Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells

Lewis base molecules that bind undercoordinated lead atoms at interfaces and grain boundaries (GBs) are known to enhance the durability of metal halide perovskite solar cells (PSCs). Using density functional theory calculations, we found that phosphine-containing molecules have the strongest binding...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 379; no. 6633; pp. 690 - 694
Main Authors Li, Chongwen, Wang, Xiaoming, Bi, Enbing, Jiang, Fangyuan, Park, So Min, Li, You, Chen, Lei, Wang, Zaiwei, Zeng, Lewei, Chen, Hao, Liu, Yanjiang, Grice, Corey R., Abudulimu, Abasi, Chung, Jaehoon, Xian, Yeming, Zhu, Tao, Lai, Huagui, Chen, Bin, Ellingson, Randy J., Fu, Fan, Ginger, David S., Song, Zhaoning, Sargent, Edward H., Yan, Yanfa
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 17.02.2023
AAAS
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.ade3970

Cover

Loading…
Abstract Lewis base molecules that bind undercoordinated lead atoms at interfaces and grain boundaries (GBs) are known to enhance the durability of metal halide perovskite solar cells (PSCs). Using density functional theory calculations, we found that phosphine-containing molecules have the strongest binding energy among members of a library of Lewis base molecules studied herein. Experimentally, we found that the best inverted PSC treated with 1,3-bis(diphenylphosphino)propane (DPPP), a diphosphine Lewis base that passivates, binds, and bridges interfaces and GBs, retained a power conversion efficiency (PCE) slightly higher than its initial PCE of ~23% after continuous operation under simulated AM1.5 illumination at the maximum power point and at ~40°C for >3500 hours. DPPP-treated devices showed a similar increase in PCE after being kept under open-circuit conditions at 85°C for >1500 hours. Lewis base molecules that contain electron-donating atoms such as oxygen or sulfur can bind to undercoordinated lead atoms and passivate defects at interfaces and grain boundaries in perovskite films. Li et al . used density functional theory to screen potential Lewis bases and found that phosphorus-containing molecules showed the strongest binding to lead. A small amount of 1,3-bis(diphenylphosphino)propane stabilized inverted perovskite solar cells. The solar cells could maintain a power conversion efficiency of about 23% for more than 1500 hours under open-circuit conditions at 85°C. —PDS A phosphorus-containing Lewis-base molecule passivates and bridges perovskite grain boundaries and interfaces.
AbstractList Phosphorus stabilization of perovskitesLewis base molecules that contain electron-donating atoms such as oxygen or sulfur can bind to undercoordinated lead atoms and passivate defects at interfaces and grain boundaries in perovskite films. Li et al. used density functional theory to screen potential Lewis bases and found that phosphorus-containing molecules showed the strongest binding to lead. A small amount of 1,3-bis(diphenylphosphino)propane stabilized inverted perovskite solar cells. The solar cells could maintain a power conversion efficiency of about 23% for more than 1500 hours under open-circuit conditions at 85°C. —PDS
Lewis base molecules that bind undercoordinated lead atoms at interfaces and grain boundaries (GBs) are known to enhance the durability of metal halide perovskite solar cells (PSCs). Using density functional theory calculations, we found that phosphine-containing molecules have the strongest binding energy among members of a library of Lewis base molecules studied herein. Experimentally, we found that the best inverted PSC treated with 1,3-bis(diphenylphosphino)propane (DPPP), a diphosphine Lewis base that passivates, binds, and bridges interfaces and GBs, retained a power conversion efficiency (PCE) slightly higher than its initial PCE of ~23% after continuous operation under simulated AM1.5 illumination at the maximum power point and at ~40°C for >3500 hours. DPPP-treated devices showed a similar increase in PCE after being kept under open-circuit conditions at 85°C for >1500 hours.Lewis base molecules that bind undercoordinated lead atoms at interfaces and grain boundaries (GBs) are known to enhance the durability of metal halide perovskite solar cells (PSCs). Using density functional theory calculations, we found that phosphine-containing molecules have the strongest binding energy among members of a library of Lewis base molecules studied herein. Experimentally, we found that the best inverted PSC treated with 1,3-bis(diphenylphosphino)propane (DPPP), a diphosphine Lewis base that passivates, binds, and bridges interfaces and GBs, retained a power conversion efficiency (PCE) slightly higher than its initial PCE of ~23% after continuous operation under simulated AM1.5 illumination at the maximum power point and at ~40°C for >3500 hours. DPPP-treated devices showed a similar increase in PCE after being kept under open-circuit conditions at 85°C for >1500 hours.
Lewis base molecules that bind undercoordinated lead atoms at interfaces and grain boundaries (GBs) are known to enhance the durability of metal halide perovskite solar cells (PSCs). Using density functional theory calculations, we found that phosphine-containing molecules have the strongest binding energy among members of a library of Lewis base molecules studied herein. Experimentally, we found that the best inverted PSC treated with 1,3-bis(diphenylphosphino)propane (DPPP), a diphosphine Lewis base that passivates, binds, and bridges interfaces and GBs, retained a power conversion efficiency (PCE) slightly higher than its initial PCE of ~23% after continuous operation under simulated AM1.5 illumination at the maximum power point and at ~40°C for >3500 hours. DPPP-treated devices showed a similar increase in PCE after being kept under open-circuit conditions at 85°C for >1500 hours.
Lewis base molecules that bind undercoordinated lead atoms at interfaces and grain boundaries (GBs) are known to enhance the durability of metal halide perovskite solar cells (PSCs). Using density functional theory calculations, we found that phosphine-containing molecules have the strongest binding energy among members of a library of Lewis base molecules studied herein. Experimentally, we found that the best inverted PSC treated with 1,3-bis(diphenylphosphino)propane (DPPP), a diphosphine Lewis base that passivates, binds, and bridges interfaces and GBs, retained a power conversion efficiency (PCE) slightly higher than its initial PCE of ~23% after continuous operation under simulated AM1.5 illumination at the maximum power point and at ~40°C for >3500 hours. DPPP-treated devices showed a similar increase in PCE after being kept under open-circuit conditions at 85°C for >1500 hours. Lewis base molecules that contain electron-donating atoms such as oxygen or sulfur can bind to undercoordinated lead atoms and passivate defects at interfaces and grain boundaries in perovskite films. Li et al . used density functional theory to screen potential Lewis bases and found that phosphorus-containing molecules showed the strongest binding to lead. A small amount of 1,3-bis(diphenylphosphino)propane stabilized inverted perovskite solar cells. The solar cells could maintain a power conversion efficiency of about 23% for more than 1500 hours under open-circuit conditions at 85°C. —PDS A phosphorus-containing Lewis-base molecule passivates and bridges perovskite grain boundaries and interfaces.
Author Ellingson, Randy J.
Abudulimu, Abasi
Wang, Zaiwei
Xian, Yeming
Fu, Fan
Chen, Lei
Zeng, Lewei
Li, You
Chen, Bin
Park, So Min
Lai, Huagui
Bi, Enbing
Chung, Jaehoon
Zhu, Tao
Ginger, David S.
Jiang, Fangyuan
Liu, Yanjiang
Li, Chongwen
Sargent, Edward H.
Wang, Xiaoming
Chen, Hao
Grice, Corey R.
Song, Zhaoning
Yan, Yanfa
Author_xml – sequence: 1
  givenname: Chongwen
  orcidid: 0000-0001-8514-190X
  surname: Li
  fullname: Li, Chongwen
  organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
– sequence: 2
  givenname: Xiaoming
  surname: Wang
  fullname: Wang, Xiaoming
  organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
– sequence: 3
  givenname: Enbing
  surname: Bi
  fullname: Bi, Enbing
  organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
– sequence: 4
  givenname: Fangyuan
  orcidid: 0000-0002-7987-547X
  surname: Jiang
  fullname: Jiang, Fangyuan
  organization: Department of Chemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 5
  givenname: So Min
  orcidid: 0000-0001-7677-5564
  surname: Park
  fullname: Park, So Min
  organization: The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
– sequence: 6
  givenname: You
  surname: Li
  fullname: Li, You
  organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
– sequence: 7
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
  organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
– sequence: 8
  givenname: Zaiwei
  orcidid: 0000-0001-9725-0206
  surname: Wang
  fullname: Wang, Zaiwei
  organization: The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
– sequence: 9
  givenname: Lewei
  surname: Zeng
  fullname: Zeng, Lewei
  organization: The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
– sequence: 10
  givenname: Hao
  orcidid: 0000-0002-6995-0288
  surname: Chen
  fullname: Chen, Hao
  organization: The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
– sequence: 11
  givenname: Yanjiang
  orcidid: 0000-0002-6119-2793
  surname: Liu
  fullname: Liu, Yanjiang
  organization: The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
– sequence: 12
  givenname: Corey R.
  orcidid: 0000-0002-0841-5943
  surname: Grice
  fullname: Grice, Corey R.
  organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA., Center for Materials and Sensors Characterization, The University of Toledo, Toledo, OH 43606, USA
– sequence: 13
  givenname: Abasi
  orcidid: 0000-0002-1794-0993
  surname: Abudulimu
  fullname: Abudulimu, Abasi
  organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
– sequence: 14
  givenname: Jaehoon
  surname: Chung
  fullname: Chung, Jaehoon
  organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
– sequence: 15
  givenname: Yeming
  surname: Xian
  fullname: Xian, Yeming
  organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
– sequence: 16
  givenname: Tao
  orcidid: 0000-0002-0462-799X
  surname: Zhu
  fullname: Zhu, Tao
  organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
– sequence: 17
  givenname: Huagui
  orcidid: 0000-0003-3191-3999
  surname: Lai
  fullname: Lai, Huagui
  organization: Laboratory for Thin Films and Photovoltaics, Empa–Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
– sequence: 18
  givenname: Bin
  orcidid: 0000-0002-2106-7664
  surname: Chen
  fullname: Chen, Bin
  organization: The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada., Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
– sequence: 19
  givenname: Randy J.
  surname: Ellingson
  fullname: Ellingson, Randy J.
  organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
– sequence: 20
  givenname: Fan
  orcidid: 0000-0002-3647-4086
  surname: Fu
  fullname: Fu, Fan
  organization: Laboratory for Thin Films and Photovoltaics, Empa–Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
– sequence: 21
  givenname: David S.
  orcidid: 0000-0002-9759-5447
  surname: Ginger
  fullname: Ginger, David S.
  organization: Department of Chemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 22
  givenname: Zhaoning
  orcidid: 0000-0002-6677-0994
  surname: Song
  fullname: Song, Zhaoning
  organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
– sequence: 23
  givenname: Edward H.
  orcidid: 0000-0003-0396-6495
  surname: Sargent
  fullname: Sargent, Edward H.
  organization: The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada., Department of Chemistry, Northwestern University, Evanston, IL 60208, USA., Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
– sequence: 24
  givenname: Yanfa
  orcidid: 0000-0003-3977-5789
  surname: Yan
  fullname: Yan, Yanfa
  organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36795809$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1959189$$D View this record in Osti.gov
BookMark eNp1kc1vFSEUxYmpsa_VtTtDdONm2sswDMPSNH4lL2li2jUCc0ep8-AJTBv_exnf66aJG1jwO4d7zzkjJyEGJOQ1gwvG2v4yO4_B4YUZkSsJz8iGgRKNaoGfkA0A75sBpDglZznfAdQ3xV-QU95LJQZQG_L9myk-BjPTEbP_EWic6BYffKbWZKS7OKNbZsx0ionmYuyM1ISR4jT59e9CfbjHVHCke0zxPv_yBWmOs0nU4Tznl-T5ZOaMr473Obn99PHm6kuzvf789erDtnGdUKVB69qe4SQtODCDFcI5006OCbBOSsFbDp0UrkcYuGV952ynWMuxnoPgip-TtwffmIvXNZeC7qeLIaArmtW92bBC7w_QPsXfC-aidz6vY5qAccm6HUTXtR1AW9F3T9C7uKQaVKWkHIBL1a-Gb47UYnc46n3yO5P-6MeAKyAOgEsx54STrpP9i7wk42fNQK9F6mOR-lhk1V0-0T1a_0_xF_wDonc
CitedBy_id crossref_primary_10_1002_adma_202409742
crossref_primary_10_1021_acsami_5c00748
crossref_primary_10_1021_acsami_3c05215
crossref_primary_10_1038_s41586_024_07705_5
crossref_primary_10_1016_j_nanoen_2024_110634
crossref_primary_10_1016_j_joule_2024_11_010
crossref_primary_10_1038_s41467_024_55329_0
crossref_primary_10_1021_acsnano_3c12587
crossref_primary_10_1021_acsaem_4c00756
crossref_primary_10_1002_ange_202407383
crossref_primary_10_1016_j_jallcom_2023_172749
crossref_primary_10_1039_D3RA04134D
crossref_primary_10_1038_s41560_024_01680_x
crossref_primary_10_1016_j_cej_2025_161518
crossref_primary_10_1016_j_dyepig_2024_112617
crossref_primary_10_1039_D4EE02427C
crossref_primary_10_1021_acs_energyfuels_3c04162
crossref_primary_10_1002_advs_202412557
crossref_primary_10_1002_solr_202400849
crossref_primary_10_1021_acsami_3c17441
crossref_primary_10_1002_ange_202305221
crossref_primary_10_1126_science_ado6619
crossref_primary_10_1038_s41586_023_06892_x
crossref_primary_10_1021_acsnano_4c07093
crossref_primary_10_1002_adfm_202406897
crossref_primary_10_1002_anie_202410378
crossref_primary_10_1002_anie_202423206
crossref_primary_10_1063_5_0226720
crossref_primary_10_1002_ange_202407151
crossref_primary_10_1021_acs_jpclett_4c00881
crossref_primary_10_1016_j_solmat_2025_113510
crossref_primary_10_1038_s41566_024_01570_4
crossref_primary_10_1002_ange_202420585
crossref_primary_10_1039_D3EE02344C
crossref_primary_10_1039_D4EE02917H
crossref_primary_10_1039_D4TC04794J
crossref_primary_10_1002_ange_202409689
crossref_primary_10_1038_s41560_023_01442_1
crossref_primary_10_1021_acsenergylett_3c01691
crossref_primary_10_1002_adfm_202415004
crossref_primary_10_1002_ange_202414118
crossref_primary_10_1016_j_cej_2023_148081
crossref_primary_10_1016_j_jpowsour_2024_235731
crossref_primary_10_1021_acs_chemrev_4c00073
crossref_primary_10_1039_D4RA08786K
crossref_primary_10_1002_smll_202307246
crossref_primary_10_1002_aesr_202400030
crossref_primary_10_1021_jacs_4c13724
crossref_primary_10_1039_D4EE01008F
crossref_primary_10_1016_j_mtener_2024_101554
crossref_primary_10_1039_D3RA02391E
crossref_primary_10_1021_acsami_3c17432
crossref_primary_10_1007_s40843_023_2740_4
crossref_primary_10_1002_adma_202301752
crossref_primary_10_1126_sciadv_adp0790
crossref_primary_10_1002_adma_202413304
crossref_primary_10_1002_anie_202311865
crossref_primary_10_1021_acs_jpclett_4c00736
crossref_primary_10_1038_s41560_023_01406_5
crossref_primary_10_1002_solr_202400391
crossref_primary_10_1002_ange_202314089
crossref_primary_10_1016_j_mattod_2023_06_009
crossref_primary_10_1039_D3CC01100C
crossref_primary_10_1063_5_0210109
crossref_primary_10_1186_s43088_023_00405_5
crossref_primary_10_1016_j_enchem_2023_100105
crossref_primary_10_1038_s41578_023_00582_w
crossref_primary_10_1002_adma_202410390
crossref_primary_10_1021_acsenergylett_3c01323
crossref_primary_10_1002_adfm_202402632
crossref_primary_10_1002_solr_202400148
crossref_primary_10_1016_j_cej_2024_151778
crossref_primary_10_1002_adma_202306415
crossref_primary_10_1039_D4EE02251C
crossref_primary_10_1002_aenm_202402443
crossref_primary_10_1007_s40843_025_3285_2
crossref_primary_10_1021_acsnano_4c08168
crossref_primary_10_1002_anie_202314106
crossref_primary_10_1016_j_xcrp_2024_102349
crossref_primary_10_3390_molecules29092104
crossref_primary_10_1002_aenm_202403530
crossref_primary_10_1021_acssuschemeng_4c07636
crossref_primary_10_1016_j_cej_2024_158954
crossref_primary_10_1002_wcms_1677
crossref_primary_10_1002_adma_202419413
crossref_primary_10_1016_j_nanoen_2023_108506
crossref_primary_10_1021_acsenergylett_4c01301
crossref_primary_10_1039_D4TA06793B
crossref_primary_10_1021_acs_nanolett_3c03655
crossref_primary_10_1039_D4TA03192J
crossref_primary_10_1002_aenm_202304486
crossref_primary_10_1016_j_matt_2023_05_036
crossref_primary_10_1016_j_apmate_2025_100275
crossref_primary_10_1002_anie_202407151
crossref_primary_10_1039_D4NR02046D
crossref_primary_10_1021_jacs_3c03997
crossref_primary_10_1038_s41560_024_01613_8
crossref_primary_10_1002_anie_202411659
crossref_primary_10_1002_smll_202310227
crossref_primary_10_1016_j_cej_2024_155672
crossref_primary_10_1016_j_solmat_2025_113548
crossref_primary_10_1126_science_adj8858
crossref_primary_10_1016_j_cej_2024_155674
crossref_primary_10_1002_aenm_202302191
crossref_primary_10_1126_science_adm9474
crossref_primary_10_1002_aenm_202400203
crossref_primary_10_1021_acsanm_5c00290
crossref_primary_10_1016_j_joule_2024_04_015
crossref_primary_10_1002_adfm_202315604
crossref_primary_10_1002_adma_202312679
crossref_primary_10_1002_adma_202303275
crossref_primary_10_1002_anie_202307152
crossref_primary_10_1021_acsenergylett_4c03370
crossref_primary_10_1002_aesr_202400003
crossref_primary_10_1002_solr_202400648
crossref_primary_10_1038_s41578_024_00678_x
crossref_primary_10_1002_aenm_202301302
crossref_primary_10_1016_j_nanoen_2025_110720
crossref_primary_10_1039_D4EE02124J
crossref_primary_10_1016_j_jallcom_2025_179076
crossref_primary_10_1039_D4EE04555F
crossref_primary_10_1002_anie_202409689
crossref_primary_10_1002_adfm_202415331
crossref_primary_10_1002_anie_202407383
crossref_primary_10_1016_j_cclet_2024_109821
crossref_primary_10_1002_aenm_202403706
crossref_primary_10_1002_cjoc_202300658
crossref_primary_10_1088_1674_1056_ad6259
crossref_primary_10_1021_jacs_3c13576
crossref_primary_10_1063_5_0168780
crossref_primary_10_1021_acsmaterialslett_4c01998
crossref_primary_10_1016_j_jechem_2024_03_014
crossref_primary_10_1002_aenm_202303173
crossref_primary_10_1002_solr_202300541
crossref_primary_10_1021_acsenergylett_4c02610
crossref_primary_10_1016_j_nanoen_2024_109438
crossref_primary_10_1038_s41566_024_01542_8
crossref_primary_10_1016_j_joule_2024_04_002
crossref_primary_10_1002_adfm_202315157
crossref_primary_10_1002_adfm_202408480
crossref_primary_10_1002_adfm_202501623
crossref_primary_10_1021_acsphotonics_4c00137
crossref_primary_10_1002_adfm_202408829
crossref_primary_10_1002_adma_202408036
crossref_primary_10_1002_anie_202305221
crossref_primary_10_1002_adma_202306568
crossref_primary_10_1002_smll_202302383
crossref_primary_10_1002_adma_202406532
crossref_primary_10_1016_j_jmst_2024_05_069
crossref_primary_10_1002_smll_202401256
crossref_primary_10_1002_anie_202420585
crossref_primary_10_1002_aenm_202405367
crossref_primary_10_1002_aenm_202401320
crossref_primary_10_1002_ange_202411659
crossref_primary_10_1039_D4NJ00154K
crossref_primary_10_1016_j_joule_2024_01_020
crossref_primary_10_1002_adfm_202413177
crossref_primary_10_1002_anie_202401066
crossref_primary_10_1021_acs_jpclett_4c02160
crossref_primary_10_3390_nano13091560
crossref_primary_10_1016_j_cej_2023_148275
crossref_primary_10_1016_j_jphotochem_2023_115240
crossref_primary_10_1016_j_jallcom_2025_179401
crossref_primary_10_1002_adfm_202408392
crossref_primary_10_1002_adom_202402521
crossref_primary_10_1002_cssc_202400466
crossref_primary_10_1002_adma_202300233
crossref_primary_10_1002_smll_202311400
crossref_primary_10_1002_adma_202405572
crossref_primary_10_1002_aenm_202303988
crossref_primary_10_1002_anie_202414118
crossref_primary_10_1007_s40843_024_3076_3
crossref_primary_10_1002_solr_202300996
crossref_primary_10_1002_adma_202303869
crossref_primary_10_1002_ange_202401066
crossref_primary_10_1002_cssc_202301458
crossref_primary_10_1038_s41467_024_50962_1
crossref_primary_10_1002_adfm_202305215
crossref_primary_10_1038_s41560_023_01362_0
crossref_primary_10_1002_adma_202307422
crossref_primary_10_1039_D4TA04233F
crossref_primary_10_1002_solr_202400736
crossref_primary_10_1002_ange_202314106
crossref_primary_10_1039_D4CS01107D
crossref_primary_10_1007_s40820_024_01417_1
crossref_primary_10_1021_acsami_4c20422
crossref_primary_10_1002_adfm_202407116
crossref_primary_10_1002_smtd_202400385
crossref_primary_10_1039_D4EE03272A
crossref_primary_10_1364_OL_546644
crossref_primary_10_1002_adma_202311025
crossref_primary_10_1021_acsnano_4c04768
crossref_primary_10_1002_ange_202403610
crossref_primary_10_1002_smll_202310939
crossref_primary_10_1002_adfm_202412389
crossref_primary_10_1021_acsnano_3c11642
crossref_primary_10_1038_s41586_024_08159_5
crossref_primary_10_1002_smll_202304829
crossref_primary_10_1002_adma_202306466
crossref_primary_10_1039_D4TA07497A
crossref_primary_10_1126_science_ade9637
crossref_primary_10_1038_s41467_024_55653_5
crossref_primary_10_1002_ente_202301695
crossref_primary_10_1002_ange_202311865
crossref_primary_10_1038_s41586_024_07712_6
crossref_primary_10_1039_D4EE02661F
crossref_primary_10_1038_s41560_024_01608_5
crossref_primary_10_1002_smtd_202401244
crossref_primary_10_1021_jacs_4c05398
crossref_primary_10_1038_s41377_024_01461_x
crossref_primary_10_1038_s41598_023_32468_w
crossref_primary_10_15541_jim20240138
crossref_primary_10_1021_acs_jpcc_4c00097
crossref_primary_10_1038_s43246_024_00566_5
crossref_primary_10_1002_ange_202403068
crossref_primary_10_1039_D4EE05232C
crossref_primary_10_1002_aenm_202303092
crossref_primary_10_1088_1361_651X_ad16ef
crossref_primary_10_1002_adma_202310962
crossref_primary_10_1021_acsnano_4c11866
crossref_primary_10_1126_science_ado2302
crossref_primary_10_1016_j_jcis_2023_08_158
crossref_primary_10_1038_s41467_024_47019_8
crossref_primary_10_1016_j_cej_2024_159095
crossref_primary_10_1021_acsami_3c17141
crossref_primary_10_1002_ange_202423206
crossref_primary_10_1002_ange_202307152
crossref_primary_10_1039_D3EE00841J
crossref_primary_10_12677_JAPC_2023_124033
crossref_primary_10_1021_acsenergylett_4c00724
crossref_primary_10_1021_acsenergylett_4c00045
crossref_primary_10_1038_s41467_024_50019_3
crossref_primary_10_1021_acsenergylett_4c00960
crossref_primary_10_1039_D4NJ01415D
crossref_primary_10_1002_adma_202404797
crossref_primary_10_1002_ange_202303462
crossref_primary_10_1002_advs_202309111
crossref_primary_10_1016_j_cej_2024_151919
crossref_primary_10_1002_anie_202413582
crossref_primary_10_1016_j_jallcom_2024_174275
crossref_primary_10_1039_D3SC05485C
crossref_primary_10_1039_D3CC00967J
crossref_primary_10_1016_j_jechem_2024_04_036
crossref_primary_10_1021_acsaem_3c01126
crossref_primary_10_1002_solr_202300712
crossref_primary_10_1021_acsenergylett_4c00614
crossref_primary_10_1038_s41560_024_01600_z
crossref_primary_10_1007_s40843_024_3093_9
crossref_primary_10_1016_j_solmat_2024_112879
crossref_primary_10_1002_inf2_12522
crossref_primary_10_1016_j_enchem_2024_100135
crossref_primary_10_1002_ange_202410378
crossref_primary_10_1021_acs_langmuir_4c03209
crossref_primary_10_1002_adfm_202401391
crossref_primary_10_1002_adma_202415211
crossref_primary_10_1002_aenm_202304521
crossref_primary_10_1016_j_nanoen_2024_110278
crossref_primary_10_1039_D4CS00838C
crossref_primary_10_1002_anie_202303462
crossref_primary_10_1016_j_diamond_2024_111114
crossref_primary_10_1002_adma_202403682
crossref_primary_10_1002_smll_202312122
crossref_primary_10_1038_s41578_025_00781_7
crossref_primary_10_1080_13467581_2025_2467253
crossref_primary_10_1002_adma_202414576
crossref_primary_10_1016_j_ceramint_2023_08_193
crossref_primary_10_1002_solr_202300248
crossref_primary_10_1039_D4EE01073F
crossref_primary_10_1002_ange_202318591
crossref_primary_10_1002_solr_202300253
crossref_primary_10_1016_j_cej_2024_154189
crossref_primary_10_1021_acs_nanolett_3c01769
crossref_primary_10_1002_anie_202403068
crossref_primary_10_1021_acsmaterialslett_4c02453
crossref_primary_10_1039_D3QI01757E
crossref_primary_10_1016_j_cej_2024_154864
crossref_primary_10_1002_smll_202412530
crossref_primary_10_1039_D3TA07499D
crossref_primary_10_1002_adfm_202401323
crossref_primary_10_1038_s41560_023_01377_7
crossref_primary_10_1016_j_jechem_2024_01_063
crossref_primary_10_1039_D4EE05968A
crossref_primary_10_1002_aenm_202403676
crossref_primary_10_1002_eom2_12501
crossref_primary_10_1002_aenm_202403554
crossref_primary_10_1016_j_xcrp_2024_102245
crossref_primary_10_1002_anie_202314089
crossref_primary_10_1007_s11426_024_1975_6
crossref_primary_10_1016_j_xcrp_2024_102008
crossref_primary_10_1002_solr_202300934
crossref_primary_10_1002_anie_202403610
crossref_primary_10_1080_00107514_2023_2230698
crossref_primary_10_1002_adma_202311970
crossref_primary_10_1016_j_joule_2024_02_019
crossref_primary_10_1002_adfm_202409852
crossref_primary_10_1016_j_jechem_2024_02_057
crossref_primary_10_1039_D3MH01313H
crossref_primary_10_1002_adfm_202308108
crossref_primary_10_1002_anie_202416284
crossref_primary_10_1021_acsaem_4c00291
crossref_primary_10_1021_acs_jpclett_3c03333
crossref_primary_10_1002_adfm_202301956
crossref_primary_10_1016_j_nanoen_2023_108883
crossref_primary_10_1002_smll_202300013
crossref_primary_10_1002_ange_202413582
crossref_primary_10_1002_cjoc_202300252
crossref_primary_10_1016_j_mtchem_2023_101589
crossref_primary_10_15541_jim20230105
crossref_primary_10_1002_smll_202311377
crossref_primary_10_1002_aenm_202304429
crossref_primary_10_1016_j_jssc_2024_124606
crossref_primary_10_1038_s41560_024_01579_7
crossref_primary_10_1002_anie_202409072
crossref_primary_10_1126_science_ado9104
crossref_primary_10_1038_s41467_024_46368_8
crossref_primary_10_1088_2752_5724_ad42ba
crossref_primary_10_1002_aesr_202300205
crossref_primary_10_1002_smtd_202401339
crossref_primary_10_1038_s41560_024_01642_3
crossref_primary_10_1002_ange_202404289
crossref_primary_10_1021_acsami_3c08583
crossref_primary_10_1002_adma_202211317
crossref_primary_10_1002_smll_202304045
crossref_primary_10_1002_solr_202400903
crossref_primary_10_1016_j_jechem_2023_07_002
crossref_primary_10_1016_j_esci_2024_100243
crossref_primary_10_1002_solr_202400901
crossref_primary_10_53941_matsus_2025_100006
crossref_primary_10_1002_aenm_202303344
crossref_primary_10_1002_jcc_27329
crossref_primary_10_1016_j_mtener_2023_101401
crossref_primary_10_1021_acssuschemeng_4c07322
crossref_primary_10_1002_adma_202408686
crossref_primary_10_1021_acs_jcim_4c00493
crossref_primary_10_1002_ange_202416284
crossref_primary_10_1016_j_rio_2023_100470
crossref_primary_10_1039_D3EE02475J
crossref_primary_10_1002_ange_202409072
crossref_primary_10_1016_j_joule_2025_101880
crossref_primary_10_1021_acsaem_3c02935
crossref_primary_10_1038_s41467_025_55815_z
crossref_primary_10_1016_j_solmat_2023_112499
crossref_primary_10_1021_acsami_4c06276
crossref_primary_10_20517_energymater_2024_54
crossref_primary_10_1002_smll_202402197
crossref_primary_10_1021_acsami_3c16765
crossref_primary_10_1002_anie_202404289
crossref_primary_10_1126_science_adi4531
crossref_primary_10_1016_j_xcrp_2024_102030
crossref_primary_10_1002_anie_202318591
crossref_primary_10_1038_s41467_023_41853_y
crossref_primary_10_1039_D3TA07690C
crossref_primary_10_1021_acs_jpclett_4c02692
crossref_primary_10_1016_j_cej_2024_152899
crossref_primary_10_1002_advs_202304811
crossref_primary_10_1016_j_cej_2025_160571
crossref_primary_10_1002_smll_202305127
Cites_doi 10.1039/C8TA06950F
10.1126/science.abm5784
10.1021/acsenergylett.8b02058
10.1021/acsomega.2c00509
10.1126/science.aat8235
10.1038/s41586-019-1357-2
10.1063/5.0067108
10.1039/C9EE02043H
10.1103/PhysRevLett.77.3865
10.1038/s41560-017-0060-5
10.1038/s41467-018-07255-1
10.1002/adfm.202201193
10.1021/acsami.7b07625
10.1038/s41467-019-08455-z
10.1021/acs.chemrev.8b00336
10.1126/science.aax3294
10.1103/PhysRevB.50.17953
10.1002/adfm.201910710
10.1016/0927-0256(96)00008-0
10.1021/acsami.7b06816
10.1039/D0MH00745E
10.1038/natrevmats.2018.17
10.1021/jacs.5b04930
10.1103/PhysRevB.54.11169
10.1021/acs.chemrev.8b00539
10.1038/s41560-017-0067-y
10.1002/adma.201902413
10.1126/science.aba1628
10.1021/acsenergylett.1c01707
10.1126/science.abp8873
10.1038/ncomms11574
10.1021/jacs.1c00757
10.1063/1.3382344
10.1016/j.trechm.2021.04.004
10.1021/acs.accounts.5b00420
10.1021/acsenergylett.6b00236
10.1038/s41586-021-03964-8
10.1126/science.abm8566
10.1021/nn5036476
10.1039/C6EE03352K
10.1039/C8SE00358K
10.1038/s41560-019-0529-5
10.1126/science.aaa5333
ContentType Journal Article
Copyright Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
CorporateAuthor Univ. of Toledo, OH (United States)
CorporateAuthor_xml – name: Univ. of Toledo, OH (United States)
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
OIOZB
OTOTI
DOI 10.1126/science.ade3970
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 694
ExternalDocumentID 1959189
36795809
10_1126_science_ade3970
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
0B8
AEUPB
ESX
GX1
IGG
NPM
OK1
UIG
VQA
YCJ
YIF
YIN
YJ6
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
63O
79B
AFOSN
ANJGP
B-7
OIOZB
OTOTI
XFK
ZA5
ID FETCH-LOGICAL-c459t-ebc261ef7b0c0a8b55cca2fc150bc7753230475c6e083b164cb49123e49185393
ISSN 0036-8075
1095-9203
IngestDate Mon Feb 19 05:00:54 EST 2024
Thu Sep 04 16:35:13 EDT 2025
Fri Jul 25 19:24:35 EDT 2025
Wed Feb 19 02:07:54 EST 2025
Tue Jul 01 02:24:15 EDT 2025
Thu Apr 24 22:53:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6633
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-ebc261ef7b0c0a8b55cca2fc150bc7753230475c6e083b164cb49123e49185393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
EE0008970; EE0008753; AC02-05CH11231; NO0014-20-1-2572
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
US Department of the Navy, Office of Naval Research
ORCID 0000-0002-7987-547X
0000-0002-6995-0288
0000-0002-1794-0993
0000-0002-0462-799X
0000-0003-3191-3999
0000-0001-7677-5564
0000-0001-9725-0206
0000-0002-3647-4086
0000-0003-0396-6495
0000-0002-6119-2793
0000-0002-0841-5943
0000-0003-3977-5789
0000-0001-8514-190X
0000-0002-2106-7664
0000-0002-9759-5447
0000-0002-6677-0994
0000000266770994
0000000208415943
0000000339775789
000000018514190X
0000000269950288
0000000297595447
0000000261192793
0000000331913999
0000000221067664
000000027987547X
0000000236474086
0000000197250206
000000020462799X
0000000303966495
0000000217940993
0000000176775564
OpenAccessLink https://www.osti.gov/servlets/purl/1959189
PMID 36795809
PQID 2778037969
PQPubID 1256
PageCount 5
ParticipantIDs osti_scitechconnect_1959189
proquest_miscellaneous_2854424002
proquest_journals_2778037969
pubmed_primary_36795809
crossref_citationtrail_10_1126_science_ade3970
crossref_primary_10_1126_science_ade3970
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-17
PublicationDateYYYYMMDD 2023-02-17
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2023
Publisher The American Association for the Advancement of Science
AAAS
Publisher_xml – name: The American Association for the Advancement of Science
– name: AAAS
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
38574160 - Science. 2024 Apr 5;384(6691):eadp4014
References_xml – ident: e_1_3_2_8_2
  doi: 10.1039/C8TA06950F
– ident: e_1_3_2_11_2
  doi: 10.1126/science.abm5784
– ident: e_1_3_2_36_2
  doi: 10.1021/acsenergylett.8b02058
– ident: e_1_3_2_44_2
  doi: 10.1021/acsomega.2c00509
– ident: e_1_3_2_6_2
  doi: 10.1126/science.aat8235
– ident: e_1_3_2_22_2
  doi: 10.1038/s41586-019-1357-2
– ident: e_1_3_2_31_2
  doi: 10.1063/5.0067108
– ident: e_1_3_2_35_2
  doi: 10.1039/C9EE02043H
– ident: e_1_3_2_42_2
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_3_2_9_2
  doi: 10.1038/s41560-017-0060-5
– ident: e_1_3_2_7_2
  doi: 10.1038/s41467-018-07255-1
– ident: e_1_3_2_27_2
  doi: 10.1002/adfm.202201193
– ident: e_1_3_2_19_2
  doi: 10.1021/acsami.7b07625
– ident: e_1_3_2_24_2
  doi: 10.1038/s41467-019-08455-z
– ident: e_1_3_2_12_2
  doi: 10.1021/acs.chemrev.8b00336
– ident: e_1_3_2_20_2
  doi: 10.1126/science.aax3294
– ident: e_1_3_2_41_2
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_3_2_28_2
  doi: 10.1002/adfm.201910710
– ident: e_1_3_2_40_2
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_3_2_16_2
  doi: 10.1021/acsami.7b06816
– ident: e_1_3_2_25_2
  doi: 10.1039/D0MH00745E
– ident: e_1_3_2_3_2
  doi: 10.1038/natrevmats.2018.17
– ident: e_1_3_2_30_2
  doi: 10.1021/jacs.5b04930
– ident: e_1_3_2_39_2
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_3_2_2_2
  doi: 10.1021/acs.chemrev.8b00539
– ident: e_1_3_2_37_2
  doi: 10.1038/s41560-017-0067-y
– ident: e_1_3_2_17_2
  doi: 10.1002/adma.201902413
– ident: e_1_3_2_21_2
  doi: 10.1126/science.aba1628
– ident: e_1_3_2_13_2
  doi: 10.1021/acsenergylett.1c01707
– ident: e_1_3_2_5_2
  doi: 10.1126/science.abp8873
– ident: e_1_3_2_38_2
  doi: 10.1038/ncomms11574
– ident: e_1_3_2_32_2
  doi: 10.1021/jacs.1c00757
– ident: e_1_3_2_43_2
  doi: 10.1063/1.3382344
– ident: e_1_3_2_14_2
  doi: 10.1016/j.trechm.2021.04.004
– ident: e_1_3_2_18_2
  doi: 10.1021/acs.accounts.5b00420
– ident: e_1_3_2_26_2
  doi: 10.1021/acsenergylett.6b00236
– ident: e_1_3_2_4_2
  doi: 10.1038/s41586-021-03964-8
– ident: e_1_3_2_23_2
  doi: 10.1126/science.abm8566
– ident: e_1_3_2_29_2
  doi: 10.1021/nn5036476
– ident: e_1_3_2_15_2
  doi: 10.1039/C6EE03352K
– ident: e_1_3_2_34_2
  doi: 10.1039/C8SE00358K
– ident: e_1_3_2_10_2
  doi: 10.1038/s41560-019-0529-5
– ident: e_1_3_2_33_2
  doi: 10.1126/science.aaa5333
– reference: 38574160 - Science. 2024 Apr 5;384(6691):eadp4014
SSID ssj0009593
Score 2.7334635
Snippet Lewis base molecules that bind undercoordinated lead atoms at interfaces and grain boundaries (GBs) are known to enhance the durability of metal halide...
Phosphorus stabilization of perovskitesLewis base molecules that contain electron-donating atoms such as oxygen or sulfur can bind to undercoordinated lead...
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 690
SubjectTerms Circuits
Crystal defects
Density functional theory
Energy conversion efficiency
Grain boundaries
Interfaces
Lewis base
Perovskites
Phosphorus
Photovoltaic cells
Solar cells
SOLAR ENERGY
Sulfur
Title Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells
URI https://www.ncbi.nlm.nih.gov/pubmed/36795809
https://www.proquest.com/docview/2778037969
https://www.proquest.com/docview/2854424002
https://www.osti.gov/servlets/purl/1959189
Volume 379
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEBu3soGMxMNQlcmNEzt57IBqmoAHtIm-hcR1pkgsQSRlGn-Mv8c5vqThUmnwklSOY1k5X8_N50LIi1mkclDry0CKFQ8irldBuuI6kDkIU8XTgieYjfzuvTg5j06X8XI0-jGIWlp3xZH6_te8kv-hKowBXTFL9h8o2y8KA_Ab6AtXoDBcb0TjD96TtzJxGMbfr6-qdoqyaXppO99qU3EBfQaYJIV-cm3KRmAQQFVjO2bQObFc-LcWPbnTFo3dKTr026Hm6pkAaKT9Kc-Atn244twGFfgYA_fawOHwtrLH_E19cbXJQ_vo_NbLKm8uvTg1znvDretiMHZauckLuF-vHb6d6yLEA-PAZmp6duyqIVthZDkww-aRIeNDFs1twxmHRVCS-IDnCttv1IlvYXsm_ykZBr0sNZbgBEWMbYSgP_j_TTb2EYvGVgpF5hbI3AK3yE4I9gkbk5358evjxdZ6z66q1CBfy-_hF4Vo3ABj327sGKXn7B6566wVOrfQ2yUjXe-R27Z_6fUe2XXUbemhK1_-8j755FFJLSppU1KDSoqopD0qKSCGWlRSQCXtUUk9KukGldSgkhpUPiDnizdnr04C18cjUFGcdoEuFNjpupQFUyxPijgGthGWCmyRQkmwl83Zb6yEBnugAPtdFVEKGpWGK2iTKX9IxnVT68eEloJJyXMtmS6jlQyTWM9KHetI5BJEiZqQI_8xM-WK3GOvlc_ZFgJOyGH_whdb32X71H2kDg5jfWWFgWiqy7A60yxJJ-TAEy1zLKLNABsJA_AKePy8fwwMHD9XXutmDXOSOIowkjuckEeW2P1OuJBpnLD0yc13uU_ubP5qB2TcfV3rp6A3d8Uzh9GfH4TIqQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+design+of+Lewis+base+molecules+for+stable+and+efficient+inverted+perovskite+solar+cells&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Li%2C+Chongwen&rft.au=Wang%2C+Xiaoming&rft.au=Bi%2C+Enbing&rft.au=Jiang%2C+Fangyuan&rft.date=2023-02-17&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=379&rft.issue=6633&rft.spage=690&rft.epage=694&rft_id=info:doi/10.1126%2Fscience.ade3970&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_ade3970
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon