Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli
Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient mobilization. Yet, it remains unresolved how exudation is controlled and how exactly and under what circumstances plants benefit from exudation. The...
Saved in:
Published in | Frontiers in plant science Vol. 10; p. 157 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
21.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient mobilization. Yet, it remains unresolved how exudation is controlled and how exactly and under what circumstances plants benefit from exudation. The majority of root exudates including primary metabolites (sugars, amino acids, and organic acids) are believed to be passively lost from the root and used by rhizosphere-dwelling microbes. In this review, we synthetize recent advances in ecology and plant biology to explain and propose mechanisms by which root exudation of primary metabolites is controlled, and what role their exudation plays in plant nutrient acquisition strategies. Specifically, we propose a novel conceptual framework for root exudates. This framework is built upon two main concepts: (1) root exudation of primary metabolites is driven by diffusion, with plants and microbes both modulating concentration gradients and therefore diffusion rates to soil depending on their nutritional status; (2) exuded metabolite concentrations can be sensed at the root tip and signals are translated to modify root architecture. The flux of primary metabolites through root exudation is mostly located at the root tip, where the lack of cell differentiation favors diffusion of metabolites to the soil. We show examples of how the root tip senses concentration changes of exuded metabolites and translates that into signals to modify root growth. Plants can modify the concentration of metabolites either by controlling source/sink processes or by expressing and regulating efflux carriers, therefore challenging the idea of root exudation as a purely unregulated passive process. Through root exudate flux, plants can locally enhance concentrations of many common metabolites, which can serve as sensors and integrators of the plant nutritional status and of the nutrient availability in the surrounding environment. Plant-associated micro-organisms also constitute a strong sink for plant carbon, thereby increasing concentration gradients of metabolites and affecting root exudation. Understanding the mechanisms of and the effects that environmental stimuli have on the magnitude and type of root exudation will ultimately improve our knowledge of processes determining soil CO
emissions, ecosystem functioning, and how to improve the sustainability of agricultural production. |
---|---|
AbstractList | Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient mobilization. Yet, it remains unresolved how exudation is controlled and how exactly and under what circumstances plants benefit from exudation. The majority of root exudates including primary metabolites (sugars, amino acids, and organic acids) are believed to be passively lost from the root and used by rhizosphere-dwelling microbes. In this review, we synthetize recent advances in ecology and plant biology to explain and propose mechanisms by which root exudation of primary metabolites is controlled, and what role their exudation plays in plant nutrient acquisition strategies. Specifically, we propose a novel conceptual framework for root exudates. This framework is built upon two main concepts: (1) root exudation of primary metabolites is driven by diffusion, with plants and microbes both modulating concentration gradients and therefore diffusion rates to soil depending on their nutritional status; (2) exuded metabolite concentrations can be sensed at the root tip and signals are translated to modify root architecture. The flux of primary metabolites through root exudation is mostly located at the root tip, where the lack of cell differentiation favors diffusion of metabolites to the soil. We show examples of how the root tip senses concentration changes of exuded metabolites and translates that into signals to modify root growth. Plants can modify the concentration of metabolites either by controlling source/sink processes or by expressing and regulating efflux carriers, therefore challenging the idea of root exudation as a purely unregulated passive process. Through root exudate flux, plants can locally enhance concentrations of many common metabolites, which can serve as sensors and integrators of the plant nutritional status and of the nutrient availability in the surrounding environment. Plant-associated micro-organisms also constitute a strong sink for plant carbon, thereby increasing concentration gradients of metabolites and affecting root exudation. Understanding the mechanisms of and the effects that environmental stimuli have on the magnitude and type of root exudation will ultimately improve our knowledge of processes determining soil CO2 emissions, ecosystem functioning, and how to improve the sustainability of agricultural production.Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient mobilization. Yet, it remains unresolved how exudation is controlled and how exactly and under what circumstances plants benefit from exudation. The majority of root exudates including primary metabolites (sugars, amino acids, and organic acids) are believed to be passively lost from the root and used by rhizosphere-dwelling microbes. In this review, we synthetize recent advances in ecology and plant biology to explain and propose mechanisms by which root exudation of primary metabolites is controlled, and what role their exudation plays in plant nutrient acquisition strategies. Specifically, we propose a novel conceptual framework for root exudates. This framework is built upon two main concepts: (1) root exudation of primary metabolites is driven by diffusion, with plants and microbes both modulating concentration gradients and therefore diffusion rates to soil depending on their nutritional status; (2) exuded metabolite concentrations can be sensed at the root tip and signals are translated to modify root architecture. The flux of primary metabolites through root exudation is mostly located at the root tip, where the lack of cell differentiation favors diffusion of metabolites to the soil. We show examples of how the root tip senses concentration changes of exuded metabolites and translates that into signals to modify root growth. Plants can modify the concentration of metabolites either by controlling source/sink processes or by expressing and regulating efflux carriers, therefore challenging the idea of root exudation as a purely unregulated passive process. Through root exudate flux, plants can locally enhance concentrations of many common metabolites, which can serve as sensors and integrators of the plant nutritional status and of the nutrient availability in the surrounding environment. Plant-associated micro-organisms also constitute a strong sink for plant carbon, thereby increasing concentration gradients of metabolites and affecting root exudation. Understanding the mechanisms of and the effects that environmental stimuli have on the magnitude and type of root exudation will ultimately improve our knowledge of processes determining soil CO2 emissions, ecosystem functioning, and how to improve the sustainability of agricultural production. Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient mobilization. Yet, it remains unresolved how exudation is controlled and how exactly and under what circumstances plants benefit from exudation. The majority of root exudates including primary metabolites (sugars, amino acids, and organic acids) are believed to be passively lost from the root and used by rhizosphere-dwelling microbes. In this review, we synthetize recent advances in ecology and plant biology to explain and propose mechanisms by which root exudation of primary metabolites is controlled, and what role their exudation plays in plant nutrient acquisition strategies. Specifically, we propose a novel conceptual framework for root exudates. This framework is built upon two main concepts: (1) root exudation of primary metabolites is driven by diffusion, with plants and microbes both modulating concentration gradients and therefore diffusion rates to soil depending on their nutritional status; (2) exuded metabolite concentrations can be sensed at the root tip and signals are translated to modify root architecture. The flux of primary metabolites through root exudation is mostly located at the root tip, where the lack of cell differentiation favors diffusion of metabolites to the soil. We show examples of how the root tip senses concentration changes of exuded metabolites and translates that into signals to modify root growth. Plants can modify the concentration of metabolites either by controlling source/sink processes or by expressing and regulating efflux carriers, therefore challenging the idea of root exudation as a purely unregulated passive process. Through root exudate flux, plants can locally enhance concentrations of many common metabolites, which can serve as sensors and integrators of the plant nutritional status and of the nutrient availability in the surrounding environment. Plant-associated micro-organisms also constitute a strong sink for plant carbon, thereby increasing concentration gradients of metabolites and affecting root exudation. Understanding the mechanisms of and the effects that environmental stimuli have on the magnitude and type of root exudation will ultimately improve our knowledge of processes determining soil CO emissions, ecosystem functioning, and how to improve the sustainability of agricultural production. Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient mobilization. Yet, it remains unresolved how exudation is controlled and how exactly and under what circumstances plants benefit from exudation. The majority of root exudates including primary metabolites (sugars, amino acids, and organic acids) are believed to be passively lost from the root and used by rhizosphere-dwelling microbes. In this review, we synthetize recent advances in ecology and plant biology to explain and propose mechanisms by which root exudation of primary metabolites is controlled, and what role their exudation plays in plant nutrient acquisition strategies. Specifically, we propose a novel conceptual framework for root exudates. This framework is built upon two main concepts: (1) root exudation of primary metabolites is driven by diffusion, with plants and microbes both modulating concentration gradients and therefore diffusion rates to soil depending on their nutritional status; (2) exuded metabolite concentrations can be sensed at the root tip and signals are translated to modify root architecture. The flux of primary metabolites through root exudation is mostly located at the root tip, where the lack of cell differentiation favors diffusion of metabolites to the soil. We show examples of how the root tip senses concentration changes of exuded metabolites and translates that into signals to modify root growth. Plants can modify the concentration of metabolites either by controlling source/sink processes or by expressing and regulating efflux carriers, therefore challenging the idea of root exudation as a purely unregulated passive process. Through root exudate flux, plants can locally enhance concentrations of many common metabolites, which can serve as sensors and integrators of the plant nutritional status and of the nutrient availability in the surrounding environment. Plant-associated micro-organisms also constitute a strong sink for plant carbon, thereby increasing concentration gradients of metabolites and affecting root exudation. Understanding the mechanisms of and the effects that environmental stimuli have on the magnitude and type of root exudation will ultimately improve our knowledge of processes determining soil CO 2 emissions, ecosystem functioning, and how to improve the sustainability of agricultural production. Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient mobilization. Yet, it remains unresolved how exudation is controlled and how exactly and under what circumstances plants benefit from exudation. The majority of root exudates including primary metabolites (sugars, amino acids, and organic acids) are believed to be passively lost from the root and used by rhizosphere-dwelling microbes. In this review, we synthetize recent advances in ecology and plant biology to explain and propose mechanisms by which root exudation of primary metabolites is controlled, and what role their exudation plays in plant nutrient acquisition strategies. Specifically, we propose a novel conceptual framework for root exudates. This framework is built upon two main concepts: (1) root exudation of primary metabolites is driven by diffusion, with plants and microbes both modulating concentration gradients and therefore diffusion rates to soil depending on their nutritional status; (2) exuded metabolite concentrations can be sensed at the root tip and signals are translated to modify root architecture. The flux of primary metabolites through root exudation is mostly located at the root tip, where the lack of cell differentiation favors diffusion of metabolites to the soil. We show examples of how the root tip senses concentration changes of exuded metabolites and translates that into signals to modify root growth. Plants can modify the concentration of metabolites either by controlling source/sink processes or by expressing and regulating efflux carriers, therefore challenging the idea of root exudation as a purely unregulated passive process. Through root exudate flux, plants can locally enhance concentrations of many common metabolites, which can serve as sensors and integrators of the plant nutritional status and of the nutrient availability in the surrounding environment. Plant-associated micro-organisms also constitute a strong sink for plant carbon, thereby increasing concentration gradients of metabolites and affecting root exudation. Understanding the mechanisms of and the effects that environmental stimuli have on the magnitude and type of root exudation will ultimately improve our knowledge of processes determining soil CO2 emissions, ecosystem functioning, and how to improve the sustainability of agricultural production. |
Author | Canarini, Alberto Kaiser, Christina Richter, Andreas Merchant, Andrew Wanek, Wolfgang |
AuthorAffiliation | 1 Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry Meets Microbiology’, University of Vienna , Vienna , Austria 2 Faculty of Science, Sydney Institute of Agriculture, The University of Sydney , Sydney, NSW , Australia |
AuthorAffiliation_xml | – name: 2 Faculty of Science, Sydney Institute of Agriculture, The University of Sydney , Sydney, NSW , Australia – name: 1 Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry Meets Microbiology’, University of Vienna , Vienna , Austria |
Author_xml | – sequence: 1 givenname: Alberto surname: Canarini fullname: Canarini, Alberto – sequence: 2 givenname: Christina surname: Kaiser fullname: Kaiser, Christina – sequence: 3 givenname: Andrew surname: Merchant fullname: Merchant, Andrew – sequence: 4 givenname: Andreas surname: Richter fullname: Richter, Andreas – sequence: 5 givenname: Wolfgang surname: Wanek fullname: Wanek, Wolfgang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30881364$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uk1vVCEUfTE19sOu3RmWbmYKj6-HCxPTjLVJjc1YE3cEeNCh4cEITKP_XmamNq2JbLhczjmXyz3H3UFM0XbdGwTnGA_izK1DmfcQiTmEiPIX3RFijMwI638cPIkPu9NS7mBbFEIh-KvuEMNhQJiRo25aplTB4tdmVNWnCJID19lPKv8GX2xVOgVfbXnfDmaloi9TASqO4GZlfQbLFGwBPoLroGIFS1vWKZaWqgks4r3PKU42VhXAt-qnTfCvu5dOhWJPH_aT7vunxc3559nV14vL849XM0OoqDPLeqgMwmrQWGmoCWfQMWQdHzSjuO85oXpk1glGoW4R14r31GjKMFbc4ZPucq87JnUn1_uGZFJe7hIp30qVqzfBSgopxlpwSpUgxlhB-hFyOAhrsHJONK0Pe631Rk92NK2hrMIz0ec30a_kbbqXjEDO2Fbg3YNATj83tlQ5-WJsaH9m06bIHgnMEIVkaNC3T2s9Fvk7rwY42wNMTqVk6x4hCMqtKeTWFHJrCrkzRWPQfxjG192s22N9-C_vD5ievd0 |
CitedBy_id | crossref_primary_10_1016_j_rhisph_2022_100548 crossref_primary_10_1093_femsec_fiaa222 crossref_primary_10_1186_s12284_022_00588_y crossref_primary_10_3390_microorganisms9081689 crossref_primary_10_1016_j_rser_2021_111697 crossref_primary_10_3390_plants12173052 crossref_primary_10_1073_pnas_2100136118 crossref_primary_10_1094_PHYTO_04_24_0151_R crossref_primary_10_1007_s00572_021_01049_y crossref_primary_10_1016_j_foreco_2023_121239 crossref_primary_10_1016_j_scitotenv_2022_160675 crossref_primary_10_1016_j_catena_2024_108185 crossref_primary_10_1111_gcb_70117 crossref_primary_10_1128_spectrum_03831_22 crossref_primary_10_1007_s11104_022_05629_5 crossref_primary_10_3389_fmicb_2023_1195985 crossref_primary_10_3390_ijms222111948 crossref_primary_10_3390_metabo11060357 crossref_primary_10_1111_nph_16001 crossref_primary_10_1016_j_envexpbot_2021_104636 crossref_primary_10_1016_j_crcon_2021_04_004 crossref_primary_10_1016_j_envres_2023_117711 crossref_primary_10_3390_agriculture13020326 crossref_primary_10_1021_acs_analchem_3c02370 crossref_primary_10_1021_acs_est_4c04108 crossref_primary_10_1007_s00374_022_01620_5 crossref_primary_10_3390_horticulturae7080243 crossref_primary_10_3390_applmicrobiol4040113 crossref_primary_10_1016_j_talanta_2022_123901 crossref_primary_10_1016_j_plaphy_2023_02_035 crossref_primary_10_1021_acs_est_4c03133 crossref_primary_10_3390_agronomy15010020 crossref_primary_10_3390_microorganisms9071533 crossref_primary_10_1016_j_sajb_2023_11_049 crossref_primary_10_1007_s42729_021_00564_3 crossref_primary_10_1111_ejss_13433 crossref_primary_10_3390_biology10020101 crossref_primary_10_1016_j_rhisph_2023_100726 crossref_primary_10_1007_s11104_022_05618_8 crossref_primary_10_1002_wer_11056 crossref_primary_10_1007_s44372_024_00079_y crossref_primary_10_1007_s11104_024_06706_7 crossref_primary_10_1007_s00300_021_02846_z crossref_primary_10_3389_fmicb_2020_542742 crossref_primary_10_1016_j_seta_2021_101570 crossref_primary_10_1016_j_biortech_2021_126246 crossref_primary_10_1016_j_apsoil_2022_104737 crossref_primary_10_3389_fpls_2024_1388384 crossref_primary_10_1007_s00572_020_01006_1 crossref_primary_10_1080_00103624_2021_1872594 crossref_primary_10_1016_j_catena_2022_106661 crossref_primary_10_1111_1758_2229_12939 crossref_primary_10_1007_s10653_020_00791_0 crossref_primary_10_3390_plants10040681 crossref_primary_10_1002_pei3_10106 crossref_primary_10_1103_PhysRevE_111_024411 crossref_primary_10_3390_ijms23147784 crossref_primary_10_1007_s11157_023_09653_4 crossref_primary_10_1007_s11356_022_22471_5 crossref_primary_10_1016_j_futures_2024_103429 crossref_primary_10_1007_s00425_024_04556_2 crossref_primary_10_1007_s11104_020_04715_w crossref_primary_10_3390_microorganisms11040835 crossref_primary_10_1016_j_envres_2021_111635 crossref_primary_10_1016_j_xplc_2024_101078 crossref_primary_10_5194_bg_21_5185_2024 crossref_primary_10_1016_j_envpol_2024_123505 crossref_primary_10_1007_s11104_022_05585_0 crossref_primary_10_1007_s13199_024_00980_w crossref_primary_10_1016_j_scienta_2024_113734 crossref_primary_10_3390_microorganisms9010201 crossref_primary_10_3389_fsufs_2022_706072 crossref_primary_10_1093_jxb_eraa111 crossref_primary_10_1002_ece3_6852 crossref_primary_10_3390_f13081157 crossref_primary_10_1016_j_stress_2024_100590 crossref_primary_10_1007_s11104_024_06662_2 crossref_primary_10_1007_s11104_024_06870_w crossref_primary_10_1111_pce_14755 crossref_primary_10_1007_s41742_024_00703_5 crossref_primary_10_1016_j_indcrop_2020_112163 crossref_primary_10_3390_microorganisms12020353 crossref_primary_10_3390_su152215889 crossref_primary_10_1016_j_foreco_2023_121316 crossref_primary_10_1016_j_envexpbot_2023_105486 crossref_primary_10_1016_j_tplants_2022_08_016 crossref_primary_10_3390_genes14030752 crossref_primary_10_1111_tpj_14781 crossref_primary_10_1080_00103624_2025_2474180 crossref_primary_10_5194_bg_20_1925_2023 crossref_primary_10_3389_fmicb_2021_798476 crossref_primary_10_31857_S2500262723010106 crossref_primary_10_3390_microorganisms11122978 crossref_primary_10_1016_j_cj_2021_04_002 crossref_primary_10_1080_10643389_2020_1785264 crossref_primary_10_1139_cjm_2020_0085 crossref_primary_10_1186_s12870_025_06321_3 crossref_primary_10_1007_s00344_023_10912_5 crossref_primary_10_1111_pce_14523 crossref_primary_10_1007_s11104_024_06990_3 crossref_primary_10_1016_j_plaphy_2023_107979 crossref_primary_10_1186_s40538_024_00684_9 crossref_primary_10_1016_j_micres_2023_127564 crossref_primary_10_1016_j_envexpbot_2022_105071 crossref_primary_10_3389_fpls_2023_1154587 crossref_primary_10_3390_cells11203254 crossref_primary_10_1016_j_scitotenv_2023_167257 crossref_primary_10_3389_fpls_2020_00599 crossref_primary_10_1016_j_micres_2024_127706 crossref_primary_10_1007_s13199_023_00941_9 crossref_primary_10_1007_s11104_022_05508_z crossref_primary_10_3390_biology11081107 crossref_primary_10_1007_s00284_023_03206_2 crossref_primary_10_1016_j_rhisph_2025_101024 crossref_primary_10_3390_f12070823 crossref_primary_10_1016_j_bbrc_2020_07_139 crossref_primary_10_1016_j_geoderma_2021_115645 crossref_primary_10_1016_j_pedsph_2023_05_008 crossref_primary_10_1093_jxb_erac439 crossref_primary_10_3390_microorganisms9102121 crossref_primary_10_1016_j_funeco_2020_100988 crossref_primary_10_1016_j_pbi_2021_102151 crossref_primary_10_1016_j_rhisph_2022_100657 crossref_primary_10_1111_nph_16389 crossref_primary_10_3389_fmicb_2023_1327056 crossref_primary_10_3389_fmicb_2024_1183024 crossref_primary_10_7717_peerj_14271 crossref_primary_10_1007_s00248_022_01975_0 crossref_primary_10_1128_aem_00425_24 crossref_primary_10_3390_metabo15030189 crossref_primary_10_1093_jxb_eraa482 crossref_primary_10_1016_j_envpol_2023_121199 crossref_primary_10_17221_254_2023_PSE crossref_primary_10_1002_ppj2_20028 crossref_primary_10_3389_fmicb_2020_575578 crossref_primary_10_1038_s41561_022_01079_x crossref_primary_10_1071_FP19144 crossref_primary_10_1002_pei3_10035 crossref_primary_10_1111_ejss_13219 crossref_primary_10_3389_fpls_2021_744445 crossref_primary_10_1007_s10343_025_01128_6 crossref_primary_10_1002_agj2_21681 crossref_primary_10_3389_fpls_2023_1244591 crossref_primary_10_1007_s42729_022_01009_1 crossref_primary_10_3390_microorganisms8081193 crossref_primary_10_3390_agriculture11030234 crossref_primary_10_1016_j_soilbio_2022_108779 crossref_primary_10_1016_j_micres_2020_126651 crossref_primary_10_1016_j_micres_2022_127199 crossref_primary_10_1007_s11104_024_07020_y crossref_primary_10_1093_ismejo_wrae072 crossref_primary_10_3389_fenvs_2022_858948 crossref_primary_10_1007_s00248_021_01767_y crossref_primary_10_1016_j_scitotenv_2023_164238 crossref_primary_10_1016_j_scitotenv_2023_165689 crossref_primary_10_1128_AEM_02541_20 crossref_primary_10_1007_s42729_021_00726_3 crossref_primary_10_1007_s41348_025_01073_6 crossref_primary_10_1016_j_scitotenv_2023_164352 crossref_primary_10_1080_17429145_2022_2086307 crossref_primary_10_1111_1365_2745_14272 crossref_primary_10_1128_aem_00589_24 crossref_primary_10_3389_fpls_2019_00533 crossref_primary_10_3390_toxins13070495 crossref_primary_10_1002_jobm_202000405 crossref_primary_10_3390_plants13091231 crossref_primary_10_3389_fpls_2021_686465 crossref_primary_10_1016_j_apsoil_2024_105531 crossref_primary_10_1038_s42003_022_03782_2 crossref_primary_10_1139_cjm_2020_0041 crossref_primary_10_1007_s10343_024_01070_z crossref_primary_10_3389_fpls_2022_949086 crossref_primary_10_1016_j_micres_2023_127368 crossref_primary_10_3389_fagro_2020_00008 crossref_primary_10_1016_j_plantsci_2024_112377 crossref_primary_10_1002_ppp3_10599 crossref_primary_10_1016_j_rhisph_2024_100946 crossref_primary_10_1007_s10705_022_10238_w crossref_primary_10_1007_s11427_024_2876_0 crossref_primary_10_3389_ffgc_2024_1322087 crossref_primary_10_1038_s41396_020_00759_z crossref_primary_10_3389_fmicb_2023_1170611 crossref_primary_10_3390_plants12112197 crossref_primary_10_1016_j_scitotenv_2021_149659 crossref_primary_10_3103_S106836742302009X crossref_primary_10_1016_j_scitotenv_2020_139572 crossref_primary_10_3390_plants12152843 crossref_primary_10_1007_s10482_021_01655_y crossref_primary_10_1128_mSystems_00587_21 crossref_primary_10_1007_s11104_023_06467_9 crossref_primary_10_1007_s42452_025_06503_6 crossref_primary_10_3390_microorganisms9122456 crossref_primary_10_3103_S1068367423010093 crossref_primary_10_15835_nbha49412532 crossref_primary_10_1007_s11104_024_06691_x crossref_primary_10_1007_s11274_022_03380_8 crossref_primary_10_3389_fpls_2020_559775 crossref_primary_10_3389_fpls_2023_1332864 crossref_primary_10_3389_fbiom_2022_1011877 crossref_primary_10_1111_raq_12778 crossref_primary_10_34133_2022_9858049 crossref_primary_10_1007_s00374_020_01456_x crossref_primary_10_1007_s11101_025_10084_y crossref_primary_10_1007_s42729_024_01685_1 crossref_primary_10_1016_j_gecco_2022_e02002 crossref_primary_10_1016_j_jenvman_2023_118529 crossref_primary_10_1007_s11104_021_04991_0 crossref_primary_10_1007_s11356_024_34911_5 crossref_primary_10_1021_acssuschemeng_1c08081 crossref_primary_10_12688_openreseurope_15045_1 crossref_primary_10_1093_g3journal_jkad286 crossref_primary_10_1021_acs_est_0c04592 crossref_primary_10_1007_s00253_021_11698_w crossref_primary_10_3390_app13063896 crossref_primary_10_3390_plants12081668 crossref_primary_10_1007_s11104_023_05908_9 crossref_primary_10_1016_j_pbi_2020_02_010 crossref_primary_10_3390_nitrogen6010016 crossref_primary_10_1038_s41598_024_58687_3 crossref_primary_10_3390_plants10050975 crossref_primary_10_1080_02648725_2022_2143317 crossref_primary_10_1371_journal_pone_0315657 crossref_primary_10_1007_s00284_022_03012_2 crossref_primary_10_1016_j_foreco_2022_120584 crossref_primary_10_3897_zookeys_955_51983 crossref_primary_10_1016_j_pbi_2023_102351 crossref_primary_10_3389_fpls_2022_998961 crossref_primary_10_1016_j_soilbio_2024_109382 crossref_primary_10_1007_s11676_020_01195_7 crossref_primary_10_3390_land10080840 crossref_primary_10_1016_j_envexpbot_2022_104810 crossref_primary_10_1038_s41467_023_39464_8 crossref_primary_10_1093_femsec_fiaa099 crossref_primary_10_3389_fpls_2020_535005 crossref_primary_10_1126_science_abd1515 crossref_primary_10_1007_s11104_024_07097_5 crossref_primary_10_7717_peerj_9750 crossref_primary_10_1007_s10533_022_00996_8 crossref_primary_10_1016_j_scitotenv_2023_163175 crossref_primary_10_1038_s41598_021_87886_5 crossref_primary_10_3390_biology12050663 crossref_primary_10_1002_ps_6897 crossref_primary_10_1021_acsomega_4c00653 crossref_primary_10_1007_s00253_024_13298_w crossref_primary_10_3389_fmicb_2019_01519 crossref_primary_10_3390_separations8070091 crossref_primary_10_3389_fmicb_2021_673810 crossref_primary_10_1038_s41467_022_30849_9 crossref_primary_10_3389_fmicb_2019_02727 crossref_primary_10_1016_j_rhisph_2022_100484 crossref_primary_10_1016_j_soilbio_2022_108717 crossref_primary_10_3390_horticulturae7100374 crossref_primary_10_3390_agronomy14010141 crossref_primary_10_1007_s11104_023_06378_9 crossref_primary_10_1016_j_soilbio_2023_109088 crossref_primary_10_3389_fpls_2023_1143745 crossref_primary_10_3390_d14090735 crossref_primary_10_1007_s42729_023_01212_8 crossref_primary_10_1038_s41559_024_02546_x crossref_primary_10_1111_nph_18289 crossref_primary_10_3390_agronomy12040900 crossref_primary_10_7554_eLife_79679 crossref_primary_10_1007_s00344_023_10987_0 crossref_primary_10_21285_2227_2925_2023_13_2_272_282 crossref_primary_10_1021_acs_jafc_0c00073 crossref_primary_10_1016_j_apsoil_2024_105557 crossref_primary_10_1002_ldr_3627 crossref_primary_10_1016_j_envpol_2022_120762 crossref_primary_10_3389_fphgy_2023_1308534 crossref_primary_10_1016_j_jenvman_2025_124485 crossref_primary_10_1016_j_geoderma_2020_114769 crossref_primary_10_1007_s10265_024_01590_9 crossref_primary_10_1016_j_apsoil_2020_103781 crossref_primary_10_3389_fmicb_2020_00370 crossref_primary_10_7554_eLife_59726 crossref_primary_10_1002_ece3_11018 crossref_primary_10_3389_fagro_2022_896307 crossref_primary_10_56833_gidaveyem_1614587 crossref_primary_10_1007_s11104_024_06720_9 crossref_primary_10_1007_s40502_022_00650_3 crossref_primary_10_3389_fmicb_2021_815129 crossref_primary_10_3389_fpls_2020_584568 crossref_primary_10_1007_s00248_021_01818_4 crossref_primary_10_3390_min12020111 crossref_primary_10_1094_MPMI_11_21_0281_FI crossref_primary_10_1007_s00374_025_01900_w crossref_primary_10_1016_j_jenvman_2022_115374 crossref_primary_10_3389_fmicb_2020_00704 crossref_primary_10_1016_j_ecolind_2021_107905 crossref_primary_10_1590_s0102_053620190404 crossref_primary_10_1016_j_soilbio_2024_109343 crossref_primary_10_1002_pld3_259 crossref_primary_10_1016_j_scitotenv_2023_162692 crossref_primary_10_1016_j_compag_2020_105455 crossref_primary_10_1007_s11104_020_04469_5 crossref_primary_10_1038_s41467_021_25675_4 crossref_primary_10_1128_spectrum_01002_22 crossref_primary_10_1038_s41598_022_22241_w crossref_primary_10_1111_1365_2435_14625 crossref_primary_10_1021_acs_est_2c03633 crossref_primary_10_1038_s41598_020_72904_9 crossref_primary_10_1094_PDIS_02_22_0403_RE crossref_primary_10_3389_fmicb_2021_744094 crossref_primary_10_1093_jxb_erad019 crossref_primary_10_1007_s11101_024_09989_x crossref_primary_10_12688_openreseurope_15377_1 crossref_primary_10_1007_s00344_023_11075_z crossref_primary_10_12688_openreseurope_15377_3 crossref_primary_10_12688_openreseurope_15377_2 crossref_primary_10_1007_s00284_022_02850_4 crossref_primary_10_1016_j_soilbio_2025_109753 crossref_primary_10_1007_s11104_021_05069_7 crossref_primary_10_1042_BCJ20180615 crossref_primary_10_1002_saj2_20274 crossref_primary_10_1038_s41477_020_00831_8 crossref_primary_10_3390_pr11041253 crossref_primary_10_1038_s43016_022_00542_7 crossref_primary_10_3389_ffgc_2023_1152142 crossref_primary_10_3390_su14063407 crossref_primary_10_3390_plants12081608 crossref_primary_10_1007_s00284_021_02375_2 crossref_primary_10_3389_fmicb_2020_01814 crossref_primary_10_15421_022334 crossref_primary_10_1007_s10343_024_01013_8 crossref_primary_10_1007_s11104_024_06611_z crossref_primary_10_1002_sae2_12026 crossref_primary_10_3390_toxics13030143 crossref_primary_10_1186_s12870_021_03047_w crossref_primary_10_1007_s00374_021_01578_w crossref_primary_10_1111_ppl_14024 crossref_primary_10_3390_microorganisms9091817 crossref_primary_10_3389_fpls_2022_827369 crossref_primary_10_3389_fpls_2022_1064058 crossref_primary_10_3390_ijms23094592 crossref_primary_10_3389_fpls_2021_699618 crossref_primary_10_3389_fpls_2023_1132824 crossref_primary_10_1016_j_jclepro_2021_127992 crossref_primary_10_3389_fpls_2019_00605 crossref_primary_10_1038_s41598_021_93035_9 crossref_primary_10_1111_gcb_17127 crossref_primary_10_3389_fmicb_2021_625752 crossref_primary_10_1007_s00425_020_03468_1 crossref_primary_10_1073_pnas_2310134120 crossref_primary_10_3390_crops4010004 crossref_primary_10_1007_s11104_020_04663_5 crossref_primary_10_1016_j_foodres_2021_110796 crossref_primary_10_3390_agronomy10071037 crossref_primary_10_3389_fpls_2022_935829 crossref_primary_10_1016_j_soilbio_2021_108219 crossref_primary_10_3390_ijms221910388 crossref_primary_10_1039_D3EN00236E crossref_primary_10_1007_s11104_021_05232_0 crossref_primary_10_3390_su131910986 crossref_primary_10_1007_s00374_022_01649_6 crossref_primary_10_1016_j_jia_2023_10_021 crossref_primary_10_1007_s11104_021_05111_8 crossref_primary_10_1016_j_agee_2020_106952 crossref_primary_10_1016_j_soilbio_2023_109263 crossref_primary_10_1111_gcb_17550 crossref_primary_10_3390_plants13152130 crossref_primary_10_1016_j_apsoil_2024_105851 crossref_primary_10_3389_fenvs_2023_1157415 crossref_primary_10_1128_aem_02474_21 crossref_primary_10_1111_1365_2745_13934 crossref_primary_10_1128_msystems_01238_22 crossref_primary_10_1007_s10725_023_01088_9 crossref_primary_10_1094_PBIOMES_5_1 crossref_primary_10_3390_agronomy12092041 crossref_primary_10_3390_ijerph17114016 crossref_primary_10_3389_frmbi_2023_1157681 crossref_primary_10_1007_s11104_019_04070_5 crossref_primary_10_3390_agronomy12040976 crossref_primary_10_1094_PBIOMES_08_24_0081_R crossref_primary_10_1111_brv_13079 crossref_primary_10_1016_j_jenvman_2022_116124 crossref_primary_10_1007_s00344_023_11061_5 crossref_primary_10_3389_fmicb_2020_591358 crossref_primary_10_1007_s10661_023_11470_9 crossref_primary_10_1093_treephys_tpad067 crossref_primary_10_1016_j_scitotenv_2023_164406 crossref_primary_10_3389_frmbi_2023_1078024 crossref_primary_10_1093_femsec_fiae050 crossref_primary_10_1016_j_micres_2021_126763 crossref_primary_10_1016_j_envadv_2024_100564 crossref_primary_10_3390_plants14030479 crossref_primary_10_1007_s11104_024_07139_y crossref_primary_10_1007_s11104_022_05390_9 crossref_primary_10_1093_bbb_zbab106 crossref_primary_10_4081_ija_2022_1942 crossref_primary_10_1007_s00203_022_03380_0 crossref_primary_10_1007_s00344_024_11237_7 crossref_primary_10_1021_acs_jafc_3c06410 crossref_primary_10_1007_s00284_021_02748_7 crossref_primary_10_1186_s40168_021_01186_8 crossref_primary_10_1016_j_soilbio_2023_109256 crossref_primary_10_1111_gcb_17446 crossref_primary_10_3390_metabo11040238 crossref_primary_10_1016_j_scitotenv_2024_174858 crossref_primary_10_1002_jobm_202100358 crossref_primary_10_3390_foods10092213 crossref_primary_10_1016_j_tree_2020_08_007 crossref_primary_10_3390_su151713084 crossref_primary_10_1007_s12010_023_04465_2 crossref_primary_10_1111_nph_17985 crossref_primary_10_1139_cjps_2023_0020 crossref_primary_10_3390_biology10080818 crossref_primary_10_1021_acs_jafc_3c02912 crossref_primary_10_3389_fmicb_2022_912701 crossref_primary_10_1007_s11356_024_32499_4 crossref_primary_10_3390_ijms24032826 crossref_primary_10_3389_fpls_2023_1240310 crossref_primary_10_1016_j_apsoil_2021_104029 crossref_primary_10_1016_j_plantsci_2023_111793 crossref_primary_10_1016_j_rhisph_2024_101008 crossref_primary_10_1128_AEM_02673_20 crossref_primary_10_1016_j_plaphy_2022_09_033 crossref_primary_10_1016_j_jgg_2024_09_018 crossref_primary_10_1007_s11056_021_09864_z crossref_primary_10_3390_su132011454 crossref_primary_10_1093_jxb_erac202 crossref_primary_10_1007_s42729_024_02048_6 crossref_primary_10_1094_PHYTOFR_11_20_0034_R crossref_primary_10_3390_plants12030427 crossref_primary_10_1038_s42003_023_05591_7 crossref_primary_10_1186_s12866_023_02818_9 crossref_primary_10_3390_f15030515 crossref_primary_10_1002_saj2_20679 crossref_primary_10_1016_j_micres_2024_128030 crossref_primary_10_1016_j_scitotenv_2021_146812 crossref_primary_10_1016_j_ecolind_2021_107979 crossref_primary_10_1038_s41598_020_64182_2 crossref_primary_10_1007_s11356_024_33690_3 crossref_primary_10_1007_s11056_023_10014_w crossref_primary_10_1016_j_apsoil_2021_104155 crossref_primary_10_1016_j_foodres_2022_111973 crossref_primary_10_3389_fagro_2022_844166 crossref_primary_10_1186_s13059_020_01999_0 crossref_primary_10_3389_fpls_2022_997292 crossref_primary_10_1093_jxb_erad326 crossref_primary_10_1007_s11104_024_07026_6 crossref_primary_10_3897_BDJ_9_e60245 crossref_primary_10_3390_agronomy10111675 crossref_primary_10_1002_csc2_21020 crossref_primary_10_1111_pce_14014 crossref_primary_10_3390_nano14020131 crossref_primary_10_3390_ijms22179246 crossref_primary_10_1016_j_soilbio_2024_109400 crossref_primary_10_3390_ijms21114038 crossref_primary_10_1007_s11104_024_07112_9 crossref_primary_10_1007_s42729_020_00287_x crossref_primary_10_1016_j_soilbio_2021_108391 crossref_primary_10_1042_BCJ20230002 crossref_primary_10_1007_s11104_022_05531_0 crossref_primary_10_1038_s41561_024_01584_1 crossref_primary_10_1111_jac_12721 crossref_primary_10_3390_nano9091315 crossref_primary_10_1016_j_bbrc_2020_08_115 crossref_primary_10_1016_j_foreco_2025_122503 crossref_primary_10_3390_agronomy15030717 crossref_primary_10_1038_s41438_021_00510_5 crossref_primary_10_1007_s11104_024_06630_w crossref_primary_10_1094_PBIOMES_01_20_0013_FI crossref_primary_10_1111_1365_2745_13630 crossref_primary_10_5194_bg_18_4143_2021 crossref_primary_10_1016_j_soilbio_2021_108284 crossref_primary_10_15252_embr_202050109 crossref_primary_10_3390_jof8070680 crossref_primary_10_3389_fagro_2024_1363124 crossref_primary_10_1016_j_foreco_2023_121068 crossref_primary_10_1093_jxb_erab019 crossref_primary_10_3390_agronomy10101535 crossref_primary_10_1007_s13205_024_04026_2 crossref_primary_10_3389_fmicb_2021_701796 crossref_primary_10_1007_s42994_022_00091_4 crossref_primary_10_1111_jam_15649 crossref_primary_10_3389_fpls_2023_1172857 crossref_primary_10_1093_treephys_tpac117 crossref_primary_10_1016_j_apsoil_2023_104994 crossref_primary_10_3390_plants12030630 crossref_primary_10_3389_fpls_2023_1277510 crossref_primary_10_1016_j_envexpbot_2023_105518 crossref_primary_10_1007_s11104_024_07048_0 crossref_primary_10_1007_s00374_024_01880_3 crossref_primary_10_1021_acs_jafc_4c03064 crossref_primary_10_1016_j_watres_2021_117635 crossref_primary_10_1016_j_ecoenv_2022_113687 crossref_primary_10_3390_plants9080972 crossref_primary_10_1111_jam_15651 crossref_primary_10_1007_s13562_021_00715_8 crossref_primary_10_1111_aab_12694 crossref_primary_10_3389_fpls_2020_00649 crossref_primary_10_1021_acsomega_3c05564 crossref_primary_10_1007_s10653_022_01246_4 crossref_primary_10_1038_s41598_022_13234_w crossref_primary_10_1007_s10068_022_01070_7 crossref_primary_10_1111_pce_14248 crossref_primary_10_1002_ldr_4179 crossref_primary_10_1007_s11356_019_06332_2 crossref_primary_10_1007_s11104_024_06740_5 crossref_primary_10_3390_microorganisms11071847 crossref_primary_10_1021_acs_est_1c00777 crossref_primary_10_1016_j_soilbio_2020_107705 crossref_primary_10_1038_s41467_020_19574_3 crossref_primary_10_1002_jpln_202300405 crossref_primary_10_3389_fpls_2021_614968 crossref_primary_10_1016_j_rhisph_2021_100404 crossref_primary_10_1016_j_taap_2023_116449 crossref_primary_10_3389_fenvs_2022_1033989 crossref_primary_10_1093_jxb_erad122 crossref_primary_10_3390_w16243706 crossref_primary_10_1016_j_geoderma_2022_115767 crossref_primary_10_1146_annurev_phyto_021621_121447 crossref_primary_10_1016_j_plaphy_2024_108619 crossref_primary_10_1007_s00344_024_11328_5 crossref_primary_10_1016_j_ecoenv_2022_113780 crossref_primary_10_7717_peerj_12498 crossref_primary_10_3389_fmicb_2021_809834 crossref_primary_10_1186_s13007_022_00856_4 crossref_primary_10_3389_fpls_2021_690567 crossref_primary_10_1038_s41598_022_16408_8 crossref_primary_10_3390_molecules28217320 crossref_primary_10_3389_ffunb_2024_1363460 crossref_primary_10_1007_s11104_024_06852_y crossref_primary_10_1016_j_scitotenv_2022_160025 crossref_primary_10_1007_s12892_020_00059_0 crossref_primary_10_3390_plants10061033 crossref_primary_10_3389_fmicb_2022_990850 crossref_primary_10_1007_s11104_024_07122_7 |
Cites_doi | 10.1111/nph.14863 10.1104/pp.124.4.1511 10.1007/s10021-008-9198-0 10.1104/pp.109.1.7 10.1111/nph.12614 10.1093/jxb/ert302 10.1111/j.1574-6941.2011.01150.x 10.1111/1365-2745.13048 10.3389/fenvs.2018.00061 10.3389/fpls.2016.01939 10.1146/annurev-arplant-042110-103846 10.1111/j.1365-313X.2004.02289.x 10.1007/bf00196390 10.1016/j.soilbio.2014.06.017 10.1002/ece3.4383 10.1104/pp.104.044222 10.1007/s11104-007-9473-4 10.1038/nature10452 10.1111/nph.13132 10.1016/j.apsoil.2016.07.009 10.4161/psb.5.12.13293 10.1111/j.1574-6941.2009.00654.x 10.1073/pnas.1701952114 10.1111/nph.13288 10.1016/j.tplants.2011.05.006 10.1126/science.aai8291 10.1111/nph.14876 10.3389/fpls.2017.01513 10.1071/cp15329 10.1007/s000180050284 10.1093/aob/mcl114 10.1073/pnas.1523580113 10.1007/s11104-013-1645-9 10.1073/pnas.0912421107 10.1016/j.pbi.2009.07.014 10.1016/j.plantsci.2014.09.011 10.1111/1365-2745.12788 10.1093/jxb/erm334 10.1002/ece3.3755 10.1094/MPMI-09-11-0245 10.1093/jxb/47.7.871 10.1093/jxb/ery183 10.1007/s00572-011-0418-7 10.1111/j.1365-3040.2009.01926.x 10.1890/12-0486.1 10.1093/jxb/49.325.1371 10.1093/oxfordjournals.molbev.a004165 10.1111/1365-2435.13017 10.1105/tpc.113.122101 10.1104/pp.109.147462 10.1111/pce.12602 10.1023/A:1026290508166 10.1146/annurev-cellbio-101512-122413 10.1080/00380768.1996.10416324 10.3389/fpls.2016.01584 10.1016/j.soilbio.2016.12.004 10.1016/j.pbi.2011.03.014 10.1002/ece3.2454 10.1038/s41467-018-05122-7 10.1111/j.1469-8137.2009.03050.x 10.1111/ele.12690 10.1002/jpln.201000360 10.1105/tpc.113.110668 10.1126/science.1224304 10.1007/BF00010543 10.1046/j.1365-313X.2002.01248.x 10.1080/17429140802255167 10.1016/S1360-1385(01)01961-6 10.1007/s00344-002-0035-y 10.1093/aob/mcr205 10.1111/j.1365-3040.2008.01801.x 10.1111/j.1399-3054.1985.tb08661.x 10.1038/s41559-018-0622-3 10.1007/s10725-013-9786-7 10.3389/fpls.2014.00614 10.1093/aob/mct258 10.1016/j.tree.2017.11.005 10.1111/j.1469-8137.2008.02458.x 10.3389/fmicb.2019.00168 10.3389/fpls.2016.00487 10.3389/fpls.2013.00354 10.1038/s41396-018-0171-4 10.1007/1-4020-4099-7_9 10.1093/mp/ssp120 10.1104/pp.110.168187 10.1016/S0038-0717(01)00235-8 10.1073/pnas.1205726109 10.1016/j.pbi.2007.10.003 10.1104/pp.111.175380 10.1093/jxb/erw412 10.7554/eLife.14577 10.1016/S1369-5266(03)00035-9 10.3389/fpls.2017.00485 10.1111/j.1365-2486.2005.01064.x 10.1093/jxb/erx013 10.1007/s11104-009-9925-0 10.1105/tpc.106.041012 10.1111/nph.13172 10.1016/j.pbi.2014.06.004 10.1007/s11104-004-2725-7 10.3389/fpls.2016.01242 10.1186/s12284-016-0081-x 10.1111/tpj.12948 10.1007/s11104-008-9877-9 10.1016/j.soilbio.2010.04.003 10.1371/journal.pone.0008917 10.1111/j.1469-8137.2008.02546.x 10.1016/j.plaphy.2006.09.019 10.1016/j.plantsci.2016.11.002 10.1002/pca.596 10.1093/mp/ssr003 10.1104/pp.120.3.705 10.1016/0038-0717(88)90061-2 10.1038/ng2041 10.1007/s00374-015-0996-1 10.1007/s00425-001-0697-x 10.1111/gcb.12161 10.1023/a:1004877214831 10.1093/jxb/erm121 10.1016/S0038-0717(01)00185-7 10.1111/j.1469-8137.2012.04169.x 10.1890/06-0502 10.1007/s00425-006-0408-8 10.1002/jpln.201000085 10.1016/j.soilbio.2004.07.037 10.1111/j.1365-3040.2005.01304.x 10.1046/j.1469-8137.2000.00688.x 10.1146/annurev.arplant.57.032905.105441 10.3389/fpls.2017.02127 10.1016/j.tplants.2004.09.003 10.3389/fmicb.2013.00216 10.3390/ijms19092691 10.1111/1365-2435.12010 10.1038/srep44641 10.1016/j.tplants.2017.09.003 10.1016/j.plaphy.2014.12.014 10.1111/j.1399-3054.1997.tb01073.x 10.1038/ncomms8879 10.5194/bg-11-961-2014 10.21273/JASHS.138.6.433 10.1093/femsec/fix022 10.1023/a:1024899808018 10.1104/pp.112.197509 10.1007/BF00010488 10.1093/pcp/pcj075 10.1093/jxb/erm155 10.1093/jxb/erg017 10.1105/tpc.105.037713 10.1016/j.tplants.2016.01.009 10.1111/j.1461-0248.2009.01421.x 10.1111/nph.13363 10.1890/03-8002 10.1111/j.1574-6941.2007.00337.x 10.1016/j.tplants.2016.01.013 10.1016/j.tplants.2015.11.011 10.1111/nph.13138 10.1093/treephys/tpx131 10.1093/aob/mcj601 10.1080/01904160009382100 10.1046/j.1365-3040.2003.01100.x 10.1016/j.semcdb.2017.07.010 10.3732/ajb.1300033 10.1111/j.1469-8137.2006.01853.x 10.7554/eLife.15341 10.3389/fenvs.2018.00009 10.1007/978-1-4939-2272-7_3 10.1046/j.1365-3040.2003.00973.x 10.1186/s12864-017-3588-7 10.1126/science.aat6907 10.1038/35081058 10.1023/a:1025515708093 10.1038/nrmicro1987 10.1016/j.rhisph.2018.06.004 10.1111/j.1365-3040.2006.01507.x 10.1016/j.soilbio.2015.01.025 10.1111/nph.13122 10.1146/annurev-phyto-080615-100140 10.1038/nplants.2017.29 10.1111/j.1365-2745.2007.01210.x 10.1007/s10725-011-9564-3 10.1126/science.1189736 10.1007/s10533-009-9284-1 10.4161/psb.4.8.9047 10.1007/s00374-015-1015-2 10.1111/j.1462-2920.2005.00973.x 10.1111/ppl.12150 10.1093/aob/mcm251 10.1016/S0168-9452(00)00391-5 10.1023/a:1020809400075 10.1038/s41559-017-0150 10.5194/bg-9-1509-2012 10.1126/science.aad4501 10.1111/j.1469-8137.2008.02751.x 10.7554/eLife.24125 10.1104/pp.114.245225 10.1104/pp.109.151746 10.1128/AEM.65.6.2685-2690.1999 10.1126/scisignal.2003762 10.1016/j.bbabio.2010.11.008 10.1094/mpmi-09-10-0207 10.1016/j.tplants.2009.10.002 10.1007/s11104-015-2612-4 10.1007/s11104-016-2928-8 10.3389/fpls.2013.00134 10.1055/s-2002-34123 10.1016/j.tplants.2010.04.007 10.1016/j.pbi.2015.05.003 10.1371/journal.pone.0204128 10.1007/s11738-016-2124-8 10.1016/j.soilbio.2004.07.021 10.1007/s11104-016-2892-3 10.1016/S1360-1385(00)01681-2 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Canarini, Kaiser, Merchant, Richter and Wanek. 2019 Canarini, Kaiser, Merchant, Richter and Wanek |
Copyright_xml | – notice: Copyright © 2019 Canarini, Kaiser, Merchant, Richter and Wanek. 2019 Canarini, Kaiser, Merchant, Richter and Wanek |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2019.00157 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_50533b9755a94cce942d07089ec3aff9 PMC6407669 30881364 10_3389_fpls_2019_00157 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Austrian Science Fund FWF grantid: P 30339 – fundername: Austrian Science Fund – fundername: Australian Research Council Future Fellowship grantid: FT120100200 – fundername: Australian Research Council Legumes for Sustainable Agriculture Industrial Transformation Hub grantid: IH140100013 |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c459t-e620ac13a8b3ab0b4760f61ef78b65322745bd6ef9650bbd67ba725cb5633a7f3 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 00:24:53 EDT 2025 Thu Aug 21 14:04:14 EDT 2025 Thu Jul 10 19:24:13 EDT 2025 Sat May 31 02:14:19 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 Tue Jul 01 02:06:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | priming effect root architecture soil micro-organisms mycorrhiza nutrient sensing root exudates |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-e620ac13a8b3ab0b4760f61ef78b65322745bd6ef9650bbd67ba725cb5633a7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 This article was submitted to Plant Microbe Interactions, a section of the journal Frontiers in Plant Science Reviewed by: Tanja Mimmo, Free University of Bozen-Bolzano, Italy; Ulrike Mathesius, Australian National University, Australia; Feth-el-Zahar Haichar, Microbial Ecology, France Edited by: Davide Bulgarelli, University of Dundee, United Kingdom |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2019.00157 |
PMID | 30881364 |
PQID | 2193615048 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_50533b9755a94cce942d07089ec3aff9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6407669 proquest_miscellaneous_2193615048 pubmed_primary_30881364 crossref_primary_10_3389_fpls_2019_00157 crossref_citationtrail_10_3389_fpls_2019_00157 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-21 |
PublicationDateYYYYMMDD | 2019-02-21 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Besnard (ref12) 2016; 67 Kaiser (ref90) 2015; 205 Padgett (ref147) 1996; 47 Lambers (ref105) 2006; 98 Pierik (ref154) 2013; 27 Teste (ref190) 2017; 355 Gorka (ref218) Reid (ref161); 24 Reid (ref162); 108 Sun (ref185) 2017; 8 Kuzyakov (ref104) 2003; 254 Liu (ref110) 2005; 41 Eisenhauer (ref43) 2017; 7 Jansa (ref85) 2013; 4 Toljander (ref194) 2007; 61 Pii (ref155); 51 Nazoa (ref138) 2003; 52 Godt (ref65) 2006; 44 Tegeder (ref189) 2018; 217 Ma (ref117) 2001; 6 Williams (ref210) 2000; 5 Brooker (ref16) 2015; 206 Desnos (ref36) 2008; 11 De Schepper (ref33) 2013; 64 Ogden (ref142) 2018; 19 Rouached (ref167) 2010; 3 López-Bucio (ref112) 2003; 6 Ahmed (ref1) 2018; 69 Ortíz-Castro (ref145) 2009; 4 Chevalier (ref28) 2003; 26 Bahn (ref7) 2008; 11 Bonfante (ref15) 2011; 14 Nadira (ref135) 2016; 38 Oburger (ref141) 2018; 6 Gent (ref59) 2017; 68 Vidal (ref200) 2018; 6 Ström (ref184) 2002; 34 Caffaro (ref20) 2011; 64 Baluška (ref8) 2013; 4 Walch-Liu (ref205); 97 Hanson (ref73) 2009; 12 Ramesh (ref160) 2015; 6 Sasse (ref171) 2018; 23 Ross-Elliott (ref165) 2017; 6 Shishkova (ref179) 2008; 101 McCormack (ref122) 2015; 207 Högberg (ref80) 2001; 411 Pal’ove-Balang (ref148) 2002; 4 Scott-Denton (ref175) 2006; 12 Png (ref157) 2019; 107 Forde (ref54) 2007; 58 Berg (ref10) 2009; 68 Friedel (ref57) 2002; 34 Khan (ref96) 2016; 7 Drigo (ref42) 2010; 107 Mora-Macías (ref132) 2017; 114 Aslam (ref3) 2001; 160 Johnson (ref86) 2015; 205 Tillard (ref193) 1998; 49 Kanno (ref92) 2016; 5 Valentinuzzi (ref196) 2015; 51 Krishnapriya (ref101) 2016; 67 Inselsbacher (ref82) 2012; 195 Jones (ref88) 2009; 321 Liu (ref111) 2010; 5 Smith (ref180) 2008 Péret (ref152) 2011; 16 Forsum (ref56) 2008; 179 Zhang (ref215) 2018; 12 McCully (ref123) 1985; 65 Depuydt (ref35) 2014; 5 Yin (ref214) 2013; 19 Falik (ref47) 2005; 28 Ticconi (ref192) 2004; 9 Ma (ref116) 2017; 8 Zhu (ref216) 2016; 107 Lucas García (ref113) 2001; 12 Dennison (ref34) 2000; 124 Martin (ref121) 2017; 356 Mommer (ref130) 2016; 21 Roy (ref168) 2008; 31 Baluška (ref9) 2010; 15 Pratelli (ref158) 2010; 152 Hu (ref81) 2018; 9 Paterson (ref150) 2016; 408 Naseer (ref136) 2012; 109 Cheng (ref26) 2012; 337 Curzi (ref30) 2008; 3 Carvalhais (ref24) 2011; 174 Teardo (ref188) 2011; 1807 Herz (ref78) 2018; 13 Chiu (ref29) 2002; 19 Karthikeyan (ref94) 2007; 225 Ledo (ref106) 2018; 217 Meyer (ref128) 2010; 15 Vincill (ref202) 2013; 25 Steinauer (ref183) 2016; 6 Reinhart (ref163) 2012; 93 Warren (ref207) 2016; 406 Evans (ref46) 1994; 194 Hawes (ref75) 2016; 54 Okumoto (ref144) 2011; 4 Watt (ref208) 1999; 120 Rutschow (ref169) 2011; 155 Münch (ref133) 1930 Van Nuland (ref198) 2017; 1 Groleau-Renaud (ref67) 2000; 23 Prikryl (ref159) 1980; 57 Warren (ref206) 2015; 397 Rothstein (ref166) 2009; 92 Fusconi (ref58) 2014; 113 Bertin (ref11) 2003; 256 Li (ref108) 2006; 18 Thirkell (ref191) 2017; 105 Smith (ref181) 2011; 62 Häusler (ref74) 2014; 229 Doan (ref40) 2017; 8 Semchenko (ref176) 2007; 95 Alegria Terrazas (ref2) 2016 Chen (ref25) 2015; 83 Shi (ref178) 2011; 77 Yang (ref212) 2010; 5 Burri (ref19) 2014; 11 Meharg (ref124) 1995; 170 Ryan (ref170) 2014; 151 Meier (ref126) 2015; 205 Schimel (ref173) 2004; 85 Kan (ref91) 2017; 18 Hammond (ref72) 2011; 156 Jaeger (ref83) 1999; 65 Verbon (ref199) 2016; 21 Domínguez-May (ref41) 2013; 138 Otani (ref146) 1996; 42 Mencuccini (ref127) 2010; 185 Mora-Macias (ref131) 2017; 114 Nacry (ref134) 2013; 370 Ohkubo (ref143) 2017; 3 Badri (ref5) 2009; 151 Hamer (ref71) 2005; 37 Nehls (ref139) 2008; 59 Gill (ref62) 2016; 19 Yang (ref213) 2015; 1266 Zimmermann (ref217) 1999; 55 Badri (ref6) 2009; 32 Tsikou (ref195) 2018; 362 Walch-Liu (ref204); 47 Kramer (ref100) 2007; 58 Näsholm (ref137) 2009; 182 Shane (ref177) 2005; 274 Tapken (ref187) 2013; 6 Cheng (ref27) 2010; 13 el Zahar Haichar (ref44) 2014; 77 Fischer (ref51) 2002; 29 Caputo (ref23) 1997; 101 Darwent (ref32) 2003; 54 Gilliham (ref63) 2016; 21 Phillips (ref153) 2004; 136 Lyu (ref115) 2016; 7 Dijkstra (ref37) 2013; 4 Cahill (ref22) 2010; 328 Vranova (ref203) 2013; 176 Badri (ref4) 2008; 179 Pii (ref156); 87 Kardol (ref93) 2007; 77 Savage (ref172) 2016; 39 Giles (ref61) 2017; 255 Fernandez (ref50) 2012; 25 Kuzyakov (ref102) 2010; 42 Li (ref107) 2016; 113 Parniske (ref149) 2008; 6 Paynel (ref151) 2001; 229 Kochian (ref98) 2005 Mahmood (ref118) 2002; 214 Schmidt (ref174) 2018; 6 Körner (ref99) 2015; 25 Foley (ref52) 2011; 478 Grimoldi (ref66) 2006; 172 Bukowski (ref18) 2018; 8 Fatichi (ref49) 2014; 201 Biondini (ref14) 1988; 20 Jones (ref87) 1993; 153 Eppinga (ref45) 2018; 2 Lynch (ref114) 1995; 109 Ni (ref140) 2016; 9 Wubs (ref211) 2018; 32 Vincill (ref201) 2012; 159 Hirner (ref79) 2006; 18 Caffaro (ref21) 2013; 70 Hawes (ref76) 2002; 21 Moe (ref129) 2013; 100 Jones (ref89) 2005; 37 Dakora (ref31) 2002; 245 Gutjahr (ref68) 2013; 29 Mariotte (ref120) 2018; 33 Dinkeloo (ref38) 2017; 74 Meier (ref125) 2017; 106 Somssich (ref182) 2016; 7 Rolland (ref164) 2006; 57 Brundrett (ref17) 2009; 320 Gioseffi (ref64) 2012; 9 Henry (ref77) 2003; 26 Guyonnet (ref69) 2018; 8 Guyonnet (ref70) 2017; 93 Knoblauch (ref97) 2016; 5 Forde (ref53) 2014; 21 Bharadwaj (ref13) 2012; 22 Svistoonoff (ref186) 2007; 39 Giehl (ref60) 2014; 166 Forsum (ref55) 2016 Kellermeier (ref95) 2014; 26 Kuzyakov (ref103) 2015; 83 Watt (ref209) 2006; 8 Jämtgård (ref84) 2008; 302 Farrar (ref48) 2000; 147 Manck-Götzenberger (ref119) 2016; 7 Liese (ref109) 2018; 38 Van Der Heijden (ref197) 2015; 205 Dluzniewska (ref39) 2006; 29 31024593 - Front Plant Sci. 2019 Apr 09;10:420. doi: 10.3389/fpls.2019.00420. |
References_xml | – volume: 217 start-page: 8 year: 2018 ident: ref106 article-title: Tree size and climatic water deficit control root to shoot ratio in individual trees globally publication-title: New Phytol. doi: 10.1111/nph.14863 – volume: 124 start-page: 1511 year: 2000 ident: ref34 article-title: Glutamate-gated calcium fluxes in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.124.4.1511 – volume: 11 start-page: 1352 year: 2008 ident: ref7 article-title: Soil respiration in European grasslands in relation to climate and assimilate supply publication-title: Ecosystems doi: 10.1007/s10021-008-9198-0 – volume: 109 start-page: 7 year: 1995 ident: ref114 article-title: Root architecture and plant productivity publication-title: Plant Physiol. doi: 10.1104/pp.109.1.7 – volume: 201 start-page: 1086 year: 2014 ident: ref49 article-title: Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling publication-title: New Phytol. doi: 10.1111/nph.12614 – volume: 64 start-page: 4839 year: 2013 ident: ref33 article-title: Phloem transport: a review of mechanisms and controls publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert302 – volume: 77 start-page: 600 year: 2011 ident: ref178 article-title: Effects of selected root exudate components on soil bacterial communities publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2011.01150.x – volume: 107 start-page: 142 year: 2019 ident: ref157 article-title: Biotic and abiotic plant–soil feedback depends on nitrogen-acquisition strategy and shifts during long-term ecosystem development publication-title: Journal of Ecology doi: 10.1111/1365-2745.13048 – volume: 6 start-page: 61 year: 2018 ident: ref174 article-title: Recognizing patterns: spatial analysis of observed microbial colonization on root surfaces publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2018.00061 – volume: 7 start-page: 1939 year: 2016 ident: ref115 article-title: Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01939 – volume: 62 start-page: 227 year: 2011 ident: ref181 article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042110-103846 – volume: 41 start-page: 257 year: 2005 ident: ref110 article-title: Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02289.x – volume: 194 start-page: 215 year: 1994 ident: ref46 article-title: Responses of Arabidopsis roots to auxin studied with high temporal resolution: comparison of wild type and auxin-response mutants publication-title: Planta doi: 10.1007/bf00196390 – volume: 77 start-page: 69 year: 2014 ident: ref44 article-title: Root exudates mediated interactions belowground publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.06.017 – volume: 57 start-page: 69 year: 1980 ident: ref159 article-title: Root exudates of plants. 6. Wheat root exudation as dependent on growth concentration gradient of exudates and the presence of bacteria publication-title: Plant Soil – volume: 8 start-page: 8573 year: 2018 ident: ref69 article-title: Root exudation rate as functional trait involved in plant nutrient-use strategy classification publication-title: Ecol. Evol. doi: 10.1002/ece3.4383 – volume: 136 start-page: 2887 year: 2004 ident: ref153 article-title: Microbial products trigger amino acid exudation from plant roots publication-title: Plant Physiol. doi: 10.1104/pp.104.044222 – volume: 302 start-page: 221 year: 2008 ident: ref84 article-title: Characteristics of amino acid uptake in barley publication-title: Plant Soil doi: 10.1007/s11104-007-9473-4 – volume: 478 start-page: 337 year: 2011 ident: ref52 article-title: Solutions for a cultivated planet publication-title: Nature doi: 10.1038/nature10452 – volume: 206 start-page: 107 year: 2015 ident: ref16 article-title: Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology publication-title: New Phytol. doi: 10.1111/nph.13132 – volume: 107 start-page: 324 year: 2016 ident: ref216 article-title: Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2016.07.009 – volume: 5 start-page: 1556 year: 2010 ident: ref111 article-title: Crucial roles of sucrose and microRNA399 in systemic signaling of P deficiency: a tale of two team players? publication-title: Plant Signal. Behav. doi: 10.4161/psb.5.12.13293 – volume: 68 start-page: 1 year: 2009 ident: ref10 article-title: Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2009.00654.x – volume: 114 start-page: E3563 year: 2017 ident: ref132 article-title: Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1701952114 – volume: 205 start-page: 1406 year: 2015 ident: ref197 article-title: Mycorrhizal ecology and evolution: the past, the present, and the future publication-title: New Phytol. doi: 10.1111/nph.13288 – volume: 16 start-page: 442 year: 2011 ident: ref152 article-title: Root developmental adaptation to phosphate starvation: better safe than sorry publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2011.05.006 – volume: 355 start-page: 173 year: 2017 ident: ref190 article-title: Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands publication-title: Science doi: 10.1126/science.aai8291 – volume: 217 start-page: 35 year: 2018 ident: ref189 article-title: Source and sink mechanisms of nitrogen transport and use publication-title: New Phytol. doi: 10.1111/nph.14876 – volume: 8 start-page: 1513 year: 2017 ident: ref40 article-title: A low-cost imaging method for the temporal and spatial colorimetric detection of free amines on maize root surfaces publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01513 – volume: 67 start-page: 1096 year: 2016 ident: ref101 article-title: Root exudation index: screening organic acid exudation and phosphorus acquisition efficiency in soybean genotypes publication-title: Crop Pasture Sci. doi: 10.1071/cp15329 – volume: 55 start-page: 183 year: 1999 ident: ref217 article-title: Ion channels in plant signaling publication-title: Cell. Mol. Life Sci. doi: 10.1007/s000180050284 – volume: 98 start-page: 693 year: 2006 ident: ref105 article-title: Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits publication-title: Ann. Bot. doi: 10.1093/aob/mcl114 – volume: 113 start-page: 6496 year: 2016 ident: ref107 article-title: Root exudates drive interspecific facilitation by enhancing nodulation and N(2) fixation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1523580113 – volume: 370 start-page: 1 year: 2013 ident: ref134 article-title: Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource publication-title: Plant Soil doi: 10.1007/s11104-013-1645-9 – volume: 107 start-page: 10938 year: 2010 ident: ref42 article-title: Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0912421107 – volume: 12 start-page: 562 year: 2009 ident: ref73 article-title: Sugar perception and signaling—an update publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2009.07.014 – volume: 229 start-page: 225 year: 2014 ident: ref74 article-title: Amino acids – a life between metabolism and signaling publication-title: Plant Sci. doi: 10.1016/j.plantsci.2014.09.011 – volume: 105 start-page: 921 year: 2017 ident: ref191 article-title: Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security publication-title: J. Ecol. doi: 10.1111/1365-2745.12788 – volume: 59 start-page: 1097 year: 2008 ident: ref139 article-title: Mastering ectomycorrhizal symbiosis: the impact of carbohydrates publication-title: J. Exp. Bot. doi: 10.1093/jxb/erm334 – volume: 8 start-page: 2280 year: 2018 ident: ref18 article-title: The strength of negative plant-soil feedback increases from the intraspecific to the interspecific and the functional group level publication-title: Ecol. Evol. doi: 10.1002/ece3.3755 – volume: 25 start-page: 496 year: 2012 ident: ref50 article-title: Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-09-11-0245 – volume: 47 start-page: 871 year: 1996 ident: ref147 article-title: Free amino acid levels and the regulation of nitrate uptake in maize cell suspension cultures publication-title: J. Exp. Bot. doi: 10.1093/jxb/47.7.871 – volume: 69 start-page: 3255 year: 2018 ident: ref1 article-title: Hydraulic processes in roots and the rhizosphere pertinent to increasing yield of water-limited grain crops: a critical review publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery183 – volume: 22 start-page: 437 year: 2012 ident: ref13 article-title: Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions publication-title: Mycorrhiza doi: 10.1007/s00572-011-0418-7 – volume: 114 start-page: E3563 year: 2017 ident: ref131 article-title: Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1701952114 – volume: 32 start-page: 666 year: 2009 ident: ref6 article-title: Regulation and function of root exudates publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2009.01926.x – volume: 93 start-page: 2377 year: 2012 ident: ref163 article-title: The organization of plant communities: negative plant-soil feedbacks and semiarid grasslands publication-title: Ecology doi: 10.1890/12-0486.1 – volume: 49 start-page: 1371 year: 1998 ident: ref193 article-title: Are phloem amino acids involved in the shoot to root control of NO−3 uptake in Ricinus communis plants? publication-title: J. Exp. Bot. doi: 10.1093/jxb/49.325.1371 – volume: 19 start-page: 1066 year: 2002 ident: ref29 article-title: Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a004165 – volume: 32 start-page: 509 year: 2018 ident: ref211 article-title: Plant community evenness responds to spatial plant-soil feedback heterogeneity primarily through the diversity of soil conditioning publication-title: Funct. Ecol. doi: 10.1111/1365-2435.13017 – volume: 26 start-page: 1480 year: 2014 ident: ref95 article-title: Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals publication-title: Plant Cell doi: 10.1105/tpc.113.122101 – volume: 151 start-page: 2006 year: 2009 ident: ref5 article-title: An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota publication-title: Plant Physiol. doi: 10.1104/pp.109.147462 – volume: 39 start-page: 709 year: 2016 ident: ref172 article-title: Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology? publication-title: Plant Cell Environ. doi: 10.1111/pce.12602 – volume: 256 start-page: 67 year: 2003 ident: ref11 article-title: The role of root exudates and allelochemicals in the rhizosphere publication-title: Plant Soil doi: 10.1023/A:1026290508166 – volume: 29 start-page: 593 year: 2013 ident: ref68 article-title: Cell and developmental biology of arbuscular mycorrhiza symbiosis publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-101512-122413 – volume: 42 start-page: 553 year: 1996 ident: ref146 article-title: Phosphorus (P) uptake mechanisms of crops grown in soils with low P status. II. Significance of organic acids in root exudates of pigeonpea publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.1996.10416324 – volume: 7 start-page: 1584 year: 2016 ident: ref96 article-title: Root system architecture and abiotic stress tolerance: current knowledge in root and tuber crops publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01584 – volume: 106 start-page: 119 year: 2017 ident: ref125 article-title: Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.12.004 – volume: 14 start-page: 451 year: 2011 ident: ref15 article-title: Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2011.03.014 – volume: 6 start-page: 7387 year: 2016 ident: ref183 article-title: Root exudate cocktails: the link between plant diversity and soil microorganisms? publication-title: Ecol. Evol. doi: 10.1002/ece3.2454 – volume: 9 start-page: 2738 year: 2018 ident: ref81 article-title: Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota publication-title: Nat. Commun. doi: 10.1038/s41467-018-05122-7 – volume: 185 start-page: 189 year: 2010 ident: ref127 article-title: The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked publication-title: New Phytol. doi: 10.1111/j.1469-8137.2009.03050.x – volume: 19 start-page: 1419 year: 2016 ident: ref62 article-title: Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale publication-title: Ecol. Lett. doi: 10.1111/ele.12690 – volume: 176 start-page: 175 year: 2013 ident: ref203 article-title: Methods of collection of plant root exudates in relation to plant metabolism and purpose: a review publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201000360 – volume: 25 start-page: 1304 year: 2013 ident: ref202 article-title: Interacting glutamate receptor-like proteins in phloem regulate lateral root initiation in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.113.110668 – volume: 337 start-page: 1084 year: 2012 ident: ref26 article-title: Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2 publication-title: Science doi: 10.1126/science.1224304 – volume: 153 start-page: 47 year: 1993 ident: ref87 article-title: Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere publication-title: Plant Soil doi: 10.1007/BF00010543 – volume: 29 start-page: 717 year: 2002 ident: ref51 article-title: Low and high affinity amino acid H+−cotransporters for cellular import of neutral and charged amino acids publication-title: Plant J. doi: 10.1046/j.1365-313X.2002.01248.x – volume: 3 start-page: 163 year: 2008 ident: ref30 article-title: Changes in the content of organic and amino acids and ethylene production of rice plants in response to the inoculation with Herbaspirillum seropedicae publication-title: J. Plant Interact. doi: 10.1080/17429140802255167 – volume: 6 start-page: 273 year: 2001 ident: ref117 article-title: Aluminium tolerance in plants and the complexing role of organic acids publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(01)01961-6 – volume: 21 start-page: 352 year: 2002 ident: ref76 article-title: Root caps and rhizosphere publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-002-0035-y – volume: 108 start-page: 789 ident: ref162 article-title: Molecular mechanisms controlling legume autoregulation of nodulation publication-title: Ann. Bot. doi: 10.1093/aob/mcr205 – volume: 31 start-page: 861 year: 2008 ident: ref168 article-title: Investigating glutamate receptor-like gene co-expression in Arabidopsis thaliana publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2008.01801.x – volume: 65 start-page: 380 year: 1985 ident: ref123 article-title: Localisation of translocated 14C in roots and root exudates of field-grown maize publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1985.tb08661.x – volume: 2 start-page: 1403 year: 2018 ident: ref45 article-title: Frequency-dependent feedback constrains plant community coexistence publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-018-0622-3 – volume: 70 start-page: 141 year: 2013 ident: ref21 article-title: Root architecture of Arabidopsis is affected by competition with neighbouring plants publication-title: Plant Growth Regul. doi: 10.1007/s10725-013-9786-7 – volume: 5 start-page: 614 year: 2014 ident: ref35 article-title: Arguments for and against self and non-self root recognition in plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00614 – volume: 113 start-page: 19 year: 2014 ident: ref58 article-title: Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation? publication-title: Ann. Bot. doi: 10.1093/aob/mct258 – volume: 33 start-page: 129 year: 2018 ident: ref120 article-title: Plant-soil feedback: bridging natural and agricultural sciences publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2017.11.005 – volume: 179 start-page: 209 year: 2008 ident: ref4 article-title: Transcriptome analysis of Arabidopsis roots treated with signaling compounds: a focus on signal transduction, metabolic regulation and secretion publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02458.x – start-page: 10 ident: ref218 article-title: Rapid transfer of plant photosynthates to soil bacteria via ectomycorrhizal hyphae and its interaction with nitrogen availability publication-title: Front. Microbiol doi: 10.3389/fmicb.2019.00168 – volume: 7 start-page: 487 year: 2016 ident: ref119 article-title: Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00487 – volume: 4 start-page: 354 year: 2013 ident: ref8 article-title: Root apex transition zone as oscillatory zone publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00354 – volume: 12 start-page: 2339 year: 2018 ident: ref215 article-title: Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium publication-title: ISME J. doi: 10.1038/s41396-018-0171-4 – start-page: 175 volume-title: Root physiology: from gene to function year: 2005 ident: ref98 article-title: The physiology, genetics and molecular biology of plant aluminum resistance and toxicity doi: 10.1007/1-4020-4099-7_9 – volume: 3 start-page: 288 year: 2010 ident: ref167 article-title: Regulation of phosphate starvation responses in plants: signaling players and cross-talks publication-title: Mol. Plant doi: 10.1093/mp/ssp120 – volume: 155 start-page: 1817 year: 2011 ident: ref169 article-title: Regulation of solute flux through plasmodesmata in the root meristem publication-title: Plant Physiol. doi: 10.1104/pp.110.168187 – volume-title: On plant responses to D-amino acids. year: 2016 ident: ref55 – volume: 34 start-page: 703 year: 2002 ident: ref184 article-title: Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(01)00235-8 – volume: 109 start-page: 10101 year: 2012 ident: ref136 article-title: Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1205726109 – volume: 11 start-page: 82 year: 2008 ident: ref36 article-title: Root branching responses to phosphate and nitrate publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2007.10.003 – volume: 156 start-page: 1033 year: 2011 ident: ref72 article-title: Sugar signaling in root responses to low phosphorus availability publication-title: Plant Physiol. doi: 10.1104/pp.111.175380 – volume: 67 start-page: 6385 year: 2016 ident: ref12 article-title: UMAMIT14 is an amino acid exporter involved in phloem unloading in Arabidopsis roots publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw412 – volume: 5 start-page: e14577 year: 2016 ident: ref92 article-title: A novel role for the root cap in phosphate uptake and homeostasis publication-title: elife doi: 10.7554/eLife.14577 – volume: 6 start-page: 280 year: 2003 ident: ref112 article-title: The role of nutrient availability in regulating root architecture publication-title: Curr. Opin. Plant Biol. doi: 10.1016/S1369-5266(03)00035-9 – volume: 8 start-page: 485 year: 2017 ident: ref185 article-title: Nitrate: a crucial signal during lateral roots development publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00485 – volume: 12 start-page: 205 year: 2006 ident: ref175 article-title: Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2005.01064.x – volume: 68 start-page: 2531 year: 2017 ident: ref59 article-title: How do plants sense their nitrogen status? publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx013 – volume-title: Die stoffbewegungen in der Pflanze year: 1930 ident: ref133 – volume: 321 start-page: 5 year: 2009 ident: ref88 article-title: Carbon flow in the rhizosphere: carbon trading at the soil-root interface publication-title: Plant Soil doi: 10.1007/s11104-009-9925-0 – volume: 18 start-page: 1931 year: 2006 ident: ref79 article-title: Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll publication-title: Plant Cell doi: 10.1105/tpc.106.041012 – volume: 205 start-page: 1473 year: 2015 ident: ref86 article-title: Mycorrhizal phenotypes and the law of the minimum publication-title: New Phytol. doi: 10.1111/nph.13172 – volume: 21 start-page: 30 year: 2014 ident: ref53 article-title: Nitrogen signalling pathways shaping root system architecture: an update publication-title: Current opinion in plant biology doi: 10.1016/j.pbi.2014.06.004 – volume: 274 start-page: 101 year: 2005 ident: ref177 article-title: Cluster roots: a curiosity in context publication-title: Plant Soil doi: 10.1007/s11104-004-2725-7 – volume: 7 start-page: 1242 year: 2016 ident: ref182 article-title: Cell wall heterogeneity in root development of arabidopsis publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01242 – volume: 9 start-page: 9 year: 2016 ident: ref140 article-title: Heterologous expression and functional analysis of rice glutamate receptor-like family indicates its role in glutamate triggered calcium flux in rice roots publication-title: Rice doi: 10.1186/s12284-016-0081-x – volume: 83 start-page: 1046 year: 2015 ident: ref25 article-title: The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection publication-title: Plant J. doi: 10.1111/tpj.12948 – volume: 320 start-page: 37 year: 2009 ident: ref17 article-title: Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis publication-title: Plant Soil doi: 10.1007/s11104-008-9877-9 – volume: 42 start-page: 1363 year: 2010 ident: ref102 article-title: Priming effects: interactions between living and dead organic matter publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.04.003 – volume: 5 start-page: e8917 year: 2010 ident: ref212 article-title: H+-independent glutamine transport in plant root tips publication-title: PLoS One doi: 10.1371/journal.pone.0008917 – volume: 179 start-page: 1058 year: 2008 ident: ref56 article-title: Capacities and constraints of amino acid utilization in Arabidopsis publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02546.x – volume: 44 start-page: 656 year: 2006 ident: ref65 article-title: The developmental and organ specific expression of sucrose cleaving enzymes in sugar beet suggests a transition between apoplasmic and symplasmic phloem unloading in the tap roots publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2006.09.019 – volume: 255 start-page: 12 year: 2017 ident: ref61 article-title: Response-based selection of barley cultivars and legume species for complementarity: root morphology and exudation in relation to nutrient source publication-title: Plant Sci. doi: 10.1016/j.plantsci.2016.11.002 – volume: 12 start-page: 305 year: 2001 ident: ref113 article-title: Low molecular weight organic acids and fatty acids in root exudates of two Lupinus cultivars at flowering and fruiting stages publication-title: Phytochem. Anal. doi: 10.1002/pca.596 – volume: 4 start-page: 453 year: 2011 ident: ref144 article-title: Amino acid export in plants: a missing link in nitrogen cycling publication-title: Mol. Plant doi: 10.1093/mp/ssr003 – volume: 120 start-page: 705 year: 1999 ident: ref208 article-title: Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration publication-title: Plant Physiol. doi: 10.1104/pp.120.3.705 – volume: 20 start-page: 477 year: 1988 ident: ref14 article-title: Carbon and nitrogen losses through root exudation by Agropyron cristatum, A smithii and Bouteloua gracilis publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(88)90061-2 – volume: 39 start-page: 792 year: 2007 ident: ref186 article-title: Root tip contact with low-phosphate media reprograms plant root architecture publication-title: Nat. Genet. doi: 10.1038/ng2041 – volume: 51 start-page: 403 ident: ref155 article-title: Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-015-0996-1 – volume: 214 start-page: 887 year: 2002 ident: ref118 article-title: Sugar exudation by roots of kallar grass [Leptochloa fusca (L.) Kunth] is strongly affected by the nitrogen source publication-title: Planta doi: 10.1007/s00425-001-0697-x – volume: 19 start-page: 2158 year: 2013 ident: ref214 article-title: Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12161 – volume: 229 start-page: 235 year: 2001 ident: ref151 article-title: Root exudates: a pathway for short-term N transfer from clover and ryegrass publication-title: Plant Soil doi: 10.1023/a:1004877214831 – volume: 58 start-page: 2339 year: 2007 ident: ref54 article-title: Glutamate in plants: metabolism, regulation, and signalling publication-title: J. Exp. Bot. doi: 10.1093/jxb/erm121 – volume: 34 start-page: 315 year: 2002 ident: ref57 article-title: Composition of hydrolysable amino acids in soil organic matter and soil microbial biomass publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(01)00185-7 – volume: 195 start-page: 329 year: 2012 ident: ref82 article-title: The below-ground perspective of forest plants: soil provides mainly organic nitrogen for plants and mycorrhizal fungi publication-title: New Phytol. doi: 10.1111/j.1469-8137.2012.04169.x – volume: 77 start-page: 147 year: 2007 ident: ref93 article-title: Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly publication-title: Ecol. Monogr. doi: 10.1890/06-0502 – volume: 225 start-page: 907 year: 2007 ident: ref94 article-title: Phosphate starvation responses are mediated by sugar signaling in Arabidopsis publication-title: Planta doi: 10.1007/s00425-006-0408-8 – volume: 174 start-page: 3 year: 2011 ident: ref24 article-title: Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201000085 – volume: 37 start-page: 445 year: 2005 ident: ref71 article-title: Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2004.07.037 – volume: 28 start-page: 562 year: 2005 ident: ref47 article-title: Root navigation by self inhibition publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2005.01304.x – volume: 147 start-page: 43 year: 2000 ident: ref48 article-title: The control of carbon acquisition by roots publication-title: New Phytol. doi: 10.1046/j.1469-8137.2000.00688.x – volume: 57 start-page: 675 year: 2006 ident: ref164 article-title: Sugar sensing and signaling in plants: conserved and novel mechanisms publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105441 – volume-title: Mycorrhizal symbiosis year: 2008 ident: ref180 – volume: 8 start-page: 2127 year: 2017 ident: ref116 article-title: Plant-soil feedback effects on growth, defense and susceptibility to a soil-borne disease in a cut flower crop: species and functional group effects publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.02127 – volume: 9 start-page: 548 year: 2004 ident: ref192 article-title: Short on phosphate: plant surveillance and countermeasures publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2004.09.003 – volume: 4 start-page: 216 year: 2013 ident: ref37 article-title: Rhizosphere priming: a nutrient perspective publication-title: Front. Microbiol. doi: 10.3389/fmicb.2013.00216 – volume: 19 start-page: 2691 year: 2018 ident: ref142 article-title: Feeding the walls: how does nutrient availability regulate cell wall composition? publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19092691 – volume: 27 start-page: 841 year: 2013 ident: ref154 article-title: Molecular mechanisms of plant competition: neighbour detection and response strategies publication-title: Funct. Ecol. doi: 10.1111/1365-2435.12010 – volume: 7 start-page: 44641 year: 2017 ident: ref43 article-title: Root biomass and exudates link plant diversity with soil bacterial and fungal biomass publication-title: Sci. Rep. doi: 10.1038/srep44641 – volume: 23 start-page: 25 year: 2018 ident: ref171 article-title: Feed your friends: do plant exudates shape the root microbiome? publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2017.09.003 – volume: 87 start-page: 45 ident: ref156 article-title: Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2014.12.014 – volume: 101 start-page: 853 year: 1997 ident: ref23 article-title: Export of amino acids to the phloem in relation to N supply in wheat publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1997.tb01073.x – volume: 6 start-page: 7879 year: 2015 ident: ref160 article-title: GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters publication-title: Nat. Commun. doi: 10.1038/ncomms8879 – volume: 11 start-page: 961 year: 2014 ident: ref19 article-title: The impact of extreme summer drought on the short-term carbon coupling of photosynthesis to soil CO2 efflux in a temperate grassland publication-title: Biogeosciences doi: 10.5194/bg-11-961-2014 – volume: 138 start-page: 433 year: 2013 ident: ref41 article-title: A novel effect for glycine on root system growth of habanero pepper publication-title: J. Am. Soc. Hortic. Sci. doi: 10.21273/JASHS.138.6.433 – volume: 93 start-page: fix022 year: 2017 ident: ref70 article-title: The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites publication-title: FEMS Microbiol. Ecol. doi: 10.1093/femsec/fix022 – volume: 52 start-page: 689 year: 2003 ident: ref138 article-title: Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage publication-title: Plant Mol. Biol. doi: 10.1023/a:1024899808018 – volume: 159 start-page: 40 year: 2012 ident: ref201 article-title: Ca2+ conduction by an amino acid-gated ion channel related to glutamate receptors publication-title: Plant Physiol. doi: 10.1104/pp.112.197509 – start-page: 1 volume-title: Advances in applied microbiology year: 2016 ident: ref2 article-title: Chapter one: Plant–microbiota interactions as a driver of the mineral turnover in the rhizosphere, – volume: 170 start-page: 345 year: 1995 ident: ref124 article-title: Loss of exudates from the roots of perennial ryegrass inoculated with a range of micro-organisms publication-title: Plant Soil doi: 10.1007/BF00010488 – volume: 47 start-page: 1045 ident: ref204 article-title: Evidence that l-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcj075 – volume: 58 start-page: 3005 year: 2007 ident: ref100 article-title: Measurement of diffusion within the cell wall in living roots of Arabidopsis thaliana publication-title: J. Exp. Bot. doi: 10.1093/jxb/erm155 – volume: 54 start-page: 325 year: 2003 ident: ref32 article-title: Biosensor reporting of root exudation from Hordeum vulgare in relation to shoot nitrate concentration publication-title: J. Exp. Bot. doi: 10.1093/jxb/erg017 – volume: 18 start-page: 340 year: 2006 ident: ref108 article-title: A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem publication-title: Plant Cell doi: 10.1105/tpc.105.037713 – volume: 21 start-page: 209 year: 2016 ident: ref130 article-title: Root-root interactions: towards a rhizosphere framework publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.01.009 – volume: 13 start-page: 284 year: 2010 ident: ref27 article-title: Atmospheric CO2 enrichment facilitates cation release from soil publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2009.01421.x – volume: 207 start-page: 505 year: 2015 ident: ref122 article-title: Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes publication-title: New Phytol. doi: 10.1111/nph.13363 – volume: 85 start-page: 591 year: 2004 ident: ref173 article-title: Nitrogen mineralization: challenges of a changing paradigm publication-title: Ecology doi: 10.1890/03-8002 – volume: 61 start-page: 295 year: 2007 ident: ref194 article-title: Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2007.00337.x – volume: 21 start-page: 218 year: 2016 ident: ref199 article-title: Beneficial microbes affect endogenous mechanisms controlling root development publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.01.013 – volume: 21 start-page: 295 year: 2016 ident: ref63 article-title: Linking metabolism to membrane signaling: the GABA-Malate connection publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2015.11.011 – volume: 205 start-page: 1537 year: 2015 ident: ref90 article-title: Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation publication-title: New Phytol. doi: 10.1111/nph.13138 – volume: 38 start-page: 83 year: 2018 ident: ref109 article-title: The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species publication-title: Tree Physiol. doi: 10.1093/treephys/tpx131 – volume: 97 start-page: 875 ident: ref205 article-title: Nitrogen regulation of root branching publication-title: Ann. Bot. doi: 10.1093/aob/mcj601 – volume: 23 start-page: 1283 year: 2000 ident: ref67 article-title: Influence of microflora and composition of root bathing solution on root exudation of maize plants publication-title: J. Plant Nutr. doi: 10.1080/01904160009382100 – volume: 26 start-page: 1839 year: 2003 ident: ref28 article-title: Effects of phosphate availability on the root system architecture: large-scale analysis of the natural variation between Arabidopsis accessions publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.2003.01100.x – volume: 74 start-page: 105 year: 2017 ident: ref38 article-title: Update on amino acid transporter functions and on possible amino acid sensing mechanisms in plants publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2017.07.010 – volume: 100 start-page: 1692 year: 2013 ident: ref129 article-title: Amino acids in the rhizosphere: from plants to microbes publication-title: Am. J. Bot. doi: 10.3732/ajb.1300033 – volume: 172 start-page: 544 year: 2006 ident: ref66 article-title: Arbuscular mycorrhizal colonization on carbon economy in perennial ryegrass: quantification by 13CO2/12CO2 steady-state labelling and gas exchange publication-title: New Phytol. doi: 10.1111/j.1469-8137.2006.01853.x – volume: 5 start-page: e15341 year: 2016 ident: ref97 article-title: Testing the Münch hypothesis of long distance phloem transport in plants publication-title: elife doi: 10.7554/eLife.15341 – volume: 6 start-page: 9 year: 2018 ident: ref200 article-title: Linking 3D soil structure and plant-microbe-soil carbon transfer in the rhizosphere publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2018.00009 – volume: 1266 start-page: 29 year: 2015 ident: ref213 article-title: Getting across the cell membrane: an overview for small molecules, peptides, and proteins publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2272-7_3 – volume: 26 start-page: 419 year: 2003 ident: ref77 article-title: Interactions in the uptake of amino acids, ammonium and nitrate ions in the Arctic salt-marsh grass, Puccinellia phryganodes publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.2003.00973.x – volume: 18 start-page: 186 year: 2017 ident: ref91 article-title: Exogenous glutamate rapidly induces the expression of genes involved in metabolism and defense responses in rice roots publication-title: BMC Genomics doi: 10.1186/s12864-017-3588-7 – volume: 362 start-page: 233 year: 2018 ident: ref195 article-title: Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA publication-title: Science doi: 10.1126/science.aat6907 – volume: 411 start-page: 789 year: 2001 ident: ref80 article-title: Large-scale forest girdling shows that current photosynthesis drives soil respiration publication-title: Nature doi: 10.1038/35081058 – volume: 254 start-page: 317 year: 2003 ident: ref104 article-title: Turnover and distribution of root exudates of Zea mays publication-title: Plant Soil doi: 10.1023/a:1025515708093 – volume: 6 start-page: 763 year: 2008 ident: ref149 article-title: Arbuscular mycorrhiza: the mother of plant root endosymbioses publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1987 – volume: 6 start-page: 116 year: 2018 ident: ref141 article-title: Sampling root exudates – mission impossible? publication-title: Rhizosphere doi: 10.1016/j.rhisph.2018.06.004 – volume: 29 start-page: 1284 year: 2006 ident: ref39 article-title: Exogenous supply of glutamine and active cytokinin to the roots reduces NO3–uptake rates in poplar publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2006.01507.x – volume: 83 start-page: 184 year: 2015 ident: ref103 article-title: Microbial hotspots and hot moments in soil: concept and review publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.01.025 – volume: 205 start-page: 1164 year: 2015 ident: ref126 article-title: The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO2 publication-title: New Phytol. doi: 10.1111/nph.13122 – volume: 54 start-page: 143 year: 2016 ident: ref75 article-title: Root border cells and their role in plant defense publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-080615-100140 – volume: 3 start-page: 17029 year: 2017 ident: ref143 article-title: Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition publication-title: Nat. Plants. doi: 10.1038/nplants.2017.29 – volume: 95 start-page: 252 year: 2007 ident: ref176 article-title: Challenging the tragedy of the commons in root competition: confounding effects of neighbour presence and substrate volume publication-title: J. Ecol. doi: 10.1111/j.1365-2745.2007.01210.x – volume: 64 start-page: 241 year: 2011 ident: ref20 article-title: The effect of root exudates on root architecture in Arabidopsis thaliana publication-title: Plant Growth Regul. doi: 10.1007/s10725-011-9564-3 – volume: 328 start-page: 1657 year: 2010 ident: ref22 article-title: Plants integrate information about nutrients and neighbors publication-title: Science doi: 10.1126/science.1189736 – volume: 92 start-page: 201 year: 2009 ident: ref166 article-title: Soil amino-acid availability across a temperate-forest fertility gradient publication-title: Biogeochemistry doi: 10.1007/s10533-009-9284-1 – volume: 4 start-page: 701 year: 2009 ident: ref145 article-title: The role of microbial signals in plant growth and development publication-title: Plant Signal. Behav. doi: 10.4161/psb.4.8.9047 – volume: 51 start-page: 757 year: 2015 ident: ref196 article-title: Influence of different trap solutions on the determination of root exudates in Lupinus albus L publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-015-1015-2 – volume: 8 start-page: 871 year: 2006 ident: ref209 article-title: Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH) publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2005.00973.x – volume: 151 start-page: 230 year: 2014 ident: ref170 article-title: Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with near-isogenic lines of wheat publication-title: Physiol. Plant. doi: 10.1111/ppl.12150 – volume: 101 start-page: 319 year: 2008 ident: ref179 article-title: Determinate root growth and meristem maintenance in angiosperms publication-title: Ann. Bot. doi: 10.1093/aob/mcm251 – volume: 160 start-page: 219 year: 2001 ident: ref3 article-title: Differential effect of amino acids on nitrate uptake and reduction systems in barley roots publication-title: Plant Sci. doi: 10.1016/S0168-9452(00)00391-5 – volume: 245 start-page: 35 year: 2002 ident: ref31 article-title: Root exudates as mediators of mineral acquisition in low-nutrient environments publication-title: Plant Soil doi: 10.1023/a:1020809400075 – volume: 1 start-page: 0150 year: 2017 ident: ref198 article-title: Divergent plant-soil feedbacks could alter future elevation ranges and ecosystem dynamics publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-017-0150 – volume: 9 start-page: 1509 year: 2012 ident: ref64 article-title: Interactions between uptake of amino acids and inorganic nitrogen in wheat plants publication-title: Biogeosciences doi: 10.5194/bg-9-1509-2012 – volume: 356 start-page: eaad4501 year: 2017 ident: ref121 article-title: Ancestral alliances: plant mutualistic symbioses with fungi and bacteria publication-title: Science doi: 10.1126/science.aad4501 – volume: 182 start-page: 31 year: 2009 ident: ref137 article-title: Uptake of organic nitrogen by plants publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02751.x – volume: 6 start-page: e24125 year: 2017 ident: ref165 article-title: Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle publication-title: elife doi: 10.7554/eLife.24125 – volume: 166 start-page: 509 year: 2014 ident: ref60 article-title: Root nutrient foraging publication-title: Plant Physiol. doi: 10.1104/pp.114.245225 – volume: 152 start-page: 762 year: 2010 ident: ref158 article-title: Stimulation of nonselective amino acid export by glutamine dumper proteins publication-title: Plant Physiol. doi: 10.1104/pp.109.151746 – volume: 65 start-page: 2685 year: 1999 ident: ref83 article-title: Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.6.2685-2690.1999 – volume: 6 year: 2013 ident: ref187 article-title: A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids publication-title: Sci. Signal. doi: 10.1126/scisignal.2003762 – volume: 1807 start-page: 359 year: 2011 ident: ref188 article-title: Dual localization of plant glutamate receptor AtGLR3.4 to plastids and plasmamembrane publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2010.11.008 – volume: 24 start-page: 606 ident: ref161 article-title: Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/mpmi-09-10-0207 – volume: 15 start-page: 40 year: 2010 ident: ref128 article-title: Intra- and extra-cellular excretion of carboxylates publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2009.10.002 – volume: 397 start-page: 147 year: 2015 ident: ref206 article-title: Wheat roots efflux a diverse array of organic N compounds and are highly proficient at their recapture publication-title: Plant Soil doi: 10.1007/s11104-015-2612-4 – volume: 408 start-page: 243 year: 2016 ident: ref150 article-title: Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralisation publication-title: Plant Soil doi: 10.1007/s11104-016-2928-8 – volume: 4 start-page: 134 year: 2013 ident: ref85 article-title: Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts or just soil free-riders? publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00134 – volume: 4 start-page: 440 year: 2002 ident: ref148 article-title: Control of nitrate uptake by phloem-translocated glutamine in Zea mays L. seedlings publication-title: Plant Biol. doi: 10.1055/s-2002-34123 – volume: 15 start-page: 402 year: 2010 ident: ref9 article-title: Root apex transition zone: a signalling–response nexus in the root publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2010.04.007 – volume: 25 start-page: 107 year: 2015 ident: ref99 article-title: Paradigm shift in plant growth control publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2015.05.003 – volume: 13 start-page: e0204128 year: 2018 ident: ref78 article-title: Linking root exudates to functional plant traits publication-title: PLoS One doi: 10.1371/journal.pone.0204128 – volume: 38 start-page: 105 year: 2016 ident: ref135 article-title: The regulation of root growth in response to phosphorus deficiency mediated by phytohormones in a Tibetan wild barley accession publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-016-2124-8 – volume: 37 start-page: 179 year: 2005 ident: ref89 article-title: Plant capture of free amino acids is maximized under high soil amino acid concentrations publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2004.07.021 – volume: 406 start-page: 359 year: 2016 ident: ref207 article-title: Simultaneous efflux and uptake of metabolites by roots of wheat publication-title: Plant Soil doi: 10.1007/s11104-016-2892-3 – volume: 5 start-page: 283 year: 2000 ident: ref210 article-title: Sugar transporters in higher plants – a diversity of roles and complex regulation publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(00)01681-2 – reference: 31024593 - Front Plant Sci. 2019 Apr 09;10:420. doi: 10.3389/fpls.2019.00420. |
SSID | ssj0000500997 |
Score | 2.6609385 |
SecondaryResourceType | review_article |
Snippet | Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 157 |
SubjectTerms | mycorrhiza nutrient sensing Plant Science priming effect root architecture root exudates soil micro-organisms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA8iPvhSqrXt2lYi-NCXrZvL16ZvVU6koMhVwbclySb0QHeltwf2v-9Mcp53paUvfduPLAkzk53fkJnfEHLkrIPtJ0Opva1K0XpV1lypkqnKaoAHNQtYjXxxqc5vxNdbebvS6gtzwjI9cBbcscRiUWe0lNYI74MRoxbMtDbBcxtjKt0Dn7cSTGVWb4Q-OnP5QBRmjuPDHbJzs0RPic5oxQ0ltv4_QczfMyVXXM_ZS_JigRnpl7zWHbIRul2yddIDrvv5itxP-n6g48d57o5E-0ivMoUEvQgD6BirjGef4QaLfKez-xm1XUuv8YSATpDPiU47is2LBjrJGbPwaOjp-LkGDmb_Nkwxk2qP3JyNr0_Py0UThdILaYYyqFFlPeO2dty6ygmtqqhYiLp2SsJ21kK6VoVoAKs5uNLO6pH0TirOrY78Ndns-i68JdS4oCBciamY1lfcMRlbX7cjaSUAFVaQT08ybfyCYRwbXdw1EGmgEhpUQoNKaJISCvJx-cFDlszfh56gkpbDkBU7PQBbaRa20vzLVgpy-KTiBnYRHo3YLvRzmAhwLFLji7ogb7LKl1Nx-BEzrkRB9JoxrK1l_U03_Z6YuvGUVCmz_z8W_45sozhSOT17TzaHH_PwAQDR4A6S7f8CVisKNg priority: 102 providerName: Directory of Open Access Journals |
Title | Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30881364 https://www.proquest.com/docview/2193615048 https://pubmed.ncbi.nlm.nih.gov/PMC6407669 https://doaj.org/article/50533b9755a94cce942d07089ec3aff9 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdg8MALGt9hMBmJB14y4vgrQUKIoY4JqQiVVepbZDs2VOqS0abS9t9z52QdRUXiJYodJ058Pt_Pse93hLy2xoL6SZ9qZ7JU1E6lBVcqZSozGuBBwTx6I4-_qtOp-DKTs5twQEMDrnZO7TCe1HS5OLr8dfUBFP49zjjB3r4NFwsk3maReVLq2-QOmCWN4QzGA9bvib4RDcVgK0qJVKh81lP97HrGlpWKZP67EOjfGyn_sEwn--T-ACnpx74PPCC3fPOQ3D1uAfZdPSLnk7bt6Ohy3QdPom2g33qGCTr2HXQBdEJevYME-gDPV-crapqanuECAp0g3ROdNxRjG3V00m-ohayupaMbFzmo_Xs3x41Wj8n0ZHT26TQdYiykTsiyS73KM-MYN4XlxmZWaJUFxXzQhVUStF0LaWvlQwlQzsKZtkbn0lmpODc68Cdkr2kb_4zQ0npo2DxEX1uXcctkqF1R59JIwDEsIUfXbVq5gYAc42AsKpiIoBAqFEKFQqiiEBLyZnPDRd8y_y56jELaFEPS7JjRLn9Ugw5WEv2ObamlNKVwzpcir2HEK0rvuAmhTMiraxFXoGS4cmIa366hIoC5yJwvioQ87UW-qYrDOM24EgnRW51h6122rzTzn5HIGxdRlSqf__93HpB7mIg-9ewF2euWa_8SUFFnD-PfBDh-nrHD2PN_A7miDLc |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+Exudation+of+Primary+Metabolites%3A+Mechanisms+and+Their+Roles+in+Plant+Responses+to+Environmental+Stimuli&rft.jtitle=Frontiers+in+plant+science&rft.au=Canarini%2C+Alberto&rft.au=Kaiser%2C+Christina&rft.au=Merchant%2C+Andrew&rft.au=Richter%2C+Andreas&rft.date=2019-02-21&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=10&rft_id=info:doi/10.3389%2Ffpls.2019.00157&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fpls_2019_00157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |