Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli

Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient mobilization. Yet, it remains unresolved how exudation is controlled and how exactly and under what circumstances plants benefit from exudation. The...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 10; p. 157
Main Authors Canarini, Alberto, Kaiser, Christina, Merchant, Andrew, Richter, Andreas, Wanek, Wolfgang
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 21.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient mobilization. Yet, it remains unresolved how exudation is controlled and how exactly and under what circumstances plants benefit from exudation. The majority of root exudates including primary metabolites (sugars, amino acids, and organic acids) are believed to be passively lost from the root and used by rhizosphere-dwelling microbes. In this review, we synthetize recent advances in ecology and plant biology to explain and propose mechanisms by which root exudation of primary metabolites is controlled, and what role their exudation plays in plant nutrient acquisition strategies. Specifically, we propose a novel conceptual framework for root exudates. This framework is built upon two main concepts: (1) root exudation of primary metabolites is driven by diffusion, with plants and microbes both modulating concentration gradients and therefore diffusion rates to soil depending on their nutritional status; (2) exuded metabolite concentrations can be sensed at the root tip and signals are translated to modify root architecture. The flux of primary metabolites through root exudation is mostly located at the root tip, where the lack of cell differentiation favors diffusion of metabolites to the soil. We show examples of how the root tip senses concentration changes of exuded metabolites and translates that into signals to modify root growth. Plants can modify the concentration of metabolites either by controlling source/sink processes or by expressing and regulating efflux carriers, therefore challenging the idea of root exudation as a purely unregulated passive process. Through root exudate flux, plants can locally enhance concentrations of many common metabolites, which can serve as sensors and integrators of the plant nutritional status and of the nutrient availability in the surrounding environment. Plant-associated micro-organisms also constitute a strong sink for plant carbon, thereby increasing concentration gradients of metabolites and affecting root exudation. Understanding the mechanisms of and the effects that environmental stimuli have on the magnitude and type of root exudation will ultimately improve our knowledge of processes determining soil CO emissions, ecosystem functioning, and how to improve the sustainability of agricultural production.
AbstractList Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient mobilization. Yet, it remains unresolved how exudation is controlled and how exactly and under what circumstances plants benefit from exudation. The majority of root exudates including primary metabolites (sugars, amino acids, and organic acids) are believed to be passively lost from the root and used by rhizosphere-dwelling microbes. In this review, we synthetize recent advances in ecology and plant biology to explain and propose mechanisms by which root exudation of primary metabolites is controlled, and what role their exudation plays in plant nutrient acquisition strategies. Specifically, we propose a novel conceptual framework for root exudates. This framework is built upon two main concepts: (1) root exudation of primary metabolites is driven by diffusion, with plants and microbes both modulating concentration gradients and therefore diffusion rates to soil depending on their nutritional status; (2) exuded metabolite concentrations can be sensed at the root tip and signals are translated to modify root architecture. The flux of primary metabolites through root exudation is mostly located at the root tip, where the lack of cell differentiation favors diffusion of metabolites to the soil. We show examples of how the root tip senses concentration changes of exuded metabolites and translates that into signals to modify root growth. Plants can modify the concentration of metabolites either by controlling source/sink processes or by expressing and regulating efflux carriers, therefore challenging the idea of root exudation as a purely unregulated passive process. Through root exudate flux, plants can locally enhance concentrations of many common metabolites, which can serve as sensors and integrators of the plant nutritional status and of the nutrient availability in the surrounding environment. Plant-associated micro-organisms also constitute a strong sink for plant carbon, thereby increasing concentration gradients of metabolites and affecting root exudation. Understanding the mechanisms of and the effects that environmental stimuli have on the magnitude and type of root exudation will ultimately improve our knowledge of processes determining soil CO2 emissions, ecosystem functioning, and how to improve the sustainability of agricultural production.Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient mobilization. Yet, it remains unresolved how exudation is controlled and how exactly and under what circumstances plants benefit from exudation. The majority of root exudates including primary metabolites (sugars, amino acids, and organic acids) are believed to be passively lost from the root and used by rhizosphere-dwelling microbes. In this review, we synthetize recent advances in ecology and plant biology to explain and propose mechanisms by which root exudation of primary metabolites is controlled, and what role their exudation plays in plant nutrient acquisition strategies. Specifically, we propose a novel conceptual framework for root exudates. This framework is built upon two main concepts: (1) root exudation of primary metabolites is driven by diffusion, with plants and microbes both modulating concentration gradients and therefore diffusion rates to soil depending on their nutritional status; (2) exuded metabolite concentrations can be sensed at the root tip and signals are translated to modify root architecture. The flux of primary metabolites through root exudation is mostly located at the root tip, where the lack of cell differentiation favors diffusion of metabolites to the soil. We show examples of how the root tip senses concentration changes of exuded metabolites and translates that into signals to modify root growth. Plants can modify the concentration of metabolites either by controlling source/sink processes or by expressing and regulating efflux carriers, therefore challenging the idea of root exudation as a purely unregulated passive process. Through root exudate flux, plants can locally enhance concentrations of many common metabolites, which can serve as sensors and integrators of the plant nutritional status and of the nutrient availability in the surrounding environment. Plant-associated micro-organisms also constitute a strong sink for plant carbon, thereby increasing concentration gradients of metabolites and affecting root exudation. Understanding the mechanisms of and the effects that environmental stimuli have on the magnitude and type of root exudation will ultimately improve our knowledge of processes determining soil CO2 emissions, ecosystem functioning, and how to improve the sustainability of agricultural production.
Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient mobilization. Yet, it remains unresolved how exudation is controlled and how exactly and under what circumstances plants benefit from exudation. The majority of root exudates including primary metabolites (sugars, amino acids, and organic acids) are believed to be passively lost from the root and used by rhizosphere-dwelling microbes. In this review, we synthetize recent advances in ecology and plant biology to explain and propose mechanisms by which root exudation of primary metabolites is controlled, and what role their exudation plays in plant nutrient acquisition strategies. Specifically, we propose a novel conceptual framework for root exudates. This framework is built upon two main concepts: (1) root exudation of primary metabolites is driven by diffusion, with plants and microbes both modulating concentration gradients and therefore diffusion rates to soil depending on their nutritional status; (2) exuded metabolite concentrations can be sensed at the root tip and signals are translated to modify root architecture. The flux of primary metabolites through root exudation is mostly located at the root tip, where the lack of cell differentiation favors diffusion of metabolites to the soil. We show examples of how the root tip senses concentration changes of exuded metabolites and translates that into signals to modify root growth. Plants can modify the concentration of metabolites either by controlling source/sink processes or by expressing and regulating efflux carriers, therefore challenging the idea of root exudation as a purely unregulated passive process. Through root exudate flux, plants can locally enhance concentrations of many common metabolites, which can serve as sensors and integrators of the plant nutritional status and of the nutrient availability in the surrounding environment. Plant-associated micro-organisms also constitute a strong sink for plant carbon, thereby increasing concentration gradients of metabolites and affecting root exudation. Understanding the mechanisms of and the effects that environmental stimuli have on the magnitude and type of root exudation will ultimately improve our knowledge of processes determining soil CO emissions, ecosystem functioning, and how to improve the sustainability of agricultural production.
Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient mobilization. Yet, it remains unresolved how exudation is controlled and how exactly and under what circumstances plants benefit from exudation. The majority of root exudates including primary metabolites (sugars, amino acids, and organic acids) are believed to be passively lost from the root and used by rhizosphere-dwelling microbes. In this review, we synthetize recent advances in ecology and plant biology to explain and propose mechanisms by which root exudation of primary metabolites is controlled, and what role their exudation plays in plant nutrient acquisition strategies. Specifically, we propose a novel conceptual framework for root exudates. This framework is built upon two main concepts: (1) root exudation of primary metabolites is driven by diffusion, with plants and microbes both modulating concentration gradients and therefore diffusion rates to soil depending on their nutritional status; (2) exuded metabolite concentrations can be sensed at the root tip and signals are translated to modify root architecture. The flux of primary metabolites through root exudation is mostly located at the root tip, where the lack of cell differentiation favors diffusion of metabolites to the soil. We show examples of how the root tip senses concentration changes of exuded metabolites and translates that into signals to modify root growth. Plants can modify the concentration of metabolites either by controlling source/sink processes or by expressing and regulating efflux carriers, therefore challenging the idea of root exudation as a purely unregulated passive process. Through root exudate flux, plants can locally enhance concentrations of many common metabolites, which can serve as sensors and integrators of the plant nutritional status and of the nutrient availability in the surrounding environment. Plant-associated micro-organisms also constitute a strong sink for plant carbon, thereby increasing concentration gradients of metabolites and affecting root exudation. Understanding the mechanisms of and the effects that environmental stimuli have on the magnitude and type of root exudation will ultimately improve our knowledge of processes determining soil CO 2 emissions, ecosystem functioning, and how to improve the sustainability of agricultural production.
Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient mobilization. Yet, it remains unresolved how exudation is controlled and how exactly and under what circumstances plants benefit from exudation. The majority of root exudates including primary metabolites (sugars, amino acids, and organic acids) are believed to be passively lost from the root and used by rhizosphere-dwelling microbes. In this review, we synthetize recent advances in ecology and plant biology to explain and propose mechanisms by which root exudation of primary metabolites is controlled, and what role their exudation plays in plant nutrient acquisition strategies. Specifically, we propose a novel conceptual framework for root exudates. This framework is built upon two main concepts: (1) root exudation of primary metabolites is driven by diffusion, with plants and microbes both modulating concentration gradients and therefore diffusion rates to soil depending on their nutritional status; (2) exuded metabolite concentrations can be sensed at the root tip and signals are translated to modify root architecture. The flux of primary metabolites through root exudation is mostly located at the root tip, where the lack of cell differentiation favors diffusion of metabolites to the soil. We show examples of how the root tip senses concentration changes of exuded metabolites and translates that into signals to modify root growth. Plants can modify the concentration of metabolites either by controlling source/sink processes or by expressing and regulating efflux carriers, therefore challenging the idea of root exudation as a purely unregulated passive process. Through root exudate flux, plants can locally enhance concentrations of many common metabolites, which can serve as sensors and integrators of the plant nutritional status and of the nutrient availability in the surrounding environment. Plant-associated micro-organisms also constitute a strong sink for plant carbon, thereby increasing concentration gradients of metabolites and affecting root exudation. Understanding the mechanisms of and the effects that environmental stimuli have on the magnitude and type of root exudation will ultimately improve our knowledge of processes determining soil CO2 emissions, ecosystem functioning, and how to improve the sustainability of agricultural production.
Author Canarini, Alberto
Kaiser, Christina
Richter, Andreas
Merchant, Andrew
Wanek, Wolfgang
AuthorAffiliation 1 Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry Meets Microbiology’, University of Vienna , Vienna , Austria
2 Faculty of Science, Sydney Institute of Agriculture, The University of Sydney , Sydney, NSW , Australia
AuthorAffiliation_xml – name: 2 Faculty of Science, Sydney Institute of Agriculture, The University of Sydney , Sydney, NSW , Australia
– name: 1 Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry Meets Microbiology’, University of Vienna , Vienna , Austria
Author_xml – sequence: 1
  givenname: Alberto
  surname: Canarini
  fullname: Canarini, Alberto
– sequence: 2
  givenname: Christina
  surname: Kaiser
  fullname: Kaiser, Christina
– sequence: 3
  givenname: Andrew
  surname: Merchant
  fullname: Merchant, Andrew
– sequence: 4
  givenname: Andreas
  surname: Richter
  fullname: Richter, Andreas
– sequence: 5
  givenname: Wolfgang
  surname: Wanek
  fullname: Wanek, Wolfgang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30881364$$D View this record in MEDLINE/PubMed
BookMark eNp1Uk1vVCEUfTE19sOu3RmWbmYKj6-HCxPTjLVJjc1YE3cEeNCh4cEITKP_XmamNq2JbLhczjmXyz3H3UFM0XbdGwTnGA_izK1DmfcQiTmEiPIX3RFijMwI638cPIkPu9NS7mBbFEIh-KvuEMNhQJiRo25aplTB4tdmVNWnCJID19lPKv8GX2xVOgVfbXnfDmaloi9TASqO4GZlfQbLFGwBPoLroGIFS1vWKZaWqgks4r3PKU42VhXAt-qnTfCvu5dOhWJPH_aT7vunxc3559nV14vL849XM0OoqDPLeqgMwmrQWGmoCWfQMWQdHzSjuO85oXpk1glGoW4R14r31GjKMFbc4ZPucq87JnUn1_uGZFJe7hIp30qVqzfBSgopxlpwSpUgxlhB-hFyOAhrsHJONK0Pe631Rk92NK2hrMIz0ec30a_kbbqXjEDO2Fbg3YNATj83tlQ5-WJsaH9m06bIHgnMEIVkaNC3T2s9Fvk7rwY42wNMTqVk6x4hCMqtKeTWFHJrCrkzRWPQfxjG192s22N9-C_vD5ievd0
CitedBy_id crossref_primary_10_1016_j_rhisph_2022_100548
crossref_primary_10_1093_femsec_fiaa222
crossref_primary_10_1186_s12284_022_00588_y
crossref_primary_10_3390_microorganisms9081689
crossref_primary_10_1016_j_rser_2021_111697
crossref_primary_10_3390_plants12173052
crossref_primary_10_1073_pnas_2100136118
crossref_primary_10_1094_PHYTO_04_24_0151_R
crossref_primary_10_1007_s00572_021_01049_y
crossref_primary_10_1016_j_foreco_2023_121239
crossref_primary_10_1016_j_scitotenv_2022_160675
crossref_primary_10_1016_j_catena_2024_108185
crossref_primary_10_1111_gcb_70117
crossref_primary_10_1128_spectrum_03831_22
crossref_primary_10_1007_s11104_022_05629_5
crossref_primary_10_3389_fmicb_2023_1195985
crossref_primary_10_3390_ijms222111948
crossref_primary_10_3390_metabo11060357
crossref_primary_10_1111_nph_16001
crossref_primary_10_1016_j_envexpbot_2021_104636
crossref_primary_10_1016_j_crcon_2021_04_004
crossref_primary_10_1016_j_envres_2023_117711
crossref_primary_10_3390_agriculture13020326
crossref_primary_10_1021_acs_analchem_3c02370
crossref_primary_10_1021_acs_est_4c04108
crossref_primary_10_1007_s00374_022_01620_5
crossref_primary_10_3390_horticulturae7080243
crossref_primary_10_3390_applmicrobiol4040113
crossref_primary_10_1016_j_talanta_2022_123901
crossref_primary_10_1016_j_plaphy_2023_02_035
crossref_primary_10_1021_acs_est_4c03133
crossref_primary_10_3390_agronomy15010020
crossref_primary_10_3390_microorganisms9071533
crossref_primary_10_1016_j_sajb_2023_11_049
crossref_primary_10_1007_s42729_021_00564_3
crossref_primary_10_1111_ejss_13433
crossref_primary_10_3390_biology10020101
crossref_primary_10_1016_j_rhisph_2023_100726
crossref_primary_10_1007_s11104_022_05618_8
crossref_primary_10_1002_wer_11056
crossref_primary_10_1007_s44372_024_00079_y
crossref_primary_10_1007_s11104_024_06706_7
crossref_primary_10_1007_s00300_021_02846_z
crossref_primary_10_3389_fmicb_2020_542742
crossref_primary_10_1016_j_seta_2021_101570
crossref_primary_10_1016_j_biortech_2021_126246
crossref_primary_10_1016_j_apsoil_2022_104737
crossref_primary_10_3389_fpls_2024_1388384
crossref_primary_10_1007_s00572_020_01006_1
crossref_primary_10_1080_00103624_2021_1872594
crossref_primary_10_1016_j_catena_2022_106661
crossref_primary_10_1111_1758_2229_12939
crossref_primary_10_1007_s10653_020_00791_0
crossref_primary_10_3390_plants10040681
crossref_primary_10_1002_pei3_10106
crossref_primary_10_1103_PhysRevE_111_024411
crossref_primary_10_3390_ijms23147784
crossref_primary_10_1007_s11157_023_09653_4
crossref_primary_10_1007_s11356_022_22471_5
crossref_primary_10_1016_j_futures_2024_103429
crossref_primary_10_1007_s00425_024_04556_2
crossref_primary_10_1007_s11104_020_04715_w
crossref_primary_10_3390_microorganisms11040835
crossref_primary_10_1016_j_envres_2021_111635
crossref_primary_10_1016_j_xplc_2024_101078
crossref_primary_10_5194_bg_21_5185_2024
crossref_primary_10_1016_j_envpol_2024_123505
crossref_primary_10_1007_s11104_022_05585_0
crossref_primary_10_1007_s13199_024_00980_w
crossref_primary_10_1016_j_scienta_2024_113734
crossref_primary_10_3390_microorganisms9010201
crossref_primary_10_3389_fsufs_2022_706072
crossref_primary_10_1093_jxb_eraa111
crossref_primary_10_1002_ece3_6852
crossref_primary_10_3390_f13081157
crossref_primary_10_1016_j_stress_2024_100590
crossref_primary_10_1007_s11104_024_06662_2
crossref_primary_10_1007_s11104_024_06870_w
crossref_primary_10_1111_pce_14755
crossref_primary_10_1007_s41742_024_00703_5
crossref_primary_10_1016_j_indcrop_2020_112163
crossref_primary_10_3390_microorganisms12020353
crossref_primary_10_3390_su152215889
crossref_primary_10_1016_j_foreco_2023_121316
crossref_primary_10_1016_j_envexpbot_2023_105486
crossref_primary_10_1016_j_tplants_2022_08_016
crossref_primary_10_3390_genes14030752
crossref_primary_10_1111_tpj_14781
crossref_primary_10_1080_00103624_2025_2474180
crossref_primary_10_5194_bg_20_1925_2023
crossref_primary_10_3389_fmicb_2021_798476
crossref_primary_10_31857_S2500262723010106
crossref_primary_10_3390_microorganisms11122978
crossref_primary_10_1016_j_cj_2021_04_002
crossref_primary_10_1080_10643389_2020_1785264
crossref_primary_10_1139_cjm_2020_0085
crossref_primary_10_1186_s12870_025_06321_3
crossref_primary_10_1007_s00344_023_10912_5
crossref_primary_10_1111_pce_14523
crossref_primary_10_1007_s11104_024_06990_3
crossref_primary_10_1016_j_plaphy_2023_107979
crossref_primary_10_1186_s40538_024_00684_9
crossref_primary_10_1016_j_micres_2023_127564
crossref_primary_10_1016_j_envexpbot_2022_105071
crossref_primary_10_3389_fpls_2023_1154587
crossref_primary_10_3390_cells11203254
crossref_primary_10_1016_j_scitotenv_2023_167257
crossref_primary_10_3389_fpls_2020_00599
crossref_primary_10_1016_j_micres_2024_127706
crossref_primary_10_1007_s13199_023_00941_9
crossref_primary_10_1007_s11104_022_05508_z
crossref_primary_10_3390_biology11081107
crossref_primary_10_1007_s00284_023_03206_2
crossref_primary_10_1016_j_rhisph_2025_101024
crossref_primary_10_3390_f12070823
crossref_primary_10_1016_j_bbrc_2020_07_139
crossref_primary_10_1016_j_geoderma_2021_115645
crossref_primary_10_1016_j_pedsph_2023_05_008
crossref_primary_10_1093_jxb_erac439
crossref_primary_10_3390_microorganisms9102121
crossref_primary_10_1016_j_funeco_2020_100988
crossref_primary_10_1016_j_pbi_2021_102151
crossref_primary_10_1016_j_rhisph_2022_100657
crossref_primary_10_1111_nph_16389
crossref_primary_10_3389_fmicb_2023_1327056
crossref_primary_10_3389_fmicb_2024_1183024
crossref_primary_10_7717_peerj_14271
crossref_primary_10_1007_s00248_022_01975_0
crossref_primary_10_1128_aem_00425_24
crossref_primary_10_3390_metabo15030189
crossref_primary_10_1093_jxb_eraa482
crossref_primary_10_1016_j_envpol_2023_121199
crossref_primary_10_17221_254_2023_PSE
crossref_primary_10_1002_ppj2_20028
crossref_primary_10_3389_fmicb_2020_575578
crossref_primary_10_1038_s41561_022_01079_x
crossref_primary_10_1071_FP19144
crossref_primary_10_1002_pei3_10035
crossref_primary_10_1111_ejss_13219
crossref_primary_10_3389_fpls_2021_744445
crossref_primary_10_1007_s10343_025_01128_6
crossref_primary_10_1002_agj2_21681
crossref_primary_10_3389_fpls_2023_1244591
crossref_primary_10_1007_s42729_022_01009_1
crossref_primary_10_3390_microorganisms8081193
crossref_primary_10_3390_agriculture11030234
crossref_primary_10_1016_j_soilbio_2022_108779
crossref_primary_10_1016_j_micres_2020_126651
crossref_primary_10_1016_j_micres_2022_127199
crossref_primary_10_1007_s11104_024_07020_y
crossref_primary_10_1093_ismejo_wrae072
crossref_primary_10_3389_fenvs_2022_858948
crossref_primary_10_1007_s00248_021_01767_y
crossref_primary_10_1016_j_scitotenv_2023_164238
crossref_primary_10_1016_j_scitotenv_2023_165689
crossref_primary_10_1128_AEM_02541_20
crossref_primary_10_1007_s42729_021_00726_3
crossref_primary_10_1007_s41348_025_01073_6
crossref_primary_10_1016_j_scitotenv_2023_164352
crossref_primary_10_1080_17429145_2022_2086307
crossref_primary_10_1111_1365_2745_14272
crossref_primary_10_1128_aem_00589_24
crossref_primary_10_3389_fpls_2019_00533
crossref_primary_10_3390_toxins13070495
crossref_primary_10_1002_jobm_202000405
crossref_primary_10_3390_plants13091231
crossref_primary_10_3389_fpls_2021_686465
crossref_primary_10_1016_j_apsoil_2024_105531
crossref_primary_10_1038_s42003_022_03782_2
crossref_primary_10_1139_cjm_2020_0041
crossref_primary_10_1007_s10343_024_01070_z
crossref_primary_10_3389_fpls_2022_949086
crossref_primary_10_1016_j_micres_2023_127368
crossref_primary_10_3389_fagro_2020_00008
crossref_primary_10_1016_j_plantsci_2024_112377
crossref_primary_10_1002_ppp3_10599
crossref_primary_10_1016_j_rhisph_2024_100946
crossref_primary_10_1007_s10705_022_10238_w
crossref_primary_10_1007_s11427_024_2876_0
crossref_primary_10_3389_ffgc_2024_1322087
crossref_primary_10_1038_s41396_020_00759_z
crossref_primary_10_3389_fmicb_2023_1170611
crossref_primary_10_3390_plants12112197
crossref_primary_10_1016_j_scitotenv_2021_149659
crossref_primary_10_3103_S106836742302009X
crossref_primary_10_1016_j_scitotenv_2020_139572
crossref_primary_10_3390_plants12152843
crossref_primary_10_1007_s10482_021_01655_y
crossref_primary_10_1128_mSystems_00587_21
crossref_primary_10_1007_s11104_023_06467_9
crossref_primary_10_1007_s42452_025_06503_6
crossref_primary_10_3390_microorganisms9122456
crossref_primary_10_3103_S1068367423010093
crossref_primary_10_15835_nbha49412532
crossref_primary_10_1007_s11104_024_06691_x
crossref_primary_10_1007_s11274_022_03380_8
crossref_primary_10_3389_fpls_2020_559775
crossref_primary_10_3389_fpls_2023_1332864
crossref_primary_10_3389_fbiom_2022_1011877
crossref_primary_10_1111_raq_12778
crossref_primary_10_34133_2022_9858049
crossref_primary_10_1007_s00374_020_01456_x
crossref_primary_10_1007_s11101_025_10084_y
crossref_primary_10_1007_s42729_024_01685_1
crossref_primary_10_1016_j_gecco_2022_e02002
crossref_primary_10_1016_j_jenvman_2023_118529
crossref_primary_10_1007_s11104_021_04991_0
crossref_primary_10_1007_s11356_024_34911_5
crossref_primary_10_1021_acssuschemeng_1c08081
crossref_primary_10_12688_openreseurope_15045_1
crossref_primary_10_1093_g3journal_jkad286
crossref_primary_10_1021_acs_est_0c04592
crossref_primary_10_1007_s00253_021_11698_w
crossref_primary_10_3390_app13063896
crossref_primary_10_3390_plants12081668
crossref_primary_10_1007_s11104_023_05908_9
crossref_primary_10_1016_j_pbi_2020_02_010
crossref_primary_10_3390_nitrogen6010016
crossref_primary_10_1038_s41598_024_58687_3
crossref_primary_10_3390_plants10050975
crossref_primary_10_1080_02648725_2022_2143317
crossref_primary_10_1371_journal_pone_0315657
crossref_primary_10_1007_s00284_022_03012_2
crossref_primary_10_1016_j_foreco_2022_120584
crossref_primary_10_3897_zookeys_955_51983
crossref_primary_10_1016_j_pbi_2023_102351
crossref_primary_10_3389_fpls_2022_998961
crossref_primary_10_1016_j_soilbio_2024_109382
crossref_primary_10_1007_s11676_020_01195_7
crossref_primary_10_3390_land10080840
crossref_primary_10_1016_j_envexpbot_2022_104810
crossref_primary_10_1038_s41467_023_39464_8
crossref_primary_10_1093_femsec_fiaa099
crossref_primary_10_3389_fpls_2020_535005
crossref_primary_10_1126_science_abd1515
crossref_primary_10_1007_s11104_024_07097_5
crossref_primary_10_7717_peerj_9750
crossref_primary_10_1007_s10533_022_00996_8
crossref_primary_10_1016_j_scitotenv_2023_163175
crossref_primary_10_1038_s41598_021_87886_5
crossref_primary_10_3390_biology12050663
crossref_primary_10_1002_ps_6897
crossref_primary_10_1021_acsomega_4c00653
crossref_primary_10_1007_s00253_024_13298_w
crossref_primary_10_3389_fmicb_2019_01519
crossref_primary_10_3390_separations8070091
crossref_primary_10_3389_fmicb_2021_673810
crossref_primary_10_1038_s41467_022_30849_9
crossref_primary_10_3389_fmicb_2019_02727
crossref_primary_10_1016_j_rhisph_2022_100484
crossref_primary_10_1016_j_soilbio_2022_108717
crossref_primary_10_3390_horticulturae7100374
crossref_primary_10_3390_agronomy14010141
crossref_primary_10_1007_s11104_023_06378_9
crossref_primary_10_1016_j_soilbio_2023_109088
crossref_primary_10_3389_fpls_2023_1143745
crossref_primary_10_3390_d14090735
crossref_primary_10_1007_s42729_023_01212_8
crossref_primary_10_1038_s41559_024_02546_x
crossref_primary_10_1111_nph_18289
crossref_primary_10_3390_agronomy12040900
crossref_primary_10_7554_eLife_79679
crossref_primary_10_1007_s00344_023_10987_0
crossref_primary_10_21285_2227_2925_2023_13_2_272_282
crossref_primary_10_1021_acs_jafc_0c00073
crossref_primary_10_1016_j_apsoil_2024_105557
crossref_primary_10_1002_ldr_3627
crossref_primary_10_1016_j_envpol_2022_120762
crossref_primary_10_3389_fphgy_2023_1308534
crossref_primary_10_1016_j_jenvman_2025_124485
crossref_primary_10_1016_j_geoderma_2020_114769
crossref_primary_10_1007_s10265_024_01590_9
crossref_primary_10_1016_j_apsoil_2020_103781
crossref_primary_10_3389_fmicb_2020_00370
crossref_primary_10_7554_eLife_59726
crossref_primary_10_1002_ece3_11018
crossref_primary_10_3389_fagro_2022_896307
crossref_primary_10_56833_gidaveyem_1614587
crossref_primary_10_1007_s11104_024_06720_9
crossref_primary_10_1007_s40502_022_00650_3
crossref_primary_10_3389_fmicb_2021_815129
crossref_primary_10_3389_fpls_2020_584568
crossref_primary_10_1007_s00248_021_01818_4
crossref_primary_10_3390_min12020111
crossref_primary_10_1094_MPMI_11_21_0281_FI
crossref_primary_10_1007_s00374_025_01900_w
crossref_primary_10_1016_j_jenvman_2022_115374
crossref_primary_10_3389_fmicb_2020_00704
crossref_primary_10_1016_j_ecolind_2021_107905
crossref_primary_10_1590_s0102_053620190404
crossref_primary_10_1016_j_soilbio_2024_109343
crossref_primary_10_1002_pld3_259
crossref_primary_10_1016_j_scitotenv_2023_162692
crossref_primary_10_1016_j_compag_2020_105455
crossref_primary_10_1007_s11104_020_04469_5
crossref_primary_10_1038_s41467_021_25675_4
crossref_primary_10_1128_spectrum_01002_22
crossref_primary_10_1038_s41598_022_22241_w
crossref_primary_10_1111_1365_2435_14625
crossref_primary_10_1021_acs_est_2c03633
crossref_primary_10_1038_s41598_020_72904_9
crossref_primary_10_1094_PDIS_02_22_0403_RE
crossref_primary_10_3389_fmicb_2021_744094
crossref_primary_10_1093_jxb_erad019
crossref_primary_10_1007_s11101_024_09989_x
crossref_primary_10_12688_openreseurope_15377_1
crossref_primary_10_1007_s00344_023_11075_z
crossref_primary_10_12688_openreseurope_15377_3
crossref_primary_10_12688_openreseurope_15377_2
crossref_primary_10_1007_s00284_022_02850_4
crossref_primary_10_1016_j_soilbio_2025_109753
crossref_primary_10_1007_s11104_021_05069_7
crossref_primary_10_1042_BCJ20180615
crossref_primary_10_1002_saj2_20274
crossref_primary_10_1038_s41477_020_00831_8
crossref_primary_10_3390_pr11041253
crossref_primary_10_1038_s43016_022_00542_7
crossref_primary_10_3389_ffgc_2023_1152142
crossref_primary_10_3390_su14063407
crossref_primary_10_3390_plants12081608
crossref_primary_10_1007_s00284_021_02375_2
crossref_primary_10_3389_fmicb_2020_01814
crossref_primary_10_15421_022334
crossref_primary_10_1007_s10343_024_01013_8
crossref_primary_10_1007_s11104_024_06611_z
crossref_primary_10_1002_sae2_12026
crossref_primary_10_3390_toxics13030143
crossref_primary_10_1186_s12870_021_03047_w
crossref_primary_10_1007_s00374_021_01578_w
crossref_primary_10_1111_ppl_14024
crossref_primary_10_3390_microorganisms9091817
crossref_primary_10_3389_fpls_2022_827369
crossref_primary_10_3389_fpls_2022_1064058
crossref_primary_10_3390_ijms23094592
crossref_primary_10_3389_fpls_2021_699618
crossref_primary_10_3389_fpls_2023_1132824
crossref_primary_10_1016_j_jclepro_2021_127992
crossref_primary_10_3389_fpls_2019_00605
crossref_primary_10_1038_s41598_021_93035_9
crossref_primary_10_1111_gcb_17127
crossref_primary_10_3389_fmicb_2021_625752
crossref_primary_10_1007_s00425_020_03468_1
crossref_primary_10_1073_pnas_2310134120
crossref_primary_10_3390_crops4010004
crossref_primary_10_1007_s11104_020_04663_5
crossref_primary_10_1016_j_foodres_2021_110796
crossref_primary_10_3390_agronomy10071037
crossref_primary_10_3389_fpls_2022_935829
crossref_primary_10_1016_j_soilbio_2021_108219
crossref_primary_10_3390_ijms221910388
crossref_primary_10_1039_D3EN00236E
crossref_primary_10_1007_s11104_021_05232_0
crossref_primary_10_3390_su131910986
crossref_primary_10_1007_s00374_022_01649_6
crossref_primary_10_1016_j_jia_2023_10_021
crossref_primary_10_1007_s11104_021_05111_8
crossref_primary_10_1016_j_agee_2020_106952
crossref_primary_10_1016_j_soilbio_2023_109263
crossref_primary_10_1111_gcb_17550
crossref_primary_10_3390_plants13152130
crossref_primary_10_1016_j_apsoil_2024_105851
crossref_primary_10_3389_fenvs_2023_1157415
crossref_primary_10_1128_aem_02474_21
crossref_primary_10_1111_1365_2745_13934
crossref_primary_10_1128_msystems_01238_22
crossref_primary_10_1007_s10725_023_01088_9
crossref_primary_10_1094_PBIOMES_5_1
crossref_primary_10_3390_agronomy12092041
crossref_primary_10_3390_ijerph17114016
crossref_primary_10_3389_frmbi_2023_1157681
crossref_primary_10_1007_s11104_019_04070_5
crossref_primary_10_3390_agronomy12040976
crossref_primary_10_1094_PBIOMES_08_24_0081_R
crossref_primary_10_1111_brv_13079
crossref_primary_10_1016_j_jenvman_2022_116124
crossref_primary_10_1007_s00344_023_11061_5
crossref_primary_10_3389_fmicb_2020_591358
crossref_primary_10_1007_s10661_023_11470_9
crossref_primary_10_1093_treephys_tpad067
crossref_primary_10_1016_j_scitotenv_2023_164406
crossref_primary_10_3389_frmbi_2023_1078024
crossref_primary_10_1093_femsec_fiae050
crossref_primary_10_1016_j_micres_2021_126763
crossref_primary_10_1016_j_envadv_2024_100564
crossref_primary_10_3390_plants14030479
crossref_primary_10_1007_s11104_024_07139_y
crossref_primary_10_1007_s11104_022_05390_9
crossref_primary_10_1093_bbb_zbab106
crossref_primary_10_4081_ija_2022_1942
crossref_primary_10_1007_s00203_022_03380_0
crossref_primary_10_1007_s00344_024_11237_7
crossref_primary_10_1021_acs_jafc_3c06410
crossref_primary_10_1007_s00284_021_02748_7
crossref_primary_10_1186_s40168_021_01186_8
crossref_primary_10_1016_j_soilbio_2023_109256
crossref_primary_10_1111_gcb_17446
crossref_primary_10_3390_metabo11040238
crossref_primary_10_1016_j_scitotenv_2024_174858
crossref_primary_10_1002_jobm_202100358
crossref_primary_10_3390_foods10092213
crossref_primary_10_1016_j_tree_2020_08_007
crossref_primary_10_3390_su151713084
crossref_primary_10_1007_s12010_023_04465_2
crossref_primary_10_1111_nph_17985
crossref_primary_10_1139_cjps_2023_0020
crossref_primary_10_3390_biology10080818
crossref_primary_10_1021_acs_jafc_3c02912
crossref_primary_10_3389_fmicb_2022_912701
crossref_primary_10_1007_s11356_024_32499_4
crossref_primary_10_3390_ijms24032826
crossref_primary_10_3389_fpls_2023_1240310
crossref_primary_10_1016_j_apsoil_2021_104029
crossref_primary_10_1016_j_plantsci_2023_111793
crossref_primary_10_1016_j_rhisph_2024_101008
crossref_primary_10_1128_AEM_02673_20
crossref_primary_10_1016_j_plaphy_2022_09_033
crossref_primary_10_1016_j_jgg_2024_09_018
crossref_primary_10_1007_s11056_021_09864_z
crossref_primary_10_3390_su132011454
crossref_primary_10_1093_jxb_erac202
crossref_primary_10_1007_s42729_024_02048_6
crossref_primary_10_1094_PHYTOFR_11_20_0034_R
crossref_primary_10_3390_plants12030427
crossref_primary_10_1038_s42003_023_05591_7
crossref_primary_10_1186_s12866_023_02818_9
crossref_primary_10_3390_f15030515
crossref_primary_10_1002_saj2_20679
crossref_primary_10_1016_j_micres_2024_128030
crossref_primary_10_1016_j_scitotenv_2021_146812
crossref_primary_10_1016_j_ecolind_2021_107979
crossref_primary_10_1038_s41598_020_64182_2
crossref_primary_10_1007_s11356_024_33690_3
crossref_primary_10_1007_s11056_023_10014_w
crossref_primary_10_1016_j_apsoil_2021_104155
crossref_primary_10_1016_j_foodres_2022_111973
crossref_primary_10_3389_fagro_2022_844166
crossref_primary_10_1186_s13059_020_01999_0
crossref_primary_10_3389_fpls_2022_997292
crossref_primary_10_1093_jxb_erad326
crossref_primary_10_1007_s11104_024_07026_6
crossref_primary_10_3897_BDJ_9_e60245
crossref_primary_10_3390_agronomy10111675
crossref_primary_10_1002_csc2_21020
crossref_primary_10_1111_pce_14014
crossref_primary_10_3390_nano14020131
crossref_primary_10_3390_ijms22179246
crossref_primary_10_1016_j_soilbio_2024_109400
crossref_primary_10_3390_ijms21114038
crossref_primary_10_1007_s11104_024_07112_9
crossref_primary_10_1007_s42729_020_00287_x
crossref_primary_10_1016_j_soilbio_2021_108391
crossref_primary_10_1042_BCJ20230002
crossref_primary_10_1007_s11104_022_05531_0
crossref_primary_10_1038_s41561_024_01584_1
crossref_primary_10_1111_jac_12721
crossref_primary_10_3390_nano9091315
crossref_primary_10_1016_j_bbrc_2020_08_115
crossref_primary_10_1016_j_foreco_2025_122503
crossref_primary_10_3390_agronomy15030717
crossref_primary_10_1038_s41438_021_00510_5
crossref_primary_10_1007_s11104_024_06630_w
crossref_primary_10_1094_PBIOMES_01_20_0013_FI
crossref_primary_10_1111_1365_2745_13630
crossref_primary_10_5194_bg_18_4143_2021
crossref_primary_10_1016_j_soilbio_2021_108284
crossref_primary_10_15252_embr_202050109
crossref_primary_10_3390_jof8070680
crossref_primary_10_3389_fagro_2024_1363124
crossref_primary_10_1016_j_foreco_2023_121068
crossref_primary_10_1093_jxb_erab019
crossref_primary_10_3390_agronomy10101535
crossref_primary_10_1007_s13205_024_04026_2
crossref_primary_10_3389_fmicb_2021_701796
crossref_primary_10_1007_s42994_022_00091_4
crossref_primary_10_1111_jam_15649
crossref_primary_10_3389_fpls_2023_1172857
crossref_primary_10_1093_treephys_tpac117
crossref_primary_10_1016_j_apsoil_2023_104994
crossref_primary_10_3390_plants12030630
crossref_primary_10_3389_fpls_2023_1277510
crossref_primary_10_1016_j_envexpbot_2023_105518
crossref_primary_10_1007_s11104_024_07048_0
crossref_primary_10_1007_s00374_024_01880_3
crossref_primary_10_1021_acs_jafc_4c03064
crossref_primary_10_1016_j_watres_2021_117635
crossref_primary_10_1016_j_ecoenv_2022_113687
crossref_primary_10_3390_plants9080972
crossref_primary_10_1111_jam_15651
crossref_primary_10_1007_s13562_021_00715_8
crossref_primary_10_1111_aab_12694
crossref_primary_10_3389_fpls_2020_00649
crossref_primary_10_1021_acsomega_3c05564
crossref_primary_10_1007_s10653_022_01246_4
crossref_primary_10_1038_s41598_022_13234_w
crossref_primary_10_1007_s10068_022_01070_7
crossref_primary_10_1111_pce_14248
crossref_primary_10_1002_ldr_4179
crossref_primary_10_1007_s11356_019_06332_2
crossref_primary_10_1007_s11104_024_06740_5
crossref_primary_10_3390_microorganisms11071847
crossref_primary_10_1021_acs_est_1c00777
crossref_primary_10_1016_j_soilbio_2020_107705
crossref_primary_10_1038_s41467_020_19574_3
crossref_primary_10_1002_jpln_202300405
crossref_primary_10_3389_fpls_2021_614968
crossref_primary_10_1016_j_rhisph_2021_100404
crossref_primary_10_1016_j_taap_2023_116449
crossref_primary_10_3389_fenvs_2022_1033989
crossref_primary_10_1093_jxb_erad122
crossref_primary_10_3390_w16243706
crossref_primary_10_1016_j_geoderma_2022_115767
crossref_primary_10_1146_annurev_phyto_021621_121447
crossref_primary_10_1016_j_plaphy_2024_108619
crossref_primary_10_1007_s00344_024_11328_5
crossref_primary_10_1016_j_ecoenv_2022_113780
crossref_primary_10_7717_peerj_12498
crossref_primary_10_3389_fmicb_2021_809834
crossref_primary_10_1186_s13007_022_00856_4
crossref_primary_10_3389_fpls_2021_690567
crossref_primary_10_1038_s41598_022_16408_8
crossref_primary_10_3390_molecules28217320
crossref_primary_10_3389_ffunb_2024_1363460
crossref_primary_10_1007_s11104_024_06852_y
crossref_primary_10_1016_j_scitotenv_2022_160025
crossref_primary_10_1007_s12892_020_00059_0
crossref_primary_10_3390_plants10061033
crossref_primary_10_3389_fmicb_2022_990850
crossref_primary_10_1007_s11104_024_07122_7
Cites_doi 10.1111/nph.14863
10.1104/pp.124.4.1511
10.1007/s10021-008-9198-0
10.1104/pp.109.1.7
10.1111/nph.12614
10.1093/jxb/ert302
10.1111/j.1574-6941.2011.01150.x
10.1111/1365-2745.13048
10.3389/fenvs.2018.00061
10.3389/fpls.2016.01939
10.1146/annurev-arplant-042110-103846
10.1111/j.1365-313X.2004.02289.x
10.1007/bf00196390
10.1016/j.soilbio.2014.06.017
10.1002/ece3.4383
10.1104/pp.104.044222
10.1007/s11104-007-9473-4
10.1038/nature10452
10.1111/nph.13132
10.1016/j.apsoil.2016.07.009
10.4161/psb.5.12.13293
10.1111/j.1574-6941.2009.00654.x
10.1073/pnas.1701952114
10.1111/nph.13288
10.1016/j.tplants.2011.05.006
10.1126/science.aai8291
10.1111/nph.14876
10.3389/fpls.2017.01513
10.1071/cp15329
10.1007/s000180050284
10.1093/aob/mcl114
10.1073/pnas.1523580113
10.1007/s11104-013-1645-9
10.1073/pnas.0912421107
10.1016/j.pbi.2009.07.014
10.1016/j.plantsci.2014.09.011
10.1111/1365-2745.12788
10.1093/jxb/erm334
10.1002/ece3.3755
10.1094/MPMI-09-11-0245
10.1093/jxb/47.7.871
10.1093/jxb/ery183
10.1007/s00572-011-0418-7
10.1111/j.1365-3040.2009.01926.x
10.1890/12-0486.1
10.1093/jxb/49.325.1371
10.1093/oxfordjournals.molbev.a004165
10.1111/1365-2435.13017
10.1105/tpc.113.122101
10.1104/pp.109.147462
10.1111/pce.12602
10.1023/A:1026290508166
10.1146/annurev-cellbio-101512-122413
10.1080/00380768.1996.10416324
10.3389/fpls.2016.01584
10.1016/j.soilbio.2016.12.004
10.1016/j.pbi.2011.03.014
10.1002/ece3.2454
10.1038/s41467-018-05122-7
10.1111/j.1469-8137.2009.03050.x
10.1111/ele.12690
10.1002/jpln.201000360
10.1105/tpc.113.110668
10.1126/science.1224304
10.1007/BF00010543
10.1046/j.1365-313X.2002.01248.x
10.1080/17429140802255167
10.1016/S1360-1385(01)01961-6
10.1007/s00344-002-0035-y
10.1093/aob/mcr205
10.1111/j.1365-3040.2008.01801.x
10.1111/j.1399-3054.1985.tb08661.x
10.1038/s41559-018-0622-3
10.1007/s10725-013-9786-7
10.3389/fpls.2014.00614
10.1093/aob/mct258
10.1016/j.tree.2017.11.005
10.1111/j.1469-8137.2008.02458.x
10.3389/fmicb.2019.00168
10.3389/fpls.2016.00487
10.3389/fpls.2013.00354
10.1038/s41396-018-0171-4
10.1007/1-4020-4099-7_9
10.1093/mp/ssp120
10.1104/pp.110.168187
10.1016/S0038-0717(01)00235-8
10.1073/pnas.1205726109
10.1016/j.pbi.2007.10.003
10.1104/pp.111.175380
10.1093/jxb/erw412
10.7554/eLife.14577
10.1016/S1369-5266(03)00035-9
10.3389/fpls.2017.00485
10.1111/j.1365-2486.2005.01064.x
10.1093/jxb/erx013
10.1007/s11104-009-9925-0
10.1105/tpc.106.041012
10.1111/nph.13172
10.1016/j.pbi.2014.06.004
10.1007/s11104-004-2725-7
10.3389/fpls.2016.01242
10.1186/s12284-016-0081-x
10.1111/tpj.12948
10.1007/s11104-008-9877-9
10.1016/j.soilbio.2010.04.003
10.1371/journal.pone.0008917
10.1111/j.1469-8137.2008.02546.x
10.1016/j.plaphy.2006.09.019
10.1016/j.plantsci.2016.11.002
10.1002/pca.596
10.1093/mp/ssr003
10.1104/pp.120.3.705
10.1016/0038-0717(88)90061-2
10.1038/ng2041
10.1007/s00374-015-0996-1
10.1007/s00425-001-0697-x
10.1111/gcb.12161
10.1023/a:1004877214831
10.1093/jxb/erm121
10.1016/S0038-0717(01)00185-7
10.1111/j.1469-8137.2012.04169.x
10.1890/06-0502
10.1007/s00425-006-0408-8
10.1002/jpln.201000085
10.1016/j.soilbio.2004.07.037
10.1111/j.1365-3040.2005.01304.x
10.1046/j.1469-8137.2000.00688.x
10.1146/annurev.arplant.57.032905.105441
10.3389/fpls.2017.02127
10.1016/j.tplants.2004.09.003
10.3389/fmicb.2013.00216
10.3390/ijms19092691
10.1111/1365-2435.12010
10.1038/srep44641
10.1016/j.tplants.2017.09.003
10.1016/j.plaphy.2014.12.014
10.1111/j.1399-3054.1997.tb01073.x
10.1038/ncomms8879
10.5194/bg-11-961-2014
10.21273/JASHS.138.6.433
10.1093/femsec/fix022
10.1023/a:1024899808018
10.1104/pp.112.197509
10.1007/BF00010488
10.1093/pcp/pcj075
10.1093/jxb/erm155
10.1093/jxb/erg017
10.1105/tpc.105.037713
10.1016/j.tplants.2016.01.009
10.1111/j.1461-0248.2009.01421.x
10.1111/nph.13363
10.1890/03-8002
10.1111/j.1574-6941.2007.00337.x
10.1016/j.tplants.2016.01.013
10.1016/j.tplants.2015.11.011
10.1111/nph.13138
10.1093/treephys/tpx131
10.1093/aob/mcj601
10.1080/01904160009382100
10.1046/j.1365-3040.2003.01100.x
10.1016/j.semcdb.2017.07.010
10.3732/ajb.1300033
10.1111/j.1469-8137.2006.01853.x
10.7554/eLife.15341
10.3389/fenvs.2018.00009
10.1007/978-1-4939-2272-7_3
10.1046/j.1365-3040.2003.00973.x
10.1186/s12864-017-3588-7
10.1126/science.aat6907
10.1038/35081058
10.1023/a:1025515708093
10.1038/nrmicro1987
10.1016/j.rhisph.2018.06.004
10.1111/j.1365-3040.2006.01507.x
10.1016/j.soilbio.2015.01.025
10.1111/nph.13122
10.1146/annurev-phyto-080615-100140
10.1038/nplants.2017.29
10.1111/j.1365-2745.2007.01210.x
10.1007/s10725-011-9564-3
10.1126/science.1189736
10.1007/s10533-009-9284-1
10.4161/psb.4.8.9047
10.1007/s00374-015-1015-2
10.1111/j.1462-2920.2005.00973.x
10.1111/ppl.12150
10.1093/aob/mcm251
10.1016/S0168-9452(00)00391-5
10.1023/a:1020809400075
10.1038/s41559-017-0150
10.5194/bg-9-1509-2012
10.1126/science.aad4501
10.1111/j.1469-8137.2008.02751.x
10.7554/eLife.24125
10.1104/pp.114.245225
10.1104/pp.109.151746
10.1128/AEM.65.6.2685-2690.1999
10.1126/scisignal.2003762
10.1016/j.bbabio.2010.11.008
10.1094/mpmi-09-10-0207
10.1016/j.tplants.2009.10.002
10.1007/s11104-015-2612-4
10.1007/s11104-016-2928-8
10.3389/fpls.2013.00134
10.1055/s-2002-34123
10.1016/j.tplants.2010.04.007
10.1016/j.pbi.2015.05.003
10.1371/journal.pone.0204128
10.1007/s11738-016-2124-8
10.1016/j.soilbio.2004.07.021
10.1007/s11104-016-2892-3
10.1016/S1360-1385(00)01681-2
ContentType Journal Article
Copyright Copyright © 2019 Canarini, Kaiser, Merchant, Richter and Wanek. 2019 Canarini, Kaiser, Merchant, Richter and Wanek
Copyright_xml – notice: Copyright © 2019 Canarini, Kaiser, Merchant, Richter and Wanek. 2019 Canarini, Kaiser, Merchant, Richter and Wanek
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2019.00157
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_50533b9755a94cce942d07089ec3aff9
PMC6407669
30881364
10_3389_fpls_2019_00157
Genre Journal Article
Review
GrantInformation_xml – fundername: Austrian Science Fund FWF
  grantid: P 30339
– fundername: Austrian Science Fund
– fundername: Australian Research Council Future Fellowship
  grantid: FT120100200
– fundername: Australian Research Council Legumes for Sustainable Agriculture Industrial Transformation Hub
  grantid: IH140100013
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c459t-e620ac13a8b3ab0b4760f61ef78b65322745bd6ef9650bbd67ba725cb5633a7f3
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 00:24:53 EDT 2025
Thu Aug 21 14:04:14 EDT 2025
Thu Jul 10 19:24:13 EDT 2025
Sat May 31 02:14:19 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
Tue Jul 01 02:06:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords priming effect
root architecture
soil micro-organisms
mycorrhiza
nutrient sensing
root exudates
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-e620ac13a8b3ab0b4760f61ef78b65322745bd6ef9650bbd67ba725cb5633a7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
This article was submitted to Plant Microbe Interactions, a section of the journal Frontiers in Plant Science
Reviewed by: Tanja Mimmo, Free University of Bozen-Bolzano, Italy; Ulrike Mathesius, Australian National University, Australia; Feth-el-Zahar Haichar, Microbial Ecology, France
Edited by: Davide Bulgarelli, University of Dundee, United Kingdom
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2019.00157
PMID 30881364
PQID 2193615048
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_50533b9755a94cce942d07089ec3aff9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6407669
proquest_miscellaneous_2193615048
pubmed_primary_30881364
crossref_primary_10_3389_fpls_2019_00157
crossref_citationtrail_10_3389_fpls_2019_00157
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-21
PublicationDateYYYYMMDD 2019-02-21
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-21
  day: 21
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Besnard (ref12) 2016; 67
Kaiser (ref90) 2015; 205
Padgett (ref147) 1996; 47
Lambers (ref105) 2006; 98
Pierik (ref154) 2013; 27
Teste (ref190) 2017; 355
Gorka (ref218)
Reid (ref161); 24
Reid (ref162); 108
Sun (ref185) 2017; 8
Kuzyakov (ref104) 2003; 254
Liu (ref110) 2005; 41
Eisenhauer (ref43) 2017; 7
Jansa (ref85) 2013; 4
Toljander (ref194) 2007; 61
Pii (ref155); 51
Nazoa (ref138) 2003; 52
Godt (ref65) 2006; 44
Tegeder (ref189) 2018; 217
Ma (ref117) 2001; 6
Williams (ref210) 2000; 5
Brooker (ref16) 2015; 206
Desnos (ref36) 2008; 11
De Schepper (ref33) 2013; 64
Ogden (ref142) 2018; 19
Rouached (ref167) 2010; 3
López-Bucio (ref112) 2003; 6
Ahmed (ref1) 2018; 69
Ortíz-Castro (ref145) 2009; 4
Chevalier (ref28) 2003; 26
Bahn (ref7) 2008; 11
Bonfante (ref15) 2011; 14
Nadira (ref135) 2016; 38
Oburger (ref141) 2018; 6
Gent (ref59) 2017; 68
Vidal (ref200) 2018; 6
Ström (ref184) 2002; 34
Caffaro (ref20) 2011; 64
Baluška (ref8) 2013; 4
Walch-Liu (ref205); 97
Hanson (ref73) 2009; 12
Ramesh (ref160) 2015; 6
Sasse (ref171) 2018; 23
Ross-Elliott (ref165) 2017; 6
Shishkova (ref179) 2008; 101
McCormack (ref122) 2015; 207
Högberg (ref80) 2001; 411
Pal’ove-Balang (ref148) 2002; 4
Scott-Denton (ref175) 2006; 12
Png (ref157) 2019; 107
Forde (ref54) 2007; 58
Berg (ref10) 2009; 68
Friedel (ref57) 2002; 34
Khan (ref96) 2016; 7
Drigo (ref42) 2010; 107
Mora-Macías (ref132) 2017; 114
Aslam (ref3) 2001; 160
Johnson (ref86) 2015; 205
Tillard (ref193) 1998; 49
Kanno (ref92) 2016; 5
Valentinuzzi (ref196) 2015; 51
Krishnapriya (ref101) 2016; 67
Inselsbacher (ref82) 2012; 195
Jones (ref88) 2009; 321
Liu (ref111) 2010; 5
Smith (ref180) 2008
Péret (ref152) 2011; 16
Forsum (ref56) 2008; 179
Zhang (ref215) 2018; 12
McCully (ref123) 1985; 65
Depuydt (ref35) 2014; 5
Yin (ref214) 2013; 19
Falik (ref47) 2005; 28
Ticconi (ref192) 2004; 9
Ma (ref116) 2017; 8
Zhu (ref216) 2016; 107
Lucas García (ref113) 2001; 12
Dennison (ref34) 2000; 124
Martin (ref121) 2017; 356
Mommer (ref130) 2016; 21
Roy (ref168) 2008; 31
Baluška (ref9) 2010; 15
Pratelli (ref158) 2010; 152
Hu (ref81) 2018; 9
Paterson (ref150) 2016; 408
Naseer (ref136) 2012; 109
Cheng (ref26) 2012; 337
Curzi (ref30) 2008; 3
Carvalhais (ref24) 2011; 174
Teardo (ref188) 2011; 1807
Herz (ref78) 2018; 13
Chiu (ref29) 2002; 19
Karthikeyan (ref94) 2007; 225
Ledo (ref106) 2018; 217
Meyer (ref128) 2010; 15
Vincill (ref202) 2013; 25
Steinauer (ref183) 2016; 6
Reinhart (ref163) 2012; 93
Warren (ref207) 2016; 406
Evans (ref46) 1994; 194
Hawes (ref75) 2016; 54
Okumoto (ref144) 2011; 4
Watt (ref208) 1999; 120
Rutschow (ref169) 2011; 155
Münch (ref133) 1930
Van Nuland (ref198) 2017; 1
Groleau-Renaud (ref67) 2000; 23
Prikryl (ref159) 1980; 57
Warren (ref206) 2015; 397
Rothstein (ref166) 2009; 92
Fusconi (ref58) 2014; 113
Bertin (ref11) 2003; 256
Li (ref108) 2006; 18
Thirkell (ref191) 2017; 105
Smith (ref181) 2011; 62
Häusler (ref74) 2014; 229
Doan (ref40) 2017; 8
Semchenko (ref176) 2007; 95
Alegria Terrazas (ref2) 2016
Chen (ref25) 2015; 83
Shi (ref178) 2011; 77
Yang (ref212) 2010; 5
Burri (ref19) 2014; 11
Meharg (ref124) 1995; 170
Ryan (ref170) 2014; 151
Meier (ref126) 2015; 205
Schimel (ref173) 2004; 85
Kan (ref91) 2017; 18
Hammond (ref72) 2011; 156
Jaeger (ref83) 1999; 65
Verbon (ref199) 2016; 21
Domínguez-May (ref41) 2013; 138
Otani (ref146) 1996; 42
Mencuccini (ref127) 2010; 185
Mora-Macias (ref131) 2017; 114
Nacry (ref134) 2013; 370
Ohkubo (ref143) 2017; 3
Badri (ref5) 2009; 151
Hamer (ref71) 2005; 37
Nehls (ref139) 2008; 59
Gill (ref62) 2016; 19
Yang (ref213) 2015; 1266
Zimmermann (ref217) 1999; 55
Badri (ref6) 2009; 32
Tsikou (ref195) 2018; 362
Walch-Liu (ref204); 47
Kramer (ref100) 2007; 58
Näsholm (ref137) 2009; 182
Shane (ref177) 2005; 274
Tapken (ref187) 2013; 6
Cheng (ref27) 2010; 13
el Zahar Haichar (ref44) 2014; 77
Fischer (ref51) 2002; 29
Caputo (ref23) 1997; 101
Darwent (ref32) 2003; 54
Gilliham (ref63) 2016; 21
Phillips (ref153) 2004; 136
Lyu (ref115) 2016; 7
Dijkstra (ref37) 2013; 4
Cahill (ref22) 2010; 328
Vranova (ref203) 2013; 176
Badri (ref4) 2008; 179
Pii (ref156); 87
Kardol (ref93) 2007; 77
Savage (ref172) 2016; 39
Giles (ref61) 2017; 255
Fernandez (ref50) 2012; 25
Kuzyakov (ref102) 2010; 42
Li (ref107) 2016; 113
Parniske (ref149) 2008; 6
Paynel (ref151) 2001; 229
Kochian (ref98) 2005
Mahmood (ref118) 2002; 214
Schmidt (ref174) 2018; 6
Körner (ref99) 2015; 25
Foley (ref52) 2011; 478
Grimoldi (ref66) 2006; 172
Bukowski (ref18) 2018; 8
Fatichi (ref49) 2014; 201
Biondini (ref14) 1988; 20
Jones (ref87) 1993; 153
Eppinga (ref45) 2018; 2
Lynch (ref114) 1995; 109
Ni (ref140) 2016; 9
Wubs (ref211) 2018; 32
Vincill (ref201) 2012; 159
Hirner (ref79) 2006; 18
Caffaro (ref21) 2013; 70
Hawes (ref76) 2002; 21
Moe (ref129) 2013; 100
Jones (ref89) 2005; 37
Dakora (ref31) 2002; 245
Gutjahr (ref68) 2013; 29
Mariotte (ref120) 2018; 33
Dinkeloo (ref38) 2017; 74
Meier (ref125) 2017; 106
Somssich (ref182) 2016; 7
Rolland (ref164) 2006; 57
Brundrett (ref17) 2009; 320
Gioseffi (ref64) 2012; 9
Henry (ref77) 2003; 26
Guyonnet (ref69) 2018; 8
Guyonnet (ref70) 2017; 93
Knoblauch (ref97) 2016; 5
Forde (ref53) 2014; 21
Bharadwaj (ref13) 2012; 22
Svistoonoff (ref186) 2007; 39
Giehl (ref60) 2014; 166
Forsum (ref55) 2016
Kellermeier (ref95) 2014; 26
Kuzyakov (ref103) 2015; 83
Watt (ref209) 2006; 8
Jämtgård (ref84) 2008; 302
Farrar (ref48) 2000; 147
Manck-Götzenberger (ref119) 2016; 7
Liese (ref109) 2018; 38
Van Der Heijden (ref197) 2015; 205
Dluzniewska (ref39) 2006; 29
31024593 - Front Plant Sci. 2019 Apr 09;10:420. doi: 10.3389/fpls.2019.00420.
References_xml – volume: 217
  start-page: 8
  year: 2018
  ident: ref106
  article-title: Tree size and climatic water deficit control root to shoot ratio in individual trees globally
  publication-title: New Phytol.
  doi: 10.1111/nph.14863
– volume: 124
  start-page: 1511
  year: 2000
  ident: ref34
  article-title: Glutamate-gated calcium fluxes in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.124.4.1511
– volume: 11
  start-page: 1352
  year: 2008
  ident: ref7
  article-title: Soil respiration in European grasslands in relation to climate and assimilate supply
  publication-title: Ecosystems
  doi: 10.1007/s10021-008-9198-0
– volume: 109
  start-page: 7
  year: 1995
  ident: ref114
  article-title: Root architecture and plant productivity
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.1.7
– volume: 201
  start-page: 1086
  year: 2014
  ident: ref49
  article-title: Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling
  publication-title: New Phytol.
  doi: 10.1111/nph.12614
– volume: 64
  start-page: 4839
  year: 2013
  ident: ref33
  article-title: Phloem transport: a review of mechanisms and controls
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert302
– volume: 77
  start-page: 600
  year: 2011
  ident: ref178
  article-title: Effects of selected root exudate components on soil bacterial communities
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2011.01150.x
– volume: 107
  start-page: 142
  year: 2019
  ident: ref157
  article-title: Biotic and abiotic plant–soil feedback depends on nitrogen-acquisition strategy and shifts during long-term ecosystem development
  publication-title: Journal of Ecology
  doi: 10.1111/1365-2745.13048
– volume: 6
  start-page: 61
  year: 2018
  ident: ref174
  article-title: Recognizing patterns: spatial analysis of observed microbial colonization on root surfaces
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2018.00061
– volume: 7
  start-page: 1939
  year: 2016
  ident: ref115
  article-title: Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01939
– volume: 62
  start-page: 227
  year: 2011
  ident: ref181
  article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042110-103846
– volume: 41
  start-page: 257
  year: 2005
  ident: ref110
  article-title: Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02289.x
– volume: 194
  start-page: 215
  year: 1994
  ident: ref46
  article-title: Responses of Arabidopsis roots to auxin studied with high temporal resolution: comparison of wild type and auxin-response mutants
  publication-title: Planta
  doi: 10.1007/bf00196390
– volume: 77
  start-page: 69
  year: 2014
  ident: ref44
  article-title: Root exudates mediated interactions belowground
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.06.017
– volume: 57
  start-page: 69
  year: 1980
  ident: ref159
  article-title: Root exudates of plants. 6. Wheat root exudation as dependent on growth concentration gradient of exudates and the presence of bacteria
  publication-title: Plant Soil
– volume: 8
  start-page: 8573
  year: 2018
  ident: ref69
  article-title: Root exudation rate as functional trait involved in plant nutrient-use strategy classification
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.4383
– volume: 136
  start-page: 2887
  year: 2004
  ident: ref153
  article-title: Microbial products trigger amino acid exudation from plant roots
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.044222
– volume: 302
  start-page: 221
  year: 2008
  ident: ref84
  article-title: Characteristics of amino acid uptake in barley
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9473-4
– volume: 478
  start-page: 337
  year: 2011
  ident: ref52
  article-title: Solutions for a cultivated planet
  publication-title: Nature
  doi: 10.1038/nature10452
– volume: 206
  start-page: 107
  year: 2015
  ident: ref16
  article-title: Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology
  publication-title: New Phytol.
  doi: 10.1111/nph.13132
– volume: 107
  start-page: 324
  year: 2016
  ident: ref216
  article-title: Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2016.07.009
– volume: 5
  start-page: 1556
  year: 2010
  ident: ref111
  article-title: Crucial roles of sucrose and microRNA399 in systemic signaling of P deficiency: a tale of two team players?
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.5.12.13293
– volume: 68
  start-page: 1
  year: 2009
  ident: ref10
  article-title: Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2009.00654.x
– volume: 114
  start-page: E3563
  year: 2017
  ident: ref132
  article-title: Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1701952114
– volume: 205
  start-page: 1406
  year: 2015
  ident: ref197
  article-title: Mycorrhizal ecology and evolution: the past, the present, and the future
  publication-title: New Phytol.
  doi: 10.1111/nph.13288
– volume: 16
  start-page: 442
  year: 2011
  ident: ref152
  article-title: Root developmental adaptation to phosphate starvation: better safe than sorry
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2011.05.006
– volume: 355
  start-page: 173
  year: 2017
  ident: ref190
  article-title: Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands
  publication-title: Science
  doi: 10.1126/science.aai8291
– volume: 217
  start-page: 35
  year: 2018
  ident: ref189
  article-title: Source and sink mechanisms of nitrogen transport and use
  publication-title: New Phytol.
  doi: 10.1111/nph.14876
– volume: 8
  start-page: 1513
  year: 2017
  ident: ref40
  article-title: A low-cost imaging method for the temporal and spatial colorimetric detection of free amines on maize root surfaces
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01513
– volume: 67
  start-page: 1096
  year: 2016
  ident: ref101
  article-title: Root exudation index: screening organic acid exudation and phosphorus acquisition efficiency in soybean genotypes
  publication-title: Crop Pasture Sci.
  doi: 10.1071/cp15329
– volume: 55
  start-page: 183
  year: 1999
  ident: ref217
  article-title: Ion channels in plant signaling
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s000180050284
– volume: 98
  start-page: 693
  year: 2006
  ident: ref105
  article-title: Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcl114
– volume: 113
  start-page: 6496
  year: 2016
  ident: ref107
  article-title: Root exudates drive interspecific facilitation by enhancing nodulation and N(2) fixation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1523580113
– volume: 370
  start-page: 1
  year: 2013
  ident: ref134
  article-title: Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1645-9
– volume: 107
  start-page: 10938
  year: 2010
  ident: ref42
  article-title: Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0912421107
– volume: 12
  start-page: 562
  year: 2009
  ident: ref73
  article-title: Sugar perception and signaling—an update
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2009.07.014
– volume: 229
  start-page: 225
  year: 2014
  ident: ref74
  article-title: Amino acids – a life between metabolism and signaling
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2014.09.011
– volume: 105
  start-page: 921
  year: 2017
  ident: ref191
  article-title: Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.12788
– volume: 59
  start-page: 1097
  year: 2008
  ident: ref139
  article-title: Mastering ectomycorrhizal symbiosis: the impact of carbohydrates
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erm334
– volume: 8
  start-page: 2280
  year: 2018
  ident: ref18
  article-title: The strength of negative plant-soil feedback increases from the intraspecific to the interspecific and the functional group level
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.3755
– volume: 25
  start-page: 496
  year: 2012
  ident: ref50
  article-title: Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI-09-11-0245
– volume: 47
  start-page: 871
  year: 1996
  ident: ref147
  article-title: Free amino acid levels and the regulation of nitrate uptake in maize cell suspension cultures
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/47.7.871
– volume: 69
  start-page: 3255
  year: 2018
  ident: ref1
  article-title: Hydraulic processes in roots and the rhizosphere pertinent to increasing yield of water-limited grain crops: a critical review
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery183
– volume: 22
  start-page: 437
  year: 2012
  ident: ref13
  article-title: Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-011-0418-7
– volume: 114
  start-page: E3563
  year: 2017
  ident: ref131
  article-title: Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1701952114
– volume: 32
  start-page: 666
  year: 2009
  ident: ref6
  article-title: Regulation and function of root exudates
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2009.01926.x
– volume: 93
  start-page: 2377
  year: 2012
  ident: ref163
  article-title: The organization of plant communities: negative plant-soil feedbacks and semiarid grasslands
  publication-title: Ecology
  doi: 10.1890/12-0486.1
– volume: 49
  start-page: 1371
  year: 1998
  ident: ref193
  article-title: Are phloem amino acids involved in the shoot to root control of NO−3 uptake in Ricinus communis plants?
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/49.325.1371
– volume: 19
  start-page: 1066
  year: 2002
  ident: ref29
  article-title: Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a004165
– volume: 32
  start-page: 509
  year: 2018
  ident: ref211
  article-title: Plant community evenness responds to spatial plant-soil feedback heterogeneity primarily through the diversity of soil conditioning
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.13017
– volume: 26
  start-page: 1480
  year: 2014
  ident: ref95
  article-title: Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.122101
– volume: 151
  start-page: 2006
  year: 2009
  ident: ref5
  article-title: An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.147462
– volume: 39
  start-page: 709
  year: 2016
  ident: ref172
  article-title: Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12602
– volume: 256
  start-page: 67
  year: 2003
  ident: ref11
  article-title: The role of root exudates and allelochemicals in the rhizosphere
  publication-title: Plant Soil
  doi: 10.1023/A:1026290508166
– volume: 29
  start-page: 593
  year: 2013
  ident: ref68
  article-title: Cell and developmental biology of arbuscular mycorrhiza symbiosis
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-101512-122413
– volume: 42
  start-page: 553
  year: 1996
  ident: ref146
  article-title: Phosphorus (P) uptake mechanisms of crops grown in soils with low P status. II. Significance of organic acids in root exudates of pigeonpea
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.1996.10416324
– volume: 7
  start-page: 1584
  year: 2016
  ident: ref96
  article-title: Root system architecture and abiotic stress tolerance: current knowledge in root and tuber crops
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01584
– volume: 106
  start-page: 119
  year: 2017
  ident: ref125
  article-title: Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.12.004
– volume: 14
  start-page: 451
  year: 2011
  ident: ref15
  article-title: Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2011.03.014
– volume: 6
  start-page: 7387
  year: 2016
  ident: ref183
  article-title: Root exudate cocktails: the link between plant diversity and soil microorganisms?
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.2454
– volume: 9
  start-page: 2738
  year: 2018
  ident: ref81
  article-title: Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05122-7
– volume: 185
  start-page: 189
  year: 2010
  ident: ref127
  article-title: The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2009.03050.x
– volume: 19
  start-page: 1419
  year: 2016
  ident: ref62
  article-title: Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12690
– volume: 176
  start-page: 175
  year: 2013
  ident: ref203
  article-title: Methods of collection of plant root exudates in relation to plant metabolism and purpose: a review
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201000360
– volume: 25
  start-page: 1304
  year: 2013
  ident: ref202
  article-title: Interacting glutamate receptor-like proteins in phloem regulate lateral root initiation in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.110668
– volume: 337
  start-page: 1084
  year: 2012
  ident: ref26
  article-title: Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2
  publication-title: Science
  doi: 10.1126/science.1224304
– volume: 153
  start-page: 47
  year: 1993
  ident: ref87
  article-title: Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere
  publication-title: Plant Soil
  doi: 10.1007/BF00010543
– volume: 29
  start-page: 717
  year: 2002
  ident: ref51
  article-title: Low and high affinity amino acid H+−cotransporters for cellular import of neutral and charged amino acids
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2002.01248.x
– volume: 3
  start-page: 163
  year: 2008
  ident: ref30
  article-title: Changes in the content of organic and amino acids and ethylene production of rice plants in response to the inoculation with Herbaspirillum seropedicae
  publication-title: J. Plant Interact.
  doi: 10.1080/17429140802255167
– volume: 6
  start-page: 273
  year: 2001
  ident: ref117
  article-title: Aluminium tolerance in plants and the complexing role of organic acids
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(01)01961-6
– volume: 21
  start-page: 352
  year: 2002
  ident: ref76
  article-title: Root caps and rhizosphere
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-002-0035-y
– volume: 108
  start-page: 789
  ident: ref162
  article-title: Molecular mechanisms controlling legume autoregulation of nodulation
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcr205
– volume: 31
  start-page: 861
  year: 2008
  ident: ref168
  article-title: Investigating glutamate receptor-like gene co-expression in Arabidopsis thaliana
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2008.01801.x
– volume: 65
  start-page: 380
  year: 1985
  ident: ref123
  article-title: Localisation of translocated 14C in roots and root exudates of field-grown maize
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1985.tb08661.x
– volume: 2
  start-page: 1403
  year: 2018
  ident: ref45
  article-title: Frequency-dependent feedback constrains plant community coexistence
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-018-0622-3
– volume: 70
  start-page: 141
  year: 2013
  ident: ref21
  article-title: Root architecture of Arabidopsis is affected by competition with neighbouring plants
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-013-9786-7
– volume: 5
  start-page: 614
  year: 2014
  ident: ref35
  article-title: Arguments for and against self and non-self root recognition in plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00614
– volume: 113
  start-page: 19
  year: 2014
  ident: ref58
  article-title: Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mct258
– volume: 33
  start-page: 129
  year: 2018
  ident: ref120
  article-title: Plant-soil feedback: bridging natural and agricultural sciences
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2017.11.005
– volume: 179
  start-page: 209
  year: 2008
  ident: ref4
  article-title: Transcriptome analysis of Arabidopsis roots treated with signaling compounds: a focus on signal transduction, metabolic regulation and secretion
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02458.x
– start-page: 10
  ident: ref218
  article-title: Rapid transfer of plant photosynthates to soil bacteria via ectomycorrhizal hyphae and its interaction with nitrogen availability
  publication-title: Front. Microbiol
  doi: 10.3389/fmicb.2019.00168
– volume: 7
  start-page: 487
  year: 2016
  ident: ref119
  article-title: Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00487
– volume: 4
  start-page: 354
  year: 2013
  ident: ref8
  article-title: Root apex transition zone as oscillatory zone
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00354
– volume: 12
  start-page: 2339
  year: 2018
  ident: ref215
  article-title: Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium
  publication-title: ISME J.
  doi: 10.1038/s41396-018-0171-4
– start-page: 175
  volume-title: Root physiology: from gene to function
  year: 2005
  ident: ref98
  article-title: The physiology, genetics and molecular biology of plant aluminum resistance and toxicity
  doi: 10.1007/1-4020-4099-7_9
– volume: 3
  start-page: 288
  year: 2010
  ident: ref167
  article-title: Regulation of phosphate starvation responses in plants: signaling players and cross-talks
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssp120
– volume: 155
  start-page: 1817
  year: 2011
  ident: ref169
  article-title: Regulation of solute flux through plasmodesmata in the root meristem
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.168187
– volume-title: On plant responses to D-amino acids.
  year: 2016
  ident: ref55
– volume: 34
  start-page: 703
  year: 2002
  ident: ref184
  article-title: Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(01)00235-8
– volume: 109
  start-page: 10101
  year: 2012
  ident: ref136
  article-title: Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1205726109
– volume: 11
  start-page: 82
  year: 2008
  ident: ref36
  article-title: Root branching responses to phosphate and nitrate
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2007.10.003
– volume: 156
  start-page: 1033
  year: 2011
  ident: ref72
  article-title: Sugar signaling in root responses to low phosphorus availability
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.175380
– volume: 67
  start-page: 6385
  year: 2016
  ident: ref12
  article-title: UMAMIT14 is an amino acid exporter involved in phloem unloading in Arabidopsis roots
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw412
– volume: 5
  start-page: e14577
  year: 2016
  ident: ref92
  article-title: A novel role for the root cap in phosphate uptake and homeostasis
  publication-title: elife
  doi: 10.7554/eLife.14577
– volume: 6
  start-page: 280
  year: 2003
  ident: ref112
  article-title: The role of nutrient availability in regulating root architecture
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/S1369-5266(03)00035-9
– volume: 8
  start-page: 485
  year: 2017
  ident: ref185
  article-title: Nitrate: a crucial signal during lateral roots development
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00485
– volume: 12
  start-page: 205
  year: 2006
  ident: ref175
  article-title: Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2005.01064.x
– volume: 68
  start-page: 2531
  year: 2017
  ident: ref59
  article-title: How do plants sense their nitrogen status?
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx013
– volume-title: Die stoffbewegungen in der Pflanze
  year: 1930
  ident: ref133
– volume: 321
  start-page: 5
  year: 2009
  ident: ref88
  article-title: Carbon flow in the rhizosphere: carbon trading at the soil-root interface
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-9925-0
– volume: 18
  start-page: 1931
  year: 2006
  ident: ref79
  article-title: Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.041012
– volume: 205
  start-page: 1473
  year: 2015
  ident: ref86
  article-title: Mycorrhizal phenotypes and the law of the minimum
  publication-title: New Phytol.
  doi: 10.1111/nph.13172
– volume: 21
  start-page: 30
  year: 2014
  ident: ref53
  article-title: Nitrogen signalling pathways shaping root system architecture: an update
  publication-title: Current opinion in plant biology
  doi: 10.1016/j.pbi.2014.06.004
– volume: 274
  start-page: 101
  year: 2005
  ident: ref177
  article-title: Cluster roots: a curiosity in context
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-2725-7
– volume: 7
  start-page: 1242
  year: 2016
  ident: ref182
  article-title: Cell wall heterogeneity in root development of arabidopsis
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01242
– volume: 9
  start-page: 9
  year: 2016
  ident: ref140
  article-title: Heterologous expression and functional analysis of rice glutamate receptor-like family indicates its role in glutamate triggered calcium flux in rice roots
  publication-title: Rice
  doi: 10.1186/s12284-016-0081-x
– volume: 83
  start-page: 1046
  year: 2015
  ident: ref25
  article-title: The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection
  publication-title: Plant J.
  doi: 10.1111/tpj.12948
– volume: 320
  start-page: 37
  year: 2009
  ident: ref17
  article-title: Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9877-9
– volume: 42
  start-page: 1363
  year: 2010
  ident: ref102
  article-title: Priming effects: interactions between living and dead organic matter
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.04.003
– volume: 5
  start-page: e8917
  year: 2010
  ident: ref212
  article-title: H+-independent glutamine transport in plant root tips
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008917
– volume: 179
  start-page: 1058
  year: 2008
  ident: ref56
  article-title: Capacities and constraints of amino acid utilization in Arabidopsis
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02546.x
– volume: 44
  start-page: 656
  year: 2006
  ident: ref65
  article-title: The developmental and organ specific expression of sucrose cleaving enzymes in sugar beet suggests a transition between apoplasmic and symplasmic phloem unloading in the tap roots
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2006.09.019
– volume: 255
  start-page: 12
  year: 2017
  ident: ref61
  article-title: Response-based selection of barley cultivars and legume species for complementarity: root morphology and exudation in relation to nutrient source
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2016.11.002
– volume: 12
  start-page: 305
  year: 2001
  ident: ref113
  article-title: Low molecular weight organic acids and fatty acids in root exudates of two Lupinus cultivars at flowering and fruiting stages
  publication-title: Phytochem. Anal.
  doi: 10.1002/pca.596
– volume: 4
  start-page: 453
  year: 2011
  ident: ref144
  article-title: Amino acid export in plants: a missing link in nitrogen cycling
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssr003
– volume: 120
  start-page: 705
  year: 1999
  ident: ref208
  article-title: Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration
  publication-title: Plant Physiol.
  doi: 10.1104/pp.120.3.705
– volume: 20
  start-page: 477
  year: 1988
  ident: ref14
  article-title: Carbon and nitrogen losses through root exudation by Agropyron cristatum, A smithii and Bouteloua gracilis
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(88)90061-2
– volume: 39
  start-page: 792
  year: 2007
  ident: ref186
  article-title: Root tip contact with low-phosphate media reprograms plant root architecture
  publication-title: Nat. Genet.
  doi: 10.1038/ng2041
– volume: 51
  start-page: 403
  ident: ref155
  article-title: Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-015-0996-1
– volume: 214
  start-page: 887
  year: 2002
  ident: ref118
  article-title: Sugar exudation by roots of kallar grass [Leptochloa fusca (L.) Kunth] is strongly affected by the nitrogen source
  publication-title: Planta
  doi: 10.1007/s00425-001-0697-x
– volume: 19
  start-page: 2158
  year: 2013
  ident: ref214
  article-title: Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12161
– volume: 229
  start-page: 235
  year: 2001
  ident: ref151
  article-title: Root exudates: a pathway for short-term N transfer from clover and ryegrass
  publication-title: Plant Soil
  doi: 10.1023/a:1004877214831
– volume: 58
  start-page: 2339
  year: 2007
  ident: ref54
  article-title: Glutamate in plants: metabolism, regulation, and signalling
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erm121
– volume: 34
  start-page: 315
  year: 2002
  ident: ref57
  article-title: Composition of hydrolysable amino acids in soil organic matter and soil microbial biomass
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(01)00185-7
– volume: 195
  start-page: 329
  year: 2012
  ident: ref82
  article-title: The below-ground perspective of forest plants: soil provides mainly organic nitrogen for plants and mycorrhizal fungi
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04169.x
– volume: 77
  start-page: 147
  year: 2007
  ident: ref93
  article-title: Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly
  publication-title: Ecol. Monogr.
  doi: 10.1890/06-0502
– volume: 225
  start-page: 907
  year: 2007
  ident: ref94
  article-title: Phosphate starvation responses are mediated by sugar signaling in Arabidopsis
  publication-title: Planta
  doi: 10.1007/s00425-006-0408-8
– volume: 174
  start-page: 3
  year: 2011
  ident: ref24
  article-title: Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201000085
– volume: 37
  start-page: 445
  year: 2005
  ident: ref71
  article-title: Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2004.07.037
– volume: 28
  start-page: 562
  year: 2005
  ident: ref47
  article-title: Root navigation by self inhibition
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2005.01304.x
– volume: 147
  start-page: 43
  year: 2000
  ident: ref48
  article-title: The control of carbon acquisition by roots
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2000.00688.x
– volume: 57
  start-page: 675
  year: 2006
  ident: ref164
  article-title: Sugar sensing and signaling in plants: conserved and novel mechanisms
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.57.032905.105441
– volume-title: Mycorrhizal symbiosis
  year: 2008
  ident: ref180
– volume: 8
  start-page: 2127
  year: 2017
  ident: ref116
  article-title: Plant-soil feedback effects on growth, defense and susceptibility to a soil-borne disease in a cut flower crop: species and functional group effects
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.02127
– volume: 9
  start-page: 548
  year: 2004
  ident: ref192
  article-title: Short on phosphate: plant surveillance and countermeasures
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2004.09.003
– volume: 4
  start-page: 216
  year: 2013
  ident: ref37
  article-title: Rhizosphere priming: a nutrient perspective
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2013.00216
– volume: 19
  start-page: 2691
  year: 2018
  ident: ref142
  article-title: Feeding the walls: how does nutrient availability regulate cell wall composition?
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19092691
– volume: 27
  start-page: 841
  year: 2013
  ident: ref154
  article-title: Molecular mechanisms of plant competition: neighbour detection and response strategies
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.12010
– volume: 7
  start-page: 44641
  year: 2017
  ident: ref43
  article-title: Root biomass and exudates link plant diversity with soil bacterial and fungal biomass
  publication-title: Sci. Rep.
  doi: 10.1038/srep44641
– volume: 23
  start-page: 25
  year: 2018
  ident: ref171
  article-title: Feed your friends: do plant exudates shape the root microbiome?
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2017.09.003
– volume: 87
  start-page: 45
  ident: ref156
  article-title: Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2014.12.014
– volume: 101
  start-page: 853
  year: 1997
  ident: ref23
  article-title: Export of amino acids to the phloem in relation to N supply in wheat
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1997.tb01073.x
– volume: 6
  start-page: 7879
  year: 2015
  ident: ref160
  article-title: GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8879
– volume: 11
  start-page: 961
  year: 2014
  ident: ref19
  article-title: The impact of extreme summer drought on the short-term carbon coupling of photosynthesis to soil CO2 efflux in a temperate grassland
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-961-2014
– volume: 138
  start-page: 433
  year: 2013
  ident: ref41
  article-title: A novel effect for glycine on root system growth of habanero pepper
  publication-title: J. Am. Soc. Hortic. Sci.
  doi: 10.21273/JASHS.138.6.433
– volume: 93
  start-page: fix022
  year: 2017
  ident: ref70
  article-title: The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1093/femsec/fix022
– volume: 52
  start-page: 689
  year: 2003
  ident: ref138
  article-title: Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage
  publication-title: Plant Mol. Biol.
  doi: 10.1023/a:1024899808018
– volume: 159
  start-page: 40
  year: 2012
  ident: ref201
  article-title: Ca2+ conduction by an amino acid-gated ion channel related to glutamate receptors
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.197509
– start-page: 1
  volume-title: Advances in applied microbiology
  year: 2016
  ident: ref2
  article-title: Chapter one: Plant–microbiota interactions as a driver of the mineral turnover in the rhizosphere,
– volume: 170
  start-page: 345
  year: 1995
  ident: ref124
  article-title: Loss of exudates from the roots of perennial ryegrass inoculated with a range of micro-organisms
  publication-title: Plant Soil
  doi: 10.1007/BF00010488
– volume: 47
  start-page: 1045
  ident: ref204
  article-title: Evidence that l-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcj075
– volume: 58
  start-page: 3005
  year: 2007
  ident: ref100
  article-title: Measurement of diffusion within the cell wall in living roots of Arabidopsis thaliana
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erm155
– volume: 54
  start-page: 325
  year: 2003
  ident: ref32
  article-title: Biosensor reporting of root exudation from Hordeum vulgare in relation to shoot nitrate concentration
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erg017
– volume: 18
  start-page: 340
  year: 2006
  ident: ref108
  article-title: A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.037713
– volume: 21
  start-page: 209
  year: 2016
  ident: ref130
  article-title: Root-root interactions: towards a rhizosphere framework
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.01.009
– volume: 13
  start-page: 284
  year: 2010
  ident: ref27
  article-title: Atmospheric CO2 enrichment facilitates cation release from soil
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2009.01421.x
– volume: 207
  start-page: 505
  year: 2015
  ident: ref122
  article-title: Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes
  publication-title: New Phytol.
  doi: 10.1111/nph.13363
– volume: 85
  start-page: 591
  year: 2004
  ident: ref173
  article-title: Nitrogen mineralization: challenges of a changing paradigm
  publication-title: Ecology
  doi: 10.1890/03-8002
– volume: 61
  start-page: 295
  year: 2007
  ident: ref194
  article-title: Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2007.00337.x
– volume: 21
  start-page: 218
  year: 2016
  ident: ref199
  article-title: Beneficial microbes affect endogenous mechanisms controlling root development
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.01.013
– volume: 21
  start-page: 295
  year: 2016
  ident: ref63
  article-title: Linking metabolism to membrane signaling: the GABA-Malate connection
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2015.11.011
– volume: 205
  start-page: 1537
  year: 2015
  ident: ref90
  article-title: Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation
  publication-title: New Phytol.
  doi: 10.1111/nph.13138
– volume: 38
  start-page: 83
  year: 2018
  ident: ref109
  article-title: The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/tpx131
– volume: 97
  start-page: 875
  ident: ref205
  article-title: Nitrogen regulation of root branching
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcj601
– volume: 23
  start-page: 1283
  year: 2000
  ident: ref67
  article-title: Influence of microflora and composition of root bathing solution on root exudation of maize plants
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904160009382100
– volume: 26
  start-page: 1839
  year: 2003
  ident: ref28
  article-title: Effects of phosphate availability on the root system architecture: large-scale analysis of the natural variation between Arabidopsis accessions
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.2003.01100.x
– volume: 74
  start-page: 105
  year: 2017
  ident: ref38
  article-title: Update on amino acid transporter functions and on possible amino acid sensing mechanisms in plants
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2017.07.010
– volume: 100
  start-page: 1692
  year: 2013
  ident: ref129
  article-title: Amino acids in the rhizosphere: from plants to microbes
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.1300033
– volume: 172
  start-page: 544
  year: 2006
  ident: ref66
  article-title: Arbuscular mycorrhizal colonization on carbon economy in perennial ryegrass: quantification by 13CO2/12CO2 steady-state labelling and gas exchange
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2006.01853.x
– volume: 5
  start-page: e15341
  year: 2016
  ident: ref97
  article-title: Testing the Münch hypothesis of long distance phloem transport in plants
  publication-title: elife
  doi: 10.7554/eLife.15341
– volume: 6
  start-page: 9
  year: 2018
  ident: ref200
  article-title: Linking 3D soil structure and plant-microbe-soil carbon transfer in the rhizosphere
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2018.00009
– volume: 1266
  start-page: 29
  year: 2015
  ident: ref213
  article-title: Getting across the cell membrane: an overview for small molecules, peptides, and proteins
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-2272-7_3
– volume: 26
  start-page: 419
  year: 2003
  ident: ref77
  article-title: Interactions in the uptake of amino acids, ammonium and nitrate ions in the Arctic salt-marsh grass, Puccinellia phryganodes
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.2003.00973.x
– volume: 18
  start-page: 186
  year: 2017
  ident: ref91
  article-title: Exogenous glutamate rapidly induces the expression of genes involved in metabolism and defense responses in rice roots
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-3588-7
– volume: 362
  start-page: 233
  year: 2018
  ident: ref195
  article-title: Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA
  publication-title: Science
  doi: 10.1126/science.aat6907
– volume: 411
  start-page: 789
  year: 2001
  ident: ref80
  article-title: Large-scale forest girdling shows that current photosynthesis drives soil respiration
  publication-title: Nature
  doi: 10.1038/35081058
– volume: 254
  start-page: 317
  year: 2003
  ident: ref104
  article-title: Turnover and distribution of root exudates of Zea mays
  publication-title: Plant Soil
  doi: 10.1023/a:1025515708093
– volume: 6
  start-page: 763
  year: 2008
  ident: ref149
  article-title: Arbuscular mycorrhiza: the mother of plant root endosymbioses
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1987
– volume: 6
  start-page: 116
  year: 2018
  ident: ref141
  article-title: Sampling root exudates – mission impossible?
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2018.06.004
– volume: 29
  start-page: 1284
  year: 2006
  ident: ref39
  article-title: Exogenous supply of glutamine and active cytokinin to the roots reduces NO3–uptake rates in poplar
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2006.01507.x
– volume: 83
  start-page: 184
  year: 2015
  ident: ref103
  article-title: Microbial hotspots and hot moments in soil: concept and review
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.01.025
– volume: 205
  start-page: 1164
  year: 2015
  ident: ref126
  article-title: The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO2
  publication-title: New Phytol.
  doi: 10.1111/nph.13122
– volume: 54
  start-page: 143
  year: 2016
  ident: ref75
  article-title: Root border cells and their role in plant defense
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-080615-100140
– volume: 3
  start-page: 17029
  year: 2017
  ident: ref143
  article-title: Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition
  publication-title: Nat. Plants.
  doi: 10.1038/nplants.2017.29
– volume: 95
  start-page: 252
  year: 2007
  ident: ref176
  article-title: Challenging the tragedy of the commons in root competition: confounding effects of neighbour presence and substrate volume
  publication-title: J. Ecol.
  doi: 10.1111/j.1365-2745.2007.01210.x
– volume: 64
  start-page: 241
  year: 2011
  ident: ref20
  article-title: The effect of root exudates on root architecture in Arabidopsis thaliana
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-011-9564-3
– volume: 328
  start-page: 1657
  year: 2010
  ident: ref22
  article-title: Plants integrate information about nutrients and neighbors
  publication-title: Science
  doi: 10.1126/science.1189736
– volume: 92
  start-page: 201
  year: 2009
  ident: ref166
  article-title: Soil amino-acid availability across a temperate-forest fertility gradient
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-009-9284-1
– volume: 4
  start-page: 701
  year: 2009
  ident: ref145
  article-title: The role of microbial signals in plant growth and development
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.4.8.9047
– volume: 51
  start-page: 757
  year: 2015
  ident: ref196
  article-title: Influence of different trap solutions on the determination of root exudates in Lupinus albus L
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-015-1015-2
– volume: 8
  start-page: 871
  year: 2006
  ident: ref209
  article-title: Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH)
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2005.00973.x
– volume: 151
  start-page: 230
  year: 2014
  ident: ref170
  article-title: Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with near-isogenic lines of wheat
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.12150
– volume: 101
  start-page: 319
  year: 2008
  ident: ref179
  article-title: Determinate root growth and meristem maintenance in angiosperms
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcm251
– volume: 160
  start-page: 219
  year: 2001
  ident: ref3
  article-title: Differential effect of amino acids on nitrate uptake and reduction systems in barley roots
  publication-title: Plant Sci.
  doi: 10.1016/S0168-9452(00)00391-5
– volume: 245
  start-page: 35
  year: 2002
  ident: ref31
  article-title: Root exudates as mediators of mineral acquisition in low-nutrient environments
  publication-title: Plant Soil
  doi: 10.1023/a:1020809400075
– volume: 1
  start-page: 0150
  year: 2017
  ident: ref198
  article-title: Divergent plant-soil feedbacks could alter future elevation ranges and ecosystem dynamics
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-017-0150
– volume: 9
  start-page: 1509
  year: 2012
  ident: ref64
  article-title: Interactions between uptake of amino acids and inorganic nitrogen in wheat plants
  publication-title: Biogeosciences
  doi: 10.5194/bg-9-1509-2012
– volume: 356
  start-page: eaad4501
  year: 2017
  ident: ref121
  article-title: Ancestral alliances: plant mutualistic symbioses with fungi and bacteria
  publication-title: Science
  doi: 10.1126/science.aad4501
– volume: 182
  start-page: 31
  year: 2009
  ident: ref137
  article-title: Uptake of organic nitrogen by plants
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02751.x
– volume: 6
  start-page: e24125
  year: 2017
  ident: ref165
  article-title: Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle
  publication-title: elife
  doi: 10.7554/eLife.24125
– volume: 166
  start-page: 509
  year: 2014
  ident: ref60
  article-title: Root nutrient foraging
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.245225
– volume: 152
  start-page: 762
  year: 2010
  ident: ref158
  article-title: Stimulation of nonselective amino acid export by glutamine dumper proteins
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.151746
– volume: 65
  start-page: 2685
  year: 1999
  ident: ref83
  article-title: Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.65.6.2685-2690.1999
– volume: 6
  year: 2013
  ident: ref187
  article-title: A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2003762
– volume: 1807
  start-page: 359
  year: 2011
  ident: ref188
  article-title: Dual localization of plant glutamate receptor AtGLR3.4 to plastids and plasmamembrane
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2010.11.008
– volume: 24
  start-page: 606
  ident: ref161
  article-title: Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/mpmi-09-10-0207
– volume: 15
  start-page: 40
  year: 2010
  ident: ref128
  article-title: Intra- and extra-cellular excretion of carboxylates
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2009.10.002
– volume: 397
  start-page: 147
  year: 2015
  ident: ref206
  article-title: Wheat roots efflux a diverse array of organic N compounds and are highly proficient at their recapture
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2612-4
– volume: 408
  start-page: 243
  year: 2016
  ident: ref150
  article-title: Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralisation
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-2928-8
– volume: 4
  start-page: 134
  year: 2013
  ident: ref85
  article-title: Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts or just soil free-riders?
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00134
– volume: 4
  start-page: 440
  year: 2002
  ident: ref148
  article-title: Control of nitrate uptake by phloem-translocated glutamine in Zea mays L. seedlings
  publication-title: Plant Biol.
  doi: 10.1055/s-2002-34123
– volume: 15
  start-page: 402
  year: 2010
  ident: ref9
  article-title: Root apex transition zone: a signalling–response nexus in the root
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2010.04.007
– volume: 25
  start-page: 107
  year: 2015
  ident: ref99
  article-title: Paradigm shift in plant growth control
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2015.05.003
– volume: 13
  start-page: e0204128
  year: 2018
  ident: ref78
  article-title: Linking root exudates to functional plant traits
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0204128
– volume: 38
  start-page: 105
  year: 2016
  ident: ref135
  article-title: The regulation of root growth in response to phosphorus deficiency mediated by phytohormones in a Tibetan wild barley accession
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-016-2124-8
– volume: 37
  start-page: 179
  year: 2005
  ident: ref89
  article-title: Plant capture of free amino acids is maximized under high soil amino acid concentrations
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2004.07.021
– volume: 406
  start-page: 359
  year: 2016
  ident: ref207
  article-title: Simultaneous efflux and uptake of metabolites by roots of wheat
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-2892-3
– volume: 5
  start-page: 283
  year: 2000
  ident: ref210
  article-title: Sugar transporters in higher plants – a diversity of roles and complex regulation
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(00)01681-2
– reference: 31024593 - Front Plant Sci. 2019 Apr 09;10:420. doi: 10.3389/fpls.2019.00420.
SSID ssj0000500997
Score 2.6609385
SecondaryResourceType review_article
Snippet Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 157
SubjectTerms mycorrhiza
nutrient sensing
Plant Science
priming effect
root architecture
root exudates
soil micro-organisms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA8iPvhSqrXt2lYi-NCXrZvL16ZvVU6koMhVwbclySb0QHeltwf2v-9Mcp53paUvfduPLAkzk53fkJnfEHLkrIPtJ0Opva1K0XpV1lypkqnKaoAHNQtYjXxxqc5vxNdbebvS6gtzwjI9cBbcscRiUWe0lNYI74MRoxbMtDbBcxtjKt0Dn7cSTGVWb4Q-OnP5QBRmjuPDHbJzs0RPic5oxQ0ltv4_QczfMyVXXM_ZS_JigRnpl7zWHbIRul2yddIDrvv5itxP-n6g48d57o5E-0ivMoUEvQgD6BirjGef4QaLfKez-xm1XUuv8YSATpDPiU47is2LBjrJGbPwaOjp-LkGDmb_Nkwxk2qP3JyNr0_Py0UThdILaYYyqFFlPeO2dty6ygmtqqhYiLp2SsJ21kK6VoVoAKs5uNLO6pH0TirOrY78Ndns-i68JdS4oCBciamY1lfcMRlbX7cjaSUAFVaQT08ybfyCYRwbXdw1EGmgEhpUQoNKaJISCvJx-cFDlszfh56gkpbDkBU7PQBbaRa20vzLVgpy-KTiBnYRHo3YLvRzmAhwLFLji7ogb7LKl1Nx-BEzrkRB9JoxrK1l_U03_Z6YuvGUVCmz_z8W_45sozhSOT17TzaHH_PwAQDR4A6S7f8CVisKNg
  priority: 102
  providerName: Directory of Open Access Journals
Title Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli
URI https://www.ncbi.nlm.nih.gov/pubmed/30881364
https://www.proquest.com/docview/2193615048
https://pubmed.ncbi.nlm.nih.gov/PMC6407669
https://doaj.org/article/50533b9755a94cce942d07089ec3aff9
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdg8MALGt9hMBmJB14y4vgrQUKIoY4JqQiVVepbZDs2VOqS0abS9t9z52QdRUXiJYodJ058Pt_Pse93hLy2xoL6SZ9qZ7JU1E6lBVcqZSozGuBBwTx6I4-_qtOp-DKTs5twQEMDrnZO7TCe1HS5OLr8dfUBFP49zjjB3r4NFwsk3maReVLq2-QOmCWN4QzGA9bvib4RDcVgK0qJVKh81lP97HrGlpWKZP67EOjfGyn_sEwn--T-ACnpx74PPCC3fPOQ3D1uAfZdPSLnk7bt6Ohy3QdPom2g33qGCTr2HXQBdEJevYME-gDPV-crapqanuECAp0g3ROdNxRjG3V00m-ohayupaMbFzmo_Xs3x41Wj8n0ZHT26TQdYiykTsiyS73KM-MYN4XlxmZWaJUFxXzQhVUStF0LaWvlQwlQzsKZtkbn0lmpODc68Cdkr2kb_4zQ0npo2DxEX1uXcctkqF1R59JIwDEsIUfXbVq5gYAc42AsKpiIoBAqFEKFQqiiEBLyZnPDRd8y_y56jELaFEPS7JjRLn9Ugw5WEv2ObamlNKVwzpcir2HEK0rvuAmhTMiraxFXoGS4cmIa366hIoC5yJwvioQ87UW-qYrDOM24EgnRW51h6122rzTzn5HIGxdRlSqf__93HpB7mIg-9ewF2euWa_8SUFFnD-PfBDh-nrHD2PN_A7miDLc
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+Exudation+of+Primary+Metabolites%3A+Mechanisms+and+Their+Roles+in+Plant+Responses+to+Environmental+Stimuli&rft.jtitle=Frontiers+in+plant+science&rft.au=Canarini%2C+Alberto&rft.au=Kaiser%2C+Christina&rft.au=Merchant%2C+Andrew&rft.au=Richter%2C+Andreas&rft.date=2019-02-21&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=10&rft_id=info:doi/10.3389%2Ffpls.2019.00157&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fpls_2019_00157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon