Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode
Polycrystalline cathode materials that contain a combination of nickel, manganese, and cobalt have been used for advanced lithium batteries. These materials fracture at high voltage, which increases surface area and leads to more side reactions and shorter cycle life. Using single-crystalline sample...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 370; no. 6522; pp. 1313 - 1317 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
11.12.2020
AAAS |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polycrystalline cathode materials that contain a combination of nickel, manganese, and cobalt have been used for advanced lithium batteries. These materials fracture at high voltage, which increases surface area and leads to more side reactions and shorter cycle life. Using single-crystalline samples as model materials, Bi
et al.
observed changes in nickel-rich cathodes to study the fracture behavior under well-characterized conditions. As the material is charged and lithium is removed, specific planes glide over one another and microcracks are observed. However, this process is reversed on discharge, removing all traces of the microcracking. The authors developed a diffusion-induced stress model to understand the origin of the planar gliding and propose ways to stabilize these nickel-rich cathodes in working batteries.
Science
, this issue p.
1313
Reversible gliding and microcracking of lattice planes are observed in single-crystalline Ni-rich cathode materials.
High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Single-crystalline Ni-rich cathode has a great potential to address the challenges present in its polycrystalline counterpart by reducing phase boundaries and materials surfaces. However, synthesis of high-performance single-crystalline Ni-rich cathode is very challenging, notwithstanding a fundamental linkage between overpotential, microstructure, and electrochemical behaviors in single-crystalline Ni-rich cathodes. We observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. The reversible formation of microstructure defects is correlated with the localized stresses induced by a concentration gradient of Li atoms in the lattice, providing clues to mitigate particle fracture from synthesis modifications. |
---|---|
AbstractList | Cracking the problem of cracking cathodesPolycrystalline cathode materials that contain a combination of nickel, manganese, and cobalt have been used for advanced lithium batteries. These materials fracture at high voltage, which increases surface area and leads to more side reactions and shorter cycle life. Using single-crystalline samples as model materials, Bi et al. observed changes in nickel-rich cathodes to study the fracture behavior under well-characterized conditions. As the material is charged and lithium is removed, specific planes glide over one another and microcracks are observed. However, this process is reversed on discharge, removing all traces of the microcracking. The authors developed a diffusion-induced stress model to understand the origin of the planar gliding and propose ways to stabilize these nickel-rich cathodes in working batteries.Science, this issue p. 1313High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Single-crystalline Ni-rich cathode has a great potential to address the challenges present in its polycrystalline counterpart by reducing phase boundaries and materials surfaces. However, synthesis of high-performance single-crystalline Ni-rich cathode is very challenging, notwithstanding a fundamental linkage between overpotential, microstructure, and electrochemical behaviors in single-crystalline Ni-rich cathodes. We observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. The reversible formation of microstructure defects is correlated with the localized stresses induced by a concentration gradient of Li atoms in the lattice, providing clues to mitigate particle fracture from synthesis modifications. Polycrystalline cathode materials that contain a combination of nickel, manganese, and cobalt have been used for advanced lithium batteries. These materials fracture at high voltage, which increases surface area and leads to more side reactions and shorter cycle life. Using single-crystalline samples as model materials, Bi et al. observed changes in nickel-rich cathodes to study the fracture behavior under well-characterized conditions. As the material is charged and lithium is removed, specific planes glide over one another and microcracks are observed. However, this process is reversed on discharge, removing all traces of the microcracking. The authors developed a diffusion-induced stress model to understand the origin of the planar gliding and propose ways to stabilize these nickel-rich cathodes in working batteries. Science , this issue p. 1313 Reversible gliding and microcracking of lattice planes are observed in single-crystalline Ni-rich cathode materials. High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Single-crystalline Ni-rich cathode has a great potential to address the challenges present in its polycrystalline counterpart by reducing phase boundaries and materials surfaces. However, synthesis of high-performance single-crystalline Ni-rich cathode is very challenging, notwithstanding a fundamental linkage between overpotential, microstructure, and electrochemical behaviors in single-crystalline Ni-rich cathodes. We observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. The reversible formation of microstructure defects is correlated with the localized stresses induced by a concentration gradient of Li atoms in the lattice, providing clues to mitigate particle fracture from synthesis modifications. High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Single-crystalline Ni-rich cathode has a great potential to address the challenges present in its polycrystalline counterpart by reducing phase boundaries and materials surfaces. However, synthesis of high-performance single-crystalline Ni-rich cathode is very challenging, notwithstanding a fundamental linkage between overpotential, microstructure, and electrochemical behaviors in single-crystalline Ni-rich cathodes. In this study, we observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. The reversible formation of microstructure defects is correlated with the localized stresses induced by a concentration gradient of Li atoms in the lattice, providing clues to mitigate particle fracture from synthesis modifications. High-energy nickel (Ni)-rich cathode will play a key role in advanced lithium (Li)-ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Single-crystalline Ni-rich cathode has a great potential to address the challenges present in its polycrystalline counterpart by reducing phase boundaries and materials surfaces. However, synthesis of high-performance single-crystalline Ni-rich cathode is very challenging, notwithstanding a fundamental linkage between overpotential, microstructure, and electrochemical behaviors in single-crystalline Ni-rich cathodes. We observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. The reversible formation of microstructure defects is correlated with the localized stresses induced by a concentration gradient of Li atoms in the lattice, providing clues to mitigate particle fracture from synthesis modifications.High-energy nickel (Ni)-rich cathode will play a key role in advanced lithium (Li)-ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Single-crystalline Ni-rich cathode has a great potential to address the challenges present in its polycrystalline counterpart by reducing phase boundaries and materials surfaces. However, synthesis of high-performance single-crystalline Ni-rich cathode is very challenging, notwithstanding a fundamental linkage between overpotential, microstructure, and electrochemical behaviors in single-crystalline Ni-rich cathodes. We observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. The reversible formation of microstructure defects is correlated with the localized stresses induced by a concentration gradient of Li atoms in the lattice, providing clues to mitigate particle fracture from synthesis modifications. High-energy nickel (Ni)-rich cathode will play a key role in advanced lithium (Li)-ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Single-crystalline Ni-rich cathode has a great potential to address the challenges present in its polycrystalline counterpart by reducing phase boundaries and materials surfaces. However, synthesis of high-performance single-crystalline Ni-rich cathode is very challenging, notwithstanding a fundamental linkage between overpotential, microstructure, and electrochemical behaviors in single-crystalline Ni-rich cathodes. We observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. The reversible formation of microstructure defects is correlated with the localized stresses induced by a concentration gradient of Li atoms in the lattice, providing clues to mitigate particle fracture from synthesis modifications. |
Author | Xiao, Jie Li, Linze Bi, Yujing Tao, Jinhui Zhang, Ji-Guang Xu, Yaobin Hu, Jiangtao Wang, Chongmin Qi, Yue Wu, Yuqin Hu, Enyuan Wu, Bingbin |
Author_xml | – sequence: 1 givenname: Yujing orcidid: 0000-0002-1228-9628 surname: Bi fullname: Bi, Yujing organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA – sequence: 2 givenname: Jinhui orcidid: 0000-0002-1156-9396 surname: Tao fullname: Tao, Jinhui organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA – sequence: 3 givenname: Yuqin orcidid: 0000-0002-3140-1689 surname: Wu fullname: Wu, Yuqin organization: School of Engineering, Brown University, Providence, RI 02912, USA., Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA – sequence: 4 givenname: Linze orcidid: 0000-0001-5362-8991 surname: Li fullname: Li, Linze organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA – sequence: 5 givenname: Yaobin orcidid: 0000-0002-9945-3514 surname: Xu fullname: Xu, Yaobin organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA – sequence: 6 givenname: Enyuan orcidid: 0000-0002-1881-4534 surname: Hu fullname: Hu, Enyuan organization: Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA – sequence: 7 givenname: Bingbin orcidid: 0000-0001-7559-9968 surname: Wu fullname: Wu, Bingbin organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA – sequence: 8 givenname: Jiangtao orcidid: 0000-0002-2725-7581 surname: Hu fullname: Hu, Jiangtao organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA – sequence: 9 givenname: Chongmin orcidid: 0000-0003-3327-0958 surname: Wang fullname: Wang, Chongmin organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA – sequence: 10 givenname: Ji-Guang orcidid: 0000-0001-7343-4609 surname: Zhang fullname: Zhang, Ji-Guang organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA – sequence: 11 givenname: Yue orcidid: 0000-0001-5331-1193 surname: Qi fullname: Qi, Yue organization: School of Engineering, Brown University, Providence, RI 02912, USA., Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA – sequence: 12 givenname: Jie orcidid: 0000-0002-5520-5439 surname: Xiao fullname: Xiao, Jie organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA., Materials Science and Engineering Department, University of Washington, Seattle, WA 98195, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33303612$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1734972$$D View this record in Osti.gov |
BookMark | eNp1kc1rVDEUxYNU7HR07U4eunHz2ny8JC9LKdUKRcGPdci7775OaiYZk4zQ_96UGbsouMol93cunHPOyElMEQl5zeg5Y1xdFPAYAc_dBIIp_YysGDWyN5yKE7KiVKh-pFqekrNS7ihtOyNekFMhRFsxviLfv-EfzMVPAbtdcNHl7jb42cfbzsW523rICbKDXw8_PnauK20K2EO-L9WF4CN2X3yfPWw6cHWTZnxJni8uFHx1fNfk58erH5fX_c3XT58vP9z0MEhT-0WLYRCOzVKYSYNCDuM4Kw0gOKNyWqSYBiWGceESx8Uw5SYzcSMVcFzGRazJ28PdVKq3LYqKsIEUI0K1rF03mjfo_QHa5fR7j6XarS-AoXnFtC-WD1pzxTUTDX33BL1L-xybhUYpw6TgLb41eXOk9tMWZ7vLfuvyvf2XaQMuDkCLrpSMyyPCqH1ozR5bs8fWmkI-UTQvrvoUa3Y-_Ff3FyvbnXI |
CitedBy_id | crossref_primary_10_1016_j_electacta_2024_143882 crossref_primary_10_1002_smll_202306160 crossref_primary_10_1038_s41560_024_01639_y crossref_primary_10_1002_adma_202108353 crossref_primary_10_1002_advs_202106003 crossref_primary_10_1002_adma_202204835 crossref_primary_10_1103_PhysRevMaterials_6_070201 crossref_primary_10_1021_acsenergylett_1c02135 crossref_primary_10_1002_adfm_202410241 crossref_primary_10_1039_D1TA05600J crossref_primary_10_3103_S1062873823703471 crossref_primary_10_1002_ange_202211626 crossref_primary_10_1021_jacs_2c09725 crossref_primary_10_31613_ceramist_2022_25_1_03 crossref_primary_10_1093_nsr_nwac226 crossref_primary_10_1016_j_nanoen_2024_110500 crossref_primary_10_1016_j_ceramint_2022_07_081 crossref_primary_10_1002_admt_202400753 crossref_primary_10_1002_adma_202204845 crossref_primary_10_1016_j_xcrp_2021_100642 crossref_primary_10_1002_anie_202202731 crossref_primary_10_1007_s12598_022_02252_2 crossref_primary_10_1039_D2TA09633A crossref_primary_10_1016_j_trechm_2022_04_010 crossref_primary_10_1016_j_jpowsour_2024_234522 crossref_primary_10_1002_aenm_202202795 crossref_primary_10_1002_aenm_202303490 crossref_primary_10_1016_j_ensm_2023_102801 crossref_primary_10_1039_D1TA08046F crossref_primary_10_1016_j_partic_2021_05_006 crossref_primary_10_1039_D3NJ02493H crossref_primary_10_1002_adfm_202409372 crossref_primary_10_1016_j_est_2022_105324 crossref_primary_10_1039_D1EE02987H crossref_primary_10_1002_ange_202313437 crossref_primary_10_1016_j_coco_2022_101356 crossref_primary_10_1002_ange_202419903 crossref_primary_10_1016_j_ceramint_2024_11_273 crossref_primary_10_1002_anie_202314457 crossref_primary_10_1016_j_cej_2023_142656 crossref_primary_10_1038_s41467_023_42335_x crossref_primary_10_1002_ange_202207225 crossref_primary_10_1016_j_jechem_2024_10_015 crossref_primary_10_1016_j_electacta_2024_143861 crossref_primary_10_1007_s11581_021_04293_6 crossref_primary_10_1016_j_jpowsour_2024_235967 crossref_primary_10_1016_j_jpowsour_2024_234998 crossref_primary_10_1016_j_ceramint_2024_02_221 crossref_primary_10_1021_acs_energyfuels_4c04598 crossref_primary_10_1002_anie_202302547 crossref_primary_10_1021_acsnano_4c09918 crossref_primary_10_1149_1945_7111_ac5f7f crossref_primary_10_1038_s41467_024_54637_9 crossref_primary_10_1016_j_gee_2022_09_003 crossref_primary_10_1016_j_jpowsour_2022_231963 crossref_primary_10_1038_s41467_024_54331_w crossref_primary_10_1039_D4TA05975A crossref_primary_10_1016_j_jpowsour_2022_231726 crossref_primary_10_1002_adfm_202401300 crossref_primary_10_1149_1945_7111_ac315e crossref_primary_10_1016_j_jeurceramsoc_2023_08_021 crossref_primary_10_1016_j_isci_2024_109557 crossref_primary_10_1039_D3TA06881A crossref_primary_10_1021_acsenergylett_5c00324 crossref_primary_10_1002_ange_202302547 crossref_primary_10_1016_j_ensm_2023_102947 crossref_primary_10_1016_j_matt_2023_02_001 crossref_primary_10_1016_j_cej_2024_153821 crossref_primary_10_1126_sciadv_adp4906 crossref_primary_10_1093_nsr_nwab146 crossref_primary_10_1016_j_cej_2024_149574 crossref_primary_10_1016_j_ensm_2023_102828 crossref_primary_10_1016_j_ijmecsci_2024_109034 crossref_primary_10_1021_acs_iecr_2c04021 crossref_primary_10_1002_advs_202105119 crossref_primary_10_1021_acsenergylett_1c01089 crossref_primary_10_1039_D4EE01777C crossref_primary_10_1021_acsami_1c05591 crossref_primary_10_1021_acs_chemrev_2c00251 crossref_primary_10_1021_jacs_4c02198 crossref_primary_10_1002_adfm_202423888 crossref_primary_10_1002_adfm_202303191 crossref_primary_10_1149_1945_7111_ac60ee crossref_primary_10_1039_D4TA04307C crossref_primary_10_1016_j_est_2024_111666 crossref_primary_10_1021_acs_chemmater_1c00962 crossref_primary_10_1039_D3EE03884J crossref_primary_10_1002_ange_202216155 crossref_primary_10_1002_er_7395 crossref_primary_10_1016_j_actamat_2022_118229 crossref_primary_10_1039_D3CS00254C crossref_primary_10_1007_s12598_024_03199_2 crossref_primary_10_1021_acsami_4c02885 crossref_primary_10_1002_adma_202301096 crossref_primary_10_1016_j_ensm_2021_02_003 crossref_primary_10_1016_j_ensm_2022_05_054 crossref_primary_10_1021_acsami_3c06472 crossref_primary_10_1016_j_joule_2023_10_016 crossref_primary_10_1039_D1QM00627D crossref_primary_10_1142_S1793604721500053 crossref_primary_10_1126_science_adm9223 crossref_primary_10_1002_adma_202405238 crossref_primary_10_1016_j_esci_2022_02_006 crossref_primary_10_1007_s11581_023_04941_z crossref_primary_10_1016_j_jallcom_2024_174564 crossref_primary_10_1016_j_jpowsour_2021_230028 crossref_primary_10_1021_acs_chemmater_3c00924 crossref_primary_10_1021_acsenergylett_3c00324 crossref_primary_10_1016_j_est_2022_106405 crossref_primary_10_1021_acsami_1c03195 crossref_primary_10_1016_j_nanoen_2024_110413 crossref_primary_10_3390_batteries9030156 crossref_primary_10_1021_acsami_1c20406 crossref_primary_10_1002_celc_202200814 crossref_primary_10_1002_aenm_202200136 crossref_primary_10_1039_D2TA02865D crossref_primary_10_1002_anie_202300209 crossref_primary_10_1016_j_jechem_2024_10_051 crossref_primary_10_1002_aenm_202200022 crossref_primary_10_1093_nsr_nwad252 crossref_primary_10_1002_aenm_202300378 crossref_primary_10_1007_s42765_023_00347_8 crossref_primary_10_1002_adma_202107353 crossref_primary_10_1007_s40843_023_2715_8 crossref_primary_10_1002_adfm_202104730 crossref_primary_10_1016_j_jmst_2022_01_037 crossref_primary_10_1149_1945_7111_ace4f7 crossref_primary_10_1021_acsenergylett_2c01521 crossref_primary_10_1002_adma_202419856 crossref_primary_10_2139_ssrn_3917206 crossref_primary_10_1016_j_ssi_2024_116556 crossref_primary_10_1016_j_jallcom_2022_166375 crossref_primary_10_1088_0256_307X_41_7_078201 crossref_primary_10_1016_j_jmst_2023_02_005 crossref_primary_10_1039_D1DT02379A crossref_primary_10_1039_D3QM00366C crossref_primary_10_1007_s12274_022_4768_6 crossref_primary_10_1016_j_jechem_2024_03_039 crossref_primary_10_1021_acs_jpcc_1c08022 crossref_primary_10_1149_1945_7111_ac4e5d crossref_primary_10_3390_coatings11080932 crossref_primary_10_1002_ange_202300209 crossref_primary_10_1039_D4EB00022F crossref_primary_10_1149_1945_7111_abf7e8 crossref_primary_10_1016_j_ensm_2023_102906 crossref_primary_10_1016_j_jallcom_2022_164204 crossref_primary_10_1002_aenm_202303758 crossref_primary_10_1016_j_ensm_2024_103332 crossref_primary_10_1016_j_ensm_2023_103050 crossref_primary_10_1016_j_cej_2023_147607 crossref_primary_10_1149_1945_7111_ac8ee3 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121380 crossref_primary_10_1021_acs_nanolett_1c03285 crossref_primary_10_1063_5_0096766 crossref_primary_10_1039_D3TA02279J crossref_primary_10_1002_adfm_202301642 crossref_primary_10_1016_j_jechem_2025_02_004 crossref_primary_10_1080_10667857_2023_2204292 crossref_primary_10_1002_adfm_202311564 crossref_primary_10_1016_j_nanoen_2025_110749 crossref_primary_10_1021_acsami_4c13570 crossref_primary_10_1016_S1003_6326_22_66047_3 crossref_primary_10_2139_ssrn_4185643 crossref_primary_10_1115_1_4054584 crossref_primary_10_1002_aenm_202303764 crossref_primary_10_1002_eom2_12141 crossref_primary_10_1002_anie_202419903 crossref_primary_10_1002_bte2_20220036 crossref_primary_10_1002_ange_202314457 crossref_primary_10_1093_micmic_ozad067_653 crossref_primary_10_1002_ange_202403189 crossref_primary_10_1021_acsenergylett_4c03221 crossref_primary_10_1016_j_jechem_2021_06_017 crossref_primary_10_1002_adfm_202212150 crossref_primary_10_1016_j_jallcom_2024_173954 crossref_primary_10_1016_j_jcis_2024_06_027 crossref_primary_10_1021_accountsmr_1c00282 crossref_primary_10_1016_j_cej_2025_161243 crossref_primary_10_1149_1945_7111_abf9c2 crossref_primary_10_1039_D1EE00590A crossref_primary_10_1039_D0EE03581E crossref_primary_10_1016_j_cej_2023_146733 crossref_primary_10_1016_j_fmre_2022_03_001 crossref_primary_10_1016_j_ceramint_2022_10_306 crossref_primary_10_1002_ange_202202731 crossref_primary_10_1007_s40820_023_01269_1 crossref_primary_10_1016_j_ceramint_2022_06_087 crossref_primary_10_3390_nano12111888 crossref_primary_10_1002_anie_202214880 crossref_primary_10_1021_acsami_2c17419 crossref_primary_10_1038_s41586_022_05115_z crossref_primary_10_1016_j_cej_2024_155617 crossref_primary_10_1016_j_jechem_2024_09_056 crossref_primary_10_1021_acsami_1c06550 crossref_primary_10_1038_s41586_022_05281_0 crossref_primary_10_1016_j_apmate_2024_100185 crossref_primary_10_1016_j_jcis_2022_03_064 crossref_primary_10_1073_pnas_2120060119 crossref_primary_10_1002_elt2_27 crossref_primary_10_1016_j_ensm_2024_103788 crossref_primary_10_1002_adfm_202308257 crossref_primary_10_1002_smll_202200627 crossref_primary_10_1016_j_scib_2022_12_022 crossref_primary_10_1016_j_matt_2023_11_025 crossref_primary_10_1016_j_jechem_2022_05_027 crossref_primary_10_1021_acsami_4c11143 crossref_primary_10_1126_science_ado1675 crossref_primary_10_1002_ente_202200843 crossref_primary_10_1039_D3GC00116D crossref_primary_10_1016_j_jallcom_2022_164489 crossref_primary_10_1016_j_xcrp_2021_100695 crossref_primary_10_1002_cjoc_202400806 crossref_primary_10_1021_acsenergylett_2c01216 crossref_primary_10_1016_j_jechem_2021_10_030 crossref_primary_10_1016_j_jpowsour_2024_234584 crossref_primary_10_1016_j_electacta_2022_141386 crossref_primary_10_1016_j_ensm_2021_01_031 crossref_primary_10_1016_j_nanoen_2024_110276 crossref_primary_10_1016_j_electacta_2023_142630 crossref_primary_10_1016_j_joule_2023_09_006 crossref_primary_10_1021_acsaem_2c00647 crossref_primary_10_1126_sciadv_abm5678 crossref_primary_10_1002_smll_202306807 crossref_primary_10_1126_sciadv_adn4441 crossref_primary_10_1039_D4CS00797B crossref_primary_10_1016_j_esci_2024_100265 crossref_primary_10_1002_adfm_202009949 crossref_primary_10_1016_j_cej_2023_144890 crossref_primary_10_1016_j_jechem_2021_10_022 crossref_primary_10_1016_j_xcrp_2022_100741 crossref_primary_10_1002_adma_202212098 crossref_primary_10_1002_batt_202400691 crossref_primary_10_1038_s41565_024_01734_x crossref_primary_10_1039_D2GC04620B crossref_primary_10_1038_s41560_022_01020_x crossref_primary_10_1002_cssc_202300417 crossref_primary_10_1002_aenm_202200569 crossref_primary_10_1016_j_jpowsour_2023_233260 crossref_primary_10_1002_ange_202104671 crossref_primary_10_1002_smll_202303526 crossref_primary_10_31857_S0367676523702472 crossref_primary_10_1016_j_cej_2022_134745 crossref_primary_10_1002_smll_202105833 crossref_primary_10_1021_acsnano_4c10454 crossref_primary_10_1016_j_cossms_2022_100990 crossref_primary_10_1016_j_nanoen_2022_106961 crossref_primary_10_1039_D3MH01151H crossref_primary_10_1021_acsami_4c05609 crossref_primary_10_1007_s41918_022_00166_2 crossref_primary_10_1038_s41467_023_37122_7 crossref_primary_10_1002_aenm_202200656 crossref_primary_10_1016_j_seppur_2023_124280 crossref_primary_10_1016_j_jpowsour_2024_234439 crossref_primary_10_1038_s41586_022_05238_3 crossref_primary_10_1016_j_jallcom_2021_159839 crossref_primary_10_1016_j_cej_2022_134638 crossref_primary_10_1021_acsami_1c05535 crossref_primary_10_1016_j_applthermaleng_2023_121024 crossref_primary_10_1007_s10008_024_06048_5 crossref_primary_10_1016_j_ensm_2024_103346 crossref_primary_10_1016_j_jallcom_2022_164592 crossref_primary_10_1073_pnas_2317282121 crossref_primary_10_1002_aenm_202201510 crossref_primary_10_1016_j_ensm_2023_103167 crossref_primary_10_1002_anie_202409069 crossref_primary_10_1016_j_esci_2022_10_008 crossref_primary_10_1149_1945_7111_ad1d94 crossref_primary_10_3390_en17071746 crossref_primary_10_1021_acs_nanolett_4c04129 crossref_primary_10_1007_s12274_022_4242_5 crossref_primary_10_1039_D4EE03021D crossref_primary_10_1021_acsaem_2c00658 crossref_primary_10_1002_bte2_20230045 crossref_primary_10_1016_j_mtcomm_2024_108449 crossref_primary_10_1016_j_nanoen_2021_106568 crossref_primary_10_1039_D3TA07840J crossref_primary_10_1039_D4TA02355B crossref_primary_10_1039_D2NA00097K crossref_primary_10_1126_sciadv_ado4472 crossref_primary_10_1016_j_jechem_2021_05_048 crossref_primary_10_1016_j_cej_2022_136825 crossref_primary_10_1002_aenm_202402918 crossref_primary_10_1016_j_esci_2024_100251 crossref_primary_10_1016_j_nanoen_2022_106984 crossref_primary_10_2139_ssrn_4162770 crossref_primary_10_1002_ange_202419664 crossref_primary_10_1016_j_mattod_2022_10_021 crossref_primary_10_1021_acs_chemmater_3c00395 crossref_primary_10_1021_acs_jpcc_2c01940 crossref_primary_10_1016_j_actamat_2024_119751 crossref_primary_10_1039_D4RA00923A crossref_primary_10_1016_j_jechem_2024_06_015 crossref_primary_10_1016_j_nanoen_2021_106096 crossref_primary_10_1149_1945_7111_acd47e crossref_primary_10_1021_jacs_2c13787 crossref_primary_10_1016_j_jallcom_2023_170451 crossref_primary_10_1039_D2CP02750J crossref_primary_10_1002_adsu_202400198 crossref_primary_10_1021_acsami_2c15054 crossref_primary_10_1021_acsami_2c22815 crossref_primary_10_1039_D3TA02784H crossref_primary_10_1002_aenm_202401336 crossref_primary_10_1088_1674_1056_ad01a3 crossref_primary_10_1039_D3TA07156A crossref_primary_10_1038_s41467_023_37033_7 crossref_primary_10_1016_j_mtener_2024_101787 crossref_primary_10_1021_acsaem_1c02419 crossref_primary_10_1073_pnas_2409494122 crossref_primary_10_1021_cbe_4c00097 crossref_primary_10_1039_D2TA08703K crossref_primary_10_1016_j_ensm_2022_02_025 crossref_primary_10_1016_j_jcis_2022_01_011 crossref_primary_10_1016_j_cej_2022_139431 crossref_primary_10_1038_s41560_025_01738_4 crossref_primary_10_1016_j_cclet_2024_110729 crossref_primary_10_1002_smtd_202100234 crossref_primary_10_3390_ma16051818 crossref_primary_10_1021_acsaem_3c00308 crossref_primary_10_1039_D4CC04275A crossref_primary_10_1007_s12598_022_01983_6 crossref_primary_10_1016_j_nanoen_2023_108846 crossref_primary_10_1016_j_cej_2021_132985 crossref_primary_10_1021_acsami_4c05206 crossref_primary_10_1016_j_jallcom_2022_164727 crossref_primary_10_3866_PKU_WHXB202308051 crossref_primary_10_1002_adfm_202110876 crossref_primary_10_1021_acs_nanolett_2c01103 crossref_primary_10_1038_s41467_024_52123_w crossref_primary_10_1002_advs_202104841 crossref_primary_10_1002_adfm_202409956 crossref_primary_10_1002_smll_202305618 crossref_primary_10_1021_acssuschemeng_4c08856 crossref_primary_10_34133_energymatadv_0022 crossref_primary_10_1002_inf2_12359 crossref_primary_10_1021_acsami_0c18030 crossref_primary_10_1039_D3GC03997H crossref_primary_10_1002_adfm_202415035 crossref_primary_10_1002_adma_202308380 crossref_primary_10_1016_j_jpowsour_2022_232014 crossref_primary_10_3390_ma16175769 crossref_primary_10_1016_j_ensm_2022_01_015 crossref_primary_10_1038_s41467_024_45490_x crossref_primary_10_1016_j_cej_2023_142093 crossref_primary_10_1016_j_ensm_2024_103949 crossref_primary_10_1016_j_nanoen_2022_107123 crossref_primary_10_1039_D1TA02293H crossref_primary_10_1002_aenm_202301647 crossref_primary_10_1002_adfm_202300127 crossref_primary_10_1002_adfm_202301336 crossref_primary_10_1002_batt_202400077 crossref_primary_10_1002_cssc_202201169 crossref_primary_10_1021_acsenergylett_1c01976 crossref_primary_10_1038_s41467_024_54641_z crossref_primary_10_1007_s10483_024_3119_6 crossref_primary_10_1021_acsami_2c04249 crossref_primary_10_1002_cssc_202202252 crossref_primary_10_1021_acsami_2c09937 crossref_primary_10_1002_idm2_12043 crossref_primary_10_1038_s41563_022_01461_5 crossref_primary_10_1016_j_ensm_2024_103819 crossref_primary_10_1016_j_ensm_2022_08_011 crossref_primary_10_1021_acsami_1c06839 crossref_primary_10_1016_j_cej_2022_139336 crossref_primary_10_1016_j_nanoen_2022_107119 crossref_primary_10_1002_cey2_146 crossref_primary_10_1016_j_cej_2021_133731 crossref_primary_10_1016_j_ensm_2023_03_016 crossref_primary_10_1016_j_jcis_2021_07_027 crossref_primary_10_1021_acsami_2c19687 crossref_primary_10_1002_aenm_202103005 crossref_primary_10_1002_aenm_202203188 crossref_primary_10_14356_kona_2022015 crossref_primary_10_1016_j_apsusc_2022_152794 crossref_primary_10_1002_anie_202402625 crossref_primary_10_1021_accountsmr_2c00098 crossref_primary_10_1021_acsaem_1c02526 crossref_primary_10_1016_j_susmat_2021_e00305 crossref_primary_10_1016_j_cej_2023_144254 crossref_primary_10_1016_j_ensm_2024_103650 crossref_primary_10_1016_j_jcis_2022_01_105 crossref_primary_10_1007_s11581_021_04110_0 crossref_primary_10_1016_j_ensm_2022_01_032 crossref_primary_10_1016_j_nxener_2023_100091 crossref_primary_10_1007_s11814_023_00009_w crossref_primary_10_1021_acsenergylett_3c02072 crossref_primary_10_1002_smll_202107048 crossref_primary_10_1016_j_cej_2024_154344 crossref_primary_10_1016_j_jpowsour_2023_232799 crossref_primary_10_1021_jacs_2c03549 crossref_primary_10_1002_anie_202318042 crossref_primary_10_1115_1_4054389 crossref_primary_10_1016_j_cej_2021_131109 crossref_primary_10_1021_acssuschemeng_1c03002 crossref_primary_10_1002_ange_202302170 crossref_primary_10_1021_acsnano_2c04959 crossref_primary_10_1002_adma_202409272 crossref_primary_10_1016_j_jcis_2024_05_239 crossref_primary_10_1021_acsenergylett_2c02032 crossref_primary_10_1088_2631_7990_ad97f6 crossref_primary_10_1002_tcr_202200119 crossref_primary_10_1016_j_cej_2024_148905 crossref_primary_10_1021_acsaem_3c01428 crossref_primary_10_1149_1945_7111_ad4919 crossref_primary_10_1016_j_jcis_2022_08_184 crossref_primary_10_1039_D1TA03141D crossref_primary_10_1021_acsnano_3c10986 crossref_primary_10_1016_j_jechem_2023_05_027 crossref_primary_10_1002_aenm_202401644 crossref_primary_10_1016_j_chempr_2022_03_007 crossref_primary_10_1016_j_jcis_2025_01_079 crossref_primary_10_1002_ange_202214880 crossref_primary_10_1016_j_ensm_2024_103636 crossref_primary_10_1021_jacs_1c09429 crossref_primary_10_1016_j_solidstatesciences_2023_107224 crossref_primary_10_1016_j_partic_2023_05_001 crossref_primary_10_1016_j_mtsust_2021_100105 crossref_primary_10_1002_smll_202201522 crossref_primary_10_1038_s41560_022_01036_3 crossref_primary_10_1016_j_ensm_2022_11_016 crossref_primary_10_1016_j_mattod_2024_04_007 crossref_primary_10_1007_s11433_021_1697_2 crossref_primary_10_1021_acsami_2c00811 crossref_primary_10_1016_j_cclet_2023_108655 crossref_primary_10_1016_j_cej_2024_158800 crossref_primary_10_1021_acs_nanolett_3c01700 crossref_primary_10_1016_j_ensm_2022_01_056 crossref_primary_10_1038_s41467_022_28325_5 crossref_primary_10_1039_D2TA02169B crossref_primary_10_1039_D3CS00741C crossref_primary_10_1016_j_ceramint_2022_02_223 crossref_primary_10_1016_j_cej_2024_156866 crossref_primary_10_1016_j_est_2024_114033 crossref_primary_10_1002_admi_202102283 crossref_primary_10_1002_adfm_202406770 crossref_primary_10_1016_j_chempr_2022_04_012 crossref_primary_10_1021_acsnano_2c02557 crossref_primary_10_1007_s11426_023_1706_8 crossref_primary_10_1016_j_jechem_2022_08_010 crossref_primary_10_1039_D4DT03215B crossref_primary_10_1021_acs_chemmater_2c03069 crossref_primary_10_1002_adfm_202105026 crossref_primary_10_1039_D3TA02369A crossref_primary_10_1038_s41560_024_01465_2 crossref_primary_10_1039_D2EE02344J crossref_primary_10_1149_1945_7111_ad63d1 crossref_primary_10_1016_j_cej_2024_152010 crossref_primary_10_1039_D1SE01880A crossref_primary_10_1021_acsami_2c21841 crossref_primary_10_1021_acsami_1c01221 crossref_primary_10_1016_j_cclet_2022_07_061 crossref_primary_10_2139_ssrn_3995111 crossref_primary_10_1002_smll_202304677 crossref_primary_10_1016_j_cej_2022_134927 crossref_primary_10_1039_D1TA02262H crossref_primary_10_1002_admi_202200800 crossref_primary_10_1002_anie_202302170 crossref_primary_10_1016_j_joule_2021_03_016 crossref_primary_10_1002_smll_202302086 crossref_primary_10_1002_smll_202205508 crossref_primary_10_1039_D3NA00201B crossref_primary_10_1016_j_coelec_2021_100831 crossref_primary_10_1002_aenm_202202022 crossref_primary_10_1002_aenm_202102646 crossref_primary_10_1016_j_ensm_2023_102879 crossref_primary_10_1016_j_apenergy_2024_123630 crossref_primary_10_1016_j_jcis_2021_10_061 crossref_primary_10_1021_acsami_2c13832 crossref_primary_10_1038_s41560_022_01129_z crossref_primary_10_1002_inf2_12292 crossref_primary_10_1038_s41467_021_24893_0 crossref_primary_10_1002_adma_202411311 crossref_primary_10_1038_s41467_022_30020_4 crossref_primary_10_1016_j_ensm_2021_10_022 crossref_primary_10_1039_D3GC00197K crossref_primary_10_1016_j_ensm_2023_102775 crossref_primary_10_1039_D4TA04615C crossref_primary_10_1002_aenm_202403117 crossref_primary_10_1002_anie_202207225 crossref_primary_10_1016_j_cej_2023_142946 crossref_primary_10_1016_j_jallcom_2023_171827 crossref_primary_10_1016_j_ensm_2022_11_007 crossref_primary_10_1016_j_jmst_2024_09_013 crossref_primary_10_1016_j_jpowsour_2024_234801 crossref_primary_10_1016_j_nanoen_2021_105854 crossref_primary_10_1021_acs_nanolett_1c03852 crossref_primary_10_1039_D1TA04476A crossref_primary_10_1007_s10008_022_05212_z crossref_primary_10_1021_acsami_3c10509 crossref_primary_10_1016_j_chempr_2022_09_003 crossref_primary_10_1002_smll_202304482 crossref_primary_10_1002_adma_202407029 crossref_primary_10_1002_ange_202402625 crossref_primary_10_1007_s40242_023_3128_8 crossref_primary_10_1002_anie_202216155 crossref_primary_10_1016_j_ensm_2025_104006 crossref_primary_10_1002_celc_202100125 crossref_primary_10_1002_smll_202400762 crossref_primary_10_1002_adfm_202418274 crossref_primary_10_1557_s43578_022_00678_z crossref_primary_10_1016_j_ensm_2023_01_019 crossref_primary_10_1002_aenm_202100126 crossref_primary_10_1103_PRXEnergy_4_013009 crossref_primary_10_1039_D4TA06142J crossref_primary_10_1039_D2NR00993E crossref_primary_10_1002_adfm_202107769 crossref_primary_10_1021_acsenergylett_3c01954 crossref_primary_10_1002_eem2_12473 crossref_primary_10_1038_s41467_024_51168_1 crossref_primary_10_1038_s41467_023_43792_0 crossref_primary_10_1002_aenm_202103894 crossref_primary_10_1063_5_0051092 crossref_primary_10_1002_asia_202200213 crossref_primary_10_1039_D3EE04115H crossref_primary_10_1002_aenm_202401197 crossref_primary_10_1002_smll_202104282 crossref_primary_10_1007_s11581_021_04224_5 crossref_primary_10_1021_acsami_3c06375 crossref_primary_10_1002_ange_202318042 crossref_primary_10_1002_ente_202201372 crossref_primary_10_1016_j_jpowsour_2022_231671 crossref_primary_10_1002_cnma_202300148 crossref_primary_10_1021_acsaem_1c00188 crossref_primary_10_1039_D3CC01338C crossref_primary_10_1007_s42765_023_00372_7 crossref_primary_10_1021_acs_jpcc_3c01770 crossref_primary_10_1016_j_xcrp_2023_101480 crossref_primary_10_1021_acs_chemmater_3c02727 crossref_primary_10_1021_acsami_0c22356 crossref_primary_10_1016_j_cej_2023_148223 crossref_primary_10_1038_s41563_024_01899_9 crossref_primary_10_1016_j_nxener_2023_100015 crossref_primary_10_1016_j_jechem_2021_09_022 crossref_primary_10_1016_j_cej_2024_149827 crossref_primary_10_1007_s11581_023_04945_9 crossref_primary_10_1039_D3NR04586B crossref_primary_10_1021_acsaem_4c00279 crossref_primary_10_1016_j_cjsc_2024_100390 crossref_primary_10_1002_anie_202403189 crossref_primary_10_1002_anie_202419664 crossref_primary_10_1039_D4TA04197F crossref_primary_10_1002_eem2_12778 crossref_primary_10_1002_aenm_202101518 crossref_primary_10_1016_j_ensm_2022_08_024 crossref_primary_10_1002_anie_202313437 crossref_primary_10_1021_acs_iecr_4c01424 crossref_primary_10_1021_acsaem_4c02340 crossref_primary_10_1002_batt_202100174 crossref_primary_10_1002_celc_202100693 crossref_primary_10_1016_j_jallcom_2021_161480 crossref_primary_10_1016_j_ensm_2022_06_004 crossref_primary_10_1016_j_ensm_2023_102969 crossref_primary_10_1021_acsami_1c00755 crossref_primary_10_1016_j_ensm_2023_102965 crossref_primary_10_1016_j_nanoen_2023_108528 crossref_primary_10_1038_s41586_022_04689_y crossref_primary_10_1039_D3TA00320E crossref_primary_10_1002_adfm_202408642 crossref_primary_10_1016_j_nanoen_2021_106901 crossref_primary_10_1002_adma_202106402 crossref_primary_10_1038_s41467_021_25074_9 crossref_primary_10_1557_s43577_023_00627_z crossref_primary_10_1016_j_ensm_2021_06_021 crossref_primary_10_1016_j_ensm_2022_06_002 crossref_primary_10_1016_j_jclepro_2023_136246 crossref_primary_10_1007_s10853_021_06579_6 crossref_primary_10_1016_j_jpowsour_2024_235092 crossref_primary_10_1021_acsaem_2c04111 crossref_primary_10_1002_adma_202200777 crossref_primary_10_1126_science_abo7670 crossref_primary_10_1016_j_matt_2022_08_003 crossref_primary_10_1039_D1NR05912B crossref_primary_10_1016_j_jallcom_2022_168389 crossref_primary_10_1002_adma_202312292 crossref_primary_10_1002_adma_202209357 crossref_primary_10_1002_ange_202409069 crossref_primary_10_1016_j_jpowsour_2022_232210 crossref_primary_10_1039_D3SC02093B crossref_primary_10_1016_j_cej_2022_138318 crossref_primary_10_1038_s41560_023_01233_8 crossref_primary_10_3390_en15239235 crossref_primary_10_1002_anie_202104671 crossref_primary_10_1016_j_pmatsci_2024_101247 crossref_primary_10_1007_s12598_022_02213_9 crossref_primary_10_1103_PRXEnergy_3_013004 crossref_primary_10_1016_j_mtener_2021_100873 crossref_primary_10_1016_j_jpowsour_2025_236473 crossref_primary_10_1038_s41467_024_55235_5 crossref_primary_10_1038_s41560_024_01605_8 crossref_primary_10_1016_j_ensm_2022_07_029 crossref_primary_10_1007_s00339_024_07897_7 crossref_primary_10_1039_D2MH01588A crossref_primary_10_1016_j_mattod_2024_02_003 crossref_primary_10_1016_j_jechem_2024_11_016 crossref_primary_10_3390_cryst12030317 crossref_primary_10_1016_j_electacta_2021_139467 crossref_primary_10_1002_smll_202107357 crossref_primary_10_1149_1945_7111_ac6244 crossref_primary_10_3390_batteries9100485 crossref_primary_10_1016_j_jallcom_2023_170522 crossref_primary_10_1016_j_jpowsour_2022_232202 crossref_primary_10_2139_ssrn_4142144 crossref_primary_10_1002_adfm_202212607 crossref_primary_10_1039_D3LF00093A crossref_primary_10_1039_D4TA03727H crossref_primary_10_1002_anie_202211626 crossref_primary_10_1039_D4TA02290D crossref_primary_10_1002_aenm_202300403 crossref_primary_10_1016_j_eng_2023_08_021 crossref_primary_10_1016_j_jpowsour_2023_233714 crossref_primary_10_1016_j_jechem_2024_05_020 crossref_primary_10_1103_PRXEnergy_3_013012 |
Cites_doi | 10.1126/science.aaa1313 10.1039/C8TA10329A 10.1016/j.ensm.2020.01.027 10.1149/1.3454762 10.1149/2.0401802jes 10.1149/2.0031411jes 10.1016/j.actamat.2018.07.046 10.1149/1.3079366 10.1021/acs.chemmater.7b05269 10.1002/adfm.201900247 10.1149/2.0951805jes 10.1021/acs.nanolett.7b03989 10.1149/2.0981913jes 10.1002/aenm.202000982 10.1149/2.0971803jes 10.1149/1945-7111/ab6288 10.1002/adfm.201200693 10.1016/j.nanoen.2020.104450 10.1038/ncomms14101 10.1021/ja3091438 10.1021/acs.chemmater.8b04418 10.1149/2.0681910jes 10.1021/cr5003003 10.1149/2.0401714jes 10.1039/C6TA01593J 10.1016/j.joule.2019.02.004 10.1038/ncomms2490 10.1149/1945-7111/abacea 10.1149/2.044302jes 10.1021/acs.jpcc.7b00896 |
ContentType | Journal Article |
Copyright | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
CorporateAuthor | Brookhaven National Lab. (BNL), Upton, NY (United States) |
CorporateAuthor_xml | – name: Brookhaven National Lab. (BNL), Upton, NY (United States) |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 OTOTI |
DOI | 10.1126/science.abc3167 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1317 |
ExternalDocumentID | 1734972 33303612 10_1126_science_abc3167 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 0B8 AEUPB ESX GX1 IGG NPM OK1 PKN RHF UIG VQA YCJ YIF YIN 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 63O 6XO ABPTK ABQIS AEXZC AFUVZ ANJGP B-7 OTOTI PK8 PQEST UMP XFK ZA5 |
ID | FETCH-LOGICAL-c459t-f73443a1d539b7c6e2c88d67cc32105bf53b46348f25e8f916ab9b2956c2ef8f3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri May 19 00:37:10 EDT 2023 Thu Jul 10 17:54:33 EDT 2025 Fri Jul 25 10:40:20 EDT 2025 Wed Feb 19 02:30:01 EST 2025 Tue Jul 01 01:35:23 EDT 2025 Thu Apr 24 23:04:57 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6522 |
Language | English |
License | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c459t-f73443a1d539b7c6e2c88d67cc32105bf53b46348f25e8f916ab9b2956c2ef8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 BNL-220706-2020-JAAM National Science Foundation (NSF) LC000L053; SC0012704; SC0013004; AC05-76RL01830; DMR-1832808 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office |
ORCID | 0000-0001-7559-9968 0000-0001-5362-8991 0000-0002-1881-4534 0000-0003-3327-0958 0000-0002-9945-3514 0000-0002-2725-7581 0000-0002-3140-1689 0000-0002-1228-9628 0000-0001-5331-1193 0000-0002-1156-9396 0000-0001-7343-4609 0000-0002-5520-5439 0000000231401689 0000000255205439 0000000333270958 0000000218814534 0000000227257581 0000000175599968 0000000173434609 0000000211569396 0000000299453514 0000000212289628 0000000153628991 0000000153311193 |
OpenAccessLink | https://www.osti.gov/biblio/1734972 |
PMID | 33303612 |
PQID | 2469153259 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | osti_scitechconnect_1734972 proquest_miscellaneous_2477262713 proquest_journals_2469153259 pubmed_primary_33303612 crossref_primary_10_1126_science_abc3167 crossref_citationtrail_10_1126_science_abc3167 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-11 |
PublicationDateYYYYMMDD | 2020-12-11 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2020 |
Publisher | The American Association for the Advancement of Science AAAS |
Publisher_xml | – name: The American Association for the Advancement of Science – name: AAAS |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 |
References_xml | – ident: e_1_3_2_26_2 doi: 10.1126/science.aaa1313 – ident: e_1_3_2_19_2 doi: 10.1039/C8TA10329A – ident: e_1_3_2_15_2 doi: 10.1016/j.ensm.2020.01.027 – ident: e_1_3_2_27_2 doi: 10.1149/1.3454762 – ident: e_1_3_2_8_2 doi: 10.1149/2.0401802jes – ident: e_1_3_2_29_2 doi: 10.1149/2.0031411jes – ident: e_1_3_2_30_2 doi: 10.1016/j.actamat.2018.07.046 – ident: e_1_3_2_4_2 doi: 10.1149/1.3079366 – ident: e_1_3_2_24_2 doi: 10.1021/acs.chemmater.7b05269 – ident: e_1_3_2_6_2 doi: 10.1002/adfm.201900247 – ident: e_1_3_2_11_2 doi: 10.1149/2.0951805jes – ident: e_1_3_2_25_2 doi: 10.1021/acs.nanolett.7b03989 – ident: e_1_3_2_17_2 doi: 10.1149/2.0981913jes – ident: e_1_3_2_10_2 doi: 10.1002/aenm.202000982 – ident: e_1_3_2_18_2 doi: 10.1149/2.0971803jes – ident: e_1_3_2_16_2 doi: 10.1149/1945-7111/ab6288 – ident: e_1_3_2_9_2 doi: 10.1002/adfm.201200693 – ident: e_1_3_2_31_2 doi: 10.1016/j.nanoen.2020.104450 – ident: e_1_3_2_5_2 doi: 10.1038/ncomms14101 – ident: e_1_3_2_3_2 doi: 10.1021/ja3091438 – ident: e_1_3_2_7_2 doi: 10.1021/acs.chemmater.8b04418 – ident: e_1_3_2_20_2 doi: 10.1149/2.0681910jes – ident: e_1_3_2_2_2 doi: 10.1021/cr5003003 – ident: e_1_3_2_12_2 doi: 10.1149/2.0401714jes – ident: e_1_3_2_14_2 doi: 10.1039/C6TA01593J – ident: e_1_3_2_22_2 doi: 10.1016/j.joule.2019.02.004 – ident: e_1_3_2_28_2 doi: 10.1038/ncomms2490 – ident: e_1_3_2_32_2 doi: 10.1149/1945-7111/abacea – ident: e_1_3_2_23_2 doi: 10.1149/2.044302jes – ident: e_1_3_2_21_2 – ident: e_1_3_2_13_2 doi: 10.1021/acs.jpcc.7b00896 |
SSID | ssj0009593 |
Score | 2.723485 |
Snippet | Polycrystalline cathode materials that contain a combination of nickel, manganese, and cobalt have been used for advanced lithium batteries. These materials... High-energy nickel (Ni)-rich cathode will play a key role in advanced lithium (Li)-ion batteries, but it suffers from moisture sensitivity, side reactions, and... Cracking the problem of cracking cathodesPolycrystalline cathode materials that contain a combination of nickel, manganese, and cobalt have been used for... High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and... |
SourceID | osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1313 |
SubjectTerms | batteries Cathodes Cobalt Concentration gradient Crack initiation Cracking (fracturing) Crystal defects Crystal structure Crystallinity Electrochemistry Electrode materials ENERGY STORAGE Fracture mechanics Gliding high nickel High voltage Lithium Lithium batteries Manganese Microcracks Microstructure Nickel Polycrystals Scientific Concepts Side reactions single crystal Single crystals Synthesis |
Title | Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33303612 https://www.proquest.com/docview/2469153259 https://www.proquest.com/docview/2477262713 https://www.osti.gov/biblio/1734972 |
Volume | 370 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdQJyReEBtfYQMZiYehKlVjO07ymALTxMMe2CaNp8ixHZYR0tGlD9tfzzl2PqpRBLxEVeqklX_n8935d3cIveN5qGRBqE8UjXymGPdzWN--nCuqeCzjyLItTvjxOft8EV4MAf02u6TJZ_Lut3kl_4Mq3ANcTZbsPyDbvxRuwGfAF66AMFz_CuMvuiVVmOSn60rUYjX9VpWqSzv8Ybh2ciXkd5e3IqYmMFBpX65uwSisWgvzpPRBFV5OTf3WpdogBnXrHozQ_mBnBGfPUEwtj6CjFbjHRjGGRUsZ-Lq-6vbJNlRgz3zK-nJd9lvD2g78WQ5ModKFDu70OEJBWrZHMGJ7pOnpWAW7Csh2A7Jad24aRpI5HatlahuKOPnjoU1fvq_xRz0q9Uzk0qT2D5tbTzkMIsqSCDbrHQIOBZmgnXTxcXG0tUCzKwM1SrDqXr5hwUyWoIm3eyetlXL2BD127gVOrazsoge63kMPbcPR2z2067C5wYeu3vj7p-h0ECNsxQg7McIgRnhDjHBZY4HvixF2YoSdGD1D50efzj4c-67Xhi9ZmDR-AdPDqAhUSJM8klwTGceKR1KaJK8wL0KaM05ZXJBQxwU4FSJPcgLetSS6iAv6HE3qZa1fIsx4PBdgpycsAOOWkIQHAsxIJVWkYxUpD826-cukK0Rv-qFUWeuQEp65Cc_chHvosH_g2tZg2T503wBibpsayNKQxWSTOfA9dNDhlLllfJMRxhPY9kmYeOht_zUoWXNyJmq9XJsxIDOcRAH10AuLb_9PKDVWYEBe_fGn99GjYWkcoEmzWuvXYM42-Rsnib8AS-iiRA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversible+planar+gliding+and+microcracking+in+a+single-crystalline+Ni-rich+cathode&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Bi%2C+Yujing&rft.au=Tao%2C+Jinhui&rft.au=Wu%2C+Yuqin&rft.au=Li%2C+Linze&rft.date=2020-12-11&rft.pub=AAAS&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=370&rft.issue=6522&rft_id=info:doi/10.1126%2Fscience.abc3167&rft.externalDocID=1734972 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |