Comparison of dystrophin expression following gene editing and gene replacement in an aged preclinical DMD animal model

Gene editing has shown promise for correcting or bypassing dystrophin mutations in Duchenne muscular dystrophy (DMD). However, preclinical studies have focused on young animals with limited muscle fibrosis and wasting, thereby favoring muscle transduction, myonuclear editing, and prevention of disea...

Full description

Saved in:
Bibliographic Details
Published inMolecular therapy Vol. 30; no. 6; pp. 2176 - 2185
Main Authors Bengtsson, Niclas E., Crudele, Julie M., Klaiman, Jordan M., Halbert, Christine L., Hauschka, Stephen D., Chamberlain, Jeffrey S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2022
American Society of Gene & Cell Therapy
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gene editing has shown promise for correcting or bypassing dystrophin mutations in Duchenne muscular dystrophy (DMD). However, preclinical studies have focused on young animals with limited muscle fibrosis and wasting, thereby favoring muscle transduction, myonuclear editing, and prevention of disease progression. Here, we explore muscle-specific dystrophin gene editing following intramuscular delivery of AAV6:CK8e-CRISPR/SaCas9 in 3- and 8-year-old dystrophic CXMD dogs and provide a qualitative comparison to AAV6:CK8e-micro-dystrophin gene replacement at 6 weeks post-treatment. Gene editing restored the dystrophin reading frame in ∼1.3% of genomes and in up to 4.0% of dystrophin transcripts following excision of a 105-kb mutation containing region spanning exons 6–8. However, resulting dystrophin expression levels and effects on muscle pathology were greater with the use of micro-dystrophin gene transfer. This study demonstrates that our muscle-specific multi-exon deletion strategy can correct a frequently mutated region of the dystrophin gene in an aged large animal DMD model, but underscores that further enhancements are required to reach efficiencies comparable to AAV micro-dystrophin. Our observations also indicate that treatment efficacy and state of muscle pathology at the time of intervention are linked, suggesting the need for additional methodological optimizations related to age and disease progression to achieve relevant clinical translation of CRISPR-based therapies to all DMD patients. [Display omitted] Comparisons of CRISPR/Cas9 gene editing and micro-dystrophin gene replacement in old dystrophic dogs highlight the promise and limitations of AAV-mediated gene therapy in older subjects with advanced muscle pathology.
AbstractList Gene editing has shown promise for correcting or bypassing dystrophin mutations in Duchenne muscular dystrophy (DMD). However, preclinical studies have focused on young animals with limited muscle fibrosis and wasting, thereby favoring muscle transduction, myonuclear editing, and prevention of disease progression. Here, we explore muscle-specific dystrophin gene editing following intramuscular delivery of AAV6:CK8e-CRISPR/SaCas9 in 3- and 8-year-old dystrophic CXMD dogs and provide a qualitative comparison to AAV6:CK8e-micro-dystrophin gene replacement at 6 weeks post-treatment. Gene editing restored the dystrophin reading frame in ∼1.3% of genomes and in up to 4.0% of dystrophin transcripts following excision of a 105-kb mutation containing region spanning exons 6-8. However, resulting dystrophin expression levels and effects on muscle pathology were greater with the use of micro-dystrophin gene transfer. This study demonstrates that our muscle-specific multi-exon deletion strategy can correct a frequently mutated region of the dystrophin gene in an aged large animal DMD model, but underscores that further enhancements are required to reach efficiencies comparable to AAV micro-dystrophin. Our observations also indicate that treatment efficacy and state of muscle pathology at the time of intervention are linked, suggesting the need for additional methodological optimizations related to age and disease progression to achieve relevant clinical translation of CRISPR-based therapies to all DMD patients.Gene editing has shown promise for correcting or bypassing dystrophin mutations in Duchenne muscular dystrophy (DMD). However, preclinical studies have focused on young animals with limited muscle fibrosis and wasting, thereby favoring muscle transduction, myonuclear editing, and prevention of disease progression. Here, we explore muscle-specific dystrophin gene editing following intramuscular delivery of AAV6:CK8e-CRISPR/SaCas9 in 3- and 8-year-old dystrophic CXMD dogs and provide a qualitative comparison to AAV6:CK8e-micro-dystrophin gene replacement at 6 weeks post-treatment. Gene editing restored the dystrophin reading frame in ∼1.3% of genomes and in up to 4.0% of dystrophin transcripts following excision of a 105-kb mutation containing region spanning exons 6-8. However, resulting dystrophin expression levels and effects on muscle pathology were greater with the use of micro-dystrophin gene transfer. This study demonstrates that our muscle-specific multi-exon deletion strategy can correct a frequently mutated region of the dystrophin gene in an aged large animal DMD model, but underscores that further enhancements are required to reach efficiencies comparable to AAV micro-dystrophin. Our observations also indicate that treatment efficacy and state of muscle pathology at the time of intervention are linked, suggesting the need for additional methodological optimizations related to age and disease progression to achieve relevant clinical translation of CRISPR-based therapies to all DMD patients.
Gene editing has shown promise for correcting or bypassing dystrophin mutations in Duchenne muscular dystrophy (DMD). However, preclinical studies have focused on young animals with limited muscle fibrosis and wasting, thereby favoring muscle transduction, myonuclear editing, and prevention of disease progression. Here, we explore muscle-specific dystrophin gene editing following intramuscular delivery of AAV6:CK8e-CRISPR/SaCas9 in 3- and 8-year-old dystrophic CXMD dogs and provide a qualitative comparison to AAV6:CK8e-micro-dystrophin gene replacement at 6 weeks post-treatment. Gene editing restored the dystrophin reading frame in ∼1.3% of genomes and in up to 4.0% of dystrophin transcripts following excision of a 105-kb mutation containing region spanning exons 6-8. However, resulting dystrophin expression levels and effects on muscle pathology were greater with the use of micro-dystrophin gene transfer. This study demonstrates that our muscle-specific multi-exon deletion strategy can correct a frequently mutated region of the dystrophin gene in an aged large animal DMD model, but underscores that further enhancements are required to reach efficiencies comparable to AAV micro-dystrophin. Our observations also indicate that treatment efficacy and state of muscle pathology at the time of intervention are linked, suggesting the need for additional methodological optimizations related to age and disease progression to achieve relevant clinical translation of CRISPR-based therapies to all DMD patients.
Gene editing has shown promise for correcting or bypassing dystrophin mutations in Duchenne muscular dystrophy (DMD). However, preclinical studies have focused on young animals with limited muscle fibrosis and wasting, thereby favoring muscle transduction, myonuclear editing, and prevention of disease progression. Here, we explore muscle-specific dystrophin gene editing following intramuscular delivery of AAV6:CK8e-CRISPR/SaCas9 in 3- and 8-year-old dystrophic CXMD dogs and provide a qualitative comparison to AAV6:CK8e-micro-dystrophin gene replacement at 6 weeks post-treatment. Gene editing restored the dystrophin reading frame in ∼1.3% of genomes and in up to 4.0% of dystrophin transcripts following excision of a 105-kb mutation containing region spanning exons 6–8. However, resulting dystrophin expression levels and effects on muscle pathology were greater with the use of micro-dystrophin gene transfer. This study demonstrates that our muscle-specific multi-exon deletion strategy can correct a frequently mutated region of the dystrophin gene in an aged large animal DMD model, but underscores that further enhancements are required to reach efficiencies comparable to AAV micro-dystrophin. Our observations also indicate that treatment efficacy and state of muscle pathology at the time of intervention are linked, suggesting the need for additional methodological optimizations related to age and disease progression to achieve relevant clinical translation of CRISPR-based therapies to all DMD patients. Comparisons of CRISPR/Cas9 gene editing and micro-dystrophin gene replacement in old dystrophic dogs highlight the promise and limitations of AAV-mediated gene therapy in older subjects with advanced muscle pathology.
Gene editing has shown promise for correcting or bypassing dystrophin mutations in Duchenne muscular dystrophy (DMD). However, preclinical studies have focused on young animals with limited muscle fibrosis and wasting, thereby favoring muscle transduction, myonuclear editing, and prevention of disease progression. Here, we explore muscle-specific dystrophin gene editing following intramuscular delivery of AAV6:CK8e-CRISPR/SaCas9 in 3- and 8-year-old dystrophic CXMD dogs and provide a qualitative comparison to AAV6:CK8e-micro-dystrophin gene replacement at 6 weeks post-treatment. Gene editing restored the dystrophin reading frame in ∼1.3% of genomes and in up to 4.0% of dystrophin transcripts following excision of a 105-kb mutation containing region spanning exons 6–8. However, resulting dystrophin expression levels and effects on muscle pathology were greater with the use of micro-dystrophin gene transfer. This study demonstrates that our muscle-specific multi-exon deletion strategy can correct a frequently mutated region of the dystrophin gene in an aged large animal DMD model, but underscores that further enhancements are required to reach efficiencies comparable to AAV micro-dystrophin. Our observations also indicate that treatment efficacy and state of muscle pathology at the time of intervention are linked, suggesting the need for additional methodological optimizations related to age and disease progression to achieve relevant clinical translation of CRISPR-based therapies to all DMD patients. [Display omitted] Comparisons of CRISPR/Cas9 gene editing and micro-dystrophin gene replacement in old dystrophic dogs highlight the promise and limitations of AAV-mediated gene therapy in older subjects with advanced muscle pathology.
Author Crudele, Julie M.
Chamberlain, Jeffrey S.
Bengtsson, Niclas E.
Hauschka, Stephen D.
Halbert, Christine L.
Klaiman, Jordan M.
Author_xml – sequence: 1
  givenname: Niclas E.
  orcidid: 0000-0002-5309-2135
  surname: Bengtsson
  fullname: Bengtsson, Niclas E.
  email: niclasb@uw.edu
  organization: Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109-8055, USA
– sequence: 2
  givenname: Julie M.
  surname: Crudele
  fullname: Crudele, Julie M.
  organization: Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109-8055, USA
– sequence: 3
  givenname: Jordan M.
  surname: Klaiman
  fullname: Klaiman, Jordan M.
  organization: Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109-8055, USA
– sequence: 4
  givenname: Christine L.
  surname: Halbert
  fullname: Halbert, Christine L.
  organization: Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109-8055, USA
– sequence: 5
  givenname: Stephen D.
  surname: Hauschka
  fullname: Hauschka, Stephen D.
  organization: Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109-8055, USA
– sequence: 6
  givenname: Jeffrey S.
  surname: Chamberlain
  fullname: Chamberlain, Jeffrey S.
  organization: Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109-8055, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35143959$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1vEzEQtVAR_YBfgIT2yCWpP9a78QEklLZQqVUvcLa83nHiyGsv9qYl_54JaSvgUOlJHs_MezOad0qOYopAyHtG54yy5nwz3w3TGuaccj6nCCpekRMmuZxRyuuj55g1x-S0lA1GTKrmDTkWktVCSXVCHpZpGE32JcUquarflSmnce1jBb_GDKV4LLgUQnrwcVWtIEIFvZ_2HxP7QyLDGIyFAeJUIdMgVtBXyLfBR29NqC5uLzDvBwyH1EN4S147Ewq8e3zPyI-ry-_Lb7Obu6_Xyy83M1tLNc3AqgV1UsECetUIB3XHe-U6RVtDDTcCeNPVrjWy441ybQcGXM0Ft7KW0nXijHw-6I7bboDe4orZBD1mXCXvdDJe_1uJfq1X6V4r1jJWtyjw8VEgp59bKJMefLEQgomQtkXzhi8EZUJQbP3w96znIU_XxgZ1aLA5lZLBaesnM-GJcbQPmlG9d1Zv9B9n9d5ZTRFUIFf8x32Sf5n16cACvPG9h6yL9RAtWojmTLpP_kX-b7D0we8
CitedBy_id crossref_primary_10_3390_ijms241713202
crossref_primary_10_1002_med_22036
crossref_primary_10_1002_mco2_423
crossref_primary_10_1089_hum_2024_041
crossref_primary_10_1177_17562864231182934
crossref_primary_10_1002_advs_202207436
crossref_primary_10_1242_dmm_049862
Cites_doi 10.1002/(SICI)1097-4598(199808)21:8<991::AID-MUS2>3.0.CO;2-0
10.1038/nm.3628
10.1016/j.ymthe.2004.07.016
10.1038/ncomms16007
10.1038/s41467-020-19230-w
10.1016/j.cell.2021.08.028
10.1083/jcb.9.2.493
10.1016/j.celrep.2019.03.105
10.1016/0022-510X(88)90206-7
10.1371/journal.pone.0008647
10.1016/j.ymthe.2018.08.010
10.1212/WNL.44.12.2388
10.1172/JCI136873
10.15252/emmm.202013228
10.1538/expanim.52.93
10.1038/sj.mt.6300161
10.3389/fmicb.2011.00201
10.1038/mtna.2015.58
10.1126/scitranslmed.aan8081
10.1038/mt.2008.28
10.1038/ncomms16105
10.1083/jcb.134.4.873
10.1038/mtm.2014.38
10.1002/ana.21627
10.1016/S0021-9258(19)39599-7
10.1038/nm1085
10.1001/jama.1992.03480190051030
10.1089/hum.2006.093
10.1016/0888-7543(92)90210-J
10.1126/science.aad5143
10.1038/nm1439
10.1038/mt.2012.111
10.3389/fmicb.2011.00220
10.1038/s41467-021-26830-7
10.1016/j.ymthe.2020.11.003
10.1152/physiol.00012.2019
10.1038/nm0302-253
10.1172/jci.insight.95918
10.1126/science.aad5725
10.1038/s41591-019-0738-2
10.1172/jci.insight.124297
10.1371/journal.pone.0069194
10.1126/science.aau1549
10.1038/mt.2012.283
10.1038/mt.2008.102
10.1038/nature14299
10.1007/978-1-4939-7374-3_18
10.1016/j.omtm.2020.09.016
10.1038/sj.gt.3302800
10.1126/science.aad5177
10.1093/hmg/ddv420
10.1016/j.omtn.2017.02.004
10.1038/mt.2009.294
10.1016/j.ymthe.2019.01.002
10.1002/(SICI)1097-4598(199801)21:1<91::AID-MUS12>3.0.CO;2-3
10.1093/hmg/10.24.2745
ContentType Journal Article
Copyright 2022 The American Society of Gene and Cell Therapy
Copyright © 2022 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
2022 The American Society of Gene and Cell Therapy. 2022 The American Society of Gene and Cell Therapy
Copyright_xml – notice: 2022 The American Society of Gene and Cell Therapy
– notice: Copyright © 2022 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
– notice: 2022 The American Society of Gene and Cell Therapy. 2022 The American Society of Gene and Cell Therapy
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.ymthe.2022.02.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1525-0024
EndPage 2185
ExternalDocumentID PMC9171147
35143959
10_1016_j_ymthe_2022_02_003
S1525001622000867
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P30 DK017047
– fundername: NIAMS NIH HHS
  grantid: R01 AR040864
– fundername: NIAMS NIH HHS
  grantid: P50 AR065139
– fundername: NIAMS NIH HHS
  grantid: R01 AR044533
– fundername: NINDS NIH HHS
  grantid: R01 NS117912
GroupedDBID ---
0R~
123
29M
2WC
36B
39C
4.4
53G
7X7
8FE
8FH
AACTN
AAEDW
AAIAV
AALRI
AAVLU
AAXUO
ABJNI
ABMAC
ABUDA
ABVKL
ACGFO
ACGFS
ACPRK
ADBBV
ADFRT
ADJPV
AENEX
AFTJW
AGAYW
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
ASPBG
AVWKF
AZFZN
BAWUL
BENPR
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
F5P
FDB
FEDTE
FRP
GX1
HCIFZ
HVGLF
HYE
HZ~
JIG
KQ8
LG5
LK8
M41
M7P
O9-
OK1
P2P
PROAC
RCE
RNTTT
RPM
SSZ
TR2
W2D
ZA5
--K
1B1
88E
8FI
8FJ
AAMRU
AAYWO
AAYXX
ABAWZ
ABDGV
ABUWG
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFKRA
AFPUW
AGCQF
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALIPV
APXCP
BBNVY
BHPHI
CAG
CCPQU
CITATION
COF
EJD
EMB
EMOBN
FYUFA
HMCUK
IHE
JSO
M1P
NQ-
PHGZM
PHGZT
PQQKQ
PSQYO
RIG
RNS
ROL
RPZ
SEW
SV3
UHS
UKHRP
XPP
ZMT
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c459t-ec980f59e8ed963fe4b2d9fb907a0a2a3e26b4f7a5b269f7beaef4232c5455fb3
ISSN 1525-0016
1525-0024
IngestDate Thu Aug 21 18:37:11 EDT 2025
Thu Jul 10 23:04:49 EDT 2025
Mon Jul 21 05:58:31 EDT 2025
Thu Apr 24 23:13:09 EDT 2025
Tue Jul 01 03:53:44 EDT 2025
Fri Feb 23 02:41:33 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords CRISPR
CXMD
micro-dystrophin
AAV
Duchenne
muscle
dogs
DMD
Cas9
gene editing
Language English
License Copyright © 2022 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-ec980f59e8ed963fe4b2d9fb907a0a2a3e26b4f7a5b269f7beaef4232c5455fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5309-2135
OpenAccessLink http://www.cell.com/article/S1525001622000867/pdf
PMID 35143959
PQID 2628301330
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9171147
proquest_miscellaneous_2628301330
pubmed_primary_35143959
crossref_citationtrail_10_1016_j_ymthe_2022_02_003
crossref_primary_10_1016_j_ymthe_2022_02_003
elsevier_sciencedirect_doi_10_1016_j_ymthe_2022_02_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular therapy
PublicationTitleAlternate Mol Ther
PublicationYear 2022
Publisher Elsevier Inc
American Society of Gene & Cell Therapy
Publisher_xml – name: Elsevier Inc
– name: American Society of Gene & Cell Therapy
References Arnett, Konieczny, Ramos, Hall, Odom, Yablonka-Reuveni, Chamberlain, Chamberlain (bib25) 2014; 1
Wang, Storb, Lee, Kushmerick, Chu, Berger, Arnett, Allen, Chamberlain, Riddell, Tapscott (bib53) 2010; 18
Kwon, Ettyreddy, Vankara, Bohning, Delvin, Hauschka, Asokan, Gersbach (bib24) 2020; 19
Yokota, Lu, Partridge, Kobayashi, Nakamura, Takeda, Hoffman (bib40) 2009; 65
Young, Pyle, Spencer (bib4) 2019; 34
Emery, Muntoni (bib1) 2003
Gregorevic, Blankinship, Allen, Crawford, Meuse, Miller, Russell, Chamberlain (bib51) 2004; 10
Halbert, Allen, Chamberlain (bib56) 2018; 1687
Koenig, Kunkel (bib36) 1990; 265
Duchêne, Cherif, Iyombe-Engembe, Guyon, Rousseau, Ouellet, Barbeau, Lague, Tremblay (bib9) 2018; 26
Ramos, Hollinger, Bengtsson, Allen, Hauschka, Chamberlain (bib16) 2019; 27
Moretti, Fonteyne, Giesert, Hoppmann, Meier, Bozoglu, Baehr, Schneider, Sinnecker, Klett (bib12) 2020; 26
Wang, Tapscott, Chamberlain, Storb (bib60) 2011; 2
Long, Amoasii, Mireault, McAnally, Li, Sanchez-Ortiz, Bhattacharyya, Shelton, Bassel-Duby, Olson (bib11) 2016; 351
Chamberlain, Chamberlain, Fenwick, Ward, Caskey, Dimnik, Bech-Hansen, Hoar, Richards, Covone (bib50) 1992; 267
Koenig, Beggs, Moyer, Scherpf, Heindrich, Bettecken, Meng, Müller, Lindlöf, Kaariainen (bib19) 1989; 45
Crawford, Lu, Partridge, Chamberlain (bib43) 2001; 10
Bengtsson, Hall, Odom, Phelps, Andrus, Hawkins, Hauschka, Chamberlain, Chamberlain (bib5) 2017; 8
Harper, Hauser, DelloRusso, Duan, Crawford, Phelps, Harper, Robinson, Engelhardt, Brooks, Chamberlain (bib2) 2002; 8
Gregorevic, Blankinship, Allen, Chamberlain (bib18) 2008; 16
Chemello, Bassel-Duby, Olson (bib35) 2020; 130
Wang, Storb, Halbert, Banks, Butts, Finn, Allen, Miller, Chamberlain, Tapscott (bib31) 2012; 20
Arnett, Garikipati, Wang, Tapscott, Chamberlain (bib59) 2011; 2
Bengtsson, Tasfaout, Hauschka, Chamberlain (bib8) 2021; 29
Maino, Wojtal, Evagelou, Farheen, Wong, Lindsay, Scott, Rizvi, Hyatt, Rok (bib20) 2021; 13
Corrado, Rafael, Mills, Cole, Faulkner, Wang, Chamberlain (bib46) 1996; 134
Beggs, Hoffman, Snyder, Arahata, Specht, Shapiro, Angelini, Sugita, Kunkel (bib45) 1991; 49
Amoasii, Hildyard, Li, Sanchez-Ortiz, Mireault, Caballero, Harron, Stathopoulou, Massey, Shelton (bib7) 2018; 362
Hakim, Kumar, Pérez-López, Wasala, Zhang, Yue, Teixeira, Pan, Zhang, Million (bib52) 2021; 12
Valentine, Cooper, de Lahunta, O'Quinn, Blue (bib29) 1988; 88
Lattanzi, Duguez, Moiani, Izmiryan, Barbon, Martin, Mamchaoui, Mouly, Bernardi, Mavilio, Bovolenta (bib21) 2017; 7
Wang, Allen, Riddell, Gregorevic, Storb, Tapscott, Chamberlain, Kuhr (bib58) 2007; 18
Goldstein, Tabebordbar, Zhu, Wang, Messemer, Peacker, Ashrafi Kakhki, Gonzalez-Celeiro, Shwartz, Cheng (bib23) 2019; 27
Le Guiner, Servais, Montus, Larcher, Fraysse, Moullec, Allais, François, Dutilleul, Malerba (bib33) 2017; 8
Kyrychenko, Kyrychenko, Tiburcy, Shelton, Long, Schneider, Zimmermann, Bassel-Duby, Olson (bib47) 2017; 2
Bengtsson, Seto, Hall, Chamberlain, Odom (bib3) 2016; 25
Nelson, Hakim, Ousterout, Thakore, Moreb, Castellanos Rivera, Madhavan, Pan, Ran, Yan (bib13) 2016; 351
Tabebordbar, Lagerborg, Stanton, King, Ye, Tellez, Krunnfusz, Tavakoli, Widrick, Messemer (bib27) 2021; 184
Shimatsu, Katagiri, Furuta, Nakura, Tanioka, Yuasa, Tomohiro, Kornegay, Nonaka, Takeda (bib28) 2003; 52
Hakim, Wasala, Nelson, Wasala, Yue, Louderman, Lessa, Dai, Zhang, Jenkins (bib10) 2018; 3
Kinoshita, Vilquin, Asselin, Chamberlain, Tremblay (bib44) 1998; 21
McClorey, Moulton, Iversen, Fletcher, Wilton (bib39) 2006; 13
Sharp, Kornegay, Van Camp, Herbstreith, Secore, Kettle, Hung, Constantinou, Dykstra, Roses (bib38) 1992; 13
Wein, Vulin, Falzarano, Szigyarto, Maiti, Findlay, Heller, Uhlén, Bakthavachalu, Messina (bib48) 2014; 20
Blankinship, Gregorevic, Allen, Harper, Harper, Halbert, Miller, Miller, Chamberlain (bib55) 2004; 10
Heald, Anderson, Bushby, Shaw (bib49) 1994; 44
Walmsley, Arechavala-Gomeza, Fernandez-Fuente, Burke, Nagel, Holder, Stanley, Chandler, Marks, Muntoni (bib34) 2010; 5
Shin, Pan, Hakim, Yang, Yue, Zhang, Terjung, Duan (bib32) 2013; 21
Amoasii, Long, Li, Mireault, Shelton, Sanchez-Ortiz, McAnally, Bhattacharyya, Schmidt, Grimm (bib6) 2017; 9
Parker, Kuhr, Tapscott, Storb (bib57) 2008; 16
Iyombe-Engembe, Ouellet, Barbeau, Rousseau, Chapdelaine, Lagüe, Tremblay (bib15) 2016; 5
Gregorevic, Allen, Minami, Blankinship, Haraguchi, Meuse, Finn, Adams, Froehner, Murry, Chamberlain (bib17) 2006; 12
Abmayr, Chamberlain (bib37) 2006
Weinmann, Weis, Sippel, Tulalamba, Remes, El Andari, Herrmann, Pham, Borowski, Hille (bib26) 2020; 11
Echigoya, Lee, Rodrigues, Nagata, Tanihata, Nozohourmehrabad, Panesar, Miskew, Aoki, Yokota (bib42) 2013; 8
Wang, Kuhr, Allen, Blankinship, Gregorevic, Chamberlain, Tapscott, Storb (bib30) 2007; 15
Mauro (bib22) 1961; 9
Ran, Cong, Yan, Scott, Gootenberg, Kriz, Zetsche, Shalem, Wu, Makarova (bib54) 2015; 520
Schatzberg, Anderson, Wilton, Kornegay, Mann, Solomon, Sharp (bib41) 1998; 21
Tabebordbar, Zhu, Cheng, Chew, Widrick, Yan, Maesner, Wu, Xiao, Ran (bib14) 2016; 351
Gregorevic (10.1016/j.ymthe.2022.02.003_bib51) 2004; 10
Chemello (10.1016/j.ymthe.2022.02.003_bib35) 2020; 130
Chamberlain (10.1016/j.ymthe.2022.02.003_bib50) 1992; 267
Harper (10.1016/j.ymthe.2022.02.003_bib2) 2002; 8
Amoasii (10.1016/j.ymthe.2022.02.003_bib6) 2017; 9
Parker (10.1016/j.ymthe.2022.02.003_bib57) 2008; 16
Hakim (10.1016/j.ymthe.2022.02.003_bib52) 2021; 12
Wang (10.1016/j.ymthe.2022.02.003_bib31) 2012; 20
Emery (10.1016/j.ymthe.2022.02.003_bib1) 2003
Ramos (10.1016/j.ymthe.2022.02.003_bib16) 2019; 27
Maino (10.1016/j.ymthe.2022.02.003_bib20) 2021; 13
Mauro (10.1016/j.ymthe.2022.02.003_bib22) 1961; 9
Wang (10.1016/j.ymthe.2022.02.003_bib53) 2010; 18
Long (10.1016/j.ymthe.2022.02.003_bib11) 2016; 351
Abmayr (10.1016/j.ymthe.2022.02.003_bib37) 2006
Tabebordbar (10.1016/j.ymthe.2022.02.003_bib27) 2021; 184
Gregorevic (10.1016/j.ymthe.2022.02.003_bib18) 2008; 16
Shimatsu (10.1016/j.ymthe.2022.02.003_bib28) 2003; 52
Shin (10.1016/j.ymthe.2022.02.003_bib32) 2013; 21
Sharp (10.1016/j.ymthe.2022.02.003_bib38) 1992; 13
Kyrychenko (10.1016/j.ymthe.2022.02.003_bib47) 2017; 2
Wang (10.1016/j.ymthe.2022.02.003_bib58) 2007; 18
Kinoshita (10.1016/j.ymthe.2022.02.003_bib44) 1998; 21
Duchêne (10.1016/j.ymthe.2022.02.003_bib9) 2018; 26
Moretti (10.1016/j.ymthe.2022.02.003_bib12) 2020; 26
Young (10.1016/j.ymthe.2022.02.003_bib4) 2019; 34
Tabebordbar (10.1016/j.ymthe.2022.02.003_bib14) 2016; 351
Le Guiner (10.1016/j.ymthe.2022.02.003_bib33) 2017; 8
Halbert (10.1016/j.ymthe.2022.02.003_bib56) 2018; 1687
Bengtsson (10.1016/j.ymthe.2022.02.003_bib3) 2016; 25
Iyombe-Engembe (10.1016/j.ymthe.2022.02.003_bib15) 2016; 5
Corrado (10.1016/j.ymthe.2022.02.003_bib46) 1996; 134
Koenig (10.1016/j.ymthe.2022.02.003_bib36) 1990; 265
Weinmann (10.1016/j.ymthe.2022.02.003_bib26) 2020; 11
Valentine (10.1016/j.ymthe.2022.02.003_bib29) 1988; 88
Nelson (10.1016/j.ymthe.2022.02.003_bib13) 2016; 351
Hakim (10.1016/j.ymthe.2022.02.003_bib10) 2018; 3
Arnett (10.1016/j.ymthe.2022.02.003_bib59) 2011; 2
Heald (10.1016/j.ymthe.2022.02.003_bib49) 1994; 44
Bengtsson (10.1016/j.ymthe.2022.02.003_bib8) 2021; 29
Schatzberg (10.1016/j.ymthe.2022.02.003_bib41) 1998; 21
Wang (10.1016/j.ymthe.2022.02.003_bib30) 2007; 15
Kwon (10.1016/j.ymthe.2022.02.003_bib24) 2020; 19
Yokota (10.1016/j.ymthe.2022.02.003_bib40) 2009; 65
Walmsley (10.1016/j.ymthe.2022.02.003_bib34) 2010; 5
Koenig (10.1016/j.ymthe.2022.02.003_bib19) 1989; 45
Goldstein (10.1016/j.ymthe.2022.02.003_bib23) 2019; 27
Ran (10.1016/j.ymthe.2022.02.003_bib54) 2015; 520
Echigoya (10.1016/j.ymthe.2022.02.003_bib42) 2013; 8
Arnett (10.1016/j.ymthe.2022.02.003_bib25) 2014; 1
Amoasii (10.1016/j.ymthe.2022.02.003_bib7) 2018; 362
Wang (10.1016/j.ymthe.2022.02.003_bib60) 2011; 2
Gregorevic (10.1016/j.ymthe.2022.02.003_bib17) 2006; 12
McClorey (10.1016/j.ymthe.2022.02.003_bib39) 2006; 13
Crawford (10.1016/j.ymthe.2022.02.003_bib43) 2001; 10
Wein (10.1016/j.ymthe.2022.02.003_bib48) 2014; 20
Lattanzi (10.1016/j.ymthe.2022.02.003_bib21) 2017; 7
Blankinship (10.1016/j.ymthe.2022.02.003_bib55) 2004; 10
Beggs (10.1016/j.ymthe.2022.02.003_bib45) 1991; 49
Bengtsson (10.1016/j.ymthe.2022.02.003_bib5) 2017; 8
References_xml – year: 2003
  ident: bib1
  article-title: Duchenne Muscular Dystrophy
– volume: 25
  start-page: R9
  year: 2016
  end-page: R17
  ident: bib3
  article-title: Progress and prospects of gene therapy clinical trials for the muscular dystrophies
  publication-title: Hum. Mol. Genet.
– volume: 10
  start-page: 828
  year: 2004
  end-page: 834
  ident: bib51
  article-title: Systemic delivery of genes to striated muscles using adeno-associated viral vectors
  publication-title: Nat. Med.
– volume: 10
  start-page: 2745
  year: 2001
  end-page: 2750
  ident: bib43
  article-title: Suppression of revertant fibers in mdx mice by expression of a functional dystrophin
  publication-title: Hum. Mol. Genet.
– volume: 9
  start-page: eaan8081
  year: 2017
  ident: bib6
  article-title: Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy
  publication-title: Sci. Transl. Med.
– volume: 44
  start-page: 2388
  year: 1994
  end-page: 2390
  ident: bib49
  article-title: Becker muscular dystrophy with onset after 60 years
  publication-title: Neurology
– volume: 1
  start-page: 14038
  year: 2014
  ident: bib25
  article-title: Adeno-associated viral (AAV) vectors do not efficiently target muscle satellite cells
  publication-title: Mol. Ther. Methods Clin. Dev.
– volume: 13
  start-page: e13228
  year: 2021
  ident: bib20
  article-title: Targeted genome editing in vivo corrects a Dmd duplication restoring wild-type dystrophin expression
  publication-title: EMBO Mol. Med.
– volume: 2
  start-page: 201
  year: 2011
  ident: bib60
  article-title: Immunity and AAV-mediated gene therapy for muscular dystrophies in large animal models and human trials
  publication-title: Front. Microbiol.
– volume: 27
  start-page: 1254
  year: 2019
  end-page: 1264.e7
  ident: bib23
  article-title: In situ modification of tissue stem and progenitor cell genomes
  publication-title: Cell Rep.
– volume: 351
  start-page: 400
  year: 2016
  end-page: 403
  ident: bib11
  article-title: Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy
  publication-title: Science
– volume: 8
  start-page: 253
  year: 2002
  end-page: 261
  ident: bib2
  article-title: Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy
  publication-title: Nat. Med.
– volume: 351
  start-page: 403
  year: 2016
  end-page: 407
  ident: bib13
  article-title: In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
  publication-title: Science
– volume: 49
  start-page: 54
  year: 1991
  end-page: 67
  ident: bib45
  article-title: Exploring the molecular basis for variability among patients with Becker muscular dystrophy: dystrophin gene and protein studies
  publication-title: Am. J. Hum. Genet.
– volume: 8
  start-page: e69194
  year: 2013
  ident: bib42
  article-title: Mutation types and aging differently affect revertant fiber expansion in dystrophic mdx and mdx52 mice
  publication-title: PLoS One
– volume: 362
  start-page: 86
  year: 2018
  end-page: 91
  ident: bib7
  article-title: Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy
  publication-title: Science
– volume: 88
  start-page: 69
  year: 1988
  end-page: 81
  ident: bib29
  article-title: Canine X-linked muscular dystrophy. An animal model of Duchenne muscular dystrophy: clinical studies
  publication-title: J. Neurol. Sci.
– volume: 21
  start-page: 750
  year: 2013
  end-page: 757
  ident: bib32
  article-title: Microdystrophin ameliorates muscular dystrophy in the canine model of duchenne muscular dystrophy
  publication-title: Mol. Ther.
– volume: 12
  start-page: 787
  year: 2006
  end-page: 789
  ident: bib17
  article-title: rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice
  publication-title: Nat. Med.
– volume: 45
  start-page: 498
  year: 1989
  end-page: 506
  ident: bib19
  article-title: The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion
  publication-title: Am. J. Hum. Genet.
– volume: 9
  start-page: 493
  year: 1961
  end-page: 495
  ident: bib22
  article-title: Satellite cell of skeletal muscle fibers
  publication-title: J. Biophys. Biochem. Cytol.
– volume: 2
  start-page: e95918
  year: 2017
  ident: bib47
  article-title: Functional correction of dystrophin actin binding domain mutations by genome editing
  publication-title: JCI Insight
– volume: 52
  start-page: 93
  year: 2003
  end-page: 97
  ident: bib28
  article-title: Canine X-linked muscular dystrophy in Japan (CXMDJ)
  publication-title: Exp. Anim.
– volume: 1687
  start-page: 257
  year: 2018
  end-page: 266
  ident: bib56
  article-title: AAV6 vector production and purification for muscle gene therapy
  publication-title: Methods Mol. Biol.
– volume: 13
  start-page: 1373
  year: 2006
  end-page: 1381
  ident: bib39
  article-title: Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD
  publication-title: Gene Ther.
– volume: 12
  start-page: 6769
  year: 2021
  ident: bib52
  article-title: Cas9-specific immune responses compromise local and systemic AAV CRISPR therapy in multiple dystrophic canine models
  publication-title: Nat. Commun.
– start-page: 14
  year: 2006
  end-page: 34
  ident: bib37
  article-title: The structure and function of dystrophin
  publication-title: The Molecular Mechanisms of Muscular Dystrophies
– volume: 8
  start-page: 16105
  year: 2017
  ident: bib33
  article-title: Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy
  publication-title: Nat. Commun.
– volume: 7
  start-page: 11
  year: 2017
  end-page: 19
  ident: bib21
  article-title: Correction of the exon 2 duplication in DMD myoblasts by a single CRISPR/Cas9 system
  publication-title: Mol. Ther. Nucleic Acids
– volume: 21
  start-page: 991
  year: 1998
  end-page: 998
  ident: bib41
  article-title: Alternative dystrophin gene transcripts in golden retriever muscular dystrophy
  publication-title: Muscle Nerve
– volume: 8
  start-page: 16007
  year: 2017
  ident: bib5
  article-title: Corrigendum: muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy
  publication-title: Nat. Commun.
– volume: 11
  start-page: 5432
  year: 2020
  ident: bib26
  article-title: Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants
  publication-title: Nat. Commun.
– volume: 16
  start-page: 1340
  year: 2008
  end-page: 1346
  ident: bib57
  article-title: Hematopoietic cell transplantation provides an immune-tolerant platform for myoblast transplantation in dystrophic dogs
  publication-title: Mol. Ther.
– volume: 10
  start-page: 671
  year: 2004
  end-page: 678
  ident: bib55
  article-title: Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6
  publication-title: Mol. Ther.
– volume: 267
  start-page: 2609
  year: 1992
  end-page: 2615
  ident: bib50
  article-title: Diagnosis of Duchenne and Becker muscular dystrophies by polymerase chain reaction. A multicenter study
  publication-title: JAMA
– volume: 65
  start-page: 667
  year: 2009
  end-page: 676
  ident: bib40
  article-title: Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs
  publication-title: Ann. Neurol.
– volume: 34
  start-page: 341
  year: 2019
  end-page: 353
  ident: bib4
  article-title: CRISPR for neuromuscular disorders: gene editing and beyond
  publication-title: Physiology
– volume: 351
  start-page: 407
  year: 2016
  end-page: 411
  ident: bib14
  article-title: In vivo gene editing in dystrophic mouse muscle and muscle stem cells
  publication-title: Science
– volume: 184
  start-page: 4919
  year: 2021
  end-page: e22 e4922
  ident: bib27
  article-title: Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species
  publication-title: Cell
– volume: 2
  start-page: 220
  year: 2011
  ident: bib59
  article-title: Immune responses to rAAV6: the influence of canine parvovirus vaccination and neonatal administration of viral vector
  publication-title: Front. Microbiol.
– volume: 130
  start-page: 2766
  year: 2020
  end-page: 2776
  ident: bib35
  article-title: Correction of muscular dystrophies by CRISPR gene editing
  publication-title: J. Clin. Invest.
– volume: 21
  start-page: 91
  year: 1998
  end-page: 103
  ident: bib44
  article-title: Transplantation of myoblasts from a transgenic mouse overexpressing dystrophin prduced only a relatively small increase of dystrophin-positive membrane
  publication-title: Muscle Nerve
– volume: 29
  start-page: 1070
  year: 2021
  end-page: 1085
  ident: bib8
  article-title: Dystrophin gene-editing stability is dependent on dystrophin levels in skeletal but not cardiac muscles
  publication-title: Mol. Ther.
– volume: 19
  start-page: 320
  year: 2020
  end-page: 329
  ident: bib24
  article-title: gene editing of muscle stem cells with adeno-associated viral vectors in a mouse model of Duchenne muscular dystrophy
  publication-title: Mol. Ther. Methods Clin. Dev.
– volume: 16
  start-page: 657
  year: 2008
  end-page: 664
  ident: bib18
  article-title: Systemic microdystrophin gene delivery improves skeletal muscle structure and function in old dystrophic mdx mice
  publication-title: Mol. Ther.
– volume: 13
  start-page: 115
  year: 1992
  end-page: 121
  ident: bib38
  article-title: An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy
  publication-title: Genomics
– volume: 26
  start-page: 207
  year: 2020
  end-page: 214
  ident: bib12
  article-title: Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy
  publication-title: Nat. Med.
– volume: 26
  start-page: 2604
  year: 2018
  end-page: 2616
  ident: bib9
  article-title: CRISPR-induced deletion with SaCas9 restores dystrophin expression in dystrophic models in vitro and in vivo
  publication-title: Mol. Ther.
– volume: 18
  start-page: 617
  year: 2010
  end-page: 624
  ident: bib53
  article-title: Immune responses to AAV in canine muscle monitored by cellular assays and noninvasive imaging
  publication-title: Mol. Ther.
– volume: 18
  start-page: 18
  year: 2007
  end-page: 26
  ident: bib58
  article-title: Immunity to adeno-associated virus-mediated gene transfer in a random-bred canine model of Duchenne muscular dystrophy
  publication-title: Hum. Gene Ther.
– volume: 20
  start-page: 992
  year: 2014
  end-page: 1000
  ident: bib48
  article-title: Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice
  publication-title: Nat. Med.
– volume: 5
  start-page: e283
  year: 2016
  ident: bib15
  article-title: Efficient restoration of the dystrophin gene reading frame and protein structure in DMD myoblasts using the CinDel method
  publication-title: Mol. Ther. Nucleic Acids
– volume: 20
  start-page: 1501
  year: 2012
  end-page: 1507
  ident: bib31
  article-title: Successful regional delivery and long-term expression of a dystrophin gene in canine muscular dystrophy: a preclinical model for human therapies
  publication-title: Mol. Ther.
– volume: 27
  start-page: 623
  year: 2019
  end-page: 635
  ident: bib16
  article-title: Development of novel micro-dystrophins with enhanced functionality
  publication-title: Mol. Ther.
– volume: 3
  start-page: e124297
  year: 2018
  ident: bib10
  article-title: AAV CRISPR editing rescues cardiac and muscle function for 18 months in dystrophic mice
  publication-title: JCI Insight
– volume: 5
  start-page: e8647
  year: 2010
  ident: bib34
  article-title: A duchenne muscular dystrophy gene hot spot mutation in dystrophin-deficient cavalier king charles spaniels is amenable to exon 51 skipping
  publication-title: PLoS One
– volume: 134
  start-page: 873
  year: 1996
  end-page: 884
  ident: bib46
  article-title: Transgenic mdx mice expressing dystrophin with a deletion in the actin-binding domain display a "mild Becker" phenotype
  publication-title: J. Cell Biol.
– volume: 265
  start-page: 4560
  year: 1990
  end-page: 4566
  ident: bib36
  article-title: Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility
  publication-title: J. Biol. Chem.
– volume: 520
  start-page: 186
  year: 2015
  end-page: 191
  ident: bib54
  article-title: In vivo genome editing using Staphylococcus aureus Cas9
  publication-title: Nature
– volume: 15
  start-page: 1160
  year: 2007
  end-page: 1166
  ident: bib30
  article-title: Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression
  publication-title: Mol. Ther.
– volume: 21
  start-page: 991
  year: 1998
  ident: 10.1016/j.ymthe.2022.02.003_bib41
  article-title: Alternative dystrophin gene transcripts in golden retriever muscular dystrophy
  publication-title: Muscle Nerve
  doi: 10.1002/(SICI)1097-4598(199808)21:8<991::AID-MUS2>3.0.CO;2-0
– volume: 20
  start-page: 992
  year: 2014
  ident: 10.1016/j.ymthe.2022.02.003_bib48
  article-title: Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice
  publication-title: Nat. Med.
  doi: 10.1038/nm.3628
– volume: 10
  start-page: 671
  year: 2004
  ident: 10.1016/j.ymthe.2022.02.003_bib55
  article-title: Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2004.07.016
– volume: 8
  start-page: 16007
  year: 2017
  ident: 10.1016/j.ymthe.2022.02.003_bib5
  article-title: Corrigendum: muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms16007
– volume: 11
  start-page: 5432
  year: 2020
  ident: 10.1016/j.ymthe.2022.02.003_bib26
  article-title: Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19230-w
– volume: 184
  start-page: 4919
  year: 2021
  ident: 10.1016/j.ymthe.2022.02.003_bib27
  article-title: Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species
  publication-title: Cell
  doi: 10.1016/j.cell.2021.08.028
– volume: 9
  start-page: 493
  year: 1961
  ident: 10.1016/j.ymthe.2022.02.003_bib22
  article-title: Satellite cell of skeletal muscle fibers
  publication-title: J. Biophys. Biochem. Cytol.
  doi: 10.1083/jcb.9.2.493
– volume: 27
  start-page: 1254
  year: 2019
  ident: 10.1016/j.ymthe.2022.02.003_bib23
  article-title: In situ modification of tissue stem and progenitor cell genomes
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.03.105
– volume: 49
  start-page: 54
  year: 1991
  ident: 10.1016/j.ymthe.2022.02.003_bib45
  article-title: Exploring the molecular basis for variability among patients with Becker muscular dystrophy: dystrophin gene and protein studies
  publication-title: Am. J. Hum. Genet.
– volume: 88
  start-page: 69
  year: 1988
  ident: 10.1016/j.ymthe.2022.02.003_bib29
  article-title: Canine X-linked muscular dystrophy. An animal model of Duchenne muscular dystrophy: clinical studies
  publication-title: J. Neurol. Sci.
  doi: 10.1016/0022-510X(88)90206-7
– volume: 5
  start-page: e8647
  year: 2010
  ident: 10.1016/j.ymthe.2022.02.003_bib34
  article-title: A duchenne muscular dystrophy gene hot spot mutation in dystrophin-deficient cavalier king charles spaniels is amenable to exon 51 skipping
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008647
– volume: 26
  start-page: 2604
  year: 2018
  ident: 10.1016/j.ymthe.2022.02.003_bib9
  article-title: CRISPR-induced deletion with SaCas9 restores dystrophin expression in dystrophic models in vitro and in vivo
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2018.08.010
– volume: 44
  start-page: 2388
  year: 1994
  ident: 10.1016/j.ymthe.2022.02.003_bib49
  article-title: Becker muscular dystrophy with onset after 60 years
  publication-title: Neurology
  doi: 10.1212/WNL.44.12.2388
– volume: 130
  start-page: 2766
  year: 2020
  ident: 10.1016/j.ymthe.2022.02.003_bib35
  article-title: Correction of muscular dystrophies by CRISPR gene editing
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI136873
– volume: 13
  start-page: e13228
  year: 2021
  ident: 10.1016/j.ymthe.2022.02.003_bib20
  article-title: Targeted genome editing in vivo corrects a Dmd duplication restoring wild-type dystrophin expression
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.202013228
– volume: 52
  start-page: 93
  year: 2003
  ident: 10.1016/j.ymthe.2022.02.003_bib28
  article-title: Canine X-linked muscular dystrophy in Japan (CXMDJ)
  publication-title: Exp. Anim.
  doi: 10.1538/expanim.52.93
– volume: 15
  start-page: 1160
  year: 2007
  ident: 10.1016/j.ymthe.2022.02.003_bib30
  article-title: Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression
  publication-title: Mol. Ther.
  doi: 10.1038/sj.mt.6300161
– volume: 2
  start-page: 201
  year: 2011
  ident: 10.1016/j.ymthe.2022.02.003_bib60
  article-title: Immunity and AAV-mediated gene therapy for muscular dystrophies in large animal models and human trials
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2011.00201
– volume: 5
  start-page: e283
  year: 2016
  ident: 10.1016/j.ymthe.2022.02.003_bib15
  article-title: Efficient restoration of the dystrophin gene reading frame and protein structure in DMD myoblasts using the CinDel method
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1038/mtna.2015.58
– volume: 9
  start-page: eaan8081
  year: 2017
  ident: 10.1016/j.ymthe.2022.02.003_bib6
  article-title: Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aan8081
– volume: 16
  start-page: 657
  year: 2008
  ident: 10.1016/j.ymthe.2022.02.003_bib18
  article-title: Systemic microdystrophin gene delivery improves skeletal muscle structure and function in old dystrophic mdx mice
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2008.28
– volume: 8
  start-page: 16105
  year: 2017
  ident: 10.1016/j.ymthe.2022.02.003_bib33
  article-title: Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms16105
– volume: 134
  start-page: 873
  year: 1996
  ident: 10.1016/j.ymthe.2022.02.003_bib46
  article-title: Transgenic mdx mice expressing dystrophin with a deletion in the actin-binding domain display a "mild Becker" phenotype
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.134.4.873
– volume: 1
  start-page: 14038
  year: 2014
  ident: 10.1016/j.ymthe.2022.02.003_bib25
  article-title: Adeno-associated viral (AAV) vectors do not efficiently target muscle satellite cells
  publication-title: Mol. Ther. Methods Clin. Dev.
  doi: 10.1038/mtm.2014.38
– volume: 65
  start-page: 667
  year: 2009
  ident: 10.1016/j.ymthe.2022.02.003_bib40
  article-title: Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.21627
– volume: 265
  start-page: 4560
  year: 1990
  ident: 10.1016/j.ymthe.2022.02.003_bib36
  article-title: Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)39599-7
– volume: 10
  start-page: 828
  year: 2004
  ident: 10.1016/j.ymthe.2022.02.003_bib51
  article-title: Systemic delivery of genes to striated muscles using adeno-associated viral vectors
  publication-title: Nat. Med.
  doi: 10.1038/nm1085
– volume: 267
  start-page: 2609
  year: 1992
  ident: 10.1016/j.ymthe.2022.02.003_bib50
  article-title: Diagnosis of Duchenne and Becker muscular dystrophies by polymerase chain reaction. A multicenter study
  publication-title: JAMA
  doi: 10.1001/jama.1992.03480190051030
– volume: 18
  start-page: 18
  year: 2007
  ident: 10.1016/j.ymthe.2022.02.003_bib58
  article-title: Immunity to adeno-associated virus-mediated gene transfer in a random-bred canine model of Duchenne muscular dystrophy
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2006.093
– volume: 13
  start-page: 115
  year: 1992
  ident: 10.1016/j.ymthe.2022.02.003_bib38
  article-title: An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy
  publication-title: Genomics
  doi: 10.1016/0888-7543(92)90210-J
– volume: 351
  start-page: 403
  year: 2016
  ident: 10.1016/j.ymthe.2022.02.003_bib13
  article-title: In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
  publication-title: Science
  doi: 10.1126/science.aad5143
– volume: 12
  start-page: 787
  year: 2006
  ident: 10.1016/j.ymthe.2022.02.003_bib17
  article-title: rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice
  publication-title: Nat. Med.
  doi: 10.1038/nm1439
– volume: 20
  start-page: 1501
  year: 2012
  ident: 10.1016/j.ymthe.2022.02.003_bib31
  article-title: Successful regional delivery and long-term expression of a dystrophin gene in canine muscular dystrophy: a preclinical model for human therapies
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2012.111
– volume: 45
  start-page: 498
  year: 1989
  ident: 10.1016/j.ymthe.2022.02.003_bib19
  article-title: The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion
  publication-title: Am. J. Hum. Genet.
– volume: 2
  start-page: 220
  year: 2011
  ident: 10.1016/j.ymthe.2022.02.003_bib59
  article-title: Immune responses to rAAV6: the influence of canine parvovirus vaccination and neonatal administration of viral vector
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2011.00220
– volume: 12
  start-page: 6769
  year: 2021
  ident: 10.1016/j.ymthe.2022.02.003_bib52
  article-title: Cas9-specific immune responses compromise local and systemic AAV CRISPR therapy in multiple dystrophic canine models
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26830-7
– volume: 29
  start-page: 1070
  year: 2021
  ident: 10.1016/j.ymthe.2022.02.003_bib8
  article-title: Dystrophin gene-editing stability is dependent on dystrophin levels in skeletal but not cardiac muscles
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2020.11.003
– volume: 34
  start-page: 341
  year: 2019
  ident: 10.1016/j.ymthe.2022.02.003_bib4
  article-title: CRISPR for neuromuscular disorders: gene editing and beyond
  publication-title: Physiology
  doi: 10.1152/physiol.00012.2019
– volume: 8
  start-page: 253
  year: 2002
  ident: 10.1016/j.ymthe.2022.02.003_bib2
  article-title: Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy
  publication-title: Nat. Med.
  doi: 10.1038/nm0302-253
– start-page: 14
  year: 2006
  ident: 10.1016/j.ymthe.2022.02.003_bib37
  article-title: The structure and function of dystrophin
– volume: 2
  start-page: e95918
  year: 2017
  ident: 10.1016/j.ymthe.2022.02.003_bib47
  article-title: Functional correction of dystrophin actin binding domain mutations by genome editing
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.95918
– year: 2003
  ident: 10.1016/j.ymthe.2022.02.003_bib1
– volume: 351
  start-page: 400
  year: 2016
  ident: 10.1016/j.ymthe.2022.02.003_bib11
  article-title: Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy
  publication-title: Science
  doi: 10.1126/science.aad5725
– volume: 26
  start-page: 207
  year: 2020
  ident: 10.1016/j.ymthe.2022.02.003_bib12
  article-title: Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0738-2
– volume: 3
  start-page: e124297
  year: 2018
  ident: 10.1016/j.ymthe.2022.02.003_bib10
  article-title: AAV CRISPR editing rescues cardiac and muscle function for 18 months in dystrophic mice
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.124297
– volume: 8
  start-page: e69194
  year: 2013
  ident: 10.1016/j.ymthe.2022.02.003_bib42
  article-title: Mutation types and aging differently affect revertant fiber expansion in dystrophic mdx and mdx52 mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0069194
– volume: 362
  start-page: 86
  year: 2018
  ident: 10.1016/j.ymthe.2022.02.003_bib7
  article-title: Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy
  publication-title: Science
  doi: 10.1126/science.aau1549
– volume: 21
  start-page: 750
  year: 2013
  ident: 10.1016/j.ymthe.2022.02.003_bib32
  article-title: Microdystrophin ameliorates muscular dystrophy in the canine model of duchenne muscular dystrophy
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2012.283
– volume: 16
  start-page: 1340
  year: 2008
  ident: 10.1016/j.ymthe.2022.02.003_bib57
  article-title: Hematopoietic cell transplantation provides an immune-tolerant platform for myoblast transplantation in dystrophic dogs
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2008.102
– volume: 520
  start-page: 186
  year: 2015
  ident: 10.1016/j.ymthe.2022.02.003_bib54
  article-title: In vivo genome editing using Staphylococcus aureus Cas9
  publication-title: Nature
  doi: 10.1038/nature14299
– volume: 1687
  start-page: 257
  year: 2018
  ident: 10.1016/j.ymthe.2022.02.003_bib56
  article-title: AAV6 vector production and purification for muscle gene therapy
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7374-3_18
– volume: 19
  start-page: 320
  year: 2020
  ident: 10.1016/j.ymthe.2022.02.003_bib24
  article-title: In vivo gene editing of muscle stem cells with adeno-associated viral vectors in a mouse model of Duchenne muscular dystrophy
  publication-title: Mol. Ther. Methods Clin. Dev.
  doi: 10.1016/j.omtm.2020.09.016
– volume: 13
  start-page: 1373
  year: 2006
  ident: 10.1016/j.ymthe.2022.02.003_bib39
  article-title: Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD
  publication-title: Gene Ther.
  doi: 10.1038/sj.gt.3302800
– volume: 351
  start-page: 407
  year: 2016
  ident: 10.1016/j.ymthe.2022.02.003_bib14
  article-title: In vivo gene editing in dystrophic mouse muscle and muscle stem cells
  publication-title: Science
  doi: 10.1126/science.aad5177
– volume: 25
  start-page: R9
  year: 2016
  ident: 10.1016/j.ymthe.2022.02.003_bib3
  article-title: Progress and prospects of gene therapy clinical trials for the muscular dystrophies
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddv420
– volume: 7
  start-page: 11
  year: 2017
  ident: 10.1016/j.ymthe.2022.02.003_bib21
  article-title: Correction of the exon 2 duplication in DMD myoblasts by a single CRISPR/Cas9 system
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2017.02.004
– volume: 18
  start-page: 617
  year: 2010
  ident: 10.1016/j.ymthe.2022.02.003_bib53
  article-title: Immune responses to AAV in canine muscle monitored by cellular assays and noninvasive imaging
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2009.294
– volume: 27
  start-page: 623
  year: 2019
  ident: 10.1016/j.ymthe.2022.02.003_bib16
  article-title: Development of novel micro-dystrophins with enhanced functionality
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2019.01.002
– volume: 21
  start-page: 91
  year: 1998
  ident: 10.1016/j.ymthe.2022.02.003_bib44
  article-title: Transplantation of myoblasts from a transgenic mouse overexpressing dystrophin prduced only a relatively small increase of dystrophin-positive membrane
  publication-title: Muscle Nerve
  doi: 10.1002/(SICI)1097-4598(199801)21:1<91::AID-MUS12>3.0.CO;2-3
– volume: 10
  start-page: 2745
  year: 2001
  ident: 10.1016/j.ymthe.2022.02.003_bib43
  article-title: Suppression of revertant fibers in mdx mice by expression of a functional dystrophin
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/10.24.2745
SSID ssj0011596
Score 2.4230223
Snippet Gene editing has shown promise for correcting or bypassing dystrophin mutations in Duchenne muscular dystrophy (DMD). However, preclinical studies have focused...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2176
SubjectTerms AAV
Aging
Animals
Cas9
CRISPR
CRISPR-Cas Systems
CXMD
Disease Models, Animal
Disease Progression
DMD
Dogs
Duchenne
Dystrophin - genetics
gene editing
Gene Editing - methods
micro-dystrophin
muscle
Muscle, Skeletal - metabolism
Muscular Dystrophy, Duchenne - genetics
Muscular Dystrophy, Duchenne - therapy
Original
Title Comparison of dystrophin expression following gene editing and gene replacement in an aged preclinical DMD animal model
URI https://dx.doi.org/10.1016/j.ymthe.2022.02.003
https://www.ncbi.nlm.nih.gov/pubmed/35143959
https://www.proquest.com/docview/2628301330
https://pubmed.ncbi.nlm.nih.gov/PMC9171147
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqIRAvCMbHypeMxFtJlDpf9SOsQ2OjPG3S3iI7tVmmLp3aVFP5j_gvuXNiJ91GxZAqq3ISN-n9cr6z735HyEcRxiIcJRqrlwkvkkp5PIfXnaeBZgLagGO-8-RHcngaHZ3FZ73e707U0qqSfv7rzryS_5Eq9IFcMUv2HpJ1g0IHfAf5QgsShvafZLzfLSI4mK6X1WJ-dV4Y3v46vhXDCGez-TUuCMAwyNRaVDYv0XQslAnLMjEBBUYmD0DDGO4AlzQ5noyhv7jERBMsnNM1aCe2vO6g2uQn-KLKn9XS5nPBnYvl4MB3Wx6LFVbgsRnaoFvcoeOZKJpl2SPwjHEzyW_1JFJyVS0rAtrI3_3u0gV4vS7EympbFntodHbVcbNNU9yhW9OkM0-DbRLfOQfUyxEX_voSHtzH361ZWcN2yrPb_DdmQhefaEPfLjIzSIaDZAHLDK_sAwYeCRbLGH87dhtWYBWaRDb7RJbgyoQS3rqTvxlBt52cm7G6HePn5Cl50ngt9HMNwWekp8pd8rCuY7reJY8mTYTGc3LdYpLONW0xSVtMUodJihCkDSYpYLLu6GCSwpUCPoBJ2sEkBUzSGpPUYPIFOf16cLJ_6DXFPbw8innlqZyPAh1zNVJTmAS0iiSbci15kIpAMBEqlshIpyKWLOE6lUoojVEFOdj8sZbhS7JTzku1R2iajrTCFPHpkIM3rcAFk0yJgCk5ZUGq-4TZfzvLG-Z7LMAyy7bIuU8-uYuuauKX7acnVoxZY7vWNmkGsNx-4Qcr9Aw0O27XiVLNV8uMJUjONwzDoE9e1SBwd4L5NyGPeZ-kG_BwJyBr_OaRsjg37PF8mA6HUfr6fs_3hjxu3-C3ZKdarNQ7MMcr-d68CH8AY1Tlxg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+dystrophin+expression+following+gene+editing+and+gene+replacement+in+an+aged+preclinical+DMD+animal+model&rft.jtitle=Molecular+therapy&rft.au=Bengtsson%2C+Niclas+E.&rft.au=Crudele%2C+Julie+M.&rft.au=Klaiman%2C+Jordan+M.&rft.au=Halbert%2C+Christine+L.&rft.date=2022-06-01&rft.issn=1525-0016&rft.volume=30&rft.issue=6&rft.spage=2176&rft.epage=2185&rft_id=info:doi/10.1016%2Fj.ymthe.2022.02.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymthe_2022_02_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-0016&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-0016&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-0016&client=summon