Optimal group testing strategy for the mass screening of SARS-CoV-2

•Two aspects of group testing efficiency are analyzed, one concerning the maximization of the welfare throughput and the other concerning the maximization of the identification rate.•To ensure the test effectiveness, both the group size and the prevalence of SARS-CoV- 2 must be below certain respect...

Full description

Saved in:
Bibliographic Details
Published inOmega (Oxford) Vol. 112; p. 102689
Main Authors Huang, Fengfeng, Guo, Pengfei, Wang, Yulan
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Two aspects of group testing efficiency are analyzed, one concerning the maximization of the welfare throughput and the other concerning the maximization of the identification rate.•To ensure the test effectiveness, both the group size and the prevalence of SARS-CoV- 2 must be below certain respective thresholds.•The optimal group size is jointly determined by the test accuracy parameters, the infection prevalence rate, and the relative importance of identifying infected subjects.•The optimal group size that maximizes the welfare throughput is weakly smaller than the one that maximizes the identification rate. We analyze the group testing strategy that maximizes the efficiency of the SARS-CoV-2 screening test while ensuring its effectiveness, where the effectiveness of group testing guarantees that negative results from pooled samples can be considered presumptive negative. Two aspects of test efficiency are considered, one concerning the maximization of the welfare throughput and the other concerning the maximization of the identification rate (namely, identifying as many infected individuals as possible). We show that compared with individual testing, group testing leads to a higher probability of false negative results but a lower probability of false positive results. To ensure the test effectiveness, both the group size and the prevalence of SARS-CoV-2 must be below certain respective thresholds. To achieve test efficiency that concerns either the welfare throughput maximization or the identification rate maximization, the optimal group size is jointly determined by the test accuracy parameters, the infection prevalence rate, and the relative importance of identifying infected subjects. We also show that the optimal group size that maximizes the welfare throughput is weakly smaller than the one that maximizes the identification rate.
AbstractList We analyze the group testing strategy that maximizes the efficiency of the SARS-CoV-2 screening test while ensuring its effectiveness, where the effectiveness of group testing guarantees that negative results from pooled samples can be considered presumptive negative. Two aspects of test efficiency are considered, one concerning the maximization of the welfare throughput and the other concerning the maximization of the identification rate (namely, identifying as many infected individuals as possible). We show that compared with individual testing, group testing leads to a higher probability of false negative results but a lower probability of false positive results. To ensure the test effectiveness, both the group size and the prevalence of SARS-CoV-2 must be below certain respective thresholds. To achieve test efficiency that concerns either the welfare throughput maximization or the identification rate maximization, the optimal group size is jointly determined by the test accuracy parameters, the infection prevalence rate, and the relative importance of identifying infected subjects. We also show that the optimal group size that maximizes the welfare throughput is weakly smaller than the one that maximizes the identification rate.We analyze the group testing strategy that maximizes the efficiency of the SARS-CoV-2 screening test while ensuring its effectiveness, where the effectiveness of group testing guarantees that negative results from pooled samples can be considered presumptive negative. Two aspects of test efficiency are considered, one concerning the maximization of the welfare throughput and the other concerning the maximization of the identification rate (namely, identifying as many infected individuals as possible). We show that compared with individual testing, group testing leads to a higher probability of false negative results but a lower probability of false positive results. To ensure the test effectiveness, both the group size and the prevalence of SARS-CoV-2 must be below certain respective thresholds. To achieve test efficiency that concerns either the welfare throughput maximization or the identification rate maximization, the optimal group size is jointly determined by the test accuracy parameters, the infection prevalence rate, and the relative importance of identifying infected subjects. We also show that the optimal group size that maximizes the welfare throughput is weakly smaller than the one that maximizes the identification rate.
We analyze the group testing strategy that maximizes the efficiency of the SARS-CoV-2 screening test while ensuring its effectiveness, where the effectiveness of group testing guarantees that negative results from pooled samples can be considered presumptive negative. Two aspects of test efficiency are considered, one concerning the maximization of the welfare throughput and the other concerning the maximization of the identification rate (namely, identifying as many infected individuals as possible). We show that compared with individual testing, group testing leads to a higher probability of false negative results but a lower probability of false positive results. To ensure the test effectiveness, both the group size and the prevalence of SARS-CoV-2 must be below certain respective thresholds. To achieve test efficiency that concerns either the welfare throughput maximization or the identification rate maximization, the optimal group size is jointly determined by the test accuracy parameters, the infection prevalence rate, and the relative importance of identifying infected subjects. We also show that the optimal group size that maximizes the welfare throughput is weakly smaller than the one that maximizes the identification rate.
•Two aspects of group testing efficiency are analyzed, one concerning the maximization of the welfare throughput and the other concerning the maximization of the identification rate.•To ensure the test effectiveness, both the group size and the prevalence of SARS-CoV- 2 must be below certain respective thresholds.•The optimal group size is jointly determined by the test accuracy parameters, the infection prevalence rate, and the relative importance of identifying infected subjects.•The optimal group size that maximizes the welfare throughput is weakly smaller than the one that maximizes the identification rate. We analyze the group testing strategy that maximizes the efficiency of the SARS-CoV-2 screening test while ensuring its effectiveness, where the effectiveness of group testing guarantees that negative results from pooled samples can be considered presumptive negative. Two aspects of test efficiency are considered, one concerning the maximization of the welfare throughput and the other concerning the maximization of the identification rate (namely, identifying as many infected individuals as possible). We show that compared with individual testing, group testing leads to a higher probability of false negative results but a lower probability of false positive results. To ensure the test effectiveness, both the group size and the prevalence of SARS-CoV-2 must be below certain respective thresholds. To achieve test efficiency that concerns either the welfare throughput maximization or the identification rate maximization, the optimal group size is jointly determined by the test accuracy parameters, the infection prevalence rate, and the relative importance of identifying infected subjects. We also show that the optimal group size that maximizes the welfare throughput is weakly smaller than the one that maximizes the identification rate.
ArticleNumber 102689
Author Wang, Yulan
Guo, Pengfei
Huang, Fengfeng
Author_xml – sequence: 1
  givenname: Fengfeng
  orcidid: 0000-0001-5756-7348
  surname: Huang
  fullname: Huang, Fengfeng
  email: ffhuang@uestc.edu.cn
  organization: School of Management and Economics, University of Electronic Science and Technology of China, China
– sequence: 2
  givenname: Pengfei
  surname: Guo
  fullname: Guo, Pengfei
  email: penguo@cityu.edu.hk
  organization: College of Business, City University of Hong Kong, Kowloon, Hong Kong
– sequence: 3
  givenname: Yulan
  orcidid: 0000-0003-4184-590X
  surname: Wang
  fullname: Wang, Yulan
  email: yulan.wang@polyu.edu.hk
  organization: Faculty of Business, The Hong Kong Polytechnic University, Kowloon, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35637769$$D View this record in MEDLINE/PubMed
BookMark eNqFUctKJDEUDUPL9GP8AkFqOZtq86hUJQsHpNGZAUHwMduQTt0q01RV2iQt9N-bnlZRF7q5F-495z7OmaLR4AZA6IjgOcGkPFnNXQ-tnlNMaarQUshvaEJExXJOq2KEJphhnuNCsDGahrDCGBOB2Xc0ZrxkVVXKCVpcraPtdZe13m3WWYQQ7dBmIXodod1mjfNZvIes1yFkwXiAYdd3TXZzdn2TL9y_nP5AB43uAhw-5xm6uzi_XfzJL69-_12cXeam4DLmtayYgGZZYGmKgklumJCCA6s5IxiWRlPOgQpZlaWWJdAlEYzUtakFkcAEm6Ff-7nrzbKH2sCQruzU2qcH_FY5bdX7zmDvVeselSS04EmXGfr5PMC7h016VfU2GOg6PYDbBEXLijJaiRRn6PjtrtclL8olANsDjHcheGheIQSrnT9qpf77o3b-qL0_iSU_sIyNOlq3O9h2X3BP91xIGj9a8CoYC4OB2nowUdXOfsp_AhhYq54
CitedBy_id crossref_primary_10_37394_23209_2023_20_47
crossref_primary_10_37394_23206_2024_23_28
crossref_primary_10_1016_j_omega_2023_102912
crossref_primary_10_3390_healthcare11030393
Cites_doi 10.1093/biomet/82.2.287
10.1016/S1473-3099(20)30362-5
10.1002/sim.4780132205
10.1287/mnsc.1120.1576
10.1561/0100000099
10.15585/mmwr.mm6524e2
10.1016/S0001-2998(78)80014-2
10.1186/1471-2334-10-82
10.1038/s41586-020-2279-8
10.1214/aoms/1177731363
10.1007/978-3-642-36899-8_31
10.1002/(SICI)1097-0258(19980715)17:13<1447::AID-SIM862>3.0.CO;2-K
10.1126/sciadv.abc5961
10.1111/poms.13606
10.1287/mnsc.1100.1236
10.1287/mnsc.2018.3138
10.1128/JCM.00522-10
10.1001/jama.288.2.216
ContentType Journal Article
Copyright 2022 Elsevier Ltd
2022 Elsevier Ltd. All rights reserved.
2022 Elsevier Ltd. All rights reserved. 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: 2022 Elsevier Ltd. All rights reserved.
– notice: 2022 Elsevier Ltd. All rights reserved. 2022 Elsevier Ltd
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.omega.2022.102689
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1873-5274
0305-0483
EndPage 102689
ExternalDocumentID PMC9124587
35637769
10_1016_j_omega_2022_102689
S0305048322000962
Genre Journal Article
GroupedDBID --K
--M
-~X
.~1
0R~
13V
1B1
1OL
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
96U
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABJNI
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACBMB
ACDAQ
ACGFS
ACHQT
ACHRH
ACNCT
ACNTT
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFACB
AFAZI
AFFNX
AFKWA
AFTJW
AGHFR
AGJBL
AGQRV
AGUBO
AGUMN
AGYEJ
AHEHV
AHHHB
AHMBA
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BAAKF
BDEBP
BKOJK
BKOMP
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HAMUX
HVGLF
HZ~
IAO
IEA
IGG
IHE
IHR
IOF
IPO
ITC
J1W
KOM
LPU
LXL
LY1
M41
MO0
MS~
N95
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPCBC
SSB
SSD
SSL
SSZ
T5K
TAE
TAF
TN5
U5U
VQA
WUQ
XI7
XPP
XSW
XYO
YNT
ZRQ
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
IPC
SSH
EFKBS
NPM
7X8
5PM
ID FETCH-LOGICAL-c459t-d9738efb409c44395c38985e3d5310ebca255e289766a96e2b1831ddcd819e383
IEDL.DBID .~1
ISSN 0305-0483
IngestDate Thu Aug 21 18:28:25 EDT 2025
Fri Jul 11 01:18:09 EDT 2025
Mon Jul 21 05:59:27 EDT 2025
Tue Jul 01 02:57:32 EDT 2025
Thu Apr 24 22:58:51 EDT 2025
Fri Feb 23 02:40:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Test specificity
Group testing
Mass screening
Test sensitivity
Language English
License 2022 Elsevier Ltd. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-d9738efb409c44395c38985e3d5310ebca255e289766a96e2b1831ddcd819e383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5756-7348
0000-0003-4184-590X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9124587
PMID 35637769
PQID 2672327872
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9124587
proquest_miscellaneous_2672327872
pubmed_primary_35637769
crossref_primary_10_1016_j_omega_2022_102689
crossref_citationtrail_10_1016_j_omega_2022_102689
elsevier_sciencedirect_doi_10_1016_j_omega_2022_102689
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Omega (Oxford)
PublicationTitleAlternate Omega
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pilcher, McPherson, Leone, Smurzynski, Owen-O’Dowd, Peace-Brewer (bib0020) 2002; 288
Aldridge, Johnson, Scarlett (bib0002) 2019; 15
Dorfman (bib0007) 1943; 14
Aprahamian, Bish, Bish (bib0004) 2019; 65
Metz (bib0016) 1978; 8
Lohse, Pfuhl, Berko-Gottel, Rissland, Geibler, Gartner (bib0013) 2020
Malyutov (bib0014) 2013
Ackerman, Myhrvold, Thakku, Freije, Metsky, Yang, Ye, Boehm, Kosoko-Thoroddsen, Kehe, Nguyen (bib0001) 2020; 582
on March 7, 2022.
Zenios, Wein (bib0028) 1998; 17
Ritchie H, Mathieu E, Rodés-Guirao L, Appel C, Giattino C, Ortiz-Ospina E, Hasell J, Macdonald B, Beltekian D, Roser M. Coronavirus pandemic (COVID-19). 2022. Published online at
Phatarfod, Sudbury (bib0019) 1994; 13
Huang, Guo, Wang (bib0009) 2022; 31
Hsiang, Lin, Dokomajilar, Kemere, Pilcher, Dorsey (bib0010) 2010; 48
Mentus, Romeo, DiPaola (bib0015) 2020
Schneider M. COVID-19 single-stage pooled testing method approved in israel. 2020.
Lin Y, Ren Y, Wan J, Zhou E. Group testing during the COVID-19 pandemic: optimal group size selection and prevalence control. 2020. arXiv
Cowling, Lau, Wu, Wong, Fang, Riley (bib0006) 2010; 10
Retrieved from
.
Wang, Debo, Scheller-Wolf, Smith (bib0025) 2010; 11
Bastos, Tavaziva, Abidi, Campbell, Haraoui, Johnston (bib0005) 2020; 370
Healthcare in Europe. Corona ‘pool testing’ increases worldwide capacities many times over. 2020.
United State Food and Drug Administration, Drug. Does FDA have validation or other recommendations regarding SARS-cov-2 diagnostic/screening tests for use with sample pooling?2020.
Alizamir, De Vericourt, Sun (bib0003) 2013; 1
Tu, Litvak, Pagano (bib0022) 1995; 82
New York State. Governor cuomo announces new testing initiatives to improve COVID-19 detection & control across new york state. 2020.
Walden M, Zhao I. How china managed to test almost 1.5m people for coronavirus in a single day. 2020.
Shental, Levy, Wuvshet, Skorniakov, Shalem, Ottolenghi, Greenshpan, Steinberg, Edri, Gillis, Goldhirsh (bib0027) 2020; 6
Wilson JMG, Jungner G. World Health Organization. Principles and practice of screening for disease. 1968.
Kuehnert MJ. Screening of blood donations for zika virus infection—puerto rico, april 3 june 11, 2016. MMWR. morbidity and mortality weekly report, 65. 2016.
Mentus (10.1016/j.omega.2022.102689_bib0015) 2020
Aldridge (10.1016/j.omega.2022.102689_bib0002) 2019; 15
Bastos (10.1016/j.omega.2022.102689_bib0005) 2020; 370
Wang (10.1016/j.omega.2022.102689_bib0025) 2010; 11
Phatarfod (10.1016/j.omega.2022.102689_bib0019) 1994; 13
Alizamir (10.1016/j.omega.2022.102689_bib0003) 2013; 1
Tu (10.1016/j.omega.2022.102689_bib0022) 1995; 82
Pilcher (10.1016/j.omega.2022.102689_bib0020) 2002; 288
10.1016/j.omega.2022.102689_bib0012
Lohse (10.1016/j.omega.2022.102689_bib0013) 2020
10.1016/j.omega.2022.102689_bib0011
Aprahamian (10.1016/j.omega.2022.102689_bib0004) 2019; 65
10.1016/j.omega.2022.102689_bib0018
Huang (10.1016/j.omega.2022.102689_bib0009) 2022; 31
Hsiang (10.1016/j.omega.2022.102689_bib0010) 2010; 48
10.1016/j.omega.2022.102689_bib0017
Malyutov (10.1016/j.omega.2022.102689_sbref0014) 2013
Zenios (10.1016/j.omega.2022.102689_bib0028) 1998; 17
Metz (10.1016/j.omega.2022.102689_sbref0016) 1978; 8
Shental (10.1016/j.omega.2022.102689_sbref0027) 2020; 6
10.1016/j.omega.2022.102689_bib0026
10.1016/j.omega.2022.102689_bib0023
10.1016/j.omega.2022.102689_bib0024
10.1016/j.omega.2022.102689_bib0021
Dorfman (10.1016/j.omega.2022.102689_bib0007) 1943; 14
Ackerman (10.1016/j.omega.2022.102689_bib0001) 2020; 582
Cowling (10.1016/j.omega.2022.102689_bib0006) 2010; 10
10.1016/j.omega.2022.102689_bib0008
References_xml – reference: Wilson JMG, Jungner G. World Health Organization. Principles and practice of screening for disease. 1968.
– volume: 1
  start-page: 157
  year: 2013
  end-page: 171
  ident: bib0003
  article-title: Diagnosis accuracy under congestion
  publication-title: Manage Sci
– volume: 288
  start-page: 216
  year: 2002
  end-page: 221
  ident: bib0020
  article-title: Real-time, universal screening for acute HIV infection in a routine HIV counseling and testing population
  publication-title: JAMA
– reference: New York State. Governor cuomo announces new testing initiatives to improve COVID-19 detection & control across new york state. 2020.
– reference: Kuehnert MJ. Screening of blood donations for zika virus infection—puerto rico, april 3 june 11, 2016. MMWR. morbidity and mortality weekly report, 65. 2016.
– volume: 17
  start-page: 1447
  year: 1998
  end-page: 1467
  ident: bib0028
  article-title: Pooled testing for hiv prevalence estimation: exploiting the dilution effect
  publication-title: Stat Med
– volume: 31
  start-page: 1216
  year: 2022
  end-page: 1234
  ident: bib0009
  article-title: Modeling patients’ illness perception and equilibrium analysis of their doctor shopping behavior
  publication-title: Product Oper Manage
– volume: 11
  start-page: 1873
  year: 2010
  end-page: 1890
  ident: bib0025
  article-title: Design and analysis of diagnostic service centers
  publication-title: Manage Sci
– reference: Walden M, Zhao I. How china managed to test almost 1.5m people for coronavirus in a single day. 2020.
– volume: 82
  start-page: 287
  year: 1995
  end-page: 297
  ident: bib0022
  article-title: On the informativeness and accuracy of pooled testing in estimating prevalence of a rare disease: application to HIV screening
  publication-title: Biometrika
– reference: . Retrieved from:
– year: 2013
  ident: bib0014
  article-title: Search for sparse active inputs: a review
  publication-title: Information theory, combinatorics, and search theory: in memory of rudolf ahlswede
– volume: 15
  start-page: 196
  year: 2019
  end-page: 392
  ident: bib0002
  article-title: Group testing: an information theory perspective
  publication-title: Found Trend Commun Inform Theory
– volume: 6
  year: 2020
  ident: bib0027
  article-title: Efficient high-throughput SARS-cov-2 testing to detect asymptomatic carriers
  publication-title: Sci Adv
– volume: 48
  start-page: 3539
  year: 2010
  end-page: 3543
  ident: bib0010
  article-title: PCR-Based pooling of dried blood spots for detection of malaria parasites: optimization and application to a cohort of ugandan children
  publication-title: J Clin Microbiol
– volume: 14
  start-page: 436
  year: 1943
  end-page: 440
  ident: bib0007
  article-title: The detection of defective members of large populations
  publication-title: Ann Math Stat
– year: 2020
  ident: bib0015
  article-title: Analysis and applications of adaptive group testing methods for COVID-19
  publication-title: MedRxiv
– reference: Ritchie H, Mathieu E, Rodés-Guirao L, Appel C, Giattino C, Ortiz-Ospina E, Hasell J, Macdonald B, Beltekian D, Roser M. Coronavirus pandemic (COVID-19). 2022. Published online at
– reference: .
– reference: Lin Y, Ren Y, Wan J, Zhou E. Group testing during the COVID-19 pandemic: optimal group size selection and prevalence control. 2020. arXiv:
– reference: Healthcare in Europe. Corona ‘pool testing’ increases worldwide capacities many times over. 2020.
– reference: Schneider M. COVID-19 single-stage pooled testing method approved in israel. 2020.
– volume: 370
  year: 2020
  ident: bib0005
  article-title: Diagnostic accuracy of serological tests for covid-19: systematic review and meta-analysis
  publication-title: BMJ
– reference: on March 7, 2022.
– volume: 65
  start-page: 4365
  year: 2019
  end-page: 4384
  ident: bib0004
  article-title: Optimal risk-based group testing
  publication-title: Manage Sci
– reference: United State Food and Drug Administration, Drug. Does FDA have validation or other recommendations regarding SARS-cov-2 diagnostic/screening tests for use with sample pooling?2020.
– volume: 8
  start-page: 283
  year: 1978
  end-page: 298
  ident: bib0016
  article-title: Basic principles of ROC analysis
  publication-title: Semin Nucl Med
– volume: 582
  start-page: 277
  year: 2020
  end-page: 282
  ident: bib0001
  article-title: Massively multiplexed nucleic acid detection with cas13
  publication-title: Nature
– volume: 10
  start-page: 1
  year: 2010
  end-page: 4
  ident: bib0006
  article-title: Entry screening to delay local transmission of 2009 pandemic influenza a (h1n1)
  publication-title: BMC Infect Dis
– volume: 13
  start-page: 2337
  year: 1994
  end-page: 2343
  ident: bib0019
  article-title: The use of a square array scheme in blood testing
  publication-title: Stat Med
– year: 2020
  ident: bib0013
  article-title: Pooling of samples for testing for SARS-cov-2 in asymptomatic people
  publication-title: Lancet Infect Dis
– ident: 10.1016/j.omega.2022.102689_bib0026
– volume: 82
  start-page: 287
  year: 1995
  ident: 10.1016/j.omega.2022.102689_bib0022
  article-title: On the informativeness and accuracy of pooled testing in estimating prevalence of a rare disease: application to HIV screening
  publication-title: Biometrika
  doi: 10.1093/biomet/82.2.287
– year: 2020
  ident: 10.1016/j.omega.2022.102689_bib0013
  article-title: Pooling of samples for testing for SARS-cov-2 in asymptomatic people
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(20)30362-5
– volume: 13
  start-page: 2337
  issue: 22
  year: 1994
  ident: 10.1016/j.omega.2022.102689_bib0019
  article-title: The use of a square array scheme in blood testing
  publication-title: Stat Med
  doi: 10.1002/sim.4780132205
– volume: 1
  start-page: 157
  issue: 59
  year: 2013
  ident: 10.1016/j.omega.2022.102689_bib0003
  article-title: Diagnosis accuracy under congestion
  publication-title: Manage Sci
  doi: 10.1287/mnsc.1120.1576
– volume: 15
  start-page: 196
  issue: 3–4
  year: 2019
  ident: 10.1016/j.omega.2022.102689_bib0002
  article-title: Group testing: an information theory perspective
  publication-title: Found Trend Commun Inform Theory
  doi: 10.1561/0100000099
– ident: 10.1016/j.omega.2022.102689_bib0011
  doi: 10.15585/mmwr.mm6524e2
– volume: 8
  start-page: 283
  issue: 4
  year: 1978
  ident: 10.1016/j.omega.2022.102689_sbref0016
  article-title: Basic principles of ROC analysis
  publication-title: Semin Nucl Med
  doi: 10.1016/S0001-2998(78)80014-2
– volume: 370
  year: 2020
  ident: 10.1016/j.omega.2022.102689_bib0005
  article-title: Diagnostic accuracy of serological tests for covid-19: systematic review and meta-analysis
  publication-title: BMJ
– volume: 10
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.omega.2022.102689_bib0006
  article-title: Entry screening to delay local transmission of 2009 pandemic influenza a (h1n1)
  publication-title: BMC Infect Dis
  doi: 10.1186/1471-2334-10-82
– ident: 10.1016/j.omega.2022.102689_bib0017
– volume: 582
  start-page: 277
  issue: 7811
  year: 2020
  ident: 10.1016/j.omega.2022.102689_bib0001
  article-title: Massively multiplexed nucleic acid detection with cas13
  publication-title: Nature
  doi: 10.1038/s41586-020-2279-8
– volume: 14
  start-page: 436
  issue: 4
  year: 1943
  ident: 10.1016/j.omega.2022.102689_bib0007
  article-title: The detection of defective members of large populations
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177731363
– year: 2013
  ident: 10.1016/j.omega.2022.102689_sbref0014
  article-title: Search for sparse active inputs: a review
  doi: 10.1007/978-3-642-36899-8_31
– ident: 10.1016/j.omega.2022.102689_bib0024
– volume: 17
  start-page: 1447
  issue: 13
  year: 1998
  ident: 10.1016/j.omega.2022.102689_bib0028
  article-title: Pooled testing for hiv prevalence estimation: exploiting the dilution effect
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19980715)17:13<1447::AID-SIM862>3.0.CO;2-K
– ident: 10.1016/j.omega.2022.102689_bib0012
– year: 2020
  ident: 10.1016/j.omega.2022.102689_bib0015
  article-title: Analysis and applications of adaptive group testing methods for COVID-19
  publication-title: MedRxiv
– volume: 6
  issue: 37
  year: 2020
  ident: 10.1016/j.omega.2022.102689_sbref0027
  article-title: Efficient high-throughput SARS-cov-2 testing to detect asymptomatic carriers
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abc5961
– volume: 31
  start-page: 1216
  issue: 3
  year: 2022
  ident: 10.1016/j.omega.2022.102689_bib0009
  article-title: Modeling patients’ illness perception and equilibrium analysis of their doctor shopping behavior
  publication-title: Product Oper Manage
  doi: 10.1111/poms.13606
– volume: 11
  start-page: 1873
  issue: 56
  year: 2010
  ident: 10.1016/j.omega.2022.102689_bib0025
  article-title: Design and analysis of diagnostic service centers
  publication-title: Manage Sci
  doi: 10.1287/mnsc.1100.1236
– volume: 65
  start-page: 4365
  issue: 9
  year: 2019
  ident: 10.1016/j.omega.2022.102689_bib0004
  article-title: Optimal risk-based group testing
  publication-title: Manage Sci
  doi: 10.1287/mnsc.2018.3138
– volume: 48
  start-page: 3539
  issue: 10
  year: 2010
  ident: 10.1016/j.omega.2022.102689_bib0010
  article-title: PCR-Based pooling of dried blood spots for detection of malaria parasites: optimization and application to a cohort of ugandan children
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.00522-10
– ident: 10.1016/j.omega.2022.102689_bib0018
– volume: 288
  start-page: 216
  issue: 2
  year: 2002
  ident: 10.1016/j.omega.2022.102689_bib0020
  article-title: Real-time, universal screening for acute HIV infection in a routine HIV counseling and testing population
  publication-title: JAMA
  doi: 10.1001/jama.288.2.216
– ident: 10.1016/j.omega.2022.102689_bib0021
– ident: 10.1016/j.omega.2022.102689_bib0008
– ident: 10.1016/j.omega.2022.102689_bib0023
SSID ssj0001803
Score 2.3845935
Snippet •Two aspects of group testing efficiency are analyzed, one concerning the maximization of the welfare throughput and the other concerning the maximization of...
We analyze the group testing strategy that maximizes the efficiency of the SARS-CoV-2 screening test while ensuring its effectiveness, where the effectiveness...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102689
SubjectTerms Group testing
Mass screening
Test sensitivity
Test specificity
Title Optimal group testing strategy for the mass screening of SARS-CoV-2
URI https://dx.doi.org/10.1016/j.omega.2022.102689
https://www.ncbi.nlm.nih.gov/pubmed/35637769
https://www.proquest.com/docview/2672327872
https://pubmed.ncbi.nlm.nih.gov/PMC9124587
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iIF7Et_VFBI_GbrPZZHMsRamKClbFW2g2Wa3YXdF68OJvd2Yf1ap48LibBMJMMvmGfPmGkD0dOtf3wjOeBooJG4bMRlqzKOHWORWkvhCePzuX3WtxchvdTpFO_RYGaZVV7C9jehGtqz_NyprNp8Gg2cOlioLonBdAHOOwEApX-cH7J82jFQdliWQkqUHvWnmo4HjlQ3-H4kOco4SBxFrvv59OP9HndxLll1PpaIHMV3CStssZL5Ipny2R2ZrNvkw6FxAShtCjeL1BR6ipkd3Rl1KT9o0CZKUAAekQMDSFCAJZLbbnKe21L3usk98wvkKujw6vOl1W1U1giYj0iDmtwtinFlK3RADgiBJAJXHkQwcbLkD2E-QRHjItJWVfS88t7OuWc4kDeOAhZV0l01me-XVCU6XjVFvbgmQT70DjtA85jG05L0IRB75BeG0vk1Si4ljb4tHU7LEHUxjZoJFNaeQG2R8Peio1Nf7uLmtHmImlYSDq_z1wt3abgU2DNyH9zOevL4ZLBUgSYhVvkLXSjeOZhJEMlZIwWk04eNwBBbknW7LBfSHMrQEsRbHa-O-EN8kcfpVcwS0yPXp-9duAeUZ2p1jUO2SmfXzaPf8A6KH_jA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB6CA20voe86fanQY4XX2pW0OhrT4NSOC7VdfBPWSpu4xLshcQ79953Zh6nb4kOvKw2IGenTN-zoG4CPJvZ-FZLARR5pnrg45k4aw2UmnPc6ykMlPH8xVaNF8mUpl0cwbN_CUFllg_01pldo3XzpNd7s3azXvRltVRJEF6Ii4ojDx6ROJTtwPDgfj6Y7QO6nUd0lmerU0KAVH6rKvMpNuCT9ISFIxUBRu_d_X1B_E9A_6yh_u5jOHsNJwyjZoF70EzgKxVN40Ba0P4PhV0SFDc6oHnCwLclqFJfsrpal_cmQtTJkgWyDNJohiGBiS-NlzmaDbzM-LL9z8RwWZ5_nwxFvWifwLJFmy73RcRpyh9lbliDnkBkSk1SG2OOZi6gAClOJgMmWVmplVBAOj3bf-8wjQwiYtb6ATlEW4RWwXJs0N871Md-k36BpvsI0xvV9SOIkjUIXROsvmzW64tTe4tq2BWQ_bOVkS062tZO78GlndFPLahyertpA2L3dYRH4Dxt-aMNm8dzQz5BVEcr7OyuURjKJcCW68LIO424lsVSx1gqt9V6AdxNIk3t_pFhfVdrcBvmSTPXp_y74PTwczS8mdnI-Hb-GRzRSlw6-gc729j68RQq0de-aLf4Lqb8CTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+group+testing+strategy+for+the+mass+screening+of+SARS-CoV-2&rft.jtitle=Omega+%28Oxford%29&rft.au=Huang%2C+Fengfeng&rft.au=Guo%2C+Pengfei&rft.au=Wang%2C+Yulan&rft.date=2022-10-01&rft.pub=Elsevier+Ltd&rft.issn=0305-0483&rft.eissn=1873-5274&rft.volume=112&rft_id=info:doi/10.1016%2Fj.omega.2022.102689&rft.externalDocID=S0305048322000962
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0483&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0483&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0483&client=summon