Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells
Lewis base molecules that bind undercoordinated lead atoms at interfaces and grain boundaries (GBs) are known to enhance the durability of metal halide perovskite solar cells (PSCs). Using density functional theory calculations, we found that phosphine-containing molecules have the strongest binding...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 379; no. 6633; pp. 690 - 694 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
17.02.2023
AAAS |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.ade3970 |
Cover
Loading…
Abstract | Lewis base molecules that bind undercoordinated lead atoms at interfaces and grain boundaries (GBs) are known to enhance the durability of metal halide perovskite solar cells (PSCs). Using density functional theory calculations, we found that phosphine-containing molecules have the strongest binding energy among members of a library of Lewis base molecules studied herein. Experimentally, we found that the best inverted PSC treated with 1,3-bis(diphenylphosphino)propane (DPPP), a diphosphine Lewis base that passivates, binds, and bridges interfaces and GBs, retained a power conversion efficiency (PCE) slightly higher than its initial PCE of ~23% after continuous operation under simulated AM1.5 illumination at the maximum power point and at ~40°C for >3500 hours. DPPP-treated devices showed a similar increase in PCE after being kept under open-circuit conditions at 85°C for >1500 hours.
Lewis base molecules that contain electron-donating atoms such as oxygen or sulfur can bind to undercoordinated lead atoms and passivate defects at interfaces and grain boundaries in perovskite films. Li
et al
. used density functional theory to screen potential Lewis bases and found that phosphorus-containing molecules showed the strongest binding to lead. A small amount of 1,3-bis(diphenylphosphino)propane stabilized inverted perovskite solar cells. The solar cells could maintain a power conversion efficiency of about 23% for more than 1500 hours under open-circuit conditions at 85°C. —PDS
A phosphorus-containing Lewis-base molecule passivates and bridges perovskite grain boundaries and interfaces. |
---|---|
AbstractList | Phosphorus stabilization of perovskitesLewis base molecules that contain electron-donating atoms such as oxygen or sulfur can bind to undercoordinated lead atoms and passivate defects at interfaces and grain boundaries in perovskite films. Li et al. used density functional theory to screen potential Lewis bases and found that phosphorus-containing molecules showed the strongest binding to lead. A small amount of 1,3-bis(diphenylphosphino)propane stabilized inverted perovskite solar cells. The solar cells could maintain a power conversion efficiency of about 23% for more than 1500 hours under open-circuit conditions at 85°C. —PDS Lewis base molecules that bind undercoordinated lead atoms at interfaces and grain boundaries (GBs) are known to enhance the durability of metal halide perovskite solar cells (PSCs). Using density functional theory calculations, we found that phosphine-containing molecules have the strongest binding energy among members of a library of Lewis base molecules studied herein. Experimentally, we found that the best inverted PSC treated with 1,3-bis(diphenylphosphino)propane (DPPP), a diphosphine Lewis base that passivates, binds, and bridges interfaces and GBs, retained a power conversion efficiency (PCE) slightly higher than its initial PCE of ~23% after continuous operation under simulated AM1.5 illumination at the maximum power point and at ~40°C for >3500 hours. DPPP-treated devices showed a similar increase in PCE after being kept under open-circuit conditions at 85°C for >1500 hours.Lewis base molecules that bind undercoordinated lead atoms at interfaces and grain boundaries (GBs) are known to enhance the durability of metal halide perovskite solar cells (PSCs). Using density functional theory calculations, we found that phosphine-containing molecules have the strongest binding energy among members of a library of Lewis base molecules studied herein. Experimentally, we found that the best inverted PSC treated with 1,3-bis(diphenylphosphino)propane (DPPP), a diphosphine Lewis base that passivates, binds, and bridges interfaces and GBs, retained a power conversion efficiency (PCE) slightly higher than its initial PCE of ~23% after continuous operation under simulated AM1.5 illumination at the maximum power point and at ~40°C for >3500 hours. DPPP-treated devices showed a similar increase in PCE after being kept under open-circuit conditions at 85°C for >1500 hours. Lewis base molecules that bind undercoordinated lead atoms at interfaces and grain boundaries (GBs) are known to enhance the durability of metal halide perovskite solar cells (PSCs). Using density functional theory calculations, we found that phosphine-containing molecules have the strongest binding energy among members of a library of Lewis base molecules studied herein. Experimentally, we found that the best inverted PSC treated with 1,3-bis(diphenylphosphino)propane (DPPP), a diphosphine Lewis base that passivates, binds, and bridges interfaces and GBs, retained a power conversion efficiency (PCE) slightly higher than its initial PCE of ~23% after continuous operation under simulated AM1.5 illumination at the maximum power point and at ~40°C for >3500 hours. DPPP-treated devices showed a similar increase in PCE after being kept under open-circuit conditions at 85°C for >1500 hours. Lewis base molecules that bind undercoordinated lead atoms at interfaces and grain boundaries (GBs) are known to enhance the durability of metal halide perovskite solar cells (PSCs). Using density functional theory calculations, we found that phosphine-containing molecules have the strongest binding energy among members of a library of Lewis base molecules studied herein. Experimentally, we found that the best inverted PSC treated with 1,3-bis(diphenylphosphino)propane (DPPP), a diphosphine Lewis base that passivates, binds, and bridges interfaces and GBs, retained a power conversion efficiency (PCE) slightly higher than its initial PCE of ~23% after continuous operation under simulated AM1.5 illumination at the maximum power point and at ~40°C for >3500 hours. DPPP-treated devices showed a similar increase in PCE after being kept under open-circuit conditions at 85°C for >1500 hours. Lewis base molecules that contain electron-donating atoms such as oxygen or sulfur can bind to undercoordinated lead atoms and passivate defects at interfaces and grain boundaries in perovskite films. Li et al . used density functional theory to screen potential Lewis bases and found that phosphorus-containing molecules showed the strongest binding to lead. A small amount of 1,3-bis(diphenylphosphino)propane stabilized inverted perovskite solar cells. The solar cells could maintain a power conversion efficiency of about 23% for more than 1500 hours under open-circuit conditions at 85°C. —PDS A phosphorus-containing Lewis-base molecule passivates and bridges perovskite grain boundaries and interfaces. |
Author | Ellingson, Randy J. Abudulimu, Abasi Wang, Zaiwei Xian, Yeming Fu, Fan Chen, Lei Zeng, Lewei Li, You Chen, Bin Park, So Min Lai, Huagui Bi, Enbing Chung, Jaehoon Zhu, Tao Ginger, David S. Jiang, Fangyuan Liu, Yanjiang Li, Chongwen Sargent, Edward H. Wang, Xiaoming Chen, Hao Grice, Corey R. Song, Zhaoning Yan, Yanfa |
Author_xml | – sequence: 1 givenname: Chongwen orcidid: 0000-0001-8514-190X surname: Li fullname: Li, Chongwen organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA – sequence: 2 givenname: Xiaoming surname: Wang fullname: Wang, Xiaoming organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA – sequence: 3 givenname: Enbing surname: Bi fullname: Bi, Enbing organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA – sequence: 4 givenname: Fangyuan orcidid: 0000-0002-7987-547X surname: Jiang fullname: Jiang, Fangyuan organization: Department of Chemistry, University of Washington, Seattle, WA 98195, USA – sequence: 5 givenname: So Min orcidid: 0000-0001-7677-5564 surname: Park fullname: Park, So Min organization: The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada – sequence: 6 givenname: You surname: Li fullname: Li, You organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA – sequence: 7 givenname: Lei surname: Chen fullname: Chen, Lei organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA – sequence: 8 givenname: Zaiwei orcidid: 0000-0001-9725-0206 surname: Wang fullname: Wang, Zaiwei organization: The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada – sequence: 9 givenname: Lewei surname: Zeng fullname: Zeng, Lewei organization: The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada – sequence: 10 givenname: Hao orcidid: 0000-0002-6995-0288 surname: Chen fullname: Chen, Hao organization: The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada – sequence: 11 givenname: Yanjiang orcidid: 0000-0002-6119-2793 surname: Liu fullname: Liu, Yanjiang organization: The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada – sequence: 12 givenname: Corey R. orcidid: 0000-0002-0841-5943 surname: Grice fullname: Grice, Corey R. organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA., Center for Materials and Sensors Characterization, The University of Toledo, Toledo, OH 43606, USA – sequence: 13 givenname: Abasi orcidid: 0000-0002-1794-0993 surname: Abudulimu fullname: Abudulimu, Abasi organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA – sequence: 14 givenname: Jaehoon surname: Chung fullname: Chung, Jaehoon organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA – sequence: 15 givenname: Yeming surname: Xian fullname: Xian, Yeming organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA – sequence: 16 givenname: Tao orcidid: 0000-0002-0462-799X surname: Zhu fullname: Zhu, Tao organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA – sequence: 17 givenname: Huagui orcidid: 0000-0003-3191-3999 surname: Lai fullname: Lai, Huagui organization: Laboratory for Thin Films and Photovoltaics, Empa–Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland – sequence: 18 givenname: Bin orcidid: 0000-0002-2106-7664 surname: Chen fullname: Chen, Bin organization: The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada., Department of Chemistry, Northwestern University, Evanston, IL 60208, USA – sequence: 19 givenname: Randy J. surname: Ellingson fullname: Ellingson, Randy J. organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA – sequence: 20 givenname: Fan orcidid: 0000-0002-3647-4086 surname: Fu fullname: Fu, Fan organization: Laboratory for Thin Films and Photovoltaics, Empa–Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland – sequence: 21 givenname: David S. orcidid: 0000-0002-9759-5447 surname: Ginger fullname: Ginger, David S. organization: Department of Chemistry, University of Washington, Seattle, WA 98195, USA – sequence: 22 givenname: Zhaoning orcidid: 0000-0002-6677-0994 surname: Song fullname: Song, Zhaoning organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA – sequence: 23 givenname: Edward H. orcidid: 0000-0003-0396-6495 surname: Sargent fullname: Sargent, Edward H. organization: The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada., Department of Chemistry, Northwestern University, Evanston, IL 60208, USA., Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA – sequence: 24 givenname: Yanfa orcidid: 0000-0003-3977-5789 surname: Yan fullname: Yan, Yanfa organization: Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36795809$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1959189$$D View this record in Osti.gov |
BookMark | eNp1kc1vFSEUxYmpsa_VtTtDdONm2sswDMPSNH4lL2li2jUCc0ep8-AJTBv_exnf66aJG1jwO4d7zzkjJyEGJOQ1gwvG2v4yO4_B4YUZkSsJz8iGgRKNaoGfkA0A75sBpDglZznfAdQ3xV-QU95LJQZQG_L9myk-BjPTEbP_EWic6BYffKbWZKS7OKNbZsx0ionmYuyM1ISR4jT59e9CfbjHVHCke0zxPv_yBWmOs0nU4Tznl-T5ZOaMr473Obn99PHm6kuzvf789erDtnGdUKVB69qe4SQtODCDFcI5006OCbBOSsFbDp0UrkcYuGV952ynWMuxnoPgip-TtwffmIvXNZeC7qeLIaArmtW92bBC7w_QPsXfC-aidz6vY5qAccm6HUTXtR1AW9F3T9C7uKQaVKWkHIBL1a-Gb47UYnc46n3yO5P-6MeAKyAOgEsx54STrpP9i7wk42fNQK9F6mOR-lhk1V0-0T1a_0_xF_wDonc |
CitedBy_id | crossref_primary_10_1002_adma_202409742 crossref_primary_10_1021_acsami_5c00748 crossref_primary_10_1021_acsami_3c05215 crossref_primary_10_1038_s41586_024_07705_5 crossref_primary_10_1016_j_nanoen_2024_110634 crossref_primary_10_1016_j_joule_2024_11_010 crossref_primary_10_1038_s41467_024_55329_0 crossref_primary_10_1021_acsnano_3c12587 crossref_primary_10_1021_acsaem_4c00756 crossref_primary_10_1002_ange_202407383 crossref_primary_10_1016_j_jallcom_2023_172749 crossref_primary_10_1039_D3RA04134D crossref_primary_10_1038_s41560_024_01680_x crossref_primary_10_1016_j_cej_2025_161518 crossref_primary_10_1016_j_dyepig_2024_112617 crossref_primary_10_1039_D4EE02427C crossref_primary_10_1021_acs_energyfuels_3c04162 crossref_primary_10_1002_advs_202412557 crossref_primary_10_1002_solr_202400849 crossref_primary_10_1021_acsami_3c17441 crossref_primary_10_1002_ange_202305221 crossref_primary_10_1126_science_ado6619 crossref_primary_10_1038_s41586_023_06892_x crossref_primary_10_1021_acsnano_4c07093 crossref_primary_10_1002_adfm_202406897 crossref_primary_10_1002_anie_202410378 crossref_primary_10_1002_anie_202423206 crossref_primary_10_1063_5_0226720 crossref_primary_10_1002_ange_202407151 crossref_primary_10_1021_acs_jpclett_4c00881 crossref_primary_10_1016_j_solmat_2025_113510 crossref_primary_10_1038_s41566_024_01570_4 crossref_primary_10_1002_ange_202420585 crossref_primary_10_1039_D3EE02344C crossref_primary_10_1039_D4EE02917H crossref_primary_10_1039_D4TC04794J crossref_primary_10_1002_ange_202409689 crossref_primary_10_1038_s41560_023_01442_1 crossref_primary_10_1021_acsenergylett_3c01691 crossref_primary_10_1002_adfm_202415004 crossref_primary_10_1002_ange_202414118 crossref_primary_10_1016_j_cej_2023_148081 crossref_primary_10_1016_j_jpowsour_2024_235731 crossref_primary_10_1021_acs_chemrev_4c00073 crossref_primary_10_1039_D4RA08786K crossref_primary_10_1002_smll_202307246 crossref_primary_10_1002_aesr_202400030 crossref_primary_10_1021_jacs_4c13724 crossref_primary_10_1039_D4EE01008F crossref_primary_10_1016_j_mtener_2024_101554 crossref_primary_10_1039_D3RA02391E crossref_primary_10_1021_acsami_3c17432 crossref_primary_10_1007_s40843_023_2740_4 crossref_primary_10_1002_adma_202301752 crossref_primary_10_1126_sciadv_adp0790 crossref_primary_10_1002_adma_202413304 crossref_primary_10_1002_anie_202311865 crossref_primary_10_1021_acs_jpclett_4c00736 crossref_primary_10_1038_s41560_023_01406_5 crossref_primary_10_1002_solr_202400391 crossref_primary_10_1002_ange_202314089 crossref_primary_10_1016_j_mattod_2023_06_009 crossref_primary_10_1039_D3CC01100C crossref_primary_10_1063_5_0210109 crossref_primary_10_1186_s43088_023_00405_5 crossref_primary_10_1016_j_enchem_2023_100105 crossref_primary_10_1038_s41578_023_00582_w crossref_primary_10_1002_adma_202410390 crossref_primary_10_1021_acsenergylett_3c01323 crossref_primary_10_1002_adfm_202402632 crossref_primary_10_1002_solr_202400148 crossref_primary_10_1016_j_cej_2024_151778 crossref_primary_10_1002_adma_202306415 crossref_primary_10_1039_D4EE02251C crossref_primary_10_1002_aenm_202402443 crossref_primary_10_1007_s40843_025_3285_2 crossref_primary_10_1021_acsnano_4c08168 crossref_primary_10_1002_anie_202314106 crossref_primary_10_1016_j_xcrp_2024_102349 crossref_primary_10_3390_molecules29092104 crossref_primary_10_1002_aenm_202403530 crossref_primary_10_1021_acssuschemeng_4c07636 crossref_primary_10_1016_j_cej_2024_158954 crossref_primary_10_1002_wcms_1677 crossref_primary_10_1002_adma_202419413 crossref_primary_10_1016_j_nanoen_2023_108506 crossref_primary_10_1021_acsenergylett_4c01301 crossref_primary_10_1039_D4TA06793B crossref_primary_10_1021_acs_nanolett_3c03655 crossref_primary_10_1039_D4TA03192J crossref_primary_10_1002_aenm_202304486 crossref_primary_10_1016_j_matt_2023_05_036 crossref_primary_10_1016_j_apmate_2025_100275 crossref_primary_10_1002_anie_202407151 crossref_primary_10_1039_D4NR02046D crossref_primary_10_1021_jacs_3c03997 crossref_primary_10_1038_s41560_024_01613_8 crossref_primary_10_1002_anie_202411659 crossref_primary_10_1002_smll_202310227 crossref_primary_10_1016_j_cej_2024_155672 crossref_primary_10_1016_j_solmat_2025_113548 crossref_primary_10_1126_science_adj8858 crossref_primary_10_1016_j_cej_2024_155674 crossref_primary_10_1002_aenm_202302191 crossref_primary_10_1126_science_adm9474 crossref_primary_10_1002_aenm_202400203 crossref_primary_10_1021_acsanm_5c00290 crossref_primary_10_1016_j_joule_2024_04_015 crossref_primary_10_1002_adfm_202315604 crossref_primary_10_1002_adma_202312679 crossref_primary_10_1002_adma_202303275 crossref_primary_10_1002_anie_202307152 crossref_primary_10_1021_acsenergylett_4c03370 crossref_primary_10_1002_aesr_202400003 crossref_primary_10_1002_solr_202400648 crossref_primary_10_1038_s41578_024_00678_x crossref_primary_10_1002_aenm_202301302 crossref_primary_10_1016_j_nanoen_2025_110720 crossref_primary_10_1039_D4EE02124J crossref_primary_10_1016_j_jallcom_2025_179076 crossref_primary_10_1039_D4EE04555F crossref_primary_10_1002_anie_202409689 crossref_primary_10_1002_adfm_202415331 crossref_primary_10_1002_anie_202407383 crossref_primary_10_1016_j_cclet_2024_109821 crossref_primary_10_1002_aenm_202403706 crossref_primary_10_1002_cjoc_202300658 crossref_primary_10_1088_1674_1056_ad6259 crossref_primary_10_1021_jacs_3c13576 crossref_primary_10_1063_5_0168780 crossref_primary_10_1021_acsmaterialslett_4c01998 crossref_primary_10_1016_j_jechem_2024_03_014 crossref_primary_10_1002_aenm_202303173 crossref_primary_10_1002_solr_202300541 crossref_primary_10_1021_acsenergylett_4c02610 crossref_primary_10_1016_j_nanoen_2024_109438 crossref_primary_10_1038_s41566_024_01542_8 crossref_primary_10_1016_j_joule_2024_04_002 crossref_primary_10_1002_adfm_202315157 crossref_primary_10_1002_adfm_202408480 crossref_primary_10_1002_adfm_202501623 crossref_primary_10_1021_acsphotonics_4c00137 crossref_primary_10_1002_adfm_202408829 crossref_primary_10_1002_adma_202408036 crossref_primary_10_1002_anie_202305221 crossref_primary_10_1002_adma_202306568 crossref_primary_10_1002_smll_202302383 crossref_primary_10_1002_adma_202406532 crossref_primary_10_1016_j_jmst_2024_05_069 crossref_primary_10_1002_smll_202401256 crossref_primary_10_1002_anie_202420585 crossref_primary_10_1002_aenm_202405367 crossref_primary_10_1002_aenm_202401320 crossref_primary_10_1002_ange_202411659 crossref_primary_10_1039_D4NJ00154K crossref_primary_10_1016_j_joule_2024_01_020 crossref_primary_10_1002_adfm_202413177 crossref_primary_10_1002_anie_202401066 crossref_primary_10_1021_acs_jpclett_4c02160 crossref_primary_10_3390_nano13091560 crossref_primary_10_1016_j_cej_2023_148275 crossref_primary_10_1016_j_jphotochem_2023_115240 crossref_primary_10_1016_j_jallcom_2025_179401 crossref_primary_10_1002_adfm_202408392 crossref_primary_10_1002_adom_202402521 crossref_primary_10_1002_cssc_202400466 crossref_primary_10_1002_adma_202300233 crossref_primary_10_1002_smll_202311400 crossref_primary_10_1002_adma_202405572 crossref_primary_10_1002_aenm_202303988 crossref_primary_10_1002_anie_202414118 crossref_primary_10_1007_s40843_024_3076_3 crossref_primary_10_1002_solr_202300996 crossref_primary_10_1002_adma_202303869 crossref_primary_10_1002_ange_202401066 crossref_primary_10_1002_cssc_202301458 crossref_primary_10_1038_s41467_024_50962_1 crossref_primary_10_1002_adfm_202305215 crossref_primary_10_1038_s41560_023_01362_0 crossref_primary_10_1002_adma_202307422 crossref_primary_10_1039_D4TA04233F crossref_primary_10_1002_solr_202400736 crossref_primary_10_1002_ange_202314106 crossref_primary_10_1039_D4CS01107D crossref_primary_10_1007_s40820_024_01417_1 crossref_primary_10_1021_acsami_4c20422 crossref_primary_10_1002_adfm_202407116 crossref_primary_10_1002_smtd_202400385 crossref_primary_10_1039_D4EE03272A crossref_primary_10_1364_OL_546644 crossref_primary_10_1002_adma_202311025 crossref_primary_10_1021_acsnano_4c04768 crossref_primary_10_1002_ange_202403610 crossref_primary_10_1002_smll_202310939 crossref_primary_10_1002_adfm_202412389 crossref_primary_10_1021_acsnano_3c11642 crossref_primary_10_1038_s41586_024_08159_5 crossref_primary_10_1002_smll_202304829 crossref_primary_10_1002_adma_202306466 crossref_primary_10_1039_D4TA07497A crossref_primary_10_1126_science_ade9637 crossref_primary_10_1038_s41467_024_55653_5 crossref_primary_10_1002_ente_202301695 crossref_primary_10_1002_ange_202311865 crossref_primary_10_1038_s41586_024_07712_6 crossref_primary_10_1039_D4EE02661F crossref_primary_10_1038_s41560_024_01608_5 crossref_primary_10_1002_smtd_202401244 crossref_primary_10_1021_jacs_4c05398 crossref_primary_10_1038_s41377_024_01461_x crossref_primary_10_1038_s41598_023_32468_w crossref_primary_10_15541_jim20240138 crossref_primary_10_1021_acs_jpcc_4c00097 crossref_primary_10_1038_s43246_024_00566_5 crossref_primary_10_1002_ange_202403068 crossref_primary_10_1039_D4EE05232C crossref_primary_10_1002_aenm_202303092 crossref_primary_10_1088_1361_651X_ad16ef crossref_primary_10_1002_adma_202310962 crossref_primary_10_1021_acsnano_4c11866 crossref_primary_10_1126_science_ado2302 crossref_primary_10_1016_j_jcis_2023_08_158 crossref_primary_10_1038_s41467_024_47019_8 crossref_primary_10_1016_j_cej_2024_159095 crossref_primary_10_1021_acsami_3c17141 crossref_primary_10_1002_ange_202423206 crossref_primary_10_1002_ange_202307152 crossref_primary_10_1039_D3EE00841J crossref_primary_10_12677_JAPC_2023_124033 crossref_primary_10_1021_acsenergylett_4c00724 crossref_primary_10_1021_acsenergylett_4c00045 crossref_primary_10_1038_s41467_024_50019_3 crossref_primary_10_1021_acsenergylett_4c00960 crossref_primary_10_1039_D4NJ01415D crossref_primary_10_1002_adma_202404797 crossref_primary_10_1002_ange_202303462 crossref_primary_10_1002_advs_202309111 crossref_primary_10_1016_j_cej_2024_151919 crossref_primary_10_1002_anie_202413582 crossref_primary_10_1016_j_jallcom_2024_174275 crossref_primary_10_1039_D3SC05485C crossref_primary_10_1039_D3CC00967J crossref_primary_10_1016_j_jechem_2024_04_036 crossref_primary_10_1021_acsaem_3c01126 crossref_primary_10_1002_solr_202300712 crossref_primary_10_1021_acsenergylett_4c00614 crossref_primary_10_1038_s41560_024_01600_z crossref_primary_10_1007_s40843_024_3093_9 crossref_primary_10_1016_j_solmat_2024_112879 crossref_primary_10_1002_inf2_12522 crossref_primary_10_1016_j_enchem_2024_100135 crossref_primary_10_1002_ange_202410378 crossref_primary_10_1021_acs_langmuir_4c03209 crossref_primary_10_1002_adfm_202401391 crossref_primary_10_1002_adma_202415211 crossref_primary_10_1002_aenm_202304521 crossref_primary_10_1016_j_nanoen_2024_110278 crossref_primary_10_1039_D4CS00838C crossref_primary_10_1002_anie_202303462 crossref_primary_10_1016_j_diamond_2024_111114 crossref_primary_10_1002_adma_202403682 crossref_primary_10_1002_smll_202312122 crossref_primary_10_1038_s41578_025_00781_7 crossref_primary_10_1080_13467581_2025_2467253 crossref_primary_10_1002_adma_202414576 crossref_primary_10_1016_j_ceramint_2023_08_193 crossref_primary_10_1002_solr_202300248 crossref_primary_10_1039_D4EE01073F crossref_primary_10_1002_ange_202318591 crossref_primary_10_1002_solr_202300253 crossref_primary_10_1016_j_cej_2024_154189 crossref_primary_10_1021_acs_nanolett_3c01769 crossref_primary_10_1002_anie_202403068 crossref_primary_10_1021_acsmaterialslett_4c02453 crossref_primary_10_1039_D3QI01757E crossref_primary_10_1016_j_cej_2024_154864 crossref_primary_10_1002_smll_202412530 crossref_primary_10_1039_D3TA07499D crossref_primary_10_1002_adfm_202401323 crossref_primary_10_1038_s41560_023_01377_7 crossref_primary_10_1016_j_jechem_2024_01_063 crossref_primary_10_1039_D4EE05968A crossref_primary_10_1002_aenm_202403676 crossref_primary_10_1002_eom2_12501 crossref_primary_10_1002_aenm_202403554 crossref_primary_10_1016_j_xcrp_2024_102245 crossref_primary_10_1002_anie_202314089 crossref_primary_10_1007_s11426_024_1975_6 crossref_primary_10_1016_j_xcrp_2024_102008 crossref_primary_10_1002_solr_202300934 crossref_primary_10_1002_anie_202403610 crossref_primary_10_1080_00107514_2023_2230698 crossref_primary_10_1002_adma_202311970 crossref_primary_10_1016_j_joule_2024_02_019 crossref_primary_10_1002_adfm_202409852 crossref_primary_10_1016_j_jechem_2024_02_057 crossref_primary_10_1039_D3MH01313H crossref_primary_10_1002_adfm_202308108 crossref_primary_10_1002_anie_202416284 crossref_primary_10_1021_acsaem_4c00291 crossref_primary_10_1021_acs_jpclett_3c03333 crossref_primary_10_1002_adfm_202301956 crossref_primary_10_1016_j_nanoen_2023_108883 crossref_primary_10_1002_smll_202300013 crossref_primary_10_1002_ange_202413582 crossref_primary_10_1002_cjoc_202300252 crossref_primary_10_1016_j_mtchem_2023_101589 crossref_primary_10_15541_jim20230105 crossref_primary_10_1002_smll_202311377 crossref_primary_10_1002_aenm_202304429 crossref_primary_10_1016_j_jssc_2024_124606 crossref_primary_10_1038_s41560_024_01579_7 crossref_primary_10_1002_anie_202409072 crossref_primary_10_1126_science_ado9104 crossref_primary_10_1038_s41467_024_46368_8 crossref_primary_10_1088_2752_5724_ad42ba crossref_primary_10_1002_aesr_202300205 crossref_primary_10_1002_smtd_202401339 crossref_primary_10_1038_s41560_024_01642_3 crossref_primary_10_1002_ange_202404289 crossref_primary_10_1021_acsami_3c08583 crossref_primary_10_1002_adma_202211317 crossref_primary_10_1002_smll_202304045 crossref_primary_10_1002_solr_202400903 crossref_primary_10_1016_j_jechem_2023_07_002 crossref_primary_10_1016_j_esci_2024_100243 crossref_primary_10_1002_solr_202400901 crossref_primary_10_53941_matsus_2025_100006 crossref_primary_10_1002_aenm_202303344 crossref_primary_10_1002_jcc_27329 crossref_primary_10_1016_j_mtener_2023_101401 crossref_primary_10_1021_acssuschemeng_4c07322 crossref_primary_10_1002_adma_202408686 crossref_primary_10_1021_acs_jcim_4c00493 crossref_primary_10_1002_ange_202416284 crossref_primary_10_1016_j_rio_2023_100470 crossref_primary_10_1039_D3EE02475J crossref_primary_10_1002_ange_202409072 crossref_primary_10_1016_j_joule_2025_101880 crossref_primary_10_1021_acsaem_3c02935 crossref_primary_10_1038_s41467_025_55815_z crossref_primary_10_1016_j_solmat_2023_112499 crossref_primary_10_1021_acsami_4c06276 crossref_primary_10_20517_energymater_2024_54 crossref_primary_10_1002_smll_202402197 crossref_primary_10_1021_acsami_3c16765 crossref_primary_10_1002_anie_202404289 crossref_primary_10_1126_science_adi4531 crossref_primary_10_1016_j_xcrp_2024_102030 crossref_primary_10_1002_anie_202318591 crossref_primary_10_1038_s41467_023_41853_y crossref_primary_10_1039_D3TA07690C crossref_primary_10_1021_acs_jpclett_4c02692 crossref_primary_10_1016_j_cej_2024_152899 crossref_primary_10_1002_advs_202304811 crossref_primary_10_1016_j_cej_2025_160571 crossref_primary_10_1002_smll_202305127 |
Cites_doi | 10.1039/C8TA06950F 10.1126/science.abm5784 10.1021/acsenergylett.8b02058 10.1021/acsomega.2c00509 10.1126/science.aat8235 10.1038/s41586-019-1357-2 10.1063/5.0067108 10.1039/C9EE02043H 10.1103/PhysRevLett.77.3865 10.1038/s41560-017-0060-5 10.1038/s41467-018-07255-1 10.1002/adfm.202201193 10.1021/acsami.7b07625 10.1038/s41467-019-08455-z 10.1021/acs.chemrev.8b00336 10.1126/science.aax3294 10.1103/PhysRevB.50.17953 10.1002/adfm.201910710 10.1016/0927-0256(96)00008-0 10.1021/acsami.7b06816 10.1039/D0MH00745E 10.1038/natrevmats.2018.17 10.1021/jacs.5b04930 10.1103/PhysRevB.54.11169 10.1021/acs.chemrev.8b00539 10.1038/s41560-017-0067-y 10.1002/adma.201902413 10.1126/science.aba1628 10.1021/acsenergylett.1c01707 10.1126/science.abp8873 10.1038/ncomms11574 10.1021/jacs.1c00757 10.1063/1.3382344 10.1016/j.trechm.2021.04.004 10.1021/acs.accounts.5b00420 10.1021/acsenergylett.6b00236 10.1038/s41586-021-03964-8 10.1126/science.abm8566 10.1021/nn5036476 10.1039/C6EE03352K 10.1039/C8SE00358K 10.1038/s41560-019-0529-5 10.1126/science.aaa5333 |
ContentType | Journal Article |
Copyright | Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
CorporateAuthor | Univ. of Toledo, OH (United States) |
CorporateAuthor_xml | – name: Univ. of Toledo, OH (United States) |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 OIOZB OTOTI |
DOI | 10.1126/science.ade3970 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 694 |
ExternalDocumentID | 1959189 36795809 10_1126_science_ade3970 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 0B8 AEUPB ESX GX1 IGG NPM OK1 UIG VQA YCJ YIF YIN YJ6 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 63O 79B AFOSN ANJGP B-7 OIOZB OTOTI XFK ZA5 |
ID | FETCH-LOGICAL-c459t-ebc261ef7b0c0a8b55cca2fc150bc7753230475c6e083b164cb49123e49185393 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Mon Feb 19 05:00:54 EST 2024 Thu Sep 04 16:35:13 EDT 2025 Fri Jul 25 19:24:35 EDT 2025 Wed Feb 19 02:07:54 EST 2025 Tue Jul 01 02:24:15 EDT 2025 Thu Apr 24 22:53:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6633 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c459t-ebc261ef7b0c0a8b55cca2fc150bc7753230475c6e083b164cb49123e49185393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 EE0008970; EE0008753; AC02-05CH11231; NO0014-20-1-2572 USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office US Department of the Navy, Office of Naval Research |
ORCID | 0000-0002-7987-547X 0000-0002-6995-0288 0000-0002-1794-0993 0000-0002-0462-799X 0000-0003-3191-3999 0000-0001-7677-5564 0000-0001-9725-0206 0000-0002-3647-4086 0000-0003-0396-6495 0000-0002-6119-2793 0000-0002-0841-5943 0000-0003-3977-5789 0000-0001-8514-190X 0000-0002-2106-7664 0000-0002-9759-5447 0000-0002-6677-0994 0000000266770994 0000000208415943 0000000339775789 000000018514190X 0000000269950288 0000000297595447 0000000261192793 0000000331913999 0000000221067664 000000027987547X 0000000236474086 0000000197250206 000000020462799X 0000000303966495 0000000217940993 0000000176775564 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1959189 |
PMID | 36795809 |
PQID | 2778037969 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | osti_scitechconnect_1959189 proquest_miscellaneous_2854424002 proquest_journals_2778037969 pubmed_primary_36795809 crossref_citationtrail_10_1126_science_ade3970 crossref_primary_10_1126_science_ade3970 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-17 |
PublicationDateYYYYMMDD | 2023-02-17 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2023 |
Publisher | The American Association for the Advancement of Science AAAS |
Publisher_xml | – name: The American Association for the Advancement of Science – name: AAAS |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 38574160 - Science. 2024 Apr 5;384(6691):eadp4014 |
References_xml | – ident: e_1_3_2_8_2 doi: 10.1039/C8TA06950F – ident: e_1_3_2_11_2 doi: 10.1126/science.abm5784 – ident: e_1_3_2_36_2 doi: 10.1021/acsenergylett.8b02058 – ident: e_1_3_2_44_2 doi: 10.1021/acsomega.2c00509 – ident: e_1_3_2_6_2 doi: 10.1126/science.aat8235 – ident: e_1_3_2_22_2 doi: 10.1038/s41586-019-1357-2 – ident: e_1_3_2_31_2 doi: 10.1063/5.0067108 – ident: e_1_3_2_35_2 doi: 10.1039/C9EE02043H – ident: e_1_3_2_42_2 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_3_2_9_2 doi: 10.1038/s41560-017-0060-5 – ident: e_1_3_2_7_2 doi: 10.1038/s41467-018-07255-1 – ident: e_1_3_2_27_2 doi: 10.1002/adfm.202201193 – ident: e_1_3_2_19_2 doi: 10.1021/acsami.7b07625 – ident: e_1_3_2_24_2 doi: 10.1038/s41467-019-08455-z – ident: e_1_3_2_12_2 doi: 10.1021/acs.chemrev.8b00336 – ident: e_1_3_2_20_2 doi: 10.1126/science.aax3294 – ident: e_1_3_2_41_2 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_3_2_28_2 doi: 10.1002/adfm.201910710 – ident: e_1_3_2_40_2 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_3_2_16_2 doi: 10.1021/acsami.7b06816 – ident: e_1_3_2_25_2 doi: 10.1039/D0MH00745E – ident: e_1_3_2_3_2 doi: 10.1038/natrevmats.2018.17 – ident: e_1_3_2_30_2 doi: 10.1021/jacs.5b04930 – ident: e_1_3_2_39_2 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_3_2_2_2 doi: 10.1021/acs.chemrev.8b00539 – ident: e_1_3_2_37_2 doi: 10.1038/s41560-017-0067-y – ident: e_1_3_2_17_2 doi: 10.1002/adma.201902413 – ident: e_1_3_2_21_2 doi: 10.1126/science.aba1628 – ident: e_1_3_2_13_2 doi: 10.1021/acsenergylett.1c01707 – ident: e_1_3_2_5_2 doi: 10.1126/science.abp8873 – ident: e_1_3_2_38_2 doi: 10.1038/ncomms11574 – ident: e_1_3_2_32_2 doi: 10.1021/jacs.1c00757 – ident: e_1_3_2_43_2 doi: 10.1063/1.3382344 – ident: e_1_3_2_14_2 doi: 10.1016/j.trechm.2021.04.004 – ident: e_1_3_2_18_2 doi: 10.1021/acs.accounts.5b00420 – ident: e_1_3_2_26_2 doi: 10.1021/acsenergylett.6b00236 – ident: e_1_3_2_4_2 doi: 10.1038/s41586-021-03964-8 – ident: e_1_3_2_23_2 doi: 10.1126/science.abm8566 – ident: e_1_3_2_29_2 doi: 10.1021/nn5036476 – ident: e_1_3_2_15_2 doi: 10.1039/C6EE03352K – ident: e_1_3_2_34_2 doi: 10.1039/C8SE00358K – ident: e_1_3_2_10_2 doi: 10.1038/s41560-019-0529-5 – ident: e_1_3_2_33_2 doi: 10.1126/science.aaa5333 – reference: 38574160 - Science. 2024 Apr 5;384(6691):eadp4014 |
SSID | ssj0009593 |
Score | 2.7334635 |
Snippet | Lewis base molecules that bind undercoordinated lead atoms at interfaces and grain boundaries (GBs) are known to enhance the durability of metal halide... Phosphorus stabilization of perovskitesLewis base molecules that contain electron-donating atoms such as oxygen or sulfur can bind to undercoordinated lead... |
SourceID | osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 690 |
SubjectTerms | Circuits Crystal defects Density functional theory Energy conversion efficiency Grain boundaries Interfaces Lewis base Perovskites Phosphorus Photovoltaic cells Solar cells SOLAR ENERGY Sulfur |
Title | Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36795809 https://www.proquest.com/docview/2778037969 https://www.proquest.com/docview/2854424002 https://www.osti.gov/servlets/purl/1959189 |
Volume | 379 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEBu3soGMxMNQlcmNEzt57IBqmoAHtIm-hcR1pkgsQSRlGn-Mv8c5vqThUmnwklSOY1k5X8_N50LIi1mkclDry0CKFQ8irldBuuI6kDkIU8XTgieYjfzuvTg5j06X8XI0-jGIWlp3xZH6_te8kv-hKowBXTFL9h8o2y8KA_Ab6AtXoDBcb0TjD96TtzJxGMbfr6-qdoqyaXppO99qU3EBfQaYJIV-cm3KRmAQQFVjO2bQObFc-LcWPbnTFo3dKTr026Hm6pkAaKT9Kc-Atn244twGFfgYA_fawOHwtrLH_E19cbXJQ_vo_NbLKm8uvTg1znvDretiMHZauckLuF-vHb6d6yLEA-PAZmp6duyqIVthZDkww-aRIeNDFs1twxmHRVCS-IDnCttv1IlvYXsm_ykZBr0sNZbgBEWMbYSgP_j_TTb2EYvGVgpF5hbI3AK3yE4I9gkbk5358evjxdZ6z66q1CBfy-_hF4Vo3ABj327sGKXn7B6566wVOrfQ2yUjXe-R27Z_6fUe2XXUbemhK1_-8j755FFJLSppU1KDSoqopD0qKSCGWlRSQCXtUUk9KukGldSgkhpUPiDnizdnr04C18cjUFGcdoEuFNjpupQFUyxPijgGthGWCmyRQkmwl83Zb6yEBnugAPtdFVEKGpWGK2iTKX9IxnVT68eEloJJyXMtmS6jlQyTWM9KHetI5BJEiZqQI_8xM-WK3GOvlc_ZFgJOyGH_whdb32X71H2kDg5jfWWFgWiqy7A60yxJJ-TAEy1zLKLNABsJA_AKePy8fwwMHD9XXutmDXOSOIowkjuckEeW2P1OuJBpnLD0yc13uU_ubP5qB2TcfV3rp6A3d8Uzh9GfH4TIqQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+design+of+Lewis+base+molecules+for+stable+and+efficient+inverted+perovskite+solar+cells&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Li%2C+Chongwen&rft.au=Wang%2C+Xiaoming&rft.au=Bi%2C+Enbing&rft.au=Jiang%2C+Fangyuan&rft.date=2023-02-17&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=379&rft.issue=6633&rft.spage=690&rft.epage=694&rft_id=info:doi/10.1126%2Fscience.ade3970&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_ade3970 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |