Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses
Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened a...
Saved in:
Published in | Frontiers in plant science Vol. 8; p. 1317 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
26.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like
and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder. |
---|---|
AbstractList | Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder.Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder. Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder. Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder. Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder. |
Author | Talukder, Shyamal K. Saha, Malay C. |
AuthorAffiliation | Noble Research Institute, LLC, Ardmore OK, United States |
AuthorAffiliation_xml | – name: Noble Research Institute, LLC, Ardmore OK, United States |
Author_xml | – sequence: 1 givenname: Shyamal K. surname: Talukder fullname: Talukder, Shyamal K. – sequence: 2 givenname: Malay C. surname: Saha fullname: Saha, Malay C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28798766$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kd1rFDEUxYNUbK199k3m0ZfZ5mtykxfBLroWCgpW8C1kMjdrymyyJrMV_3tnu7W0gnlJODnndy-cl-Qo5YSEvGZ0IYQ252E71gWnDBaUCQbPyAlTSrZS8e9Hj97H5KzWGzqfjlJj4AU55hqMBqVOyMV1_uXK0Kww5U30tb1wFYfmoiAOMa2bmJqlaJY5j-1XdDWn5gsWTCm6sVkVVyvWV-R5cGPFs_v7lHz7-OF6-am9-ry6XL6_ar3szNQGyb3pOyeYN5KB7qWQjgE3phtUACGHzmvHQhi6WdROSA5qFgTlFABQnJLLA3fI7sZuS9y48ttmF-2dkMvaujJFP6IF7rVEE7TvQQqljRp60AgQoA-Gh5n17sDa7voNDh7TVNz4BPr0J8Ufdp1vbddxZaieAW_vASX_3GGd7CZWj-PoEuZdtcxw3VHFAGbrm8ezHob8LWE2nB8MvuRaC4YHC6N237TdN233Tdu7pudE90_Cx8lNMe-XjeN_c38Aky-sCg |
CitedBy_id | crossref_primary_10_3390_agronomy10101462 crossref_primary_10_1111_pbi_13205 crossref_primary_10_3389_fpls_2021_665195 crossref_primary_10_3390_agronomy9020065 crossref_primary_10_1007_s11033_019_05173_z crossref_primary_10_3389_fpls_2018_01130 crossref_primary_10_3389_fpls_2020_00227 crossref_primary_10_3390_genes15050564 crossref_primary_10_1016_j_plaphy_2024_108814 crossref_primary_10_1093_aob_mcab043 crossref_primary_10_1093_g3journal_jkab025 crossref_primary_10_3390_agriculture14020279 |
Cites_doi | 10.1038/nrg2897 10.1186/s12864-015-1447-y 10.1101/gr.977903 10.3835/plantgenome2014.09.0050 10.1111/pbi.12229 10.1093/pcp/pcq027 10.1186/1471-2156-15-63 10.1007/s00122-003-1495-6 10.1186/1471-2164-15-453 10.1104/pp.110.168559 10.1371/journal.pone.0032253 10.1093/aob/mcf049 10.1104/pp.112.207282 10.1038/hdy.2009.57 10.1007/s00122-016-2698-y 10.1016/j.cois.2015.03.002 10.1038/nature12028 10.1186/s13059-015-0601-9 10.1186/s12284-015-0051-8 10.1126/science.1248417 10.1016/B978-0-12-385531-2.00002-5 10.1111/pbi.12240 10.1007/s00122-011-1775-5 10.1007/s00122-014-2301-3 10.1038/nbt.2196 10.1093/bfgp/elt051 10.1007/s00122-016-2799-7 10.1038/nature08747 10.1111/nph.14103 10.1371/journal.pone.0064594 10.1111/pbi.12009 10.1007/s00122-005-0115-z 10.1186/s13007-015-0072-8 10.1007/s11103-013-0125-1 10.1016/S1360-1385(03)00134-1 10.1371/journal.pone.0059668 10.1016/j.pbi.2007.01.003 10.2135/cropsci2016.07.0608 10.1007/s10142-013-0327-2 10.1371/journal.pone.0057438 10.1126/science.1174320 10.1104/pp.109.142612 10.1007/s11105-015-0878-6 10.1093/nar/gkh599 10.1371/journal.pone.0019379 10.1071/FP13126 10.1371/journal.pone.0152004 10.1016/S2095-3119(13)60354-8 10.1038/nature08250 10.1371/journal.pone.0120273 10.1186/1471-2164-12-4 10.1007/s00122-009-1046-x 10.1111/pbi.12045 10.1038/hdy.2013.16 10.1007/s00122-011-1546-3 10.1111/j.1467-7652.2012.00713.x 10.1071/CP13361 10.1146/annurev-arplant-042809-112209 10.1007/s00122-004-1865-8 10.1371/journal.pgen.1000862 10.1186/s12870-016-0844-y 10.1371/journal.pone.0118144 10.1371/journal.pbio.1001466 10.2174/138920212800543084 10.1186/s12284-014-0039-9 10.1186/1471-2164-10-582 10.1186/gb-2009-10-5-107 10.1093/jxb/ert018 10.1186/1471-2164-12-77 10.1111/nph.12621 10.1073/pnas.1215985110 10.1007/s11032-004-4824-9 10.3390/agronomy7010014 10.1093/nar/gkv119 10.1111/tpj.12294 10.1007/s00122-016-2689-z 10.1016/j.tplants.2006.06.003 10.1016/j.plantsci.2015.03.003 10.1111/j.1439-0523.2007.01477.x 10.1186/s12864-016-3479-3 10.1073/pnas.0910672106 10.1007/s00122-013-2066-0 10.3389/fpls.2016.00133 10.1111/j.0960-7412.2003.01999.x 10.1126/science.1251788 10.1111/j.1439-0523.2006.01226.x 10.1071/FP11164 10.1371/journal.pone.0154609 10.1186/s41065-017-0027-3 10.1371/journal.pone.0175848 10.1126/science.1068037 10.1007/s11295-010-0297-7 10.2135/cropsci2015.05.0274 10.1038/nbt.1883 10.1038/sj.hdy.6800729 10.1007/s00299-016-1993-z 10.1111/pbi.12183 10.1146/annurev-arplant-050213-035715 10.1038/nature11997 10.1186/s12863-015-0178-z 10.1007/978-1-4939-1966-6_21 10.1016/j.pbi.2015.02.009 10.1111/j.1365-313X.2004.02190.x 10.1105/tpc.113.121590 10.1534/genetics.109.107557 10.1007/s00122-004-1843-1 10.3835/plantgenome2015.06.0046 10.1126/science.1175550 10.1038/ng.695 10.1016/j.copbio.2015.01.001 10.1186/s12864-015-1251-8 10.3732/apps.1400111 10.2135/cropsci2016.07.0577 10.2135/cropsci2008.08.0512 10.1038/nature11543 10.1038/nature01434 10.1101/gr.086660.108 10.2135/cropsci2015.07.0428 10.1016/j.plantsci.2013.02.017 10.1111/tpj.12842 10.1007/s12038-013-9388-6 10.1007/s00122-010-1473-8 10.1371/journal.pone.0151768 10.1038/nrg3367 10.1016/j.fcr.2011.01.012 10.1186/s13059-016-0917-0 10.1007/978-3-319-08714-6_9 10.1016/j.tplants.2013.09.008 10.1371/journal.pone.0003376 10.1016/j.jcs.2008.06.005 10.1126/science.1068275 10.1186/s12864-015-2163-3 10.1007/978-1-4939-1966-6_12 10.1007/s11032-015-0249-x 10.1093/genetics/157.4.1819 10.1007/978-3-319-08714-6_13 10.1101/gr.106120.110 10.1371/journal.pone.0112487 10.1093/jxb/ers384 10.1093/jxb/ert029 10.1007/s00122-016-2678-2 10.1186/1471-2164-14-932 10.1007/978-3-319-08714-6_2 10.1038/srep29345 10.1186/s12863-014-0097-4 10.1007/s00122-011-1590-z 10.1038/ng.3008 10.1111/1755-0998.12136 10.1104/pp.109.149328 10.1093/nar/gku1039 10.1146/annurev.phyto.44.070505.143338 10.1371/journal.pone.0133054 10.1093/aob/mcw081 10.1007/s11295-011-0444-9 10.1094/PHYTO-97-6-0767 10.1371/journal.pbio.1001883 10.1093/bfgp/elq001 10.1007/BF02914042 10.1126/science.1183700 10.1111/tpj.13037 10.1038/nrg1523 10.1016/j.biotechadv.2013.11.010 10.2135/cropsci2013.05.0353 10.1534/genetics.107.074245 10.1080/07352680802467736 10.1038/nrg2484 10.1146/annurev-biochem-051410-092902 10.1101/048603 10.1073/pnas.1005931107 10.1111/j.1469-8137.2005.01575.x 10.1007/s11103-004-4681-2 10.1007/978-1-4939-1966-6_3 10.3835/plantgenome2015.11.0110 10.1093/jxb/eru311 |
ContentType | Journal Article |
Copyright | Copyright © 2017 Talukder and Saha. 2017 Talukder and Saha |
Copyright_xml | – notice: Copyright © 2017 Talukder and Saha. 2017 Talukder and Saha |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2017.01317 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_72c84e9f8cb7436896db78e77f7bf92f PMC5526908 28798766 10_3389_fpls_2017_01317 |
Genre | Journal Article Review |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IAO IEA IGS IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c459t-f42c9b5a31c94178b434a172995d6f734d5c8a1ffd57298a342768a13020777e3 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:29:25 EDT 2025 Thu Aug 21 18:41:24 EDT 2025 Fri Jul 11 01:32:49 EDT 2025 Thu Jan 02 22:43:01 EST 2025 Tue Jul 01 00:52:03 EDT 2025 Thu Apr 24 23:04:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | genomic selection marker-assisted selection perennial grass next-generation sequencing QTL mapping |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-f42c9b5a31c94178b434a172995d6f734d5c8a1ffd57298a342768a13020777e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Soren K. Rasmussen, University of Copenhagen, Denmark Reviewed by: Leif Skot, Aberystwyth University, United Kingdom; Hamid Khazaei, University of Saskatchewan, Canada This article was submitted to Crop Science and Horticulture, a section of the journal Frontiers in Plant Science |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2017.01317 |
PMID | 28798766 |
PQID | 1928506177 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_72c84e9f8cb7436896db78e77f7bf92f pubmedcentral_primary_oai_pubmedcentral_nih_gov_5526908 proquest_miscellaneous_1928506177 pubmed_primary_28798766 crossref_primary_10_3389_fpls_2017_01317 crossref_citationtrail_10_3389_fpls_2017_01317 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-26 |
PublicationDateYYYYMMDD | 2017-07-26 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2017 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Ma (B92) 2014; 13 Wu (B172) 2015; 10 Alexandrov (B2) 2015; 43 Goff (B49) 2002; 296 Rajicic (B131) 2015 Araus (B7) 2002; 89 Lai (B81) 2015; 13 Pfender (B123) 2011; 122 Poland (B126) 2015; 24 Raines (B130) 2011; 155 Grinberg (B53) 2016; 7 Paget (B115) 2014; 9 Costa (B32) 2013; 64 Turner (B156) 2006; 169 Simeão Resende (B145) 2014; 54 Arojju (B11) 2016; 16 Jannink (B68) 2010; 9 Fè (B44) 2015; 16 Consortium (B31) 2012; 491 Winfield (B170) 2012; 10 Close (B28) 2009; 10 Saha (B136) 2005; 110 Wang (B166) 2014; 12 Byrne (B18) 2013; 8 Xie (B173) 2015; 16 Jensen (B69) 2005; 110 Mayer (B98) 2009; 151 Choi (B26) 2009; 106 Wang (B163) 2015; 82 Kantarski (B74) 2017; 130 Comai (B30) 2004; 37 Lorenz (B88) 2011; 110 Fè (B43) 2016; 9 Hegarty (B56) 2013; 11 Lou (B90) 2015; 10 Aleliūnas (B1) 2015 Meuwissen (B101) 2001; 157 Obsa (B111) 2016; 129 Fukuoka (B47) 2009; 325 Ruttink (B135) 2015 Chutimanitsakun (B27) 2011; 12 Houle (B63) 2010; 11 Skøt (B146) 2005; 15 Ma (B93) 2017; 12 Talukder (B150) 2014; 15 Alm (B5) 2011; 123 Andrade-Sanchez (B6) 2014; 41 Varshney (B157) 2015 Orr (B113) 2005; 6 Sim (B144) 2007; 97 Araus (B8) 2014; 19 Hohenlohe (B59) 2010; 6 Khaembah (B75) 2013; 64 Cobb (B29) 2013; 126 Ng (B109) 2009; 461 Zeng (B183) 2017; 154 Velmurugan (B160) 2016; 118 Lu (B91) 2010; 20 Paina (B116) 2016; 11 Poursarebani (B128) 2013; 13 Nogué (B110) 2016; 35 Wang (B164) 2015; 16 Daverdin (B35) 2014; 8 Morris (B103) 2013; 110 Yates (B178) 2014; 15 Mejlhede (B100) 2006; 125 Holland (B60) 2007; 10 Flint (B45) 2009; 19 Varshney (B159) 2007 Dinkins (B38) 2017; 213 Grabherr (B51) 2011; 29 Yu (B179) 2008; 178 Ali (B3) 2016 Forster (B46) 2014; 65 Mochida (B102) 2010; 51 Tester (B151) 2010; 327 Pradhan (B129) 2015; 8 Salvi (B137) 2015; 32 Crossa (B33) 2014; 112 Rascher (B132) 2011; 38 Pingault (B124) 2015; 16 Hayes (B54) 2013; 132 Marcussen (B95) 2014; 345 Pérez-de-Castro (B121) 2012; 13 Xing (B175) 2010; 61 Jespersen (B70) 2016; 56 Poland (B127) 2012; 7 Pittman (B125) 2016; 56 Sheeja (B143) 2015; 33 Vogel (B162) 2010; 463 Wang (B165) 2008; 48 Schmutz (B142) 2014; 46 Schadt (B140) 2003; 422 Schejbel (B141) 2008; 127 Gan (B48) 2016; 11 Kopecký (B78) 2014; 32 Hudson (B66) 2012; 8 Zimin (B186) 2016 Kundu (B80) 2015; 35 Yu (B182) 2015; 235 Ergon (B42) 2006; 112 Muir (B105) 2016; 17 Wang (B167) 2013; 13 Brazauskas (B17) 2013; 208 Pembleton (B120) 2016; 129 Kujur (B79) 2013; 38 Byrne (B19) 2011 Lee (B82) 2016 Satovic (B139) 2013; 14 Bonos (B16) 2006; 44 Li (B83) 2017; 18 KöLliker (B77) 2005; 146 Chen (B25) 2015; 10 Muylle (B107) 2005; 95 Ling (B86) 2013; 496 Yu (B181) 2013; 64 Huang (B64) 2014; 65 Kadaru (B72) 2006; 24 Pfeifer (B122) 2013; 161 Byrne (B20) 2015; 84 Tuberosa (B155) 2006; 11 Hirsch (B58) 2014; 13 Kliebenstein (B76) 2010; 152 Till (B153) 2003; 13 Wu (B171) 2014; 65 de Alba (B36) 2015; 43 Heffner (B55) 2009; 49 Pearson (B118) 2011; 122 Dierking (B37) 2015; 7 Araus (B9) 2008; 27 Holtz (B61) 2016; 11 Chapman (B24) 2015; 3 Jia (B71) 2013; 496 Zhang (B184) 2015; 8 Mudalkar (B104) 2014; 84 Varshney (B158) 2014; 12 Dorn (B39) Zhao (B185) 2016; 6 Losos (B89) 2013; 11 Mahuku (B94) 2016; 129 McMullen (B99) 2009; 325 Ruperao (B134) 2015 Venuprasad (B161) 2012; 30 Kamphuis (B73) 2015; 13 Peleman (B119) 2003; 8 Sato (B138) 2009; 103 Czaban (B34) 2015; 16 Humplík (B67) 2015; 11 Xie (B174) 2010; 107 Nagarajan (B108) 2013; 14 Honig (B62) 2017; 57 Dorn (B40) Weigel (B169) 2009; 10 Cairns (B21) 2011; 121 Torre (B154) 2014; 9 Lin (B84) 2016; 9 Huang (B65) 2010; 42 Mason (B97) 2015 Goggin (B50) 2015; 9 Baillie (B12) 2017; 7 Elshire (B41) 2011; 6 Wang (B168) 2009; 10 Slavov (B147) 2014; 201 Till (B152) 2004; 32 Mascher (B96) 2013; 76 Griffiths (B52) 2012; 29 Bennetzen (B14) 2012; 30 Xu (B176) 2014; 343 Armstead (B10) 2004; 108 Rinn (B133) 2012; 81 Talukder (B149) 2015; 8 Owens (B114) 2015 Bohra (B15) 2014; 127 Henry (B57) 2014; 26 Munoz (B106) 2017 Liu (B87) 2010; 184 Yu (B180) 2002; 296 Xu (B177) 2005; 59 Oliver (B112) 2011; 12 Lin (B85) 2017; 57 Baird (B13) 2008; 3 Caldwell (B22) 2004; 40 Allen (B4) 2013; 11 Chagné (B23) 2015 Paolucci (B117) 2010; 6 Stevens (B148) 2001 17061916 - Annu Rev Phytopathol. 2006;44:213-34 25795171 - Curr Opin Plant Biol. 2015 Apr;24:119-24 24728647 - Plant Cell. 2014 Apr 11;26(4):1382-1397 11935018 - Science. 2002 Apr 5;296(5565):92-100 25853487 - Genome Biol. 2015 Feb 10;16:29 24646323 - Plant Biotechnol J. 2014 Aug;12(6):787-96 23184232 - Plant Physiol. 2013 Feb;161(2):571-82 19015660 - Nat Rev Genet. 2009 Jan;10(1):57-63 23535596 - Nature. 2013 Apr 4;496(7443):87-90 27422157 - BMC Plant Biol. 2016 Jul 16;16(1):160 24912738 - BMC Genomics. 2014 Jun 09;15:453 27898764 - Plant Genome. 2016 Mar;9(1):null 24710822 - Theor Appl Genet. 2014 Jun;127(6):1263-91 20627892 - Genome Res. 2010 Sep;20(9):1238-49 26559662 - BMC Genomics. 2015 Nov 11;16:921 20981402 - Theor Appl Genet. 2011 Feb;122(3):609-22 21344184 - Theor Appl Genet. 2011 May;122(8):1467-80 25694514 - Nucleic Acids Res. 2015 Mar 11;43(5):2902-13 25614069 - Curr Opin Biotechnol. 2015 Apr;32:179-85 23505311 - J Exp Bot. 2013 Mar;64(5):1305-16 28250720 - Hereditas. 2017 Feb 23;154:5 21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52 23075845 - Nature. 2012 Nov 29;491(7426):711-6 27010567 - PLoS One. 2016 Mar 24;11(3):e0152004 20192739 - Annu Rev Plant Biol. 2010;61:421-42 27738715 - Theor Appl Genet. 2017 Jan;130(1):137-150 27268483 - Ann Bot. 2016 Jul;118(1):71-87 15619078 - Theor Appl Genet. 2005 Feb;110(3):527-36 25904970 - Plant Methods. 2015 Apr 17;11:29 25830701 - PLoS One. 2015 Apr 01;10(4):e0120273 14634728 - Theor Appl Genet. 2004 Mar;108(5):822-8 23358380 - Nat Rev Genet. 2013 Mar;14(3):157-67 12646919 - Nature. 2003 Mar 20;422(6929):297-302 26904088 - Front Plant Sci. 2016 Feb 12;7:133 24908249 - Nat Genet. 2014 Jul;46(7):707-13 14871304 - Plant J. 2004 Mar;37(5):778-86 27902790 - Plant Genome. 2016 Nov;9(3):null 24308815 - New Phytol. 2014 Mar;201(4):1227-39 22703335 - Plant Biotechnol J. 2012 Aug;10(6):733-42 20148030 - Nature. 2010 Feb 11;463(7282):763-8 25675376 - PLoS One. 2015 Feb 12;10(2):e0118144 27389619 - Sci Rep. 2016 Jul 08;6:29345 19519932 - Genome Biol. 2009;10(5):107 26054240 - Rice (N Y). 2015 Dec;8(1):39 25886726 - BMC Genet. 2015 Feb 15;16:18 18943608 - Phytopathology. 2007 Jun;97(6):767-76 23279710 - Plant Biotechnol J. 2013 Apr;11(3):279-95 26908251 - Theor Appl Genet. 2016 Jun;129(6):1139-51 18202393 - Genetics. 2008 Jan;178(1):539-51 22663078 - Annu Rev Biochem. 2012;81:145-66 19692534 - Plant Physiol. 2009 Oct;151(2):496-505 24377374 - BMC Genomics. 2013 Dec 30;14:932 23572121 - Heredity (Edinb). 2014 Jan;112(1):48-60 16843036 - Trends Plant Sci. 2006 Aug;11(8):405-12 11935017 - Science. 2002 Apr 5;296(5565):79-92 25384418 - BMC Genet. 2014 Nov 11;15:97 25373747 - Methods Mol Biol. 2015;1245:29-47 19411597 - Genome Res. 2009 May;19(5):723-33 24139902 - Trends Plant Sci. 2014 Jan;19(1):52-61 23683927 - Plant Sci. 2013 Jul;208:34-41 18852878 - PLoS One. 2008;3(10):e3376 23535592 - Nature. 2013 Apr 4;496(7443):91-5 24002439 - Plant Mol Biol. 2014 Jan;84(1-2):159-71 25393112 - PLoS One. 2014 Nov 13;9(11):e112487 27009100 - Genome Biol. 2016 Mar 23;17 :53 21573248 - PLoS One. 2011 May 04;6(5):e19379 15141034 - Nucleic Acids Res. 2004 May 11;32(8):2632-41 20156985 - Brief Funct Genomics. 2010 Mar;9(2):166-77 27171472 - PLoS One. 2016 May 12;11(5):e0154609 19861545 - Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19096-101 15558229 - Theor Appl Genet. 2005 Jan;110(2):323-36 15716908 - Nat Rev Genet. 2005 Feb;6(2):119-27 23115520 - Curr Genomics. 2012 May;13(3):179-95 24914810 - PLoS Biol. 2014 Jun 10;12(6):e1001883 25846381 - Plant J. 2015 Jun;82(5):744-57 20972439 - Nat Genet. 2010 Nov;42(11):961-7 19661427 - Science. 2009 Aug 7;325(5941):737-40 16390418 - New Phytol. 2006;169(1):45-57 25900564 - Plant Sci. 2015 Jun;235:37-45 25652134 - BMC Genomics. 2015 Feb 06;16:54 21505831 - Theor Appl Genet. 2011 Aug;123(3):369-82 16235049 - Theor Appl Genet. 2006 Jan;112(2):232-42 19884313 - Genetics. 2010 Jan;184(1):19-26 23848836 - Mol Ecol Resour. 2013 Sep;13(5):938-45 23469194 - PLoS One. 2013;8(3):e57438 25035500 - Science. 2014 Jul 18;345(6194):1251788 23471459 - Theor Appl Genet. 2013 Apr;126(4):867-87 24652936 - Science. 2014 Mar 28;343(6178):1505-8 20498060 - Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10578-83 22580951 - Nat Biotechnol. 2012 May 13;30(6):555-61 19961604 - BMC Genomics. 2009 Dec 04;10:582 22389690 - PLoS One. 2012;7(2):e32253 11290733 - Genetics. 2001 Apr;157(4):1819-29 12618384 - Genome Res. 2003 Mar;13(3):524-30 21272354 - BMC Genomics. 2011 Jan 27;12:77 25060816 - Plant Biotechnol J. 2015 Jan;13(1):14-25 23599272 - J Exp Bot. 2013 Oct;64(13):3937-49 25129128 - J Exp Bot. 2014 Nov;65(20):5771-81 15361148 - Plant J. 2004 Oct;40(1):143-50 26186338 - PLoS One. 2015 Jul 17;10(7):e0133054 26408275 - Plant J. 2015 Nov;84(4):816-26 16217598 - Plant Mol Biol. 2005 Sep;59(1):7-26 23812960 - Funct Integr Genomics. 2013 Aug;13(3):339-50 28445484 - PLoS One. 2017 Apr 26;12 (4):e0175848 24395692 - Brief Funct Genomics. 2014 Jul;13(4):257-67 12102518 - Ann Bot. 2002 Jun;89 Spec No:925-40 24274033 - Annu Rev Plant Biol. 2014;65:531-51 25147022 - Plant Biotechnol J. 2015 Jan;13(1):97-104 25429973 - Nucleic Acids Res. 2015 Jan;43(Database issue):D1023-7 27477008 - New Phytol. 2017 Jan;213(1):324-337 25699221 - Appl Plant Sci. 2015 Feb 10;3(2):null 19684571 - Nature. 2009 Sep 10;461(7261):272-6 19933384 - Plant Physiol. 2010 Feb;152(2):480-6 17291822 - Curr Opin Plant Biol. 2007 Apr;10(2):156-61 21071599 - Plant Physiol. 2011 Jan;155(1):36-42 26971113 - Theor Appl Genet. 2016 Jun;129(6):1217-29 27010560 - PLoS One. 2016 Mar 24;11(3):e0151768 21085204 - Nat Rev Genet. 2010 Dec;11(12):855-66 23889683 - Plant J. 2013 Nov;76(3):494-505 25886302 - BMC Genomics. 2015 Mar 28;16:249 19696351 - Science. 2009 Aug 21;325(5943):998-1001 27193593 - Plant Cell Rep. 2016 Jul;35(7):1475-86 16118663 - Heredity (Edinb). 2005 Nov;95(5):348-57 23267105 - Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):453-8 28183269 - BMC Genomics. 2017 Feb 10;18(1):145 19455180 - Heredity (Edinb). 2009 Aug;103(2):110-7 23331642 - Plant Biotechnol J. 2013 Jun;11(5):572-81 20208064 - Plant Cell Physiol. 2010 Apr;51(4):497-523 19430758 - Theor Appl Genet. 2009 Aug;119(3):383-95 26883039 - Theor Appl Genet. 2016 May;129(5):991-1005 12878017 - Trends Plant Sci. 2003 Jul;8(7):330-4 23319892 - PLoS Biol. 2013;11(1):e1001466 20195501 - PLoS Genet. 2010 Feb 26;6(2):e1000862 20150489 - Science. 2010 Feb 12;327(5967):818-22 24296899 - J Biosci. 2013 Dec;38(5):971-87 23386684 - J Exp Bot. 2013 Apr;64(6):1537-51 21205322 - BMC Genomics. 2011 Jan 04;12:4 24309540 - Biotechnol Adv. 2014 Jan-Feb;32(1):190-9 26054243 - Rice (N Y). 2015 Dec;8(1):51 |
References_xml | – volume: 11 start-page: 855 year: 2010 ident: B63 article-title: Phenomics: the next challenge. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2897 – volume: 16 year: 2015 ident: B34 article-title: Comparative transcriptome analysis within the Lolium/Festuca species complex reveals high sequence conservation. publication-title: BMC Genomics doi: 10.1186/s12864-015-1447-y – volume: 13 start-page: 524 year: 2003 ident: B153 article-title: Large-scale discovery of induced point mutations with high-throughput TILLING. publication-title: Genome Res. doi: 10.1101/gr.977903 – volume: 8 start-page: 1 year: 2015 ident: B149 article-title: De novo assembly and characterization of tall fescue transcriptome under water stress. publication-title: Plant Genome doi: 10.3835/plantgenome2014.09.0050 – volume: 13 start-page: 14 year: 2015 ident: B73 article-title: Transcriptome sequencing of different narrow-leafed lupin tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers. publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12229 – volume: 51 start-page: 497 year: 2010 ident: B102 article-title: Genomics and bioinformatics resources for crop improvement. publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcq027 – volume: 30 start-page: 535 year: 2012 ident: B161 article-title: A large-effect QTL for rice grain yield under upland drought stress on chromosome 1. publication-title: Mol. Breed. doi: 10.1186/1471-2156-15-63 – volume: 108 start-page: 822 year: 2004 ident: B10 article-title: Synteny between a major heading-date QTL in perennial ryegrass (Lolium perenne L.) and the Hd3 heading-date locus in rice. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-003-1495-6 – volume: 15 year: 2014 ident: B178 article-title: De novo assembly of red clover transcriptome based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. publication-title: BMC Genomics doi: 10.1186/1471-2164-15-453 – volume: 155 start-page: 36 year: 2011 ident: B130 article-title: Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. publication-title: Plant Physiol. doi: 10.1104/pp.110.168559 – volume: 7 year: 2012 ident: B127 article-title: Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. publication-title: PLoS ONE doi: 10.1371/journal.pone.0032253 – volume: 89 start-page: 925 year: 2002 ident: B7 article-title: Plant breeding and drought in C3 cereals: What should we breed for? publication-title: Ann. Bot. doi: 10.1093/aob/mcf049 – volume: 161 start-page: 571 year: 2013 ident: B122 article-title: The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics. publication-title: Plant Physiol. doi: 10.1104/pp.112.207282 – volume: 103 start-page: 110 year: 2009 ident: B138 article-title: A high-density transcript linkage map of barley derived from a single population. publication-title: Heredity doi: 10.1038/hdy.2009.57 – volume: 129 start-page: 1217 year: 2016 ident: B94 article-title: Combined linkage and association mapping identifies a major QTL (qRtsc8-1), conferring tar spot complex resistance in maize. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-016-2698-y – ident: B39 article-title: “Developing a genomic toolbox for the improvement of intermediate wheatgrass as a perennial grain crop,” in publication-title: Proceedings of the International Plant & Animal Genome XXV Conference – volume: 9 start-page: 69 year: 2015 ident: B50 article-title: Applying high-throughput phenotyping to plant-insect interactions: picturing more resistant crops. publication-title: Curr. Opin. Insect Sci. doi: 10.1016/j.cois.2015.03.002 – volume: 496 start-page: 91 year: 2013 ident: B71 article-title: Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. publication-title: Nature doi: 10.1038/nature12028 – volume: 16 year: 2015 ident: B124 article-title: Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome. publication-title: Genome Biol. doi: 10.1186/s13059-015-0601-9 – volume: 8 year: 2015 ident: B129 article-title: Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna. publication-title: Rice doi: 10.1186/s12284-015-0051-8 – volume: 343 start-page: 1505 year: 2014 ident: B176 article-title: Contribution of NAC transcription factors to plant adaptation to land. publication-title: Science doi: 10.1126/science.1248417 – volume: 110 start-page: 77 year: 2011 ident: B88 article-title: Genomic selection in plant breeding: knowledge and prospects. publication-title: Adv. Agron. doi: 10.1016/B978-0-12-385531-2.00002-5 – volume: 13 start-page: 97 year: 2015 ident: B81 article-title: Identification and characterization of more than 4 million intervarietal SNPs across the group 7 chromosomes of bread wheat. publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12240 – volume: 146 start-page: 55 year: 2005 ident: B77 article-title: Marker assisted polycross breeding to increase diversity and yield in perennial ryegrass (Lolium perenne L.). publication-title: Euphytica doi: 10.1007/s00122-011-1775-5 – year: 2007 ident: B159 publication-title: Genomics-Assisted Crop Improvement: Genomics Applications in Crops – volume: 127 start-page: 1263 year: 2014 ident: B15 article-title: Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-014-2301-3 – volume: 30 start-page: 555 year: 2012 ident: B14 article-title: Reference genome sequence of the model plant Setaria. publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2196 – volume: 13 start-page: 257 year: 2014 ident: B58 article-title: Reduced representation approaches to interrogate genome diversity in large repetitive plant genomes. publication-title: Brief. Funct. Genomics doi: 10.1093/bfgp/elt051 – volume: 130 start-page: 137 year: 2017 ident: B74 article-title: Development of the first consensus genetic map of intermediate wheatgrass (Thinopyrum intermedium) using genotyping-by-sequencing. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-016-2799-7 – volume: 463 start-page: 763 year: 2010 ident: B162 article-title: Genome sequencing and analysis of the model grass Brachypodium distachyon. publication-title: Nature doi: 10.1038/nature08747 – volume: 213 start-page: 324 year: 2017 ident: B38 article-title: Transcriptome response of Lolium arundinaceum to its fungal endophyte Epichloë coenophiala. publication-title: New Phytol. doi: 10.1111/nph.14103 – volume: 8 start-page: 137 year: 2014 ident: B35 article-title: Comparative relationships and chromosome evolution in switchgrass (Panicum virgatum) and its genomic model, foxtail millet (Setaria italica). publication-title: Bioenergy Res. doi: 10.1371/journal.pone.0064594 – volume: 11 start-page: 279 year: 2013 ident: B4 article-title: Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12009 – volume: 112 start-page: 232 year: 2006 ident: B42 article-title: Quantitative trait loci controlling vernalisation requirement, heading time and number of panicles in meadow fescue (Festuca pratensis Huds.). publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-005-0115-z – volume: 11 year: 2015 ident: B67 article-title: Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses–a review. publication-title: Plant Methods doi: 10.1186/s13007-015-0072-8 – volume: 84 start-page: 159 year: 2014 ident: B104 article-title: De novo transcriptome analysis of an imminent biofuel crop, Camelina sativa L. using Illumina GAIIX sequencing platform and identification of SSR markers. publication-title: Plant Mol. Biol. doi: 10.1007/s11103-013-0125-1 – volume: 8 start-page: 330 year: 2003 ident: B119 article-title: Breeding by design. publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(03)00134-1 – volume: 132 start-page: 133 year: 2013 ident: B54 article-title: Prospects for genomic selection in forage plant species. publication-title: Plant Breed. doi: 10.1371/journal.pone.0059668 – volume: 10 start-page: 156 year: 2007 ident: B60 article-title: Genetic architecture of complex traits in plants. publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2007.01.003 – volume: 57 start-page: 1 year: 2017 ident: B62 article-title: Microsatellite identification in perennial ryegrass using next-generation sequencing. publication-title: Crop Sci. doi: 10.2135/cropsci2016.07.0608 – volume: 13 start-page: 339 year: 2013 ident: B128 article-title: Conserved synteny-based anchoring of the barley genome physical map. publication-title: Funct. Integr. Genomics doi: 10.1007/s10142-013-0327-2 – volume: 8 year: 2013 ident: B18 article-title: Genome wide allele frequency fingerprints (GWAFFs) of populations via genotyping by sequencing. publication-title: PLoS ONE doi: 10.1371/journal.pone.0057438 – volume: 325 start-page: 737 year: 2009 ident: B99 article-title: Genetic properties of the maize nested association mapping population. publication-title: Science doi: 10.1126/science.1174320 – volume: 151 start-page: 496 year: 2009 ident: B98 article-title: Gene content and virtual gene order of barley chromosome 1H. publication-title: Plant Physiol. doi: 10.1104/pp.109.142612 – volume: 33 start-page: 1825 year: 2015 ident: B143 article-title: Comparative transcriptome analysis of two species of Curcuma contrasting in a high-value compound curcumin: insights into genetic basis and regulation of biosynthesis. publication-title: Plant Mol. Biol. Rep. doi: 10.1007/s11105-015-0878-6 – volume: 32 start-page: 2632 year: 2004 ident: B152 article-title: Mismatch cleavage by single-strand specific nucleases. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh599 – volume: 6 year: 2011 ident: B41 article-title: A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. publication-title: PLoS ONE doi: 10.1371/journal.pone.0019379 – volume: 41 start-page: 68 year: 2014 ident: B6 article-title: Development and evaluation of a field-based high-throughput phenotyping platform. publication-title: Funct. Plant Biol. doi: 10.1071/FP13126 – year: 2017 ident: B106 article-title: Genomic selection by pooled genotyping publication-title: Proceedings of the International Plant & Animal Genome XXV Conference – volume: 11 year: 2016 ident: B116 article-title: Using a candidate gene-based genetic linkage map to identify QTL for winter survival in perennial ryegrass. publication-title: PLoS ONE doi: 10.1371/journal.pone.0152004 – volume: 13 start-page: 31 year: 2014 ident: B92 article-title: QTLs for waterlogging tolerance at germination and seedling stages in population of recombinant inbred lines derived from a cross between synthetic and cultivated wheat genotypes. publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(13)60354-8 – volume: 461 start-page: 272 year: 2009 ident: B109 article-title: Targeted capture and massively parallel sequencing of 12 human exomes. publication-title: Nature doi: 10.1038/nature08250 – volume: 10 year: 2015 ident: B25 article-title: Transcriptome sequencing of mung bean (Vigna radiate L.) genes and the identification of EST-SSR markers. publication-title: PLoS ONE doi: 10.1371/journal.pone.0120273 – volume: 12 year: 2011 ident: B27 article-title: Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley. publication-title: BMC Genomics doi: 10.1186/1471-2164-12-4 – volume: 29 start-page: 159 year: 2012 ident: B52 article-title: Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. publication-title: Mol. Breed. doi: 10.1007/s00122-009-1046-x – volume: 11 start-page: 572 year: 2013 ident: B56 article-title: Genotyping by RAD sequencing enables mapping of fatty acid composition traits in perennial ryegrass (Lolium perenne (L.). publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12045 – volume: 9 start-page: 218 year: 2014 ident: B115 article-title: QTL analysis of crown rust resistance in perennial ryegrass-implications for breeding. publication-title: Int. Turfgrass Soc. Res. J. – volume: 112 start-page: 48 year: 2014 ident: B33 article-title: Genomic prediction in CIMMYT maize and wheat breeding programs. publication-title: Heredity doi: 10.1038/hdy.2013.16 – volume: 122 start-page: 1467 year: 2011 ident: B123 article-title: Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-011-1546-3 – volume: 10 start-page: 733 year: 2012 ident: B170 article-title: Targeted re-sequencing of the allohexaploid wheat exome. publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2012.00713.x – volume: 65 start-page: 1238 year: 2014 ident: B46 article-title: Resources and strategies for implementation of genomic selection in breeding of forage species. publication-title: Crop Pasture Sci. doi: 10.1071/CP13361 – volume: 61 start-page: 421 year: 2010 ident: B175 article-title: Genetic and molecular bases of rice yield. publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042809-112209 – volume: 110 start-page: 527 year: 2005 ident: B69 article-title: QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-004-1865-8 – volume: 6 year: 2010 ident: B59 article-title: Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000862 – volume: 16 year: 2016 ident: B11 article-title: Markers associated with heading and aftermath heading in perennial ryegrass full-sib families. publication-title: BMC Plant Biol. doi: 10.1186/s12870-016-0844-y – volume: 10 year: 2015 ident: B172 article-title: High-Density Genetic Linkage Map Construction and QTL Mapping of Grain Shape and Size in the Wheat Population Yanda1817 × Beinong6. publication-title: PLoS ONE doi: 10.1371/journal.pone.0118144 – volume: 7 start-page: 1 year: 2015 ident: B37 article-title: Linkage maps of a Mediterranean x Continental tall fescue (Festuca arundinacea) population and their comparative analysis with other Poaceae species. publication-title: Plant Genome – volume: 11 year: 2013 ident: B89 article-title: Evolutionary biology for the 21st century. publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001466 – volume: 13 start-page: 179 year: 2012 ident: B121 article-title: Application of genomic tools in plant breeding. publication-title: Curr. Genomics doi: 10.2174/138920212800543084 – volume: 8 year: 2015 ident: B184 article-title: Genetic analysis of flag leaf size and candidate genes determination of a major QTL for flag leaf width in rice. publication-title: Rice doi: 10.1186/s12284-014-0039-9 – volume: 10 year: 2009 ident: B28 article-title: Development and implementation of high-throughput SNP genotyping in barley. publication-title: BMC Genomics doi: 10.1186/1471-2164-10-582 – volume: 10 year: 2009 ident: B169 article-title: The 1001 genomes project for Arabidopsis thaliana. publication-title: Genome Biol. doi: 10.1186/gb-2009-10-5-107 – volume: 64 start-page: 1537 year: 2013 ident: B181 article-title: Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert018 – volume: 12 year: 2011 ident: B112 article-title: Model SNP development for complex genomes based on hexaploid oat using high-throughput 454 sequencing technology. publication-title: BMC Genomics doi: 10.1186/1471-2164-12-77 – volume: 201 start-page: 1227 year: 2014 ident: B147 article-title: Genome-wide association studies and prediction of 17 traits related to phenology, biomass and cell wall composition in the energy grass Miscanthus sinensis. publication-title: New Phytol. doi: 10.1111/nph.12621 – volume: 110 start-page: 453 year: 2013 ident: B103 article-title: Population genomic and genome-wide association studies of agroclimatic traits in sorghum. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1215985110 – volume: 15 start-page: 233 year: 2005 ident: B146 article-title: An association mapping approach to identify flowering time genes in natural populations of Lolium perenne (L.). publication-title: Mol. Breed. doi: 10.1007/s11032-004-4824-9 – volume: 7 year: 2017 ident: B12 article-title: Generation and characterisation of a reference transcriptome for phalaris (Phalaris aquatica L.). publication-title: Agronomy doi: 10.3390/agronomy7010014 – volume: 43 start-page: k2902 year: 2015 ident: B36 article-title: In plants, decapping prevents RDR6-dependent production of small interfering RNAs from endogenous mRNAs. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv119 – volume: 76 start-page: 494 year: 2013 ident: B96 article-title: Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. publication-title: Plant J. doi: 10.1111/tpj.12294 – volume: 129 start-page: 1139 year: 2016 ident: B111 article-title: Genetic analysis of developmental and adaptive traits in three doubled haploid populations of barley (Hordeum vulgare L.). publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-016-2689-z – volume: 11 start-page: 405 year: 2006 ident: B155 article-title: Genomics-based approaches to improve drought tolerance of crops. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2006.06.003 – volume: 235 start-page: 37 year: 2015 ident: B182 article-title: Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass. publication-title: Plant Sci. doi: 10.1016/j.plantsci.2015.03.003 – volume: 127 start-page: 368 year: 2008 ident: B141 article-title: Mapping of QTL for resistance to powdery mildew and resistance gene analogues in perennial ryegrass. publication-title: Plant Breed. doi: 10.1111/j.1439-0523.2007.01477.x – volume: 18 year: 2017 ident: B83 article-title: Transcriptome profilings of two tall fescue (Festuca arundinacea) cultivars in response to lead (Pb) stress. publication-title: BMC Genomics doi: 10.1186/s12864-016-3479-3 – volume: 106 start-page: 19096 year: 2009 ident: B26 article-title: Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0910672106 – volume: 126 start-page: 867 year: 2013 ident: B29 article-title: Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-013-2066-0 – volume: 7 year: 2016 ident: B53 article-title: Implementation of genomic prediction in Lolium perenne (L.) breeding populations. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00133 – volume: 37 start-page: 778 year: 2004 ident: B30 article-title: Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. publication-title: Plant J. doi: 10.1111/j.0960-7412.2003.01999.x – volume: 345 year: 2014 ident: B95 article-title: A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. publication-title: Science doi: 10.1126/science.1251788 – volume: 125 start-page: 461 year: 2006 ident: B100 article-title: EcoTILLING for the identification of allelic variation in the powdery mildew resistance genes mlo and Mla of barley. publication-title: Plant Breed. doi: 10.1111/j.1439-0523.2006.01226.x – volume: 38 start-page: 968 year: 2011 ident: B132 article-title: Non-invasive approaches for phenotyping of enhanced performance traits in bean. publication-title: Funct. Plant Biol. doi: 10.1071/FP11164 – volume: 11 year: 2016 ident: B61 article-title: Genotyping by sequencing using specific allelic capture to build a high-density genetic map of durum wheat. publication-title: PLoS ONE doi: 10.1371/journal.pone.0154609 – volume: 154 year: 2017 ident: B183 article-title: Genome-wide association study of rust traits in orchardgrass using SLAF-seq technology. publication-title: Hereditas doi: 10.1186/s41065-017-0027-3 – year: 2015 ident: B114 article-title: Comparative mapping of the muscadine grape (Vitis rotundifolia) and the European bunch grape (V. vinifera) shows a high level of synteny between the two species publication-title: Proceedings of the International Plant & Animal Genome XXIII Conference – volume: 12 year: 2017 ident: B93 article-title: Transcriptome analysis of creeping bentgrass exposed to drought stress and polyamine treatment. publication-title: PLoS ONE doi: 10.1371/journal.pone.0175848 – volume: 296 start-page: 79 year: 2002 ident: B180 article-title: A draft sequence of the rice genome (Oryza sativa L. ssp. indica). publication-title: Science doi: 10.1126/science.1068037 – volume: 6 start-page: 863 year: 2010 ident: B117 article-title: Genetic linkage maps of Populus alba L. and comparative mapping analysis of sex determination across Populus species. publication-title: Tree Genet. Genomes doi: 10.1007/s11295-010-0297-7 – volume: 56 start-page: 870 year: 2016 ident: B125 article-title: Bermudagrass, wheat, and tall fescue crude protein forage estimation using mobile-platform, active-spectral and canopy-height data. publication-title: Crop Sci. doi: 10.2135/cropsci2015.05.0274 – volume: 29 start-page: 644 year: 2011 ident: B51 article-title: Full-length transcriptome assembly from RNA-Seq data without a reference genome. publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1883 – volume: 95 start-page: 348 year: 2005 ident: B107 article-title: Four QTLs determine crown rust (Puccinia coronata f. sp. lolii) resistance in a perennial ryegrass (Lolium perenne) population. publication-title: Heredity doi: 10.1038/sj.hdy.6800729 – volume: 35 start-page: 1475 year: 2016 ident: B110 article-title: Genome engineering and plant breeding: impact on trait discovery and development. publication-title: Plant Cell Rep. doi: 10.1007/s00299-016-1993-z – volume: 12 start-page: 787 year: 2014 ident: B166 article-title: Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12183 – volume: 65 start-page: 531 year: 2014 ident: B64 article-title: Natural variations and genome-wide association studies in crop plants. publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050213-035715 – volume: 496 start-page: 87 year: 2013 ident: B86 article-title: Draft genome of the wheat A-genome progenitor Triticum urartu. publication-title: Nature doi: 10.1038/nature11997 – volume: 16 year: 2015 ident: B164 article-title: Genome-wide distribution comparative and composition analysis of the SSRs in Poaceae. publication-title: BMC Genet. doi: 10.1186/s12863-015-0178-z – start-page: 281 year: 2015 ident: B23 article-title: “Methods for the design, implementation, and analysis of illumina infiniumTM SNP assays in plants,” in publication-title: Plant Genotyping: Methods and Protocols doi: 10.1007/978-1-4939-1966-6_21 – volume: 24 start-page: 119 year: 2015 ident: B126 article-title: Breeding-assisted genomics. publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2015.02.009 – year: 2016 ident: B186 article-title: “Assembly of the 4.5 Gb Ancestral Wheat D-Genome from Hybrid PacBio and Illumina Data,” in publication-title: Proceedings of the International Plant & Animal Genome XXIV Conference – volume: 40 start-page: 143 year: 2004 ident: B22 article-title: A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02190.x – volume: 26 start-page: 1382 year: 2014 ident: B57 article-title: Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. publication-title: Plant Cell Online doi: 10.1105/tpc.113.121590 – volume: 184 start-page: 19 year: 2010 ident: B87 article-title: High-throughput genetic mapping of mutants via quantitative single nucleotide polymorphism typing. publication-title: Genetics doi: 10.1534/genetics.109.107557 – volume: 110 start-page: 323 year: 2005 ident: B136 article-title: An SSR- and AFLP-based genetic linkage map of tall fescue (Festuca arundinacea Schreb.). publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-004-1843-1 – volume: 9 start-page: 1 year: 2016 ident: B84 article-title: Genetic gain and inbreeding from genomic selection in a simulated commercial breeding program for perennial ryegrass. publication-title: Plant Genome doi: 10.3835/plantgenome2015.06.0046 – volume: 325 start-page: 998 year: 2009 ident: B47 article-title: Loss of function of a proline-containing protein confers durable disease resistance in rice. publication-title: Science doi: 10.1126/science.1175550 – volume: 42 start-page: 961 year: 2010 ident: B65 article-title: Genome-wide association studies of 14 agronomic traits in rice landraces. publication-title: Nat. Genet. doi: 10.1038/ng.695 – volume: 32 start-page: 179 year: 2015 ident: B137 article-title: The crop QTLome comes of age. publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2015.01.001 – volume: 16 year: 2015 ident: B173 article-title: Deep RNA sequencing reveals a high frequency of alternative splicing events in the fungus Trichoderma longibrachiatum. publication-title: BMC Genomics doi: 10.1186/s12864-015-1251-8 – volume: 3 start-page: 1 year: 2015 ident: B24 article-title: Transcriptome sequencing and marker development for four underutilized legumes. publication-title: Appl. Plant Sci. doi: 10.3732/apps.1400111 – volume: 57 start-page: 243 year: 2017 ident: B85 article-title: Optimizing resource allocation in a genomic breeding program for perennial ryegrass to balance genetic gain, cost, and inbreeding. publication-title: Crop Sci. doi: 10.2135/cropsci2016.07.0577 – volume: 49 start-page: 1 year: 2009 ident: B55 article-title: Genomic selection for crop improvement. publication-title: Crop Sci. doi: 10.2135/cropsci2008.08.0512 – volume: 491 start-page: 711 year: 2012 ident: B31 article-title: A physical, genetic and functional sequence assembly of the barley genome. publication-title: Nature doi: 10.1038/nature11543 – volume: 422 start-page: 297 year: 2003 ident: B140 article-title: Genetics of gene expression surveyed in maize, mouse and man. publication-title: Nature doi: 10.1038/nature01434 – volume: 19 start-page: 723 year: 2009 ident: B45 article-title: Genetic architecture of quantitative traits in mice, flies, and humans. publication-title: Genome Res. doi: 10.1101/gr.086660.108 – volume: 56 start-page: 1314 year: 2016 ident: B70 article-title: Quantitative trait loci associated with physiological traits for heat tolerance in creeping bentgrass. publication-title: Crop Sci. doi: 10.2135/cropsci2015.07.0428 – volume: 208 start-page: 34 year: 2013 ident: B17 article-title: Identification of genomic loci associated with crown rust resistance in perennial ryegrass (Lolium perenne L.) divergently selected populations. publication-title: Plant Sci. doi: 10.1016/j.plantsci.2013.02.017 – volume: 82 start-page: 744 year: 2015 ident: B163 article-title: Sequence-tagged high-density genetic maps of Zoysia japonica provide insights into Chloridoideae genome evolution. publication-title: Plant J. doi: 10.1111/tpj.12842 – volume: 38 start-page: 971 year: 2013 ident: B79 article-title: Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants. publication-title: J. Biosci. doi: 10.1007/s12038-013-9388-6 – volume: 122 start-page: 609 year: 2011 ident: B118 article-title: Identification of QTLs for morphological traits influencing waterlogging tolerance in perennial ryegrass (Lolium perenne L.). publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-010-1473-8 – volume: 11 year: 2016 ident: B48 article-title: De novo transcriptome analysis for Kentucky Bluegrass dwarf mutants induced by space mutation. publication-title: PLoS ONE doi: 10.1371/journal.pone.0151768 – volume: 14 start-page: 157 year: 2013 ident: B108 article-title: Sequence assembly demystified. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3367 – volume: 121 start-page: 303 year: 2011 ident: B21 article-title: Influence of the soil physical environment on rice (Oryza sativa L.) response to drought stress and its implications for drought research. publication-title: Field Crops Res. doi: 10.1016/j.fcr.2011.01.012 – volume: 17 year: 2016 ident: B105 article-title: The real cost of sequencing: scaling computation to keep pace with data generation. publication-title: Genome Biol. doi: 10.1186/s13059-016-0917-0 – start-page: 93 year: 2015 ident: B135 article-title: “Genetic diversity in candidate genes for developmental traits and cell wall characteristics in perennial ryegrass (Lolium perenne),” publication-title: Molecular Breeding of Forage and Turf doi: 10.1007/978-3-319-08714-6_9 – volume: 19 start-page: 52 year: 2014 ident: B8 article-title: Field high-throughput phenotyping: the new crop breeding frontier. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2013.09.008 – volume: 3 year: 2008 ident: B13 article-title: Rapid SNP discovery and genetic mapping using sequenced RAD markers. publication-title: PLoS ONE doi: 10.1371/journal.pone.0003376 – volume: 48 start-page: 836 year: 2008 ident: B165 article-title: Analysis of Pina and Pinb alleles in the micro-core collections of Chinese wheat germplasm by Ecotilling and identification of a novel Pinb allele. publication-title: J. Cereal Sci. doi: 10.1016/j.jcs.2008.06.005 – volume: 296 start-page: 92 year: 2002 ident: B49 article-title: A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). publication-title: Science doi: 10.1126/science.1068275 – year: 2011 ident: B19 article-title: De novo genome sequencing of perennial ryegrass (Lolium perenne) publication-title: Proceedings of the International Plant & Animal Genome XX Conference – volume: 16 year: 2015 ident: B44 article-title: Genomic dissection and prediction of heading date in perennial ryegrass. publication-title: BMC Genomics doi: 10.1186/s12864-015-2163-3 – start-page: 161 year: 2015 ident: B97 article-title: Challenges of genotyping polyploid species publication-title: Plant Genotyping: Methods and Protocols doi: 10.1007/978-1-4939-1966-6_12 – volume: 35 year: 2015 ident: B80 article-title: A restriction-site-associated DNA (RAD) linkage map, comparative genomics and identification of QTL for histological fibre content coincident with those for retted bast fibre yield and its major components in jute (Corchorus olitorius L., Malvaceae sl). publication-title: Mol. Breed. doi: 10.1007/s11032-015-0249-x – volume: 157 start-page: 1819 year: 2001 ident: B101 article-title: Prediction of total genetic value using genome-wide dense marker maps. publication-title: Genetics doi: 10.1093/genetics/157.4.1819 – start-page: 143 year: 2015 ident: B131 article-title: Single nucleotide polymorphism (SNP) markers for allele quantification in publication-title: LoliumMolecular Breeding of Forage and Turf doi: 10.1007/978-3-319-08714-6_13 – year: 2015 ident: B157 article-title: “A reference genome and hapmap for pearl millet (Pennisetum glaucum),” in publication-title: Proceedings of the International Plant & Animal Genome XXIII Conference – volume: 20 start-page: 1238 year: 2010 ident: B91 article-title: Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. publication-title: Genome Res. doi: 10.1101/gr.106120.110 – volume: 9 year: 2014 ident: B154 article-title: RNA-Seq Analysis of Quercus pubescens leaves: de novo transcriptome assembly, annotation and functional markers development. publication-title: PLoS ONE doi: 10.1371/journal.pone.0112487 – volume: 64 start-page: k1305 year: 2013 ident: B75 article-title: Leaf Rubisco turnover in a perennial ryegrass (Lolium perenne L.) mapping population: genetic variation, identification of associated QTL, and correlation with plant morphology and yield. publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers384 – volume: 64 start-page: 3937 year: 2013 ident: B32 article-title: Thermography to explore plant–environment interactions. publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert029 – volume: 129 start-page: 991 year: 2016 ident: B120 article-title: Targeted genotyping-by-sequencing permits cost-effective identification and discrimination of pasture grass species and cultivars. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-016-2678-2 – volume: 14 year: 2013 ident: B139 article-title: A reference consensus genetic map for molecular markers and economically important traits in faba bean (Vicia faba L.). publication-title: BMC Genomics doi: 10.1186/1471-2164-14-932 – start-page: 9 year: 2015 ident: B1 article-title: “Evaluation of perennial ryegrass association mapping population for freezing tolerance traits,” in publication-title: Molecular Breeding of Forage and Turf doi: 10.1007/978-3-319-08714-6_2 – volume: 6 year: 2016 ident: B185 article-title: Construction of high-density genetic linkage map and identification of flowering-time QTLs in orchardgrass using SSRs and SLAF-seq. publication-title: Sci. Rep. doi: 10.1038/srep29345 – volume: 15 year: 2014 ident: B150 article-title: Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). publication-title: BMC Genetics doi: 10.1186/s12863-014-0097-4 – year: 2001 ident: B148 publication-title: Angiosperm Phylogeny Website. Version 12 July 2012. – volume: 123 start-page: 369 year: 2011 ident: B5 article-title: QTL analyses and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue (Festuca pratensis Huds.). publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-011-1590-z – volume: 46 start-page: 707 year: 2014 ident: B142 article-title: A reference genome for common bean and genome-wide analysis of dual domestications. publication-title: Nat. Genet. doi: 10.1038/ng.3008 – volume: 13 start-page: 938 year: 2013 ident: B167 article-title: Identification of SNP markers for inferring phylogeny in temperate bamboos (Poaceae: Bambusoideae) using RAD sequencing. publication-title: Mol. Ecol. Resour. doi: 10.1111/1755-0998.12136 – volume: 152 start-page: 480 year: 2010 ident: B76 article-title: Systems biology uncovers the foundation of natural genetic diversity. publication-title: Plant Physiol. doi: 10.1104/pp.109.149328 – volume: 43 start-page: D1023 year: 2015 ident: B2 article-title: SNP-Seek database of SNPs derived from 3000 rice genomes. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1039 – volume: 44 start-page: 213 year: 2006 ident: B16 article-title: Breeding for disease resistance in the major cool-season turfgrasses. publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev.phyto.44.070505.143338 – volume: 10 year: 2015 ident: B90 article-title: Association analysis of simple sequence repeat (SSR) markers with agronomic traits in tall fescue (Festuca arundinacea Schreb.). publication-title: PLoS ONE doi: 10.1371/journal.pone.0133054 – volume: 118 start-page: 71 year: 2016 ident: B160 article-title: An ultra-high density genetic linkage map of perennial ryegrass (Lolium perenne) using genotyping by sequencing (GBS) based on a reference shotgun genome assembly. publication-title: Ann. Bot. doi: 10.1093/aob/mcw081 – volume: 8 start-page: 339 year: 2012 ident: B66 article-title: High synteny and colinearity among Eucalyptus genomes revealed by high-density comparative genetic mapping. publication-title: Tree Genet. Genomes doi: 10.1007/s11295-011-0444-9 – volume: 97 start-page: 767 year: 2007 ident: B144 article-title: Mapping and comparative analysis of QTL for crown rust resistance in an Italian × perennial ryegrass population. publication-title: Phytopathology doi: 10.1094/PHYTO-97-6-0767 – volume: 12 year: 2014 ident: B158 article-title: Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001883 – volume: 9 start-page: 166 year: 2010 ident: B68 article-title: Genomic selection in plant breeding: from theory to practice. publication-title: Brief. Funct. Genomics doi: 10.1093/bfgp/elq001 – volume: 24 start-page: 3 year: 2006 ident: B72 article-title: Alternative ecotilling protocol for rapid, cost-effective single-nucleotide polymorphism discovery and genotyping in rice (Oryza sativa L.). publication-title: Plant Mol. Biol. Rep. doi: 10.1007/BF02914042 – volume: 327 start-page: 818 year: 2010 ident: B151 article-title: Breeding technologies to increase crop production in a changing world. publication-title: Science doi: 10.1126/science.1183700 – volume: 84 start-page: 816 year: 2015 ident: B20 article-title: A synteny-based draft genome sequence of the forage grass Lolium perenne. publication-title: Plant J. doi: 10.1111/tpj.13037 – year: 2016 ident: B3 article-title: “Cataloging natural allelic variations in switchgrass (Panicum virgatum L.) NAM parental genomes,” in publication-title: Proceedings of the International Plant & Animal Genome XXV conference – volume: 6 start-page: 119 year: 2005 ident: B113 article-title: The genetic theory of adaptation: a brief history. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1523 – volume: 32 start-page: 190 year: 2014 ident: B78 article-title: Emerging technologies advancing forage and turf grass genomics. publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.11.010 – volume: 54 start-page: 143 year: 2014 ident: B145 article-title: Genomic selection in forage breeding: accuracy and methods. publication-title: Crop Sci. doi: 10.2135/cropsci2013.05.0353 – volume: 178 start-page: 539 year: 2008 ident: B179 article-title: Genetic design and statistical power of nested association mapping in maize. publication-title: Genetics doi: 10.1534/genetics.107.074245 – volume: 27 start-page: 377 year: 2008 ident: B9 article-title: Breeding for yield potential and stress adaptation in cereals. publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352680802467736 – volume: 10 start-page: 57 year: 2009 ident: B168 article-title: RNA-Seq: a revolutionary tool for transcriptomics. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2484 – volume: 81 start-page: 145 year: 2012 ident: B133 article-title: Genome regulation by long noncoding RNAs. publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-051410-092902 – year: 2016 ident: B82 article-title: Third-generation sequencing and the future of genomics. publication-title: bioRxiv. doi: 10.1101/048603 – volume: 107 start-page: 10578 year: 2010 ident: B174 article-title: Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1005931107 – volume: 169 start-page: 45 year: 2006 ident: B156 article-title: Dissecting the regulation of fructan metabolism in perennial ryegrass (Lolium perenne) with quantitative trait locus mapping. publication-title: New Phytol. doi: 10.1111/j.1469-8137.2005.01575.x – volume: 59 start-page: 7 year: 2005 ident: B177 article-title: How can we use genomics to improve cereals with rice as a reference genome? publication-title: Plant Mol. Biol. doi: 10.1007/s11103-004-4681-2 – start-page: 29 year: 2015 ident: B134 article-title: “Bioinformatics: identification of markers from next-generation sequence data,” in publication-title: Plant Genotyping doi: 10.1007/978-1-4939-1966-6_3 – ident: B40 article-title: “The intermediate wheatgrass genome: a resource for understanding mechanisms of perenniality and accelerating the development of perennial crops,” in publication-title: Proceedings of the International Plant & Animal Genome XXV Conference – volume: 9 start-page: 1 year: 2016 ident: B43 article-title: Accuracy of genomic prediction in a commercial perennial ryegrass breeding program. publication-title: Plant Genome doi: 10.3835/plantgenome2015.11.0110 – volume: 65 start-page: 5771 year: 2014 ident: B171 article-title: High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru311 – reference: 25900564 - Plant Sci. 2015 Jun;235:37-45 – reference: 15141034 - Nucleic Acids Res. 2004 May 11;32(8):2632-41 – reference: 25614069 - Curr Opin Biotechnol. 2015 Apr;32:179-85 – reference: 25904970 - Plant Methods. 2015 Apr 17;11:29 – reference: 20627892 - Genome Res. 2010 Sep;20(9):1238-49 – reference: 18852878 - PLoS One. 2008;3(10):e3376 – reference: 16118663 - Heredity (Edinb). 2005 Nov;95(5):348-57 – reference: 24710822 - Theor Appl Genet. 2014 Jun;127(6):1263-91 – reference: 24296899 - J Biosci. 2013 Dec;38(5):971-87 – reference: 20195501 - PLoS Genet. 2010 Feb 26;6(2):e1000862 – reference: 24309540 - Biotechnol Adv. 2014 Jan-Feb;32(1):190-9 – reference: 15558229 - Theor Appl Genet. 2005 Jan;110(2):323-36 – reference: 24002439 - Plant Mol Biol. 2014 Jan;84(1-2):159-71 – reference: 23331642 - Plant Biotechnol J. 2013 Jun;11(5):572-81 – reference: 23812960 - Funct Integr Genomics. 2013 Aug;13(3):339-50 – reference: 21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52 – reference: 11290733 - Genetics. 2001 Apr;157(4):1819-29 – reference: 24646323 - Plant Biotechnol J. 2014 Aug;12(6):787-96 – reference: 26054240 - Rice (N Y). 2015 Dec;8(1):39 – reference: 25147022 - Plant Biotechnol J. 2015 Jan;13(1):97-104 – reference: 24377374 - BMC Genomics. 2013 Dec 30;14:932 – reference: 24139902 - Trends Plant Sci. 2014 Jan;19(1):52-61 – reference: 21085204 - Nat Rev Genet. 2010 Dec;11(12):855-66 – reference: 20972439 - Nat Genet. 2010 Nov;42(11):961-7 – reference: 17061916 - Annu Rev Phytopathol. 2006;44:213-34 – reference: 17291822 - Curr Opin Plant Biol. 2007 Apr;10(2):156-61 – reference: 28250720 - Hereditas. 2017 Feb 23;154:5 – reference: 21071599 - Plant Physiol. 2011 Jan;155(1):36-42 – reference: 26908251 - Theor Appl Genet. 2016 Jun;129(6):1139-51 – reference: 24728647 - Plant Cell. 2014 Apr 11;26(4):1382-1397 – reference: 16390418 - New Phytol. 2006;169(1):45-57 – reference: 12646919 - Nature. 2003 Mar 20;422(6929):297-302 – reference: 20156985 - Brief Funct Genomics. 2010 Mar;9(2):166-77 – reference: 25675376 - PLoS One. 2015 Feb 12;10(2):e0118144 – reference: 25886302 - BMC Genomics. 2015 Mar 28;16:249 – reference: 12102518 - Ann Bot. 2002 Jun;89 Spec No:925-40 – reference: 12618384 - Genome Res. 2003 Mar;13(3):524-30 – reference: 19696351 - Science. 2009 Aug 21;325(5943):998-1001 – reference: 23184232 - Plant Physiol. 2013 Feb;161(2):571-82 – reference: 21272354 - BMC Genomics. 2011 Jan 27;12:77 – reference: 24914810 - PLoS Biol. 2014 Jun 10;12(6):e1001883 – reference: 23267105 - Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):453-8 – reference: 27738715 - Theor Appl Genet. 2017 Jan;130(1):137-150 – reference: 23386684 - J Exp Bot. 2013 Apr;64(6):1537-51 – reference: 27009100 - Genome Biol. 2016 Mar 23;17 :53 – reference: 15619078 - Theor Appl Genet. 2005 Feb;110(3):527-36 – reference: 25429973 - Nucleic Acids Res. 2015 Jan;43(Database issue):D1023-7 – reference: 24912738 - BMC Genomics. 2014 Jun 09;15:453 – reference: 25846381 - Plant J. 2015 Jun;82(5):744-57 – reference: 28183269 - BMC Genomics. 2017 Feb 10;18(1):145 – reference: 25393112 - PLoS One. 2014 Nov 13;9(11):e112487 – reference: 23599272 - J Exp Bot. 2013 Oct;64(13):3937-49 – reference: 19411597 - Genome Res. 2009 May;19(5):723-33 – reference: 24395692 - Brief Funct Genomics. 2014 Jul;13(4):257-67 – reference: 26883039 - Theor Appl Genet. 2016 May;129(5):991-1005 – reference: 23535592 - Nature. 2013 Apr 4;496(7443):91-5 – reference: 25384418 - BMC Genet. 2014 Nov 11;15:97 – reference: 11935018 - Science. 2002 Apr 5;296(5565):92-100 – reference: 27477008 - New Phytol. 2017 Jan;213(1):324-337 – reference: 19430758 - Theor Appl Genet. 2009 Aug;119(3):383-95 – reference: 22389690 - PLoS One. 2012;7(2):e32253 – reference: 23075845 - Nature. 2012 Nov 29;491(7426):711-6 – reference: 27898764 - Plant Genome. 2016 Mar;9(1):null – reference: 26408275 - Plant J. 2015 Nov;84(4):816-26 – reference: 23848836 - Mol Ecol Resour. 2013 Sep;13(5):938-45 – reference: 25853487 - Genome Biol. 2015 Feb 10;16:29 – reference: 24308815 - New Phytol. 2014 Mar;201(4):1227-39 – reference: 22703335 - Plant Biotechnol J. 2012 Aug;10(6):733-42 – reference: 23535596 - Nature. 2013 Apr 4;496(7443):87-90 – reference: 21505831 - Theor Appl Genet. 2011 Aug;123(3):369-82 – reference: 19861545 - Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19096-101 – reference: 18202393 - Genetics. 2008 Jan;178(1):539-51 – reference: 11935017 - Science. 2002 Apr 5;296(5565):79-92 – reference: 23471459 - Theor Appl Genet. 2013 Apr;126(4):867-87 – reference: 23572121 - Heredity (Edinb). 2014 Jan;112(1):48-60 – reference: 27010560 - PLoS One. 2016 Mar 24;11(3):e0151768 – reference: 19692534 - Plant Physiol. 2009 Oct;151(2):496-505 – reference: 23683927 - Plant Sci. 2013 Jul;208:34-41 – reference: 15716908 - Nat Rev Genet. 2005 Feb;6(2):119-27 – reference: 25373747 - Methods Mol Biol. 2015;1245:29-47 – reference: 27010567 - PLoS One. 2016 Mar 24;11(3):e0152004 – reference: 14634728 - Theor Appl Genet. 2004 Mar;108(5):822-8 – reference: 26904088 - Front Plant Sci. 2016 Feb 12;7:133 – reference: 23889683 - Plant J. 2013 Nov;76(3):494-505 – reference: 20498060 - Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10578-83 – reference: 18943608 - Phytopathology. 2007 Jun;97(6):767-76 – reference: 19661427 - Science. 2009 Aug 7;325(5941):737-40 – reference: 25035500 - Science. 2014 Jul 18;345(6194):1251788 – reference: 23279710 - Plant Biotechnol J. 2013 Apr;11(3):279-95 – reference: 19519932 - Genome Biol. 2009;10(5):107 – reference: 20150489 - Science. 2010 Feb 12;327(5967):818-22 – reference: 23358380 - Nat Rev Genet. 2013 Mar;14(3):157-67 – reference: 25652134 - BMC Genomics. 2015 Feb 06;16:54 – reference: 19884313 - Genetics. 2010 Jan;184(1):19-26 – reference: 26186338 - PLoS One. 2015 Jul 17;10(7):e0133054 – reference: 25060816 - Plant Biotechnol J. 2015 Jan;13(1):14-25 – reference: 26971113 - Theor Appl Genet. 2016 Jun;129(6):1217-29 – reference: 24274033 - Annu Rev Plant Biol. 2014;65:531-51 – reference: 12878017 - Trends Plant Sci. 2003 Jul;8(7):330-4 – reference: 22663078 - Annu Rev Biochem. 2012;81:145-66 – reference: 20981402 - Theor Appl Genet. 2011 Feb;122(3):609-22 – reference: 25886726 - BMC Genet. 2015 Feb 15;16:18 – reference: 25795171 - Curr Opin Plant Biol. 2015 Apr;24:119-24 – reference: 19015660 - Nat Rev Genet. 2009 Jan;10(1):57-63 – reference: 27902790 - Plant Genome. 2016 Nov;9(3):null – reference: 20208064 - Plant Cell Physiol. 2010 Apr;51(4):497-523 – reference: 19455180 - Heredity (Edinb). 2009 Aug;103(2):110-7 – reference: 19684571 - Nature. 2009 Sep 10;461(7261):272-6 – reference: 20148030 - Nature. 2010 Feb 11;463(7282):763-8 – reference: 27193593 - Plant Cell Rep. 2016 Jul;35(7):1475-86 – reference: 15361148 - Plant J. 2004 Oct;40(1):143-50 – reference: 21344184 - Theor Appl Genet. 2011 May;122(8):1467-80 – reference: 27171472 - PLoS One. 2016 May 12;11(5):e0154609 – reference: 25699221 - Appl Plant Sci. 2015 Feb 10;3(2):null – reference: 23469194 - PLoS One. 2013;8(3):e57438 – reference: 23505311 - J Exp Bot. 2013 Mar;64(5):1305-16 – reference: 14871304 - Plant J. 2004 Mar;37(5):778-86 – reference: 25830701 - PLoS One. 2015 Apr 01;10(4):e0120273 – reference: 27268483 - Ann Bot. 2016 Jul;118(1):71-87 – reference: 24652936 - Science. 2014 Mar 28;343(6178):1505-8 – reference: 16217598 - Plant Mol Biol. 2005 Sep;59(1):7-26 – reference: 21205322 - BMC Genomics. 2011 Jan 04;12:4 – reference: 24908249 - Nat Genet. 2014 Jul;46(7):707-13 – reference: 16843036 - Trends Plant Sci. 2006 Aug;11(8):405-12 – reference: 27422157 - BMC Plant Biol. 2016 Jul 16;16(1):160 – reference: 19933384 - Plant Physiol. 2010 Feb;152(2):480-6 – reference: 21573248 - PLoS One. 2011 May 04;6(5):e19379 – reference: 16235049 - Theor Appl Genet. 2006 Jan;112(2):232-42 – reference: 25129128 - J Exp Bot. 2014 Nov;65(20):5771-81 – reference: 23319892 - PLoS Biol. 2013;11(1):e1001466 – reference: 22580951 - Nat Biotechnol. 2012 May 13;30(6):555-61 – reference: 26054243 - Rice (N Y). 2015 Dec;8(1):51 – reference: 19961604 - BMC Genomics. 2009 Dec 04;10:582 – reference: 26559662 - BMC Genomics. 2015 Nov 11;16:921 – reference: 27389619 - Sci Rep. 2016 Jul 08;6:29345 – reference: 28445484 - PLoS One. 2017 Apr 26;12 (4):e0175848 – reference: 20192739 - Annu Rev Plant Biol. 2010;61:421-42 – reference: 25694514 - Nucleic Acids Res. 2015 Mar 11;43(5):2902-13 – reference: 23115520 - Curr Genomics. 2012 May;13(3):179-95 |
SSID | ssj0000500997 |
Score | 2.2066867 |
SecondaryResourceType | review_article |
Snippet | Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1317 |
SubjectTerms | genomic selection marker-assisted selection next-generation sequencing perennial grass Plant Science QTL mapping |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQ6qEXRD-ApR9yJQ5cDBvHztjHZlVAlYqQAImbZce2QFolq2U59N93JllWuxWol14dR7aex5k3secNY0faK6TtUomIbESolJIwOXqRTVK6MCGZTLnDvy6ri1v1807frZX6ojthgzzwANwpyMaoZLNpApBauq1iAJMAMoRsZaavL_q8tWBqUPUm6gODlg9GYfY0z6akzl3ACSnMwIYb6tX6X6KYf9-UXHM9Z7tsZ8kZ-fdhru_YVmrfszd1h7zu9wdW3_Q3X_l56jOMH0WNjinyej74Jf7Q8knJJ103FdfJI73mV5Ti16Lh8fO5p0Pfj-z27MfN5EIsKyOIRmm7EFnJxgbty6KxqgATVKk8UhFrdawylCrqxvgi56ix0fhSSQwrPB1SjgEglXtsu-3adMB4SFJGX1HGToP72QdZQYxARMqOZYgjdvIMlGuWsuFUvWLqMHwgZB0h6whZ1yM7YserF2aDYsbrXWtCftWNpK77BjQAtzQA9y8DGLFvz-vmcGvQeYdvU_f06JC8kh5fATjQ_rCOq6EwULToCKoRg40V3pjL5pP24b6X39ZUlH1sDv_H5D-xtwQH_SyW1We2vZg_pS_Ichbha2_QfwAz8fmM priority: 102 providerName: Directory of Open Access Journals |
Title | Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28798766 https://www.proquest.com/docview/1928506177 https://pubmed.ncbi.nlm.nih.gov/PMC5526908 https://doaj.org/article/72c84e9f8cb7436896db78e77f7bf92f |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcOCCeHd5VEbiwMXLxrFj-1BVZEW3QipCoivtzbJjGyqtkja7ldp_35kkXVi03Ljk4Nhy8o2t-caPbwj5IJ0A2s4FC8BGmIgxMp2CY0lHITPto054d_j0W3EyF18XcvE7HdAA4GpnaIf5pObtcnx9eXMEE_4QI07wt5_SxRKFtzM1RvEYdZ88ALekMJ3B6cD1e6FvZEOql_fZ1W7LM3UC_rtY59-HJ__wRsdPyOOBRtLPvd2fknuxfkYelg1QvZvnpDzrDsPSWewuHa9YCb4q0LLtXRU9r-k0p9OmWbIf0QHjpt_x1l8NY5HOWof7wC_I_PjL2fSEDckSWCWkWbMkeGW8dHlWGfh77UUuHKBgjAxFUrkIstIuSylIKNQuFxwiDYf7lhOlVMxfkr26qeM-oT5yHlyBl3gqmOLO80KFoJBbmQn3YUTGd0DZalASx4QWSwsRBSJrEVmLyNoO2RH5uGlw0Yto_LtqichvqqH6dVfQtD_tMJms4pUW0SRdeYUK-qYIXumoVFI-GZ5G5P2d3SzMFtwCcXVsrlYW-CxK9GUKOnrV23HTFcSOBnxDMSJqy8Jb37L9pj7_1SlyS8zTPtGv_8fHvyGPEA5cP-bFW7K3bq_iOyA-a3_QLRjAc7bIDrrBfQs-XwMG |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Genomics-Based+Breeding+in+C3+Cool-Season+Perennial+Grasses&rft.jtitle=Frontiers+in+plant+science&rft.au=Shyamal+K.+Talukder&rft.au=Malay+C.+Saha&rft.date=2017-07-26&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=8&rft_id=info:doi/10.3389%2Ffpls.2017.01317&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_72c84e9f8cb7436896db78e77f7bf92f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |