Vanadium pentoxide nanochains for high-performance electrochemical supercapacitors
[Display omitted] •Synthesis of V2O5 nanochains for charge storage applications.•Hydrothermal medium with CTAB surfactant is crucial to obtain V2O5 nanochains.•Capacitance of bulk V2O5<agglomerated V2O5 particles<V2O5 nanochains. We have synthesized unique hierarchical one dimensional (1D) nan...
Saved in:
Published in | Journal of colloid and interface science Vol. 472; pp. 210 - 219 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Synthesis of V2O5 nanochains for charge storage applications.•Hydrothermal medium with CTAB surfactant is crucial to obtain V2O5 nanochains.•Capacitance of bulk V2O5<agglomerated V2O5 particles<V2O5 nanochains.
We have synthesized unique hierarchical one dimensional (1D) nanochains of V2O5 by employing simple hydrothermal method using cetyltrimethylammonium bromide (CTAB) as a soft template. The electrochemical performance of resulting V2O5 electrode materials was evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy techniques. The V2O5 nanochains (V2O5-ctab) show maximum specific capacitance of 631Fg−1 at a current density of 0.5Ag−1 and retain 300Fg−1 even at high current density of 15Ag−1. In addition the V2O5 nanochains show good cyclic stability with 75% capacitance retention after 1200 charge-discharge cycles. The order of specific capacitance is commercial bulk-V2O5 (160Fg−1)<agglomerated V2O5 particles (395Fg−1)<V2O5 nanochains (631Fg−1). The interconnected nanochain-like morphology and high specific surface area are the main factors which contribute to higher electrochemical performance to V2O5 nanochains and promote facile exchange of Li+ ions during the charge-discharge processes. |
---|---|
AbstractList | We have synthesized unique hierarchical one dimensional (1D) nanochains of V2O5 by employing simple hydrothermal method using cetyltrimethylammonium bromide (CTAB) as a soft template. The electrochemical performance of resulting V2O5 electrode materials was evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy techniques. The V2O5 nanochains (V2O5-ctab) show maximum specific capacitance of 631Fg⁻¹ at a current density of 0.5Ag⁻¹ and retain 300Fg⁻¹ even at high current density of 15Ag⁻¹. In addition the V2O5 nanochains show good cyclic stability with 75% capacitance retention after 1200 charge-discharge cycles. The order of specific capacitance is commercial bulk-V2O5 (160Fg⁻¹)<agglomerated V2O5 particles (395Fg⁻¹)<V2O5 nanochains (631Fg⁻¹). The interconnected nanochain-like morphology and high specific surface area are the main factors which contribute to higher electrochemical performance to V2O5 nanochains and promote facile exchange of Li⁺ ions during the charge-discharge processes. We have synthesized unique hierarchical one dimensional (1D) nanochains of V2O5 by employing simple hydrothermal method using cetyltrimethylammonium bromide (CTAB) as a soft template. The electrochemical performance of resulting V2O5 electrode materials was evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy techniques. The V2O5 nanochains (V2O5-ctab) show maximum specific capacitance of 631 F g(-1) at a current density of 0.5 A g(-1) and retain 300 F g(-1) even at high current density of 15 A g(-1). In addition the V2O5 nanochains show good cyclic stability with 75% capacitance retention after 1200 charge-discharge cycles. The order of specific capacitance is commercial bulk-V2O5 (160 F g(-1))<agglomerated V2O5 particles (395 F g(-1))<V2O5 nanochains (631 F g(-1)). The interconnected nanochain-like morphology and high specific surface area are the main factors which contribute to higher electrochemical performance to V2O5 nanochains and promote facile exchange of Li(+) ions during the charge-discharge processes. [Display omitted] •Synthesis of V2O5 nanochains for charge storage applications.•Hydrothermal medium with CTAB surfactant is crucial to obtain V2O5 nanochains.•Capacitance of bulk V2O5<agglomerated V2O5 particles<V2O5 nanochains. We have synthesized unique hierarchical one dimensional (1D) nanochains of V2O5 by employing simple hydrothermal method using cetyltrimethylammonium bromide (CTAB) as a soft template. The electrochemical performance of resulting V2O5 electrode materials was evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy techniques. The V2O5 nanochains (V2O5-ctab) show maximum specific capacitance of 631Fg−1 at a current density of 0.5Ag−1 and retain 300Fg−1 even at high current density of 15Ag−1. In addition the V2O5 nanochains show good cyclic stability with 75% capacitance retention after 1200 charge-discharge cycles. The order of specific capacitance is commercial bulk-V2O5 (160Fg−1)<agglomerated V2O5 particles (395Fg−1)<V2O5 nanochains (631Fg−1). The interconnected nanochain-like morphology and high specific surface area are the main factors which contribute to higher electrochemical performance to V2O5 nanochains and promote facile exchange of Li+ ions during the charge-discharge processes. We have synthesized unique hierarchical one dimensional (1D) nanochains of V sub(2)O sub(5) by employing simple hydrothermal method using cetyltrimethylammonium bromide (CTAB) as a soft template. The electrochemical performance of resulting V sub(2)O sub(5) electrode materials was evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy techniques. The V sub(2)O sub(5) nanochains (V sub(2)O sub(5)-ctab) show maximum specific capacitance of 631 F g super(-1) at a current density of 0.5 A g super(-1) and retain 300 F g super(-1) even at high current density of 15 A g super(-1). In addition the V sub(2)O sub(5) nanochains show good cyclic stability with 75% capacitance retention after 1200 charge-discharge cycles. The order of specific capacitance is commercial bulk-V sub(2)O sub(5) (160 F g super(-1)) < agglomerated V sub(2)O sub(5) particles (395 F g super(-1)) < V sub(2)O sub(5) nanochains (631 F g super(-1)). The interconnected nanochain-like morphology and high specific surface area are the main factors which contribute to higher electrochemical performance to V sub(2)O sub(5) nanochains and promote facile exchange of Li super(+) ions during the charge-discharge processes. We have synthesized unique hierarchical one dimensional (1D) nanochains of V2O5 by employing simple hydrothermal method using cetyltrimethylammonium bromide (CTAB) as a soft template. The electrochemical performance of resulting V2O5 electrode materials was evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy techniques. The V2O5 nanochains (V2O5-ctab) show maximum specific capacitance of 631 F g(-1) at a current density of 0.5 A g(-1) and retain 300 F g(-1) even at high current density of 15 A g(-1). In addition the V2O5 nanochains show good cyclic stability with 75% capacitance retention after 1200 charge-discharge cycles. The order of specific capacitance is commercial bulk-V2O5 (160 F g(-1))<agglomerated V2O5 particles (395 F g(-1))<V2O5 nanochains (631 F g(-1)). The interconnected nanochain-like morphology and high specific surface area are the main factors which contribute to higher electrochemical performance to V2O5 nanochains and promote facile exchange of Li(+) ions during the charge-discharge processes.We have synthesized unique hierarchical one dimensional (1D) nanochains of V2O5 by employing simple hydrothermal method using cetyltrimethylammonium bromide (CTAB) as a soft template. The electrochemical performance of resulting V2O5 electrode materials was evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy techniques. The V2O5 nanochains (V2O5-ctab) show maximum specific capacitance of 631 F g(-1) at a current density of 0.5 A g(-1) and retain 300 F g(-1) even at high current density of 15 A g(-1). In addition the V2O5 nanochains show good cyclic stability with 75% capacitance retention after 1200 charge-discharge cycles. The order of specific capacitance is commercial bulk-V2O5 (160 F g(-1))<agglomerated V2O5 particles (395 F g(-1))<V2O5 nanochains (631 F g(-1)). The interconnected nanochain-like morphology and high specific surface area are the main factors which contribute to higher electrochemical performance to V2O5 nanochains and promote facile exchange of Li(+) ions during the charge-discharge processes. |
Author | Ranga Rao, G. Umeshbabu, Ediga |
Author_xml | – sequence: 1 givenname: Ediga surname: Umeshbabu fullname: Umeshbabu, Ediga – sequence: 2 givenname: G. surname: Ranga Rao fullname: Ranga Rao, G. email: grrao@iitm.ac.in |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27038783$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU2L1TAUhoOMOHdG_4AL6dJN6zlJ0zTgRga_YEAQdRty01NvLm1Sk1b035vLndm4GF3lQJ73cHifK3YRYiDGniM0CNi9OjZH53PDy9yAaEDCI7ZD0LJWCOKC7QA41lppdcmucj4CIEqpn7BLrkD0qhc79vmbDXbw21wtFNb4yw9UBRuiO1gfcjXGVB3890O9UCrzbIOjiiZyayoIzd7Zqcpb-XV2sc6vMeWn7PFop0zP7t5r9vXd2y83H-rbT-8_3ry5rV0r9VoP6DRH0fZgx87ysaN2LztJSHuhXQdcWc7FyIUanJJOgxoA20GOoiWuhRTX7OV575Lij43yamafHU2TDRS3bDhip4XSgv8TxR476ATgf6CqB4nl7q6gL-7QbT_TYJbkZ5t-m_t2C9CfAZdizolGUxqyq49hTdZPBsGcRJqjOYk0J5EGhCkiS5T_Fb3f_mDo9TlEpfafnpLJzlNRNvhUlJkh-ofifwCrDbYs |
CitedBy_id | crossref_primary_10_1016_j_jtice_2020_02_010 crossref_primary_10_1016_j_synthmet_2022_117262 crossref_primary_10_1039_C7DT02986A crossref_primary_10_1002_ente_202000690 crossref_primary_10_1080_10584587_2022_2102813 crossref_primary_10_1149_1945_7111_ac2dcf crossref_primary_10_1007_s12034_023_03101_3 crossref_primary_10_1021_acsaem_8b00390 crossref_primary_10_1002_slct_201901915 crossref_primary_10_1016_j_diamond_2020_107808 crossref_primary_10_1021_acs_langmuir_4c00229 crossref_primary_10_1016_j_jpowsour_2018_03_007 crossref_primary_10_1002_cphc_201600667 crossref_primary_10_1007_s10854_021_05703_1 crossref_primary_10_1016_j_electacta_2017_02_031 crossref_primary_10_1002_slct_202002916 crossref_primary_10_1039_C7CE01444A crossref_primary_10_1016_j_matpr_2021_02_599 crossref_primary_10_1007_s10008_022_05371_z crossref_primary_10_1021_acsaem_1c03754 crossref_primary_10_1007_s42452_019_0285_y crossref_primary_10_1016_j_matchemphys_2016_11_027 crossref_primary_10_1007_s11664_019_07878_0 crossref_primary_10_1039_D2NR04841H crossref_primary_10_1016_j_jallcom_2023_170862 crossref_primary_10_1142_S0219581X17600201 crossref_primary_10_1016_j_jcis_2016_10_011 crossref_primary_10_1016_j_jelechem_2019_03_012 crossref_primary_10_1039_D1TA06815F crossref_primary_10_1016_j_cej_2021_132505 crossref_primary_10_1021_acsaelm_4c00709 crossref_primary_10_1016_j_electacta_2018_04_059 crossref_primary_10_1039_D0SE00779J crossref_primary_10_1016_j_jcis_2017_05_007 crossref_primary_10_1063_1_5091799 crossref_primary_10_1080_10584587_2023_2173450 crossref_primary_10_1007_s00339_017_1522_0 crossref_primary_10_1039_D2CS00112H crossref_primary_10_1016_j_electacta_2019_05_103 crossref_primary_10_1016_j_jcis_2022_04_062 crossref_primary_10_1039_D0CP06002J crossref_primary_10_1016_j_rechem_2022_100446 crossref_primary_10_1016_j_jcis_2018_08_010 crossref_primary_10_1007_s10800_023_01971_3 crossref_primary_10_1007_s42250_023_00854_6 crossref_primary_10_1016_j_electacta_2020_136819 crossref_primary_10_1002_celc_201700923 crossref_primary_10_1002_celc_201801542 crossref_primary_10_1016_j_materresbull_2021_111276 crossref_primary_10_1007_s41742_021_00361_x crossref_primary_10_1016_j_electacta_2022_140340 crossref_primary_10_1615_InterJEnerCleanEnv_2022043086 crossref_primary_10_1016_j_seppur_2020_117501 crossref_primary_10_1007_s00604_020_4182_2 crossref_primary_10_1021_acsaelm_3c00626 crossref_primary_10_1007_s12034_018_1693_0 crossref_primary_10_3390_batteries9070357 crossref_primary_10_1088_2053_1591_aaab0a crossref_primary_10_1016_j_ijbiomac_2022_07_082 crossref_primary_10_1515_msp_2017_0015 crossref_primary_10_1016_j_surfin_2021_101232 crossref_primary_10_1016_j_jpowsour_2018_10_005 crossref_primary_10_1016_j_jics_2024_101440 crossref_primary_10_1016_S1872_5805_21_60070_7 crossref_primary_10_1039_D0NR04362A |
Cites_doi | 10.1021/ja207285b 10.1002/aenm.201200088 10.1039/b813846j 10.1002/cssc.200800087 10.1039/c3ee44164d 10.1039/C4RA06136E 10.1021/jp9097155 10.1039/c0jm00059k 10.1002/adma.201003658 10.1007/s10008-014-2498-8 10.1021/nn500942k 10.1021/cr020733x 10.1002/cplu.201200023 10.1039/C4CE00708E 10.1039/C5RA11239G 10.1021/sc5000072 10.1021/jp209165v 10.1039/c1ra00258a 10.1002/aenm.201400236 10.1021/ic202651b 10.1016/j.jelechem.2015.10.031 10.1016/j.electacta.2013.02.078 10.1002/anie.201000235 10.1016/j.jpowsour.2014.09.118 10.1021/am403739g 10.1021/am301162p 10.1016/j.electacta.2012.09.085 10.1016/j.matchemphys.2015.12.051 10.1039/C4TA04062G 10.1039/C0CS00034E 10.1039/c3ta13690f 10.1039/C4TA03731F 10.1039/C4TA05769D 10.1016/j.electacta.2013.05.023 10.1016/j.matchemphys.2015.09.023 10.1021/nl402969r 10.1039/c3cs60012b 10.1016/0013-4686(90)85068-X 10.1016/j.ijhydene.2015.06.046 10.1016/j.ijhydene.2014.07.168 10.1039/c3cs00009e 10.1039/c2ra00793b 10.1016/j.jpowsour.2010.11.149 10.1021/am2011965 10.1016/j.cap.2015.01.026 10.1016/j.jcis.2015.12.057 10.1016/j.jcis.2016.01.020 10.1038/nmat2297 10.1039/C4TA03123G 10.1002/anie.200500946 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7U5 8FD L7M 7S9 L.6 |
DOI | 10.1016/j.jcis.2016.03.050 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 219 |
ExternalDocumentID | 27038783 10_1016_j_jcis_2016_03_050 S0021979716301928 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- SCB SCE SEW SSH VH1 WUQ ZGI ZXP NPM 7X8 7U5 8FD L7M 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c459t-d1c9213480af6a2f6e4b565e1eb39c6027a223f237dc75c907d014d5f34e29353 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Wed Jul 30 10:46:17 EDT 2025 Fri Jul 11 04:10:48 EDT 2025 Fri Jul 11 10:00:50 EDT 2025 Wed Feb 19 01:56:23 EST 2025 Thu Apr 24 23:06:57 EDT 2025 Tue Jul 01 01:18:15 EDT 2025 Fri Feb 23 02:33:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Vanadium oxide Hydrothermal synthesis Nanochains morphology CTAB Pseudocapacitive behavior |
Language | English |
License | Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-d1c9213480af6a2f6e4b565e1eb39c6027a223f237dc75c907d014d5f34e29353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27038783 |
PQID | 1780511346 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2116937932 proquest_miscellaneous_1816063012 proquest_miscellaneous_1780511346 pubmed_primary_27038783 crossref_citationtrail_10_1016_j_jcis_2016_03_050 crossref_primary_10_1016_j_jcis_2016_03_050 elsevier_sciencedirect_doi_10_1016_j_jcis_2016_03_050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-15 |
PublicationDateYYYYMMDD | 2016-06-15 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Xu, Wang, An, Wang, Jiao, Yuan (b0125) 2014; 2 Béguin, Frackowiak (b0055) 2013 Horrocks, Likely, Velazquez, Banerjee (b0195) 2013; 1 Orilall, Wiesner (b0035) 2011; 40 Qian, Xu, Zhou, Yang, Liu, Shen, Liang, Yan (b0215) 2015; 3 Saravanakumar, Purushothaman, Muralidharan (b0130) 2012; 4 Qu, Zhu, Gao, Wu (b0155) 2012; 2 Guo, Li, Chen, Gao (b0165) 2015; 273 Reed, Ceder (b0020) 2004; 104 Bai, Wang, Lu, Sun, Gao (b0105) 2016; 468 Sathiya, Prakash, Ramesha, Tarascon, Shukla (b0235) 2011; 133 Umeshbabu, Rajeshkhanna, Ranga Rao (b0050) 2015 Chen, Augustyn, Wen, Zhang, Shen, Dunn, Lu (b0245) 2011; 23 Umeshbabu, Rajeshkhanna, Justin, Ranga Rao (b0025) 2015; 165 Zhang, Uchaker, Candelaria, Cao (b0005) 2013; 42 Liu, Cao, Yang, Wang, Dubois, Zhou, Graff, Pederson, Zhang (b0010) 2008; 1 Perera, Patel, Bonso, Grunewald, Ferraris, Balkus (b0150) 2011; 3 Saravanakumar, Purushothaman, Muralidharan (b0255) 2015; 758 Baddour-Hadjean, Smirnov, Smirnov, Kazimirov, Gallardo-Amores, Amador, Dompablo, Pereira-Ramos (b0190) 2012; 51 Li, Jiao, Wang, Wei, Lia, Xie (b0205) 2014; 2 Cao, Hu, Liang, Wan (b0225) 2005; 44 Dhibar, Bhattacharya, Hatui, Sahoo, Das (b0075) 2014; 2 Patzke, Zhou, Kontic, Conrad (b0030) 2011; 50 Yang, Lan, Liu, Song, Wei (b0170) 2013; 105 Ardizzone, Fregonara, Trasatti (b0230) 1990; 35 Li, Li, Zhou, Wang, Zhang, Li, Feng (b0090) 2014; 18 Li, Sun, Yin, Ruan, Ai (b0065) 2013; 5 Roy, Pradhan, Ray, Sahoo, Dutta, Pal (b0200) 2014; 16 Wee, Soh, Cheah, Mhaisalkar, Srinivasan (b0140) 2010; 20 Davis, Gümeci, Black, Korzeniewski, Hope-Weeks (b0120) 2012; 2 Wang, Zhang, Hu, Zhao, Meng (b0210) 2015; 15 Shi, Song, Zhang (b0040) 2013; 42 Zhang, Guo, Zheng, Zhang, Hao, Kang, Liu (b0115) 2013; 87 Justin, Meher, Ranga Rao (b0045) 2010; 114 Augustyn, Simon, Dunn (b0220) 2014; 7 Du, Seng, Guo, Liu, Li, Jia, Cook, Liu, Liu (b0175) 2011; 1 Rajeshkhanna, Umeshbabu, Justin, Ranga Rao (b0250) 2015; 40 Qu, Liu, Wu, Holze (b0160) 2013; 96 Saravanakumar, Purushothaman, Muralidharan (b0260) 2016; 170 Simon, Gogotsi (b0060) 2008; 20 Umeshbabu, Rajeshkhanna, Ranga Rao (b0100) 2014; 39 Foo, Sumboja, Tan, Wang, Lee (b0185) 2014; 4 Nagaraju, Wang, Beaujuge, Alshareef (b0180) 2014; 2 Aravindan, Cheah, Mak, Wee, Chowdari, Madhavi (b0145) 2012; 77 Shi, Li, Wang, Gu, Tu (b0080) 2014; 4 Zhang, Zhao (b0070) 2009; 38 Meher, Ranga Rao (b0015) 2011; 115 Umeshbabu, Rajeshkhanna, Justin, Ranga Rao (b0110) 2015; 5 Ding, Zhang, Yao, Gao (b0095) 2016; 467 Zhu, Cao, Wu, Gong, Liu, Hoster, Zhang, Zhang, Yang, Yan, Ajayan, Vajtai (b0135) 2013; 13 Devadas, Baranton, Napporn, Coutanceau (b0085) 2011; 196 Tan, Rui, Yu, Liu, Xu, Xu, Hng, Yan (b0240) 2014; 8 Horrocks (10.1016/j.jcis.2016.03.050_b0195) 2013; 1 Augustyn (10.1016/j.jcis.2016.03.050_b0220) 2014; 7 Zhang (10.1016/j.jcis.2016.03.050_b0005) 2013; 42 Du (10.1016/j.jcis.2016.03.050_b0175) 2011; 1 Baddour-Hadjean (10.1016/j.jcis.2016.03.050_b0190) 2012; 51 Patzke (10.1016/j.jcis.2016.03.050_b0030) 2011; 50 Bai (10.1016/j.jcis.2016.03.050_b0105) 2016; 468 Reed (10.1016/j.jcis.2016.03.050_b0020) 2004; 104 Li (10.1016/j.jcis.2016.03.050_b0205) 2014; 2 Davis (10.1016/j.jcis.2016.03.050_b0120) 2012; 2 Qian (10.1016/j.jcis.2016.03.050_b0215) 2015; 3 Shi (10.1016/j.jcis.2016.03.050_b0080) 2014; 4 Ardizzone (10.1016/j.jcis.2016.03.050_b0230) 1990; 35 Orilall (10.1016/j.jcis.2016.03.050_b0035) 2011; 40 Wang (10.1016/j.jcis.2016.03.050_b0210) 2015; 15 Zhang (10.1016/j.jcis.2016.03.050_b0070) 2009; 38 Qu (10.1016/j.jcis.2016.03.050_b0160) 2013; 96 Zhang (10.1016/j.jcis.2016.03.050_b0115) 2013; 87 Devadas (10.1016/j.jcis.2016.03.050_b0085) 2011; 196 Guo (10.1016/j.jcis.2016.03.050_b0165) 2015; 273 Saravanakumar (10.1016/j.jcis.2016.03.050_b0260) 2016; 170 Umeshbabu (10.1016/j.jcis.2016.03.050_b0025) 2015; 165 Perera (10.1016/j.jcis.2016.03.050_b0150) 2011; 3 Yang (10.1016/j.jcis.2016.03.050_b0170) 2013; 105 Wee (10.1016/j.jcis.2016.03.050_b0140) 2010; 20 Qu (10.1016/j.jcis.2016.03.050_b0155) 2012; 2 Meher (10.1016/j.jcis.2016.03.050_b0015) 2011; 115 Umeshbabu (10.1016/j.jcis.2016.03.050_b0050) 2015 Nagaraju (10.1016/j.jcis.2016.03.050_b0180) 2014; 2 Liu (10.1016/j.jcis.2016.03.050_b0010) 2008; 1 Aravindan (10.1016/j.jcis.2016.03.050_b0145) 2012; 77 Foo (10.1016/j.jcis.2016.03.050_b0185) 2014; 4 Sathiya (10.1016/j.jcis.2016.03.050_b0235) 2011; 133 Simon (10.1016/j.jcis.2016.03.050_b0060) 2008; 20 Umeshbabu (10.1016/j.jcis.2016.03.050_b0110) 2015; 5 Chen (10.1016/j.jcis.2016.03.050_b0245) 2011; 23 Béguin (10.1016/j.jcis.2016.03.050_b0055) 2013 Tan (10.1016/j.jcis.2016.03.050_b0240) 2014; 8 Li (10.1016/j.jcis.2016.03.050_b0065) 2013; 5 Saravanakumar (10.1016/j.jcis.2016.03.050_b0130) 2012; 4 Shi (10.1016/j.jcis.2016.03.050_b0040) 2013; 42 Ding (10.1016/j.jcis.2016.03.050_b0095) 2016; 467 Dhibar (10.1016/j.jcis.2016.03.050_b0075) 2014; 2 Zhu (10.1016/j.jcis.2016.03.050_b0135) 2013; 13 Li (10.1016/j.jcis.2016.03.050_b0090) 2014; 18 Saravanakumar (10.1016/j.jcis.2016.03.050_b0255) 2015; 758 Umeshbabu (10.1016/j.jcis.2016.03.050_b0100) 2014; 39 Roy (10.1016/j.jcis.2016.03.050_b0200) 2014; 16 Cao (10.1016/j.jcis.2016.03.050_b0225) 2005; 44 Justin (10.1016/j.jcis.2016.03.050_b0045) 2010; 114 Xu (10.1016/j.jcis.2016.03.050_b0125) 2014; 2 Rajeshkhanna (10.1016/j.jcis.2016.03.050_b0250) 2015; 40 |
References_xml | – volume: 20 start-page: 6720 year: 2010 end-page: 6725 ident: b0140 article-title: Synthesis and electrochemical properties of electrospun V publication-title: J. Mater. Chem. – volume: 468 start-page: 1 year: 2016 end-page: 9 ident: b0105 article-title: Template method to controllable synthesis 3D porous NiCo publication-title: J. Colloid Interface Sci. – volume: 42 start-page: 3127 year: 2013 end-page: 3171 ident: b0005 article-title: Nanomaterials for energy conversion and storage publication-title: Chem. Soc. Rev. – volume: 7 start-page: 1597 year: 2014 end-page: 1614 ident: b0220 article-title: Pseudocapacitive oxide materials for high-rate electrochemical energy storage publication-title: Energy Environ. Sci. – volume: 51 start-page: 3194 year: 2012 end-page: 3201 ident: b0190 article-title: Lattice dynamics of β-V publication-title: Inorg. Chem. – volume: 133 start-page: 16291 year: 2011 end-page: 16299 ident: b0235 article-title: V publication-title: J. Am. Chem. Soc. – volume: 96 start-page: 8 year: 2013 end-page: 12 ident: b0160 article-title: Electrochemical behavior of V publication-title: Electrochim. Acta – volume: 758 start-page: 111 year: 2015 end-page: 116 ident: b0255 article-title: High performance supercapacitor based on carbon coated V publication-title: J. Electroanal. Chem. – volume: 2 start-page: 16480 year: 2014 end-page: 16488 ident: b0125 article-title: Facile synthesis route of porous MnCo publication-title: J. Mater. Chem. A – volume: 165 start-page: 235 year: 2015 end-page: 244 ident: b0025 article-title: Magnetic, optical and electrocatalytic properties of urchin and sheaf-like NiCo publication-title: Mater. Chem. Phys. – volume: 20 start-page: 845 year: 2008 end-page: 854 ident: b0060 article-title: Materials for electrochemical capacitors publication-title: Nat. Mater. – volume: 5 start-page: 11462 year: 2013 end-page: 11470 ident: b0065 article-title: Controlling the formation of rodlike V publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 676 year: 2008 end-page: 697 ident: b0010 article-title: Oriented nanostructures for energy conversion and storage publication-title: ChemSusChem – volume: 1 start-page: 690 year: 2011 end-page: 697 ident: b0175 article-title: Graphene-V publication-title: RSC Adv. – volume: 23 start-page: 791 year: 2011 end-page: 795 ident: b0245 article-title: High performance supercapacitors based on intertwined CNT/V publication-title: Adv. Mater. – volume: 115 start-page: 25543 year: 2011 end-page: 25556 ident: b0015 article-title: Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co publication-title: J. Phys. Chem. C – volume: 8 start-page: 4004 year: 2014 end-page: 4014 ident: b0240 article-title: Aqueous-based chemical route toward ambient preparation of multicomponent core-shell nanotubes publication-title: ACS Nano – volume: 5 start-page: 66657 year: 2015 end-page: 66666 ident: b0110 article-title: Synthesis of mesoporous NiCo publication-title: RSC Adv. – volume: 38 start-page: 2520 year: 2009 end-page: 2531 ident: b0070 article-title: Carbon-based materials as supercapacitor electrodes publication-title: Chem. Soc. Rev. – volume: 273 start-page: 804 year: 2015 end-page: 809 ident: b0165 article-title: Facile synthesis of vanadium pentoxide@carbon core-shell nanowires for high-performance supercapacitors publication-title: J. Power Sources – volume: 4 start-page: 41910 year: 2014 end-page: 41921 ident: b0080 article-title: Metal oxide/hydroxide-based materials for supercapacitors publication-title: RSC Adv. – volume: 467 start-page: 140 year: 2016 end-page: 147 ident: b0095 article-title: Crystalline NiCo publication-title: J. Colloid Interface Sci. – volume: 104 start-page: 4513 year: 2004 end-page: 4534 ident: b0020 article-title: Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation publication-title: Chem. Rev. – volume: 3 start-page: 488 year: 2015 end-page: 493 ident: b0215 article-title: Interconnected three-dimensional V publication-title: J. Mater. Chem. A – volume: 2 start-page: 17146 year: 2014 end-page: 17152 ident: b0180 article-title: Two-dimensional heterostructures of V publication-title: J. Mater. Chem. A – volume: 40 start-page: 520 year: 2011 end-page: 535 ident: b0035 article-title: Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells publication-title: Chem. Soc. Rev. – year: 2013 ident: b0055 article-title: Supercapacitors: Materials, Systems, and Applications – volume: 18 start-page: 2521 year: 2014 end-page: 2527 ident: b0090 article-title: Facile controlled synthesis of MnO publication-title: J. Solid State Electro Chem. – volume: 1 start-page: 15265 year: 2013 end-page: 15277 ident: b0195 article-title: Finite size effects on the structural progression induced by lithiation of V publication-title: J. Mater. Chem. A – volume: 2 start-page: 950 year: 2012 end-page: 955 ident: b0155 article-title: Core-shell structure of polypyrrole grown on V publication-title: Adv. Energy Mater. – volume: 105 start-page: 489 year: 2013 end-page: 495 ident: b0170 article-title: Supercapacitor electrode of hollow spherical V publication-title: Electrochim. Acta – volume: 2 start-page: 18806 year: 2014 end-page: 18815 ident: b0205 article-title: Micelle anchored in situ synthesis of V publication-title: J. Mater. Chem. A – volume: 16 start-page: 7738 year: 2014 end-page: 7744 ident: b0200 article-title: Facile synthesis of pyridine intercalated ultra-long V publication-title: CrystEngComm – volume: 4 start-page: 1400236 year: 2014 ident: b0185 article-title: Flexible and highly scalable V publication-title: Adv. Energy Mater. – volume: 50 start-page: 826 year: 2011 end-page: 859 ident: b0030 article-title: Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations publication-title: Angew. Chem. Int. Ed. – year: 2015 ident: b0050 article-title: Effect of solvents on the morphology of NiCo publication-title: J. Solid State Electro Chem. – volume: 87 start-page: 546 year: 2013 end-page: 553 ident: b0115 article-title: Preparation of NiMn publication-title: Electrochim. Acta – volume: 2 start-page: 1114 year: 2014 end-page: 1127 ident: b0075 article-title: Transition metal-doped polyaniline/single-walled carbon nanotubes nanocomposites: efficient electrode material for high performance supercapacitors publication-title: ACS Sustain. Chem. Eng. – volume: 40 start-page: 12303 year: 2015 end-page: 12314 ident: b0250 article-title: In situ fabrication of porous festuca scoparia-like Ni publication-title: Int. J. Hydrogen Energy – volume: 170 start-page: 266 year: 2016 end-page: 275 ident: b0260 article-title: Fabrication of two-dimensional reduced graphene oxide supported V publication-title: Mater. Chem. Phys. – volume: 15 start-page: 493 year: 2015 end-page: 498 ident: b0210 article-title: Facile hydrothermal synthesis of ultrahigh-aspect-ratio V publication-title: Curr. Appl. Phys. – volume: 13 start-page: 5408 year: 2013 end-page: 5413 ident: b0135 article-title: Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors publication-title: Nano Lett. – volume: 4 start-page: 4484 year: 2012 end-page: 4490 ident: b0130 article-title: Interconnected V publication-title: ACS Appl. Mater. Interfaces – volume: 114 start-page: 5203 year: 2010 end-page: 5210 ident: b0045 article-title: Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis publication-title: J. Phys. Chem. C – volume: 2 start-page: 2061 year: 2012 end-page: 2066 ident: b0120 article-title: Tailoring cobalt doped zinc oxide nanocrystals with high capacitance activity: factors affecting structure and surface morphology publication-title: RSC Adv. – volume: 39 start-page: 15627 year: 2014 end-page: 15638 ident: b0100 article-title: Urchin and sheaf-like NiCo publication-title: Int. J. Hydrogen Energy – volume: 44 start-page: 4391 year: 2005 end-page: 4395 ident: b0225 article-title: Self-assembled vanadium pentoxide (V publication-title: Angew. Chem. Int. Ed. – volume: 42 start-page: 5714 year: 2013 end-page: 5743 ident: b0040 article-title: Hydrothermal synthetic strategies of inorganic semiconducting nanostructures publication-title: Chem. Soc. Rev. – volume: 196 start-page: 4044 year: 2011 end-page: 4053 ident: b0085 article-title: Tailoring of RuO publication-title: J. Power Sources – volume: 77 start-page: 570 year: 2012 end-page: 575 ident: b0145 article-title: Fabrication of high energy-density hybrid supercapacitors using electrospun V publication-title: ChemPlusChem – volume: 3 start-page: 4512 year: 2011 end-page: 4517 ident: b0150 article-title: Vanadium oxide nanotube spherical clusters prepared on carbon fabrics for energy storage applications publication-title: ACS Appl. Mater. Interfaces – volume: 35 start-page: 263 year: 1990 end-page: 267 ident: b0230 article-title: “Inner” and “outer” active surface of RuO publication-title: Electrochim. Acta – volume: 133 start-page: 16291 year: 2011 ident: 10.1016/j.jcis.2016.03.050_b0235 article-title: V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207285b – volume: 2 start-page: 950 year: 2012 ident: 10.1016/j.jcis.2016.03.050_b0155 article-title: Core-shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200088 – year: 2013 ident: 10.1016/j.jcis.2016.03.050_b0055 – volume: 38 start-page: 2520 year: 2009 ident: 10.1016/j.jcis.2016.03.050_b0070 article-title: Carbon-based materials as supercapacitor electrodes publication-title: Chem. Soc. Rev. doi: 10.1039/b813846j – volume: 1 start-page: 676 year: 2008 ident: 10.1016/j.jcis.2016.03.050_b0010 article-title: Oriented nanostructures for energy conversion and storage publication-title: ChemSusChem doi: 10.1002/cssc.200800087 – volume: 7 start-page: 1597 year: 2014 ident: 10.1016/j.jcis.2016.03.050_b0220 article-title: Pseudocapacitive oxide materials for high-rate electrochemical energy storage publication-title: Energy Environ. Sci. doi: 10.1039/c3ee44164d – volume: 4 start-page: 41910 year: 2014 ident: 10.1016/j.jcis.2016.03.050_b0080 article-title: Metal oxide/hydroxide-based materials for supercapacitors publication-title: RSC Adv. doi: 10.1039/C4RA06136E – volume: 114 start-page: 5203 year: 2010 ident: 10.1016/j.jcis.2016.03.050_b0045 article-title: Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis publication-title: J. Phys. Chem. C doi: 10.1021/jp9097155 – volume: 20 start-page: 6720 year: 2010 ident: 10.1016/j.jcis.2016.03.050_b0140 article-title: Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes publication-title: J. Mater. Chem. doi: 10.1039/c0jm00059k – volume: 23 start-page: 791 year: 2011 ident: 10.1016/j.jcis.2016.03.050_b0245 article-title: High performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites publication-title: Adv. Mater. doi: 10.1002/adma.201003658 – volume: 18 start-page: 2521 year: 2014 ident: 10.1016/j.jcis.2016.03.050_b0090 article-title: Facile controlled synthesis of MnO2 nanowires for supercapacitors publication-title: J. Solid State Electro Chem. doi: 10.1007/s10008-014-2498-8 – volume: 8 start-page: 4004 year: 2014 ident: 10.1016/j.jcis.2016.03.050_b0240 article-title: Aqueous-based chemical route toward ambient preparation of multicomponent core-shell nanotubes publication-title: ACS Nano doi: 10.1021/nn500942k – volume: 104 start-page: 4513 year: 2004 ident: 10.1016/j.jcis.2016.03.050_b0020 article-title: Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation publication-title: Chem. Rev. doi: 10.1021/cr020733x – year: 2015 ident: 10.1016/j.jcis.2016.03.050_b0050 article-title: Effect of solvents on the morphology of NiCo2O4/graphene nanostructures for electrochemical pseudocapacitor application publication-title: J. Solid State Electro Chem. – volume: 77 start-page: 570 year: 2012 ident: 10.1016/j.jcis.2016.03.050_b0145 article-title: Fabrication of high energy-density hybrid supercapacitors using electrospun V2O5 nanofibers with a self-supported carbon nanotube network publication-title: ChemPlusChem doi: 10.1002/cplu.201200023 – volume: 16 start-page: 7738 year: 2014 ident: 10.1016/j.jcis.2016.03.050_b0200 article-title: Facile synthesis of pyridine intercalated ultra-long V2O5 nanowire from commercial V2O5: catalytic applications in selective dye degradation publication-title: CrystEngComm doi: 10.1039/C4CE00708E – volume: 5 start-page: 66657 year: 2015 ident: 10.1016/j.jcis.2016.03.050_b0110 article-title: Synthesis of mesoporous NiCo2O4-rGO by a solvothermal method for charge storage applications publication-title: RSC Adv. doi: 10.1039/C5RA11239G – volume: 2 start-page: 1114 year: 2014 ident: 10.1016/j.jcis.2016.03.050_b0075 article-title: Transition metal-doped polyaniline/single-walled carbon nanotubes nanocomposites: efficient electrode material for high performance supercapacitors publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/sc5000072 – volume: 115 start-page: 25543 year: 2011 ident: 10.1016/j.jcis.2016.03.050_b0015 article-title: Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4 publication-title: J. Phys. Chem. C doi: 10.1021/jp209165v – volume: 1 start-page: 690 year: 2011 ident: 10.1016/j.jcis.2016.03.050_b0175 article-title: Graphene-V2O5·nH2O xerogel composite cathodes for lithium ion batteries publication-title: RSC Adv. doi: 10.1039/c1ra00258a – volume: 4 start-page: 1400236 year: 2014 ident: 10.1016/j.jcis.2016.03.050_b0185 article-title: Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400236 – volume: 51 start-page: 3194 year: 2012 ident: 10.1016/j.jcis.2016.03.050_b0190 article-title: Lattice dynamics of β-V2O5: Raman spectroscopic insight into the atomistic structure of a high-pressure vanadium pentoxide polymorph publication-title: Inorg. Chem. doi: 10.1021/ic202651b – volume: 758 start-page: 111 year: 2015 ident: 10.1016/j.jcis.2016.03.050_b0255 article-title: High performance supercapacitor based on carbon coated V2O5 nanorods publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2015.10.031 – volume: 96 start-page: 8 year: 2013 ident: 10.1016/j.jcis.2016.03.050_b0160 article-title: Electrochemical behavior of V2O5·0.6H2O nanoribbons in neutral aqueous electrolyte solution publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.02.078 – volume: 50 start-page: 826 year: 2011 ident: 10.1016/j.jcis.2016.03.050_b0030 article-title: Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201000235 – volume: 273 start-page: 804 year: 2015 ident: 10.1016/j.jcis.2016.03.050_b0165 article-title: Facile synthesis of vanadium pentoxide@carbon core-shell nanowires for high-performance supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.09.118 – volume: 5 start-page: 11462 year: 2013 ident: 10.1016/j.jcis.2016.03.050_b0065 article-title: Controlling the formation of rodlike V2O5 nanocrystals on reduced graphene oxide for high-performance supercapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am403739g – volume: 4 start-page: 4484 year: 2012 ident: 10.1016/j.jcis.2016.03.050_b0130 article-title: Interconnected V2O5 nanoporous network for high-performance supercapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am301162p – volume: 87 start-page: 546 year: 2013 ident: 10.1016/j.jcis.2016.03.050_b0115 article-title: Preparation of NiMn2O4 with large specific surface area from an epoxide-driven sol-gel process and its capacitance publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.09.085 – volume: 170 start-page: 266 year: 2016 ident: 10.1016/j.jcis.2016.03.050_b0260 article-title: Fabrication of two-dimensional reduced graphene oxide supported V2O5 networks and their application in supercapacitors publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2015.12.051 – volume: 2 start-page: 18806 year: 2014 ident: 10.1016/j.jcis.2016.03.050_b0205 article-title: Micelle anchored in situ synthesis of V2O3 nanoflakes@C composites for supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04062G – volume: 40 start-page: 520 year: 2011 ident: 10.1016/j.jcis.2016.03.050_b0035 article-title: Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells publication-title: Chem. Soc. Rev. doi: 10.1039/C0CS00034E – volume: 1 start-page: 15265 year: 2013 ident: 10.1016/j.jcis.2016.03.050_b0195 article-title: Finite size effects on the structural progression induced by lithiation of V2O5: a combined diffraction and Raman spectroscopy study publication-title: J. Mater. Chem. A doi: 10.1039/c3ta13690f – volume: 2 start-page: 17146 year: 2014 ident: 10.1016/j.jcis.2016.03.050_b0180 article-title: Two-dimensional heterostructures of V2O5 and reduced graphene oxide as electrodes for high energy density asymmetric supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03731F – volume: 3 start-page: 488 year: 2015 ident: 10.1016/j.jcis.2016.03.050_b0215 article-title: Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05769D – volume: 105 start-page: 489 year: 2013 ident: 10.1016/j.jcis.2016.03.050_b0170 article-title: Supercapacitor electrode of hollow spherical V2O5 with a high pseudocapacitance in aqueous solution publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.05.023 – volume: 165 start-page: 235 year: 2015 ident: 10.1016/j.jcis.2016.03.050_b0025 article-title: Magnetic, optical and electrocatalytic properties of urchin and sheaf-like NiCo2O4 nanostructures publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2015.09.023 – volume: 13 start-page: 5408 year: 2013 ident: 10.1016/j.jcis.2016.03.050_b0135 article-title: Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors publication-title: Nano Lett. doi: 10.1021/nl402969r – volume: 42 start-page: 5714 year: 2013 ident: 10.1016/j.jcis.2016.03.050_b0040 article-title: Hydrothermal synthetic strategies of inorganic semiconducting nanostructures publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60012b – volume: 35 start-page: 263 year: 1990 ident: 10.1016/j.jcis.2016.03.050_b0230 article-title: “Inner” and “outer” active surface of RuO2 electrodes publication-title: Electrochim. Acta doi: 10.1016/0013-4686(90)85068-X – volume: 40 start-page: 12303 year: 2015 ident: 10.1016/j.jcis.2016.03.050_b0250 article-title: In situ fabrication of porous festuca scoparia-like Ni0.3Co2.7O4 nanostructures on Ni-foam: an efficient electrode material for supercapacitor applications publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.06.046 – volume: 39 start-page: 15627 year: 2014 ident: 10.1016/j.jcis.2016.03.050_b0100 article-title: Urchin and sheaf-like NiCo2O4 nanostructures: synthesis and electrochemical energy storage application publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.07.168 – volume: 42 start-page: 3127 year: 2013 ident: 10.1016/j.jcis.2016.03.050_b0005 article-title: Nanomaterials for energy conversion and storage publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs00009e – volume: 2 start-page: 2061 year: 2012 ident: 10.1016/j.jcis.2016.03.050_b0120 article-title: Tailoring cobalt doped zinc oxide nanocrystals with high capacitance activity: factors affecting structure and surface morphology publication-title: RSC Adv. doi: 10.1039/c2ra00793b – volume: 196 start-page: 4044 year: 2011 ident: 10.1016/j.jcis.2016.03.050_b0085 article-title: Tailoring of RuO2 nanoparticles by microwave assisted “instant method” for energy storage applications publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.11.149 – volume: 3 start-page: 4512 year: 2011 ident: 10.1016/j.jcis.2016.03.050_b0150 article-title: Vanadium oxide nanotube spherical clusters prepared on carbon fabrics for energy storage applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am2011965 – volume: 15 start-page: 493 year: 2015 ident: 10.1016/j.jcis.2016.03.050_b0210 article-title: Facile hydrothermal synthesis of ultrahigh-aspect-ratio V2O5 nanowires for high-performance supercapacitors publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2015.01.026 – volume: 467 start-page: 140 year: 2016 ident: 10.1016/j.jcis.2016.03.050_b0095 article-title: Crystalline NiCo2S4 nanotube array coated with amorphous NiCoxSy for supercapacitor electrodes publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2015.12.057 – volume: 468 start-page: 1 year: 2016 ident: 10.1016/j.jcis.2016.03.050_b0105 article-title: Template method to controllable synthesis 3D porous NiCo2O4 with enhanced capacitance and stability for supercapacitors publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.01.020 – volume: 20 start-page: 845 year: 2008 ident: 10.1016/j.jcis.2016.03.050_b0060 article-title: Materials for electrochemical capacitors publication-title: Nat. Mater. doi: 10.1038/nmat2297 – volume: 2 start-page: 16480 year: 2014 ident: 10.1016/j.jcis.2016.03.050_b0125 article-title: Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03123G – volume: 44 start-page: 4391 year: 2005 ident: 10.1016/j.jcis.2016.03.050_b0225 article-title: Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200500946 |
SSID | ssj0011559 |
Score | 2.369987 |
Snippet | [Display omitted]
•Synthesis of V2O5 nanochains for charge storage applications.•Hydrothermal medium with CTAB surfactant is crucial to obtain V2O5... We have synthesized unique hierarchical one dimensional (1D) nanochains of V2O5 by employing simple hydrothermal method using cetyltrimethylammonium bromide... We have synthesized unique hierarchical one dimensional (1D) nanochains of V sub(2)O sub(5) by employing simple hydrothermal method using... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 210 |
SubjectTerms | Capacitance cetyltrimethylammonium bromide CTAB Current density dielectric spectroscopy Electrochemical analysis Electrochemical impedance spectroscopy electrochemistry electrodes hot water treatment Hydrothermal synthesis Ion exchangers ions lithium Nanochains morphology Nanostructure Pseudocapacitive behavior Specific surface surface area vanadium Vanadium oxide Vanadium pentoxide |
Title | Vanadium pentoxide nanochains for high-performance electrochemical supercapacitors |
URI | https://dx.doi.org/10.1016/j.jcis.2016.03.050 https://www.ncbi.nlm.nih.gov/pubmed/27038783 https://www.proquest.com/docview/1780511346 https://www.proquest.com/docview/1816063012 https://www.proquest.com/docview/2116937932 |
Volume | 472 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hemg5oHZ5dHkplbghlzhxnOwRrUDbVuVQFcTNcvwQQZBddXclTvx2ZhJnAYndQ49JxpEznni-kWe-ATj2NjGpKEumnR4wYUXByoR7VhqN8LzMtBZUKPz7Uo6uxM-b7GYNhl0tDKVVhr2_3dOb3TrcOQ3aPJ1UFdX44t-WEwVSSjiFCn6FyMnKvz8t0jw4Hbu1aR6ckXQonGlzvO5MRZTdXDZEp1R7_75zWgY-Gyd08Rk2A3qMztoJfoE1V_fg47Br2taDjVf8glvw57pJ6Zo_RBP0LePHyrqo1vXY3OqqnkaIVyOiK2aTl-qBKPTFMYFIIJrO8alBl2oqasyzDVcX53-HIxaaKDAjssGMWW4GxNpWxNpLnXjpRIkgznGMogdGYlSqESH4JM2tyTODsbLFqMlmPhUOoUCW7sB6Pa7dV4gkerLYWvTqPhZO68IV2seJtfi-wnnRB95pT5nAME6NLu5Vl0p2p0jjijSu4lShxvtwshgzafk1Vkpn3aKoN1ai0AGsHPetW0GFC0JnIrp24_lUcerpwFE_coVMwSVRk_FkuQzG0RKRHqLhPuy2JrL4niSnHIEi3fvP2e_DJ7qiBDWeHcD67N_cHSIUmpVHja0fwYezH79Gl8-NRAj5 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOACHqjy7fUCQuCFDnDje7LFaFS3PAwLEzXL8EFnR7IrdlXrqb-9M4mxBKnvoNbajZPyYb-RvvgE48jYxqSgKpp3uMWFFzoqEe1YYjfC8yLQWlCh8fSMH9-LiMXtcgn6bC0O0ynD2N2d6fVqHJ6fBmqfjsqQcX9xtXZJASgmn5MuwKnD7UhmDk99zngene7eG58EZdQ-ZMw3Ja2hK0uzmslY6peT7f3un99Bn7YXOPsKHAB-j780XbsKSq7Zgrd9WbduCjVcCg9tw-1BzumY_ozE6l9Gv0rqo0tXIPOmymkQIWCPSK2bjv-kDUSiMY4KSQDSZYatBn2pKqsyzA_dnP-76AxaqKDAjst6UWW56JNuWx9pLnXjpRIEoznEMo3tGYliqESL4JO1a080MBssWwyab-VQ4xAJZugsr1ahynyCS6Mpia9Gt-1g4rXOXax8n1uL7cudFB3hrPWWCxDhVunhWLZdsqMjiiiyu4lShxTtwPB8zbgQ2FvbO2klRb5aJQg-wcNxhO4MKJ4QuRXTlRrOJ4lTUgaN95II-OZekTcaT9_tgIC0R6iEc7sBes0Tm_5N0iSSQp5__8-sPYG1wd32lrs5vLr_AOrUQW41nX2Fl-jJz3xAXTYv9et3_AYE6Coc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vanadium+pentoxide+nanochains+for+high-performance+electrochemical+supercapacitors&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Umeshbabu%2C+Ediga&rft.au=Rao%2C+GRanga&rft.date=2016-06-15&rft.issn=0021-9797&rft.volume=472&rft.spage=210&rft.epage=219&rft_id=info:doi/10.1016%2Fj.jcis.2016.03.050&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |