_1002_anie_202211626
crossref_primary_10_1039_D4TA02290D
crossref_primary_10_1002_aenm_202300403
crossref_primary_10_1016_j_eng_2023_08_021
crossref_primary_10_1016_j_jpowsour_2023_233714
crossref_primary_10_1016_j_jechem_2024_05_020
crossref_primary_10_1103_PRXEnergy_3_013012
Cites_doi 10.1126/science.aaa1313
10.1039/C8TA10329A
10.1016/j.ensm.2020.01.027
10.1149/1.3454762
10.1149/2.0401802jes
10.1149/2.0031411jes
10.1016/j.actamat.2018.07.046
10.1149/1.3079366
10.1021/acs.chemmater.7b05269
10.1002/adfm.201900247
10.1149/2.0951805jes
10.1021/acs.nanolett.7b03989
10.1149/2.0981913jes
10.1002/aenm.202000982
10.1149/2.0971803jes
10.1149/1945-7111/ab6288
10.1002/adfm.201200693
10.1016/j.nanoen.2020.104450
10.1038/ncomms14101
10.1021/ja3091438
10.1021/acs.chemmater.8b04418
10.1149/2.0681910jes
10.1021/cr5003003
10.1149/2.0401714jes
10.1039/C6TA01593J
10.1016/j.joule.2019.02.004
10.1038/ncomms2490
10.1149/1945-7111/abacea
10.1149/2.044302jes
10.1021/acs.jpcc.7b00896
ContentType Journal Article
Copyright Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
CorporateAuthor Brookhaven National Lab. (BNL), Upton, NY (United States)
CorporateAuthor_xml – name: Brookhaven National Lab. (BNL), Upton, NY (United States)
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
OTOTI
DOI 10.1126/science.abc3167
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1317
ExternalDocumentID 1734972
33303612
10_1126_science_abc3167
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
0B8
AEUPB
ESX
GX1
IGG
NPM
OK1
PKN
RHF
UIG
VQA
YCJ
YIF
YIN
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
63O
6XO
ABPTK
ABQIS
AEXZC
AFUVZ
ANJGP
B-7
OTOTI
PK8
PQEST
UMP
XFK
ZA5
ID FETCH-LOGICAL-c459t-f73443a1d539b7c6e2c88d67cc32105bf53b46348f25e8f916ab9b2956c2ef8f3
ISSN 0036-8075
1095-9203
IngestDate Fri May 19 00:37:10 EDT 2023
Thu Jul 10 17:54:33 EDT 2025
Fri Jul 25 10:40:20 EDT 2025
Wed Feb 19 02:30:01 EST 2025
Tue Jul 01 01:35:23 EDT 2025
Thu Apr 24 23:04:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6522
Language English
License Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-f73443a1d539b7c6e2c88d67cc32105bf53b46348f25e8f916ab9b2956c2ef8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
BNL-220706-2020-JAAM
National Science Foundation (NSF)
LC000L053; SC0012704; SC0013004; AC05-76RL01830; DMR-1832808
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office
ORCID 0000-0001-7559-9968
0000-0001-5362-8991
0000-0002-1881-4534
0000-0003-3327-0958
0000-0002-9945-3514
0000-0002-2725-7581
0000-0002-3140-1689
0000-0002-1228-9628
0000-0001-5331-1193
0000-0002-1156-9396
0000-0001-7343-4609
0000-0002-5520-5439
0000000231401689
0000000255205439
0000000333270958
0000000218814534
0000000227257581
0000000175599968
0000000173434609
0000000211569396
0000000299453514
0000000212289628
0000000153628991
0000000153311193
OpenAccessLink https://www.osti.gov/biblio/1734972
PMID 33303612
PQID 2469153259
PQPubID 1256
PageCount 5
ParticipantIDs osti_scitechconnect_1734972
proquest_miscellaneous_2477262713
proquest_journals_2469153259
pubmed_primary_33303612
crossref_primary_10_1126_science_abc3167
crossref_citationtrail_10_1126_science_abc3167
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-11
PublicationDateYYYYMMDD 2020-12-11
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2020
Publisher The American Association for the Advancement of Science
AAAS
Publisher_xml – name: The American Association for the Advancement of Science
– name: AAAS
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
References_xml – ident: e_1_3_2_26_2
  doi: 10.1126/science.aaa1313
– ident: e_1_3_2_19_2
  doi: 10.1039/C8TA10329A
– ident: e_1_3_2_15_2
  doi: 10.1016/j.ensm.2020.01.027
– ident: e_1_3_2_27_2
  doi: 10.1149/1.3454762
– ident: e_1_3_2_8_2
  doi: 10.1149/2.0401802jes
– ident: e_1_3_2_29_2
  doi: 10.1149/2.0031411jes
– ident: e_1_3_2_30_2
  doi: 10.1016/j.actamat.2018.07.046
– ident: e_1_3_2_4_2
  doi: 10.1149/1.3079366
– ident: e_1_3_2_24_2
  doi: 10.1021/acs.chemmater.7b05269
– ident: e_1_3_2_6_2
  doi: 10.1002/adfm.201900247
– ident: e_1_3_2_11_2
  doi: 10.1149/2.0951805jes
– ident: e_1_3_2_25_2
  doi: 10.1021/acs.nanolett.7b03989
– ident: e_1_3_2_17_2
  doi: 10.1149/2.0981913jes
– ident: e_1_3_2_10_2
  doi: 10.1002/aenm.202000982
– ident: e_1_3_2_18_2
  doi: 10.1149/2.0971803jes
– ident: e_1_3_2_16_2
  doi: 10.1149/1945-7111/ab6288
– ident: e_1_3_2_9_2
  doi: 10.1002/adfm.201200693
– ident: e_1_3_2_31_2
  doi: 10.1016/j.nanoen.2020.104450
– ident: e_1_3_2_5_2
  doi: 10.1038/ncomms14101
– ident: e_1_3_2_3_2
  doi: 10.1021/ja3091438
– ident: e_1_3_2_7_2
  doi: 10.1021/acs.chemmater.8b04418
– ident: e_1_3_2_20_2
  doi: 10.1149/2.0681910jes
– ident: e_1_3_2_2_2
  doi: 10.1021/cr5003003
– ident: e_1_3_2_12_2
  doi: 10.1149/2.0401714jes
– ident: e_1_3_2_14_2
  doi: 10.1039/C6TA01593J
– ident: e_1_3_2_22_2
  doi: 10.1016/j.joule.2019.02.004
– ident: e_1_3_2_28_2
  doi: 10.1038/ncomms2490
– ident: e_1_3_2_32_2
  doi: 10.1149/1945-7111/abacea
– ident: e_1_3_2_23_2
  doi: 10.1149/2.044302jes
– ident: e_1_3_2_21_2
– ident: e_1_3_2_13_2
  doi: 10.1021/acs.jpcc.7b00896
SSID ssj0009593
Score 2.723485
Snippet Polycrystalline cathode materials that contain a combination of nickel, manganese, and cobalt have been used for advanced lithium batteries. These materials...
High-energy nickel (Ni)-rich cathode will play a key role in advanced lithium (Li)-ion batteries, but it suffers from moisture sensitivity, side reactions, and...
Cracking the problem of cracking cathodesPolycrystalline cathode materials that contain a combination of nickel, manganese, and cobalt have been used for...
High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and...
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1313
SubjectTerms batteries
Cathodes
Cobalt
Concentration gradient
Crack initiation
Cracking (fracturing)
Crystal defects
Crystal structure
Crystallinity
Electrochemistry
Electrode materials
ENERGY STORAGE
Fracture mechanics
Gliding
high nickel
High voltage
Lithium
Lithium batteries
Manganese
Microcracks
Microstructure
Nickel
Polycrystals
Scientific Concepts
Side reactions
single crystal
Single crystals
Synthesis
Title Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode
URI https://www.ncbi.nlm.nih.gov/pubmed/33303612
https://www.proquest.com/docview/2469153259
https://www.proquest.com/docview/2477262713
https://www.osti.gov/biblio/1734972
Volume 370
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdQJyReEBtfYQMZiYehKlVjO07ymALTxMMe2CaNp8ixHZYR0tGlD9tfzzl2PqpRBLxEVeqklX_n8935d3cIveN5qGRBqE8UjXymGPdzWN--nCuqeCzjyLItTvjxOft8EV4MAf02u6TJZ_Lut3kl_4Mq3ANcTZbsPyDbvxRuwGfAF66AMFz_CuMvuiVVmOSn60rUYjX9VpWqSzv8Ybh2ciXkd5e3IqYmMFBpX65uwSisWgvzpPRBFV5OTf3WpdogBnXrHozQ_mBnBGfPUEwtj6CjFbjHRjGGRUsZ-Lq-6vbJNlRgz3zK-nJd9lvD2g78WQ5ModKFDu70OEJBWrZHMGJ7pOnpWAW7Csh2A7Jad24aRpI5HatlahuKOPnjoU1fvq_xRz0q9Uzk0qT2D5tbTzkMIsqSCDbrHQIOBZmgnXTxcXG0tUCzKwM1SrDqXr5hwUyWoIm3eyetlXL2BD127gVOrazsoge63kMPbcPR2z2067C5wYeu3vj7p-h0ECNsxQg7McIgRnhDjHBZY4HvixF2YoSdGD1D50efzj4c-67Xhi9ZmDR-AdPDqAhUSJM8klwTGceKR1KaJK8wL0KaM05ZXJBQxwU4FSJPcgLetSS6iAv6HE3qZa1fIsx4PBdgpycsAOOWkIQHAsxIJVWkYxUpD826-cukK0Rv-qFUWeuQEp65Cc_chHvosH_g2tZg2T503wBibpsayNKQxWSTOfA9dNDhlLllfJMRxhPY9kmYeOht_zUoWXNyJmq9XJsxIDOcRAH10AuLb_9PKDVWYEBe_fGn99GjYWkcoEmzWuvXYM42-Rsnib8AS-iiRA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversible+planar+gliding+and+microcracking+in+a+single-crystalline+Ni-rich+cathode&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Bi%2C+Yujing&rft.au=Tao%2C+Jinhui&rft.au=Wu%2C+Yuqin&rft.au=Li%2C+Linze&rft.date=2020-12-11&rft.pub=AAAS&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=370&rft.issue=6522&rft_id=info:doi/10.1126%2Fscience.abc3167&rft.externalDocID=1734972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon