Comparison of dystrophin expression following gene editing and gene replacement in an aged preclinical DMD animal model
Gene editing has shown promise for correcting or bypassing dystrophin mutations in Duchenne muscular dystrophy (DMD). However, preclinical studies have focused on young animals with limited muscle fibrosis and wasting, thereby favoring muscle transduction, myonuclear editing, and prevention of disea...
Saved in:
Published in | Molecular therapy Vol. 30; no. 6; pp. 2176 - 2185 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.06.2022
American Society of Gene & Cell Therapy |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gene editing has shown promise for correcting or bypassing dystrophin mutations in Duchenne muscular dystrophy (DMD). However, preclinical studies have focused on young animals with limited muscle fibrosis and wasting, thereby favoring muscle transduction, myonuclear editing, and prevention of disease progression. Here, we explore muscle-specific dystrophin gene editing following intramuscular delivery of AAV6:CK8e-CRISPR/SaCas9 in 3- and 8-year-old dystrophic CXMD dogs and provide a qualitative comparison to AAV6:CK8e-micro-dystrophin gene replacement at 6 weeks post-treatment. Gene editing restored the dystrophin reading frame in ∼1.3% of genomes and in up to 4.0% of dystrophin transcripts following excision of a 105-kb mutation containing region spanning exons 6–8. However, resulting dystrophin expression levels and effects on muscle pathology were greater with the use of micro-dystrophin gene transfer. This study demonstrates that our muscle-specific multi-exon deletion strategy can correct a frequently mutated region of the dystrophin gene in an aged large animal DMD model, but underscores that further enhancements are required to reach efficiencies comparable to AAV micro-dystrophin. Our observations also indicate that treatment efficacy and state of muscle pathology at the time of intervention are linked, suggesting the need for additional methodological optimizations related to age and disease progression to achieve relevant clinical translation of CRISPR-based therapies to all DMD patients.
[Display omitted]
Comparisons of CRISPR/Cas9 gene editing and micro-dystrophin gene replacement in old dystrophic dogs highlight the promise and limitations of AAV-mediated gene therapy in older subjects with advanced muscle pathology. |
---|---|
AbstractList | Gene editing has shown promise for correcting or bypassing dystrophin mutations in Duchenne muscular dystrophy (DMD). However, preclinical studies have focused on young animals with limited muscle fibrosis and wasting, thereby favoring muscle transduction, myonuclear editing, and prevention of disease progression. Here, we explore muscle-specific dystrophin gene editing following intramuscular delivery of AAV6:CK8e-CRISPR/SaCas9 in 3- and 8-year-old dystrophic CXMD dogs and provide a qualitative comparison to AAV6:CK8e-micro-dystrophin gene replacement at 6 weeks post-treatment. Gene editing restored the dystrophin reading frame in ∼1.3% of genomes and in up to 4.0% of dystrophin transcripts following excision of a 105-kb mutation containing region spanning exons 6-8. However, resulting dystrophin expression levels and effects on muscle pathology were greater with the use of micro-dystrophin gene transfer. This study demonstrates that our muscle-specific multi-exon deletion strategy can correct a frequently mutated region of the dystrophin gene in an aged large animal DMD model, but underscores that further enhancements are required to reach efficiencies comparable to AAV micro-dystrophin. Our observations also indicate that treatment efficacy and state of muscle pathology at the time of intervention are linked, suggesting the need for additional methodological optimizations related to age and disease progression to achieve relevant clinical translation of CRISPR-based therapies to all DMD patients.Gene editing has shown promise for correcting or bypassing dystrophin mutations in Duchenne muscular dystrophy (DMD). However, preclinical studies have focused on young animals with limited muscle fibrosis and wasting, thereby favoring muscle transduction, myonuclear editing, and prevention of disease progression. Here, we explore muscle-specific dystrophin gene editing following intramuscular delivery of AAV6:CK8e-CRISPR/SaCas9 in 3- and 8-year-old dystrophic CXMD dogs and provide a qualitative comparison to AAV6:CK8e-micro-dystrophin gene replacement at 6 weeks post-treatment. Gene editing restored the dystrophin reading frame in ∼1.3% of genomes and in up to 4.0% of dystrophin transcripts following excision of a 105-kb mutation containing region spanning exons 6-8. However, resulting dystrophin expression levels and effects on muscle pathology were greater with the use of micro-dystrophin gene transfer. This study demonstrates that our muscle-specific multi-exon deletion strategy can correct a frequently mutated region of the dystrophin gene in an aged large animal DMD model, but underscores that further enhancements are required to reach efficiencies comparable to AAV micro-dystrophin. Our observations also indicate that treatment efficacy and state of muscle pathology at the time of intervention are linked, suggesting the need for additional methodological optimizations related to age and disease progression to achieve relevant clinical translation of CRISPR-based therapies to all DMD patients. Gene editing has shown promise for correcting or bypassing dystrophin mutations in Duchenne muscular dystrophy (DMD). However, preclinical studies have focused on young animals with limited muscle fibrosis and wasting, thereby favoring muscle transduction, myonuclear editing, and prevention of disease progression. Here, we explore muscle-specific dystrophin gene editing following intramuscular delivery of AAV6:CK8e-CRISPR/SaCas9 in 3- and 8-year-old dystrophic CXMD dogs and provide a qualitative comparison to AAV6:CK8e-micro-dystrophin gene replacement at 6 weeks post-treatment. Gene editing restored the dystrophin reading frame in ∼1.3% of genomes and in up to 4.0% of dystrophin transcripts following excision of a 105-kb mutation containing region spanning exons 6-8. However, resulting dystrophin expression levels and effects on muscle pathology were greater with the use of micro-dystrophin gene transfer. This study demonstrates that our muscle-specific multi-exon deletion strategy can correct a frequently mutated region of the dystrophin gene in an aged large animal DMD model, but underscores that further enhancements are required to reach efficiencies comparable to AAV micro-dystrophin. Our observations also indicate that treatment efficacy and state of muscle pathology at the time of intervention are linked, suggesting the need for additional methodological optimizations related to age and disease progression to achieve relevant clinical translation of CRISPR-based therapies to all DMD patients. Gene editing has shown promise for correcting or bypassing dystrophin mutations in Duchenne muscular dystrophy (DMD). However, preclinical studies have focused on young animals with limited muscle fibrosis and wasting, thereby favoring muscle transduction, myonuclear editing, and prevention of disease progression. Here, we explore muscle-specific dystrophin gene editing following intramuscular delivery of AAV6:CK8e-CRISPR/SaCas9 in 3- and 8-year-old dystrophic CXMD dogs and provide a qualitative comparison to AAV6:CK8e-micro-dystrophin gene replacement at 6 weeks post-treatment. Gene editing restored the dystrophin reading frame in ∼1.3% of genomes and in up to 4.0% of dystrophin transcripts following excision of a 105-kb mutation containing region spanning exons 6–8. However, resulting dystrophin expression levels and effects on muscle pathology were greater with the use of micro-dystrophin gene transfer. This study demonstrates that our muscle-specific multi-exon deletion strategy can correct a frequently mutated region of the dystrophin gene in an aged large animal DMD model, but underscores that further enhancements are required to reach efficiencies comparable to AAV micro-dystrophin. Our observations also indicate that treatment efficacy and state of muscle pathology at the time of intervention are linked, suggesting the need for additional methodological optimizations related to age and disease progression to achieve relevant clinical translation of CRISPR-based therapies to all DMD patients. Comparisons of CRISPR/Cas9 gene editing and micro-dystrophin gene replacement in old dystrophic dogs highlight the promise and limitations of AAV-mediated gene therapy in older subjects with advanced muscle pathology. Gene editing has shown promise for correcting or bypassing dystrophin mutations in Duchenne muscular dystrophy (DMD). However, preclinical studies have focused on young animals with limited muscle fibrosis and wasting, thereby favoring muscle transduction, myonuclear editing, and prevention of disease progression. Here, we explore muscle-specific dystrophin gene editing following intramuscular delivery of AAV6:CK8e-CRISPR/SaCas9 in 3- and 8-year-old dystrophic CXMD dogs and provide a qualitative comparison to AAV6:CK8e-micro-dystrophin gene replacement at 6 weeks post-treatment. Gene editing restored the dystrophin reading frame in ∼1.3% of genomes and in up to 4.0% of dystrophin transcripts following excision of a 105-kb mutation containing region spanning exons 6–8. However, resulting dystrophin expression levels and effects on muscle pathology were greater with the use of micro-dystrophin gene transfer. This study demonstrates that our muscle-specific multi-exon deletion strategy can correct a frequently mutated region of the dystrophin gene in an aged large animal DMD model, but underscores that further enhancements are required to reach efficiencies comparable to AAV micro-dystrophin. Our observations also indicate that treatment efficacy and state of muscle pathology at the time of intervention are linked, suggesting the need for additional methodological optimizations related to age and disease progression to achieve relevant clinical translation of CRISPR-based therapies to all DMD patients. [Display omitted] Comparisons of CRISPR/Cas9 gene editing and micro-dystrophin gene replacement in old dystrophic dogs highlight the promise and limitations of AAV-mediated gene therapy in older subjects with advanced muscle pathology. |
Author | Crudele, Julie M. Chamberlain, Jeffrey S. Bengtsson, Niclas E. Hauschka, Stephen D. Halbert, Christine L. Klaiman, Jordan M. |
Author_xml | – sequence: 1 givenname: Niclas E. orcidid: 0000-0002-5309-2135 surname: Bengtsson fullname: Bengtsson, Niclas E. email: niclasb@uw.edu organization: Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109-8055, USA – sequence: 2 givenname: Julie M. surname: Crudele fullname: Crudele, Julie M. organization: Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109-8055, USA – sequence: 3 givenname: Jordan M. surname: Klaiman fullname: Klaiman, Jordan M. organization: Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109-8055, USA – sequence: 4 givenname: Christine L. surname: Halbert fullname: Halbert, Christine L. organization: Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109-8055, USA – sequence: 5 givenname: Stephen D. surname: Hauschka fullname: Hauschka, Stephen D. organization: Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109-8055, USA – sequence: 6 givenname: Jeffrey S. surname: Chamberlain fullname: Chamberlain, Jeffrey S. organization: Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109-8055, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35143959$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1vEzEQtVAR_YBfgIT2yCWpP9a78QEklLZQqVUvcLa83nHiyGsv9qYl_54JaSvgUOlJHs_MezOad0qOYopAyHtG54yy5nwz3w3TGuaccj6nCCpekRMmuZxRyuuj55g1x-S0lA1GTKrmDTkWktVCSXVCHpZpGE32JcUquarflSmnce1jBb_GDKV4LLgUQnrwcVWtIEIFvZ_2HxP7QyLDGIyFAeJUIdMgVtBXyLfBR29NqC5uLzDvBwyH1EN4S147Ewq8e3zPyI-ry-_Lb7Obu6_Xyy83M1tLNc3AqgV1UsECetUIB3XHe-U6RVtDDTcCeNPVrjWy441ybQcGXM0Ft7KW0nXijHw-6I7bboDe4orZBD1mXCXvdDJe_1uJfq1X6V4r1jJWtyjw8VEgp59bKJMefLEQgomQtkXzhi8EZUJQbP3w96znIU_XxgZ1aLA5lZLBaesnM-GJcbQPmlG9d1Zv9B9n9d5ZTRFUIFf8x32Sf5n16cACvPG9h6yL9RAtWojmTLpP_kX-b7D0we8 |
CitedBy_id | crossref_primary_10_3390_ijms241713202 crossref_primary_10_1002_med_22036 crossref_primary_10_1002_mco2_423 crossref_primary_10_1089_hum_2024_041 crossref_primary_10_1177_17562864231182934 crossref_primary_10_1002_advs_202207436 crossref_primary_10_1242_dmm_049862 |
Cites_doi | 10.1002/(SICI)1097-4598(199808)21:8<991::AID-MUS2>3.0.CO;2-0 10.1038/nm.3628 10.1016/j.ymthe.2004.07.016 10.1038/ncomms16007 10.1038/s41467-020-19230-w 10.1016/j.cell.2021.08.028 10.1083/jcb.9.2.493 10.1016/j.celrep.2019.03.105 10.1016/0022-510X(88)90206-7 10.1371/journal.pone.0008647 10.1016/j.ymthe.2018.08.010 10.1212/WNL.44.12.2388 10.1172/JCI136873 10.15252/emmm.202013228 10.1538/expanim.52.93 10.1038/sj.mt.6300161 10.3389/fmicb.2011.00201 10.1038/mtna.2015.58 10.1126/scitranslmed.aan8081 10.1038/mt.2008.28 10.1038/ncomms16105 10.1083/jcb.134.4.873 10.1038/mtm.2014.38 10.1002/ana.21627 10.1016/S0021-9258(19)39599-7 10.1038/nm1085 10.1001/jama.1992.03480190051030 10.1089/hum.2006.093 10.1016/0888-7543(92)90210-J 10.1126/science.aad5143 10.1038/nm1439 10.1038/mt.2012.111 10.3389/fmicb.2011.00220 10.1038/s41467-021-26830-7 10.1016/j.ymthe.2020.11.003 10.1152/physiol.00012.2019 10.1038/nm0302-253 10.1172/jci.insight.95918 10.1126/science.aad5725 10.1038/s41591-019-0738-2 10.1172/jci.insight.124297 10.1371/journal.pone.0069194 10.1126/science.aau1549 10.1038/mt.2012.283 10.1038/mt.2008.102 10.1038/nature14299 10.1007/978-1-4939-7374-3_18 10.1016/j.omtm.2020.09.016 10.1038/sj.gt.3302800 10.1126/science.aad5177 10.1093/hmg/ddv420 10.1016/j.omtn.2017.02.004 10.1038/mt.2009.294 10.1016/j.ymthe.2019.01.002 10.1002/(SICI)1097-4598(199801)21:1<91::AID-MUS12>3.0.CO;2-3 10.1093/hmg/10.24.2745 |
ContentType | Journal Article |
Copyright | 2022 The American Society of Gene and Cell Therapy Copyright © 2022 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved. 2022 The American Society of Gene and Cell Therapy. 2022 The American Society of Gene and Cell Therapy |
Copyright_xml | – notice: 2022 The American Society of Gene and Cell Therapy – notice: Copyright © 2022 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved. – notice: 2022 The American Society of Gene and Cell Therapy. 2022 The American Society of Gene and Cell Therapy |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.ymthe.2022.02.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1525-0024 |
EndPage | 2185 |
ExternalDocumentID | PMC9171147 35143959 10_1016_j_ymthe_2022_02_003 S1525001622000867 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK017047 – fundername: NIAMS NIH HHS grantid: R01 AR040864 – fundername: NIAMS NIH HHS grantid: P50 AR065139 – fundername: NIAMS NIH HHS grantid: R01 AR044533 – fundername: NINDS NIH HHS grantid: R01 NS117912 |
GroupedDBID | --- 0R~ 123 29M 2WC 36B 39C 4.4 53G 7X7 8FE 8FH AACTN AAEDW AAIAV AALRI AAVLU AAXUO ABJNI ABMAC ABUDA ABVKL ACGFO ACGFS ACPRK ADBBV ADFRT ADJPV AENEX AFTJW AGAYW AHMBA ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS ASPBG AVWKF AZFZN BAWUL BENPR BPHCQ BVXVI CS3 DIK DU5 E3Z EBS F5P FDB FEDTE FRP GX1 HCIFZ HVGLF HYE HZ~ JIG KQ8 LG5 LK8 M41 M7P O9- OK1 P2P PROAC RCE RNTTT RPM SSZ TR2 W2D ZA5 --K 1B1 88E 8FI 8FJ AAMRU AAYWO AAYXX ABAWZ ABDGV ABUWG ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFKRA AFPUW AGCQF AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALIPV APXCP BBNVY BHPHI CAG CCPQU CITATION COF EJD EMB EMOBN FYUFA HMCUK IHE JSO M1P NQ- PHGZM PHGZT PQQKQ PSQYO RIG RNS ROL RPZ SEW SV3 UHS UKHRP XPP ZMT CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c459t-ec980f59e8ed963fe4b2d9fb907a0a2a3e26b4f7a5b269f7beaef4232c5455fb3 |
ISSN | 1525-0016 1525-0024 |
IngestDate | Thu Aug 21 18:37:11 EDT 2025 Thu Jul 10 23:04:49 EDT 2025 Mon Jul 21 05:58:31 EDT 2025 Thu Apr 24 23:13:09 EDT 2025 Tue Jul 01 03:53:44 EDT 2025 Fri Feb 23 02:41:33 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | CRISPR CXMD micro-dystrophin AAV Duchenne muscle dogs DMD Cas9 gene editing |
Language | English |
License | Copyright © 2022 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c459t-ec980f59e8ed963fe4b2d9fb907a0a2a3e26b4f7a5b269f7beaef4232c5455fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5309-2135 |
OpenAccessLink | http://www.cell.com/article/S1525001622000867/pdf |
PMID | 35143959 |
PQID | 2628301330 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9171147 proquest_miscellaneous_2628301330 pubmed_primary_35143959 crossref_citationtrail_10_1016_j_ymthe_2022_02_003 crossref_primary_10_1016_j_ymthe_2022_02_003 elsevier_sciencedirect_doi_10_1016_j_ymthe_2022_02_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular therapy |
PublicationTitleAlternate | Mol Ther |
PublicationYear | 2022 |
Publisher | Elsevier Inc American Society of Gene & Cell Therapy |
Publisher_xml | – name: Elsevier Inc – name: American Society of Gene & Cell Therapy |
References | Arnett, Konieczny, Ramos, Hall, Odom, Yablonka-Reuveni, Chamberlain, Chamberlain (bib25) 2014; 1 Wang, Storb, Lee, Kushmerick, Chu, Berger, Arnett, Allen, Chamberlain, Riddell, Tapscott (bib53) 2010; 18 Kwon, Ettyreddy, Vankara, Bohning, Delvin, Hauschka, Asokan, Gersbach (bib24) 2020; 19 Yokota, Lu, Partridge, Kobayashi, Nakamura, Takeda, Hoffman (bib40) 2009; 65 Young, Pyle, Spencer (bib4) 2019; 34 Emery, Muntoni (bib1) 2003 Gregorevic, Blankinship, Allen, Crawford, Meuse, Miller, Russell, Chamberlain (bib51) 2004; 10 Halbert, Allen, Chamberlain (bib56) 2018; 1687 Koenig, Kunkel (bib36) 1990; 265 Duchêne, Cherif, Iyombe-Engembe, Guyon, Rousseau, Ouellet, Barbeau, Lague, Tremblay (bib9) 2018; 26 Ramos, Hollinger, Bengtsson, Allen, Hauschka, Chamberlain (bib16) 2019; 27 Moretti, Fonteyne, Giesert, Hoppmann, Meier, Bozoglu, Baehr, Schneider, Sinnecker, Klett (bib12) 2020; 26 Wang, Tapscott, Chamberlain, Storb (bib60) 2011; 2 Long, Amoasii, Mireault, McAnally, Li, Sanchez-Ortiz, Bhattacharyya, Shelton, Bassel-Duby, Olson (bib11) 2016; 351 Chamberlain, Chamberlain, Fenwick, Ward, Caskey, Dimnik, Bech-Hansen, Hoar, Richards, Covone (bib50) 1992; 267 Koenig, Beggs, Moyer, Scherpf, Heindrich, Bettecken, Meng, Müller, Lindlöf, Kaariainen (bib19) 1989; 45 Crawford, Lu, Partridge, Chamberlain (bib43) 2001; 10 Bengtsson, Hall, Odom, Phelps, Andrus, Hawkins, Hauschka, Chamberlain, Chamberlain (bib5) 2017; 8 Harper, Hauser, DelloRusso, Duan, Crawford, Phelps, Harper, Robinson, Engelhardt, Brooks, Chamberlain (bib2) 2002; 8 Gregorevic, Blankinship, Allen, Chamberlain (bib18) 2008; 16 Chemello, Bassel-Duby, Olson (bib35) 2020; 130 Wang, Storb, Halbert, Banks, Butts, Finn, Allen, Miller, Chamberlain, Tapscott (bib31) 2012; 20 Arnett, Garikipati, Wang, Tapscott, Chamberlain (bib59) 2011; 2 Bengtsson, Tasfaout, Hauschka, Chamberlain (bib8) 2021; 29 Maino, Wojtal, Evagelou, Farheen, Wong, Lindsay, Scott, Rizvi, Hyatt, Rok (bib20) 2021; 13 Corrado, Rafael, Mills, Cole, Faulkner, Wang, Chamberlain (bib46) 1996; 134 Beggs, Hoffman, Snyder, Arahata, Specht, Shapiro, Angelini, Sugita, Kunkel (bib45) 1991; 49 Amoasii, Hildyard, Li, Sanchez-Ortiz, Mireault, Caballero, Harron, Stathopoulou, Massey, Shelton (bib7) 2018; 362 Hakim, Kumar, Pérez-López, Wasala, Zhang, Yue, Teixeira, Pan, Zhang, Million (bib52) 2021; 12 Valentine, Cooper, de Lahunta, O'Quinn, Blue (bib29) 1988; 88 Lattanzi, Duguez, Moiani, Izmiryan, Barbon, Martin, Mamchaoui, Mouly, Bernardi, Mavilio, Bovolenta (bib21) 2017; 7 Wang, Allen, Riddell, Gregorevic, Storb, Tapscott, Chamberlain, Kuhr (bib58) 2007; 18 Goldstein, Tabebordbar, Zhu, Wang, Messemer, Peacker, Ashrafi Kakhki, Gonzalez-Celeiro, Shwartz, Cheng (bib23) 2019; 27 Le Guiner, Servais, Montus, Larcher, Fraysse, Moullec, Allais, François, Dutilleul, Malerba (bib33) 2017; 8 Kyrychenko, Kyrychenko, Tiburcy, Shelton, Long, Schneider, Zimmermann, Bassel-Duby, Olson (bib47) 2017; 2 Bengtsson, Seto, Hall, Chamberlain, Odom (bib3) 2016; 25 Nelson, Hakim, Ousterout, Thakore, Moreb, Castellanos Rivera, Madhavan, Pan, Ran, Yan (bib13) 2016; 351 Tabebordbar, Lagerborg, Stanton, King, Ye, Tellez, Krunnfusz, Tavakoli, Widrick, Messemer (bib27) 2021; 184 Shimatsu, Katagiri, Furuta, Nakura, Tanioka, Yuasa, Tomohiro, Kornegay, Nonaka, Takeda (bib28) 2003; 52 Hakim, Wasala, Nelson, Wasala, Yue, Louderman, Lessa, Dai, Zhang, Jenkins (bib10) 2018; 3 Kinoshita, Vilquin, Asselin, Chamberlain, Tremblay (bib44) 1998; 21 McClorey, Moulton, Iversen, Fletcher, Wilton (bib39) 2006; 13 Sharp, Kornegay, Van Camp, Herbstreith, Secore, Kettle, Hung, Constantinou, Dykstra, Roses (bib38) 1992; 13 Wein, Vulin, Falzarano, Szigyarto, Maiti, Findlay, Heller, Uhlén, Bakthavachalu, Messina (bib48) 2014; 20 Blankinship, Gregorevic, Allen, Harper, Harper, Halbert, Miller, Miller, Chamberlain (bib55) 2004; 10 Heald, Anderson, Bushby, Shaw (bib49) 1994; 44 Walmsley, Arechavala-Gomeza, Fernandez-Fuente, Burke, Nagel, Holder, Stanley, Chandler, Marks, Muntoni (bib34) 2010; 5 Shin, Pan, Hakim, Yang, Yue, Zhang, Terjung, Duan (bib32) 2013; 21 Amoasii, Long, Li, Mireault, Shelton, Sanchez-Ortiz, McAnally, Bhattacharyya, Schmidt, Grimm (bib6) 2017; 9 Parker, Kuhr, Tapscott, Storb (bib57) 2008; 16 Iyombe-Engembe, Ouellet, Barbeau, Rousseau, Chapdelaine, Lagüe, Tremblay (bib15) 2016; 5 Gregorevic, Allen, Minami, Blankinship, Haraguchi, Meuse, Finn, Adams, Froehner, Murry, Chamberlain (bib17) 2006; 12 Abmayr, Chamberlain (bib37) 2006 Weinmann, Weis, Sippel, Tulalamba, Remes, El Andari, Herrmann, Pham, Borowski, Hille (bib26) 2020; 11 Echigoya, Lee, Rodrigues, Nagata, Tanihata, Nozohourmehrabad, Panesar, Miskew, Aoki, Yokota (bib42) 2013; 8 Wang, Kuhr, Allen, Blankinship, Gregorevic, Chamberlain, Tapscott, Storb (bib30) 2007; 15 Mauro (bib22) 1961; 9 Ran, Cong, Yan, Scott, Gootenberg, Kriz, Zetsche, Shalem, Wu, Makarova (bib54) 2015; 520 Schatzberg, Anderson, Wilton, Kornegay, Mann, Solomon, Sharp (bib41) 1998; 21 Tabebordbar, Zhu, Cheng, Chew, Widrick, Yan, Maesner, Wu, Xiao, Ran (bib14) 2016; 351 Gregorevic (10.1016/j.ymthe.2022.02.003_bib51) 2004; 10 Chemello (10.1016/j.ymthe.2022.02.003_bib35) 2020; 130 Chamberlain (10.1016/j.ymthe.2022.02.003_bib50) 1992; 267 Harper (10.1016/j.ymthe.2022.02.003_bib2) 2002; 8 Amoasii (10.1016/j.ymthe.2022.02.003_bib6) 2017; 9 Parker (10.1016/j.ymthe.2022.02.003_bib57) 2008; 16 Hakim (10.1016/j.ymthe.2022.02.003_bib52) 2021; 12 Wang (10.1016/j.ymthe.2022.02.003_bib31) 2012; 20 Emery (10.1016/j.ymthe.2022.02.003_bib1) 2003 Ramos (10.1016/j.ymthe.2022.02.003_bib16) 2019; 27 Maino (10.1016/j.ymthe.2022.02.003_bib20) 2021; 13 Mauro (10.1016/j.ymthe.2022.02.003_bib22) 1961; 9 Wang (10.1016/j.ymthe.2022.02.003_bib53) 2010; 18 Long (10.1016/j.ymthe.2022.02.003_bib11) 2016; 351 Abmayr (10.1016/j.ymthe.2022.02.003_bib37) 2006 Tabebordbar (10.1016/j.ymthe.2022.02.003_bib27) 2021; 184 Gregorevic (10.1016/j.ymthe.2022.02.003_bib18) 2008; 16 Shimatsu (10.1016/j.ymthe.2022.02.003_bib28) 2003; 52 Shin (10.1016/j.ymthe.2022.02.003_bib32) 2013; 21 Sharp (10.1016/j.ymthe.2022.02.003_bib38) 1992; 13 Kyrychenko (10.1016/j.ymthe.2022.02.003_bib47) 2017; 2 Wang (10.1016/j.ymthe.2022.02.003_bib58) 2007; 18 Kinoshita (10.1016/j.ymthe.2022.02.003_bib44) 1998; 21 Duchêne (10.1016/j.ymthe.2022.02.003_bib9) 2018; 26 Moretti (10.1016/j.ymthe.2022.02.003_bib12) 2020; 26 Young (10.1016/j.ymthe.2022.02.003_bib4) 2019; 34 Tabebordbar (10.1016/j.ymthe.2022.02.003_bib14) 2016; 351 Le Guiner (10.1016/j.ymthe.2022.02.003_bib33) 2017; 8 Halbert (10.1016/j.ymthe.2022.02.003_bib56) 2018; 1687 Bengtsson (10.1016/j.ymthe.2022.02.003_bib3) 2016; 25 Iyombe-Engembe (10.1016/j.ymthe.2022.02.003_bib15) 2016; 5 Corrado (10.1016/j.ymthe.2022.02.003_bib46) 1996; 134 Koenig (10.1016/j.ymthe.2022.02.003_bib36) 1990; 265 Weinmann (10.1016/j.ymthe.2022.02.003_bib26) 2020; 11 Valentine (10.1016/j.ymthe.2022.02.003_bib29) 1988; 88 Nelson (10.1016/j.ymthe.2022.02.003_bib13) 2016; 351 Hakim (10.1016/j.ymthe.2022.02.003_bib10) 2018; 3 Arnett (10.1016/j.ymthe.2022.02.003_bib59) 2011; 2 Heald (10.1016/j.ymthe.2022.02.003_bib49) 1994; 44 Bengtsson (10.1016/j.ymthe.2022.02.003_bib8) 2021; 29 Schatzberg (10.1016/j.ymthe.2022.02.003_bib41) 1998; 21 Wang (10.1016/j.ymthe.2022.02.003_bib30) 2007; 15 Kwon (10.1016/j.ymthe.2022.02.003_bib24) 2020; 19 Yokota (10.1016/j.ymthe.2022.02.003_bib40) 2009; 65 Walmsley (10.1016/j.ymthe.2022.02.003_bib34) 2010; 5 Koenig (10.1016/j.ymthe.2022.02.003_bib19) 1989; 45 Goldstein (10.1016/j.ymthe.2022.02.003_bib23) 2019; 27 Ran (10.1016/j.ymthe.2022.02.003_bib54) 2015; 520 Echigoya (10.1016/j.ymthe.2022.02.003_bib42) 2013; 8 Arnett (10.1016/j.ymthe.2022.02.003_bib25) 2014; 1 Amoasii (10.1016/j.ymthe.2022.02.003_bib7) 2018; 362 Wang (10.1016/j.ymthe.2022.02.003_bib60) 2011; 2 Gregorevic (10.1016/j.ymthe.2022.02.003_bib17) 2006; 12 McClorey (10.1016/j.ymthe.2022.02.003_bib39) 2006; 13 Crawford (10.1016/j.ymthe.2022.02.003_bib43) 2001; 10 Wein (10.1016/j.ymthe.2022.02.003_bib48) 2014; 20 Lattanzi (10.1016/j.ymthe.2022.02.003_bib21) 2017; 7 Blankinship (10.1016/j.ymthe.2022.02.003_bib55) 2004; 10 Beggs (10.1016/j.ymthe.2022.02.003_bib45) 1991; 49 Bengtsson (10.1016/j.ymthe.2022.02.003_bib5) 2017; 8 |
References_xml | – year: 2003 ident: bib1 article-title: Duchenne Muscular Dystrophy – volume: 25 start-page: R9 year: 2016 end-page: R17 ident: bib3 article-title: Progress and prospects of gene therapy clinical trials for the muscular dystrophies publication-title: Hum. Mol. Genet. – volume: 10 start-page: 828 year: 2004 end-page: 834 ident: bib51 article-title: Systemic delivery of genes to striated muscles using adeno-associated viral vectors publication-title: Nat. Med. – volume: 10 start-page: 2745 year: 2001 end-page: 2750 ident: bib43 article-title: Suppression of revertant fibers in mdx mice by expression of a functional dystrophin publication-title: Hum. Mol. Genet. – volume: 9 start-page: eaan8081 year: 2017 ident: bib6 article-title: Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy publication-title: Sci. Transl. Med. – volume: 44 start-page: 2388 year: 1994 end-page: 2390 ident: bib49 article-title: Becker muscular dystrophy with onset after 60 years publication-title: Neurology – volume: 1 start-page: 14038 year: 2014 ident: bib25 article-title: Adeno-associated viral (AAV) vectors do not efficiently target muscle satellite cells publication-title: Mol. Ther. Methods Clin. Dev. – volume: 13 start-page: e13228 year: 2021 ident: bib20 article-title: Targeted genome editing in vivo corrects a Dmd duplication restoring wild-type dystrophin expression publication-title: EMBO Mol. Med. – volume: 2 start-page: 201 year: 2011 ident: bib60 article-title: Immunity and AAV-mediated gene therapy for muscular dystrophies in large animal models and human trials publication-title: Front. Microbiol. – volume: 27 start-page: 1254 year: 2019 end-page: 1264.e7 ident: bib23 article-title: In situ modification of tissue stem and progenitor cell genomes publication-title: Cell Rep. – volume: 351 start-page: 400 year: 2016 end-page: 403 ident: bib11 article-title: Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy publication-title: Science – volume: 8 start-page: 253 year: 2002 end-page: 261 ident: bib2 article-title: Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy publication-title: Nat. Med. – volume: 351 start-page: 403 year: 2016 end-page: 407 ident: bib13 article-title: In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy publication-title: Science – volume: 49 start-page: 54 year: 1991 end-page: 67 ident: bib45 article-title: Exploring the molecular basis for variability among patients with Becker muscular dystrophy: dystrophin gene and protein studies publication-title: Am. J. Hum. Genet. – volume: 8 start-page: e69194 year: 2013 ident: bib42 article-title: Mutation types and aging differently affect revertant fiber expansion in dystrophic mdx and mdx52 mice publication-title: PLoS One – volume: 362 start-page: 86 year: 2018 end-page: 91 ident: bib7 article-title: Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy publication-title: Science – volume: 88 start-page: 69 year: 1988 end-page: 81 ident: bib29 article-title: Canine X-linked muscular dystrophy. An animal model of Duchenne muscular dystrophy: clinical studies publication-title: J. Neurol. Sci. – volume: 21 start-page: 750 year: 2013 end-page: 757 ident: bib32 article-title: Microdystrophin ameliorates muscular dystrophy in the canine model of duchenne muscular dystrophy publication-title: Mol. Ther. – volume: 12 start-page: 787 year: 2006 end-page: 789 ident: bib17 article-title: rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice publication-title: Nat. Med. – volume: 45 start-page: 498 year: 1989 end-page: 506 ident: bib19 article-title: The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion publication-title: Am. J. Hum. Genet. – volume: 9 start-page: 493 year: 1961 end-page: 495 ident: bib22 article-title: Satellite cell of skeletal muscle fibers publication-title: J. Biophys. Biochem. Cytol. – volume: 2 start-page: e95918 year: 2017 ident: bib47 article-title: Functional correction of dystrophin actin binding domain mutations by genome editing publication-title: JCI Insight – volume: 52 start-page: 93 year: 2003 end-page: 97 ident: bib28 article-title: Canine X-linked muscular dystrophy in Japan (CXMDJ) publication-title: Exp. Anim. – volume: 1687 start-page: 257 year: 2018 end-page: 266 ident: bib56 article-title: AAV6 vector production and purification for muscle gene therapy publication-title: Methods Mol. Biol. – volume: 13 start-page: 1373 year: 2006 end-page: 1381 ident: bib39 article-title: Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD publication-title: Gene Ther. – volume: 12 start-page: 6769 year: 2021 ident: bib52 article-title: Cas9-specific immune responses compromise local and systemic AAV CRISPR therapy in multiple dystrophic canine models publication-title: Nat. Commun. – start-page: 14 year: 2006 end-page: 34 ident: bib37 article-title: The structure and function of dystrophin publication-title: The Molecular Mechanisms of Muscular Dystrophies – volume: 8 start-page: 16105 year: 2017 ident: bib33 article-title: Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy publication-title: Nat. Commun. – volume: 7 start-page: 11 year: 2017 end-page: 19 ident: bib21 article-title: Correction of the exon 2 duplication in DMD myoblasts by a single CRISPR/Cas9 system publication-title: Mol. Ther. Nucleic Acids – volume: 21 start-page: 991 year: 1998 end-page: 998 ident: bib41 article-title: Alternative dystrophin gene transcripts in golden retriever muscular dystrophy publication-title: Muscle Nerve – volume: 8 start-page: 16007 year: 2017 ident: bib5 article-title: Corrigendum: muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy publication-title: Nat. Commun. – volume: 11 start-page: 5432 year: 2020 ident: bib26 article-title: Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants publication-title: Nat. Commun. – volume: 16 start-page: 1340 year: 2008 end-page: 1346 ident: bib57 article-title: Hematopoietic cell transplantation provides an immune-tolerant platform for myoblast transplantation in dystrophic dogs publication-title: Mol. Ther. – volume: 10 start-page: 671 year: 2004 end-page: 678 ident: bib55 article-title: Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6 publication-title: Mol. Ther. – volume: 267 start-page: 2609 year: 1992 end-page: 2615 ident: bib50 article-title: Diagnosis of Duchenne and Becker muscular dystrophies by polymerase chain reaction. A multicenter study publication-title: JAMA – volume: 65 start-page: 667 year: 2009 end-page: 676 ident: bib40 article-title: Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs publication-title: Ann. Neurol. – volume: 34 start-page: 341 year: 2019 end-page: 353 ident: bib4 article-title: CRISPR for neuromuscular disorders: gene editing and beyond publication-title: Physiology – volume: 351 start-page: 407 year: 2016 end-page: 411 ident: bib14 article-title: In vivo gene editing in dystrophic mouse muscle and muscle stem cells publication-title: Science – volume: 184 start-page: 4919 year: 2021 end-page: e22 e4922 ident: bib27 article-title: Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species publication-title: Cell – volume: 2 start-page: 220 year: 2011 ident: bib59 article-title: Immune responses to rAAV6: the influence of canine parvovirus vaccination and neonatal administration of viral vector publication-title: Front. Microbiol. – volume: 130 start-page: 2766 year: 2020 end-page: 2776 ident: bib35 article-title: Correction of muscular dystrophies by CRISPR gene editing publication-title: J. Clin. Invest. – volume: 21 start-page: 91 year: 1998 end-page: 103 ident: bib44 article-title: Transplantation of myoblasts from a transgenic mouse overexpressing dystrophin prduced only a relatively small increase of dystrophin-positive membrane publication-title: Muscle Nerve – volume: 29 start-page: 1070 year: 2021 end-page: 1085 ident: bib8 article-title: Dystrophin gene-editing stability is dependent on dystrophin levels in skeletal but not cardiac muscles publication-title: Mol. Ther. – volume: 19 start-page: 320 year: 2020 end-page: 329 ident: bib24 article-title: gene editing of muscle stem cells with adeno-associated viral vectors in a mouse model of Duchenne muscular dystrophy publication-title: Mol. Ther. Methods Clin. Dev. – volume: 16 start-page: 657 year: 2008 end-page: 664 ident: bib18 article-title: Systemic microdystrophin gene delivery improves skeletal muscle structure and function in old dystrophic mdx mice publication-title: Mol. Ther. – volume: 13 start-page: 115 year: 1992 end-page: 121 ident: bib38 article-title: An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy publication-title: Genomics – volume: 26 start-page: 207 year: 2020 end-page: 214 ident: bib12 article-title: Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy publication-title: Nat. Med. – volume: 26 start-page: 2604 year: 2018 end-page: 2616 ident: bib9 article-title: CRISPR-induced deletion with SaCas9 restores dystrophin expression in dystrophic models in vitro and in vivo publication-title: Mol. Ther. – volume: 18 start-page: 617 year: 2010 end-page: 624 ident: bib53 article-title: Immune responses to AAV in canine muscle monitored by cellular assays and noninvasive imaging publication-title: Mol. Ther. – volume: 18 start-page: 18 year: 2007 end-page: 26 ident: bib58 article-title: Immunity to adeno-associated virus-mediated gene transfer in a random-bred canine model of Duchenne muscular dystrophy publication-title: Hum. Gene Ther. – volume: 20 start-page: 992 year: 2014 end-page: 1000 ident: bib48 article-title: Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice publication-title: Nat. Med. – volume: 5 start-page: e283 year: 2016 ident: bib15 article-title: Efficient restoration of the dystrophin gene reading frame and protein structure in DMD myoblasts using the CinDel method publication-title: Mol. Ther. Nucleic Acids – volume: 20 start-page: 1501 year: 2012 end-page: 1507 ident: bib31 article-title: Successful regional delivery and long-term expression of a dystrophin gene in canine muscular dystrophy: a preclinical model for human therapies publication-title: Mol. Ther. – volume: 27 start-page: 623 year: 2019 end-page: 635 ident: bib16 article-title: Development of novel micro-dystrophins with enhanced functionality publication-title: Mol. Ther. – volume: 3 start-page: e124297 year: 2018 ident: bib10 article-title: AAV CRISPR editing rescues cardiac and muscle function for 18 months in dystrophic mice publication-title: JCI Insight – volume: 5 start-page: e8647 year: 2010 ident: bib34 article-title: A duchenne muscular dystrophy gene hot spot mutation in dystrophin-deficient cavalier king charles spaniels is amenable to exon 51 skipping publication-title: PLoS One – volume: 134 start-page: 873 year: 1996 end-page: 884 ident: bib46 article-title: Transgenic mdx mice expressing dystrophin with a deletion in the actin-binding domain display a "mild Becker" phenotype publication-title: J. Cell Biol. – volume: 265 start-page: 4560 year: 1990 end-page: 4566 ident: bib36 article-title: Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility publication-title: J. Biol. Chem. – volume: 520 start-page: 186 year: 2015 end-page: 191 ident: bib54 article-title: In vivo genome editing using Staphylococcus aureus Cas9 publication-title: Nature – volume: 15 start-page: 1160 year: 2007 end-page: 1166 ident: bib30 article-title: Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression publication-title: Mol. Ther. – volume: 21 start-page: 991 year: 1998 ident: 10.1016/j.ymthe.2022.02.003_bib41 article-title: Alternative dystrophin gene transcripts in golden retriever muscular dystrophy publication-title: Muscle Nerve doi: 10.1002/(SICI)1097-4598(199808)21:8<991::AID-MUS2>3.0.CO;2-0 – volume: 20 start-page: 992 year: 2014 ident: 10.1016/j.ymthe.2022.02.003_bib48 article-title: Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice publication-title: Nat. Med. doi: 10.1038/nm.3628 – volume: 10 start-page: 671 year: 2004 ident: 10.1016/j.ymthe.2022.02.003_bib55 article-title: Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6 publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2004.07.016 – volume: 8 start-page: 16007 year: 2017 ident: 10.1016/j.ymthe.2022.02.003_bib5 article-title: Corrigendum: muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy publication-title: Nat. Commun. doi: 10.1038/ncomms16007 – volume: 11 start-page: 5432 year: 2020 ident: 10.1016/j.ymthe.2022.02.003_bib26 article-title: Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants publication-title: Nat. Commun. doi: 10.1038/s41467-020-19230-w – volume: 184 start-page: 4919 year: 2021 ident: 10.1016/j.ymthe.2022.02.003_bib27 article-title: Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species publication-title: Cell doi: 10.1016/j.cell.2021.08.028 – volume: 9 start-page: 493 year: 1961 ident: 10.1016/j.ymthe.2022.02.003_bib22 article-title: Satellite cell of skeletal muscle fibers publication-title: J. Biophys. Biochem. Cytol. doi: 10.1083/jcb.9.2.493 – volume: 27 start-page: 1254 year: 2019 ident: 10.1016/j.ymthe.2022.02.003_bib23 article-title: In situ modification of tissue stem and progenitor cell genomes publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.03.105 – volume: 49 start-page: 54 year: 1991 ident: 10.1016/j.ymthe.2022.02.003_bib45 article-title: Exploring the molecular basis for variability among patients with Becker muscular dystrophy: dystrophin gene and protein studies publication-title: Am. J. Hum. Genet. – volume: 88 start-page: 69 year: 1988 ident: 10.1016/j.ymthe.2022.02.003_bib29 article-title: Canine X-linked muscular dystrophy. An animal model of Duchenne muscular dystrophy: clinical studies publication-title: J. Neurol. Sci. doi: 10.1016/0022-510X(88)90206-7 – volume: 5 start-page: e8647 year: 2010 ident: 10.1016/j.ymthe.2022.02.003_bib34 article-title: A duchenne muscular dystrophy gene hot spot mutation in dystrophin-deficient cavalier king charles spaniels is amenable to exon 51 skipping publication-title: PLoS One doi: 10.1371/journal.pone.0008647 – volume: 26 start-page: 2604 year: 2018 ident: 10.1016/j.ymthe.2022.02.003_bib9 article-title: CRISPR-induced deletion with SaCas9 restores dystrophin expression in dystrophic models in vitro and in vivo publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2018.08.010 – volume: 44 start-page: 2388 year: 1994 ident: 10.1016/j.ymthe.2022.02.003_bib49 article-title: Becker muscular dystrophy with onset after 60 years publication-title: Neurology doi: 10.1212/WNL.44.12.2388 – volume: 130 start-page: 2766 year: 2020 ident: 10.1016/j.ymthe.2022.02.003_bib35 article-title: Correction of muscular dystrophies by CRISPR gene editing publication-title: J. Clin. Invest. doi: 10.1172/JCI136873 – volume: 13 start-page: e13228 year: 2021 ident: 10.1016/j.ymthe.2022.02.003_bib20 article-title: Targeted genome editing in vivo corrects a Dmd duplication restoring wild-type dystrophin expression publication-title: EMBO Mol. Med. doi: 10.15252/emmm.202013228 – volume: 52 start-page: 93 year: 2003 ident: 10.1016/j.ymthe.2022.02.003_bib28 article-title: Canine X-linked muscular dystrophy in Japan (CXMDJ) publication-title: Exp. Anim. doi: 10.1538/expanim.52.93 – volume: 15 start-page: 1160 year: 2007 ident: 10.1016/j.ymthe.2022.02.003_bib30 article-title: Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression publication-title: Mol. Ther. doi: 10.1038/sj.mt.6300161 – volume: 2 start-page: 201 year: 2011 ident: 10.1016/j.ymthe.2022.02.003_bib60 article-title: Immunity and AAV-mediated gene therapy for muscular dystrophies in large animal models and human trials publication-title: Front. Microbiol. doi: 10.3389/fmicb.2011.00201 – volume: 5 start-page: e283 year: 2016 ident: 10.1016/j.ymthe.2022.02.003_bib15 article-title: Efficient restoration of the dystrophin gene reading frame and protein structure in DMD myoblasts using the CinDel method publication-title: Mol. Ther. Nucleic Acids doi: 10.1038/mtna.2015.58 – volume: 9 start-page: eaan8081 year: 2017 ident: 10.1016/j.ymthe.2022.02.003_bib6 article-title: Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aan8081 – volume: 16 start-page: 657 year: 2008 ident: 10.1016/j.ymthe.2022.02.003_bib18 article-title: Systemic microdystrophin gene delivery improves skeletal muscle structure and function in old dystrophic mdx mice publication-title: Mol. Ther. doi: 10.1038/mt.2008.28 – volume: 8 start-page: 16105 year: 2017 ident: 10.1016/j.ymthe.2022.02.003_bib33 article-title: Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy publication-title: Nat. Commun. doi: 10.1038/ncomms16105 – volume: 134 start-page: 873 year: 1996 ident: 10.1016/j.ymthe.2022.02.003_bib46 article-title: Transgenic mdx mice expressing dystrophin with a deletion in the actin-binding domain display a "mild Becker" phenotype publication-title: J. Cell Biol. doi: 10.1083/jcb.134.4.873 – volume: 1 start-page: 14038 year: 2014 ident: 10.1016/j.ymthe.2022.02.003_bib25 article-title: Adeno-associated viral (AAV) vectors do not efficiently target muscle satellite cells publication-title: Mol. Ther. Methods Clin. Dev. doi: 10.1038/mtm.2014.38 – volume: 65 start-page: 667 year: 2009 ident: 10.1016/j.ymthe.2022.02.003_bib40 article-title: Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs publication-title: Ann. Neurol. doi: 10.1002/ana.21627 – volume: 265 start-page: 4560 year: 1990 ident: 10.1016/j.ymthe.2022.02.003_bib36 article-title: Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)39599-7 – volume: 10 start-page: 828 year: 2004 ident: 10.1016/j.ymthe.2022.02.003_bib51 article-title: Systemic delivery of genes to striated muscles using adeno-associated viral vectors publication-title: Nat. Med. doi: 10.1038/nm1085 – volume: 267 start-page: 2609 year: 1992 ident: 10.1016/j.ymthe.2022.02.003_bib50 article-title: Diagnosis of Duchenne and Becker muscular dystrophies by polymerase chain reaction. A multicenter study publication-title: JAMA doi: 10.1001/jama.1992.03480190051030 – volume: 18 start-page: 18 year: 2007 ident: 10.1016/j.ymthe.2022.02.003_bib58 article-title: Immunity to adeno-associated virus-mediated gene transfer in a random-bred canine model of Duchenne muscular dystrophy publication-title: Hum. Gene Ther. doi: 10.1089/hum.2006.093 – volume: 13 start-page: 115 year: 1992 ident: 10.1016/j.ymthe.2022.02.003_bib38 article-title: An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy publication-title: Genomics doi: 10.1016/0888-7543(92)90210-J – volume: 351 start-page: 403 year: 2016 ident: 10.1016/j.ymthe.2022.02.003_bib13 article-title: In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy publication-title: Science doi: 10.1126/science.aad5143 – volume: 12 start-page: 787 year: 2006 ident: 10.1016/j.ymthe.2022.02.003_bib17 article-title: rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice publication-title: Nat. Med. doi: 10.1038/nm1439 – volume: 20 start-page: 1501 year: 2012 ident: 10.1016/j.ymthe.2022.02.003_bib31 article-title: Successful regional delivery and long-term expression of a dystrophin gene in canine muscular dystrophy: a preclinical model for human therapies publication-title: Mol. Ther. doi: 10.1038/mt.2012.111 – volume: 45 start-page: 498 year: 1989 ident: 10.1016/j.ymthe.2022.02.003_bib19 article-title: The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion publication-title: Am. J. Hum. Genet. – volume: 2 start-page: 220 year: 2011 ident: 10.1016/j.ymthe.2022.02.003_bib59 article-title: Immune responses to rAAV6: the influence of canine parvovirus vaccination and neonatal administration of viral vector publication-title: Front. Microbiol. doi: 10.3389/fmicb.2011.00220 – volume: 12 start-page: 6769 year: 2021 ident: 10.1016/j.ymthe.2022.02.003_bib52 article-title: Cas9-specific immune responses compromise local and systemic AAV CRISPR therapy in multiple dystrophic canine models publication-title: Nat. Commun. doi: 10.1038/s41467-021-26830-7 – volume: 29 start-page: 1070 year: 2021 ident: 10.1016/j.ymthe.2022.02.003_bib8 article-title: Dystrophin gene-editing stability is dependent on dystrophin levels in skeletal but not cardiac muscles publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2020.11.003 – volume: 34 start-page: 341 year: 2019 ident: 10.1016/j.ymthe.2022.02.003_bib4 article-title: CRISPR for neuromuscular disorders: gene editing and beyond publication-title: Physiology doi: 10.1152/physiol.00012.2019 – volume: 8 start-page: 253 year: 2002 ident: 10.1016/j.ymthe.2022.02.003_bib2 article-title: Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy publication-title: Nat. Med. doi: 10.1038/nm0302-253 – start-page: 14 year: 2006 ident: 10.1016/j.ymthe.2022.02.003_bib37 article-title: The structure and function of dystrophin – volume: 2 start-page: e95918 year: 2017 ident: 10.1016/j.ymthe.2022.02.003_bib47 article-title: Functional correction of dystrophin actin binding domain mutations by genome editing publication-title: JCI Insight doi: 10.1172/jci.insight.95918 – year: 2003 ident: 10.1016/j.ymthe.2022.02.003_bib1 – volume: 351 start-page: 400 year: 2016 ident: 10.1016/j.ymthe.2022.02.003_bib11 article-title: Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy publication-title: Science doi: 10.1126/science.aad5725 – volume: 26 start-page: 207 year: 2020 ident: 10.1016/j.ymthe.2022.02.003_bib12 article-title: Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy publication-title: Nat. Med. doi: 10.1038/s41591-019-0738-2 – volume: 3 start-page: e124297 year: 2018 ident: 10.1016/j.ymthe.2022.02.003_bib10 article-title: AAV CRISPR editing rescues cardiac and muscle function for 18 months in dystrophic mice publication-title: JCI Insight doi: 10.1172/jci.insight.124297 – volume: 8 start-page: e69194 year: 2013 ident: 10.1016/j.ymthe.2022.02.003_bib42 article-title: Mutation types and aging differently affect revertant fiber expansion in dystrophic mdx and mdx52 mice publication-title: PLoS One doi: 10.1371/journal.pone.0069194 – volume: 362 start-page: 86 year: 2018 ident: 10.1016/j.ymthe.2022.02.003_bib7 article-title: Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy publication-title: Science doi: 10.1126/science.aau1549 – volume: 21 start-page: 750 year: 2013 ident: 10.1016/j.ymthe.2022.02.003_bib32 article-title: Microdystrophin ameliorates muscular dystrophy in the canine model of duchenne muscular dystrophy publication-title: Mol. Ther. doi: 10.1038/mt.2012.283 – volume: 16 start-page: 1340 year: 2008 ident: 10.1016/j.ymthe.2022.02.003_bib57 article-title: Hematopoietic cell transplantation provides an immune-tolerant platform for myoblast transplantation in dystrophic dogs publication-title: Mol. Ther. doi: 10.1038/mt.2008.102 – volume: 520 start-page: 186 year: 2015 ident: 10.1016/j.ymthe.2022.02.003_bib54 article-title: In vivo genome editing using Staphylococcus aureus Cas9 publication-title: Nature doi: 10.1038/nature14299 – volume: 1687 start-page: 257 year: 2018 ident: 10.1016/j.ymthe.2022.02.003_bib56 article-title: AAV6 vector production and purification for muscle gene therapy publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7374-3_18 – volume: 19 start-page: 320 year: 2020 ident: 10.1016/j.ymthe.2022.02.003_bib24 article-title: In vivo gene editing of muscle stem cells with adeno-associated viral vectors in a mouse model of Duchenne muscular dystrophy publication-title: Mol. Ther. Methods Clin. Dev. doi: 10.1016/j.omtm.2020.09.016 – volume: 13 start-page: 1373 year: 2006 ident: 10.1016/j.ymthe.2022.02.003_bib39 article-title: Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD publication-title: Gene Ther. doi: 10.1038/sj.gt.3302800 – volume: 351 start-page: 407 year: 2016 ident: 10.1016/j.ymthe.2022.02.003_bib14 article-title: In vivo gene editing in dystrophic mouse muscle and muscle stem cells publication-title: Science doi: 10.1126/science.aad5177 – volume: 25 start-page: R9 year: 2016 ident: 10.1016/j.ymthe.2022.02.003_bib3 article-title: Progress and prospects of gene therapy clinical trials for the muscular dystrophies publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddv420 – volume: 7 start-page: 11 year: 2017 ident: 10.1016/j.ymthe.2022.02.003_bib21 article-title: Correction of the exon 2 duplication in DMD myoblasts by a single CRISPR/Cas9 system publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2017.02.004 – volume: 18 start-page: 617 year: 2010 ident: 10.1016/j.ymthe.2022.02.003_bib53 article-title: Immune responses to AAV in canine muscle monitored by cellular assays and noninvasive imaging publication-title: Mol. Ther. doi: 10.1038/mt.2009.294 – volume: 27 start-page: 623 year: 2019 ident: 10.1016/j.ymthe.2022.02.003_bib16 article-title: Development of novel micro-dystrophins with enhanced functionality publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2019.01.002 – volume: 21 start-page: 91 year: 1998 ident: 10.1016/j.ymthe.2022.02.003_bib44 article-title: Transplantation of myoblasts from a transgenic mouse overexpressing dystrophin prduced only a relatively small increase of dystrophin-positive membrane publication-title: Muscle Nerve doi: 10.1002/(SICI)1097-4598(199801)21:1<91::AID-MUS12>3.0.CO;2-3 – volume: 10 start-page: 2745 year: 2001 ident: 10.1016/j.ymthe.2022.02.003_bib43 article-title: Suppression of revertant fibers in mdx mice by expression of a functional dystrophin publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/10.24.2745 |
SSID | ssj0011596 |
Score | 2.4230223 |
Snippet | Gene editing has shown promise for correcting or bypassing dystrophin mutations in Duchenne muscular dystrophy (DMD). However, preclinical studies have focused... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2176 |
SubjectTerms | AAV Aging Animals Cas9 CRISPR CRISPR-Cas Systems CXMD Disease Models, Animal Disease Progression DMD Dogs Duchenne Dystrophin - genetics gene editing Gene Editing - methods micro-dystrophin muscle Muscle, Skeletal - metabolism Muscular Dystrophy, Duchenne - genetics Muscular Dystrophy, Duchenne - therapy Original |
Title | Comparison of dystrophin expression following gene editing and gene replacement in an aged preclinical DMD animal model |
URI | https://dx.doi.org/10.1016/j.ymthe.2022.02.003 https://www.ncbi.nlm.nih.gov/pubmed/35143959 https://www.proquest.com/docview/2628301330 https://pubmed.ncbi.nlm.nih.gov/PMC9171147 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqIRAvCMbHypeMxFtJlDpf9SOsQ2OjPG3S3iI7tVmmLp3aVFP5j_gvuXNiJ91GxZAqq3ISN-n9cr6z735HyEcRxiIcJRqrlwkvkkp5PIfXnaeBZgLagGO-8-RHcngaHZ3FZ73e707U0qqSfv7rzryS_5Eq9IFcMUv2HpJ1g0IHfAf5QgsShvafZLzfLSI4mK6X1WJ-dV4Y3v46vhXDCGez-TUuCMAwyNRaVDYv0XQslAnLMjEBBUYmD0DDGO4AlzQ5noyhv7jERBMsnNM1aCe2vO6g2uQn-KLKn9XS5nPBnYvl4MB3Wx6LFVbgsRnaoFvcoeOZKJpl2SPwjHEzyW_1JFJyVS0rAtrI3_3u0gV4vS7EympbFntodHbVcbNNU9yhW9OkM0-DbRLfOQfUyxEX_voSHtzH361ZWcN2yrPb_DdmQhefaEPfLjIzSIaDZAHLDK_sAwYeCRbLGH87dhtWYBWaRDb7RJbgyoQS3rqTvxlBt52cm7G6HePn5Cl50ngt9HMNwWekp8pd8rCuY7reJY8mTYTGc3LdYpLONW0xSVtMUodJihCkDSYpYLLu6GCSwpUCPoBJ2sEkBUzSGpPUYPIFOf16cLJ_6DXFPbw8innlqZyPAh1zNVJTmAS0iiSbci15kIpAMBEqlshIpyKWLOE6lUoojVEFOdj8sZbhS7JTzku1R2iajrTCFPHpkIM3rcAFk0yJgCk5ZUGq-4TZfzvLG-Z7LMAyy7bIuU8-uYuuauKX7acnVoxZY7vWNmkGsNx-4Qcr9Aw0O27XiVLNV8uMJUjONwzDoE9e1SBwd4L5NyGPeZ-kG_BwJyBr_OaRsjg37PF8mA6HUfr6fs_3hjxu3-C3ZKdarNQ7MMcr-d68CH8AY1Tlxg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+dystrophin+expression+following+gene+editing+and+gene+replacement+in+an+aged+preclinical+DMD+animal+model&rft.jtitle=Molecular+therapy&rft.au=Bengtsson%2C+Niclas+E.&rft.au=Crudele%2C+Julie+M.&rft.au=Klaiman%2C+Jordan+M.&rft.au=Halbert%2C+Christine+L.&rft.date=2022-06-01&rft.issn=1525-0016&rft.volume=30&rft.issue=6&rft.spage=2176&rft.epage=2185&rft_id=info:doi/10.1016%2Fj.ymthe.2022.02.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymthe_2022_02_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-0016&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-0016&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-0016&client=summon |