Vanadium pentoxide nanochains for high-performance electrochemical supercapacitors

[Display omitted] •Synthesis of V2O5 nanochains for charge storage applications.•Hydrothermal medium with CTAB surfactant is crucial to obtain V2O5 nanochains.•Capacitance of bulk V2O5<agglomerated V2O5 particles<V2O5 nanochains. We have synthesized unique hierarchical one dimensional (1D) nan...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 472; pp. 210 - 219
Main Authors Umeshbabu, Ediga, Ranga Rao, G.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Synthesis of V2O5 nanochains for charge storage applications.•Hydrothermal medium with CTAB surfactant is crucial to obtain V2O5 nanochains.•Capacitance of bulk V2O5<agglomerated V2O5 particles<V2O5 nanochains. We have synthesized unique hierarchical one dimensional (1D) nanochains of V2O5 by employing simple hydrothermal method using cetyltrimethylammonium bromide (CTAB) as a soft template. The electrochemical performance of resulting V2O5 electrode materials was evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy techniques. The V2O5 nanochains (V2O5-ctab) show maximum specific capacitance of 631Fg−1 at a current density of 0.5Ag−1 and retain 300Fg−1 even at high current density of 15Ag−1. In addition the V2O5 nanochains show good cyclic stability with 75% capacitance retention after 1200 charge-discharge cycles. The order of specific capacitance is commercial bulk-V2O5 (160Fg−1)<agglomerated V2O5 particles (395Fg−1)<V2O5 nanochains (631Fg−1). The interconnected nanochain-like morphology and high specific surface area are the main factors which contribute to higher electrochemical performance to V2O5 nanochains and promote facile exchange of Li+ ions during the charge-discharge processes.
AbstractList We have synthesized unique hierarchical one dimensional (1D) nanochains of V2O5 by employing simple hydrothermal method using cetyltrimethylammonium bromide (CTAB) as a soft template. The electrochemical performance of resulting V2O5 electrode materials was evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy techniques. The V2O5 nanochains (V2O5-ctab) show maximum specific capacitance of 631Fg⁻¹ at a current density of 0.5Ag⁻¹ and retain 300Fg⁻¹ even at high current density of 15Ag⁻¹. In addition the V2O5 nanochains show good cyclic stability with 75% capacitance retention after 1200 charge-discharge cycles. The order of specific capacitance is commercial bulk-V2O5 (160Fg⁻¹)<agglomerated V2O5 particles (395Fg⁻¹)<V2O5 nanochains (631Fg⁻¹). The interconnected nanochain-like morphology and high specific surface area are the main factors which contribute to higher electrochemical performance to V2O5 nanochains and promote facile exchange of Li⁺ ions during the charge-discharge processes.
We have synthesized unique hierarchical one dimensional (1D) nanochains of V2O5 by employing simple hydrothermal method using cetyltrimethylammonium bromide (CTAB) as a soft template. The electrochemical performance of resulting V2O5 electrode materials was evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy techniques. The V2O5 nanochains (V2O5-ctab) show maximum specific capacitance of 631 F g(-1) at a current density of 0.5 A g(-1) and retain 300 F g(-1) even at high current density of 15 A g(-1). In addition the V2O5 nanochains show good cyclic stability with 75% capacitance retention after 1200 charge-discharge cycles. The order of specific capacitance is commercial bulk-V2O5 (160 F g(-1))<agglomerated V2O5 particles (395 F g(-1))<V2O5 nanochains (631 F g(-1)). The interconnected nanochain-like morphology and high specific surface area are the main factors which contribute to higher electrochemical performance to V2O5 nanochains and promote facile exchange of Li(+) ions during the charge-discharge processes.
[Display omitted] •Synthesis of V2O5 nanochains for charge storage applications.•Hydrothermal medium with CTAB surfactant is crucial to obtain V2O5 nanochains.•Capacitance of bulk V2O5<agglomerated V2O5 particles<V2O5 nanochains. We have synthesized unique hierarchical one dimensional (1D) nanochains of V2O5 by employing simple hydrothermal method using cetyltrimethylammonium bromide (CTAB) as a soft template. The electrochemical performance of resulting V2O5 electrode materials was evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy techniques. The V2O5 nanochains (V2O5-ctab) show maximum specific capacitance of 631Fg−1 at a current density of 0.5Ag−1 and retain 300Fg−1 even at high current density of 15Ag−1. In addition the V2O5 nanochains show good cyclic stability with 75% capacitance retention after 1200 charge-discharge cycles. The order of specific capacitance is commercial bulk-V2O5 (160Fg−1)<agglomerated V2O5 particles (395Fg−1)<V2O5 nanochains (631Fg−1). The interconnected nanochain-like morphology and high specific surface area are the main factors which contribute to higher electrochemical performance to V2O5 nanochains and promote facile exchange of Li+ ions during the charge-discharge processes.
We have synthesized unique hierarchical one dimensional (1D) nanochains of V sub(2)O sub(5) by employing simple hydrothermal method using cetyltrimethylammonium bromide (CTAB) as a soft template. The electrochemical performance of resulting V sub(2)O sub(5) electrode materials was evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy techniques. The V sub(2)O sub(5) nanochains (V sub(2)O sub(5)-ctab) show maximum specific capacitance of 631 F g super(-1) at a current density of 0.5 A g super(-1) and retain 300 F g super(-1) even at high current density of 15 A g super(-1). In addition the V sub(2)O sub(5) nanochains show good cyclic stability with 75% capacitance retention after 1200 charge-discharge cycles. The order of specific capacitance is commercial bulk-V sub(2)O sub(5) (160 F g super(-1)) < agglomerated V sub(2)O sub(5) particles (395 F g super(-1)) < V sub(2)O sub(5) nanochains (631 F g super(-1)). The interconnected nanochain-like morphology and high specific surface area are the main factors which contribute to higher electrochemical performance to V sub(2)O sub(5) nanochains and promote facile exchange of Li super(+) ions during the charge-discharge processes.
We have synthesized unique hierarchical one dimensional (1D) nanochains of V2O5 by employing simple hydrothermal method using cetyltrimethylammonium bromide (CTAB) as a soft template. The electrochemical performance of resulting V2O5 electrode materials was evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy techniques. The V2O5 nanochains (V2O5-ctab) show maximum specific capacitance of 631 F g(-1) at a current density of 0.5 A g(-1) and retain 300 F g(-1) even at high current density of 15 A g(-1). In addition the V2O5 nanochains show good cyclic stability with 75% capacitance retention after 1200 charge-discharge cycles. The order of specific capacitance is commercial bulk-V2O5 (160 F g(-1))<agglomerated V2O5 particles (395 F g(-1))<V2O5 nanochains (631 F g(-1)). The interconnected nanochain-like morphology and high specific surface area are the main factors which contribute to higher electrochemical performance to V2O5 nanochains and promote facile exchange of Li(+) ions during the charge-discharge processes.We have synthesized unique hierarchical one dimensional (1D) nanochains of V2O5 by employing simple hydrothermal method using cetyltrimethylammonium bromide (CTAB) as a soft template. The electrochemical performance of resulting V2O5 electrode materials was evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy techniques. The V2O5 nanochains (V2O5-ctab) show maximum specific capacitance of 631 F g(-1) at a current density of 0.5 A g(-1) and retain 300 F g(-1) even at high current density of 15 A g(-1). In addition the V2O5 nanochains show good cyclic stability with 75% capacitance retention after 1200 charge-discharge cycles. The order of specific capacitance is commercial bulk-V2O5 (160 F g(-1))<agglomerated V2O5 particles (395 F g(-1))<V2O5 nanochains (631 F g(-1)). The interconnected nanochain-like morphology and high specific surface area are the main factors which contribute to higher electrochemical performance to V2O5 nanochains and promote facile exchange of Li(+) ions during the charge-discharge processes.
Author Ranga Rao, G.
Umeshbabu, Ediga
Author_xml – sequence: 1
  givenname: Ediga
  surname: Umeshbabu
  fullname: Umeshbabu, Ediga
– sequence: 2
  givenname: G.
  surname: Ranga Rao
  fullname: Ranga Rao, G.
  email: grrao@iitm.ac.in
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27038783$$D View this record in MEDLINE/PubMed
BookMark eNqNkU2L1TAUhoOMOHdG_4AL6dJN6zlJ0zTgRga_YEAQdRty01NvLm1Sk1b035vLndm4GF3lQJ73cHifK3YRYiDGniM0CNi9OjZH53PDy9yAaEDCI7ZD0LJWCOKC7QA41lppdcmucj4CIEqpn7BLrkD0qhc79vmbDXbw21wtFNb4yw9UBRuiO1gfcjXGVB3890O9UCrzbIOjiiZyayoIzd7Zqcpb-XV2sc6vMeWn7PFop0zP7t5r9vXd2y83H-rbT-8_3ry5rV0r9VoP6DRH0fZgx87ysaN2LztJSHuhXQdcWc7FyIUanJJOgxoA20GOoiWuhRTX7OV575Lij43yamafHU2TDRS3bDhip4XSgv8TxR476ATgf6CqB4nl7q6gL-7QbT_TYJbkZ5t-m_t2C9CfAZdizolGUxqyq49hTdZPBsGcRJqjOYk0J5EGhCkiS5T_Fb3f_mDo9TlEpfafnpLJzlNRNvhUlJkh-ofifwCrDbYs
CitedBy_id crossref_primary_10_1016_j_jtice_2020_02_010
crossref_primary_10_1016_j_synthmet_2022_117262
crossref_primary_10_1039_C7DT02986A
crossref_primary_10_1002_ente_202000690
crossref_primary_10_1080_10584587_2022_2102813
crossref_primary_10_1149_1945_7111_ac2dcf
crossref_primary_10_1007_s12034_023_03101_3
crossref_primary_10_1021_acsaem_8b00390
crossref_primary_10_1002_slct_201901915
crossref_primary_10_1016_j_diamond_2020_107808
crossref_primary_10_1021_acs_langmuir_4c00229
crossref_primary_10_1016_j_jpowsour_2018_03_007
crossref_primary_10_1002_cphc_201600667
crossref_primary_10_1007_s10854_021_05703_1
crossref_primary_10_1016_j_electacta_2017_02_031
crossref_primary_10_1002_slct_202002916
crossref_primary_10_1039_C7CE01444A
crossref_primary_10_1016_j_matpr_2021_02_599
crossref_primary_10_1007_s10008_022_05371_z
crossref_primary_10_1021_acsaem_1c03754
crossref_primary_10_1007_s42452_019_0285_y
crossref_primary_10_1016_j_matchemphys_2016_11_027
crossref_primary_10_1007_s11664_019_07878_0
crossref_primary_10_1039_D2NR04841H
crossref_primary_10_1016_j_jallcom_2023_170862
crossref_primary_10_1142_S0219581X17600201
crossref_primary_10_1016_j_jcis_2016_10_011
crossref_primary_10_1016_j_jelechem_2019_03_012
crossref_primary_10_1039_D1TA06815F
crossref_primary_10_1016_j_cej_2021_132505
crossref_primary_10_1021_acsaelm_4c00709
crossref_primary_10_1016_j_electacta_2018_04_059
crossref_primary_10_1039_D0SE00779J
crossref_primary_10_1016_j_jcis_2017_05_007
crossref_primary_10_1063_1_5091799
crossref_primary_10_1080_10584587_2023_2173450
crossref_primary_10_1007_s00339_017_1522_0
crossref_primary_10_1039_D2CS00112H
crossref_primary_10_1016_j_electacta_2019_05_103
crossref_primary_10_1016_j_jcis_2022_04_062
crossref_primary_10_1039_D0CP06002J
crossref_primary_10_1016_j_rechem_2022_100446
crossref_primary_10_1016_j_jcis_2018_08_010
crossref_primary_10_1007_s10800_023_01971_3
crossref_primary_10_1007_s42250_023_00854_6
crossref_primary_10_1016_j_electacta_2020_136819
crossref_primary_10_1002_celc_201700923
crossref_primary_10_1002_celc_201801542
crossref_primary_10_1016_j_materresbull_2021_111276
crossref_primary_10_1007_s41742_021_00361_x
crossref_primary_10_1016_j_electacta_2022_140340
crossref_primary_10_1615_InterJEnerCleanEnv_2022043086
crossref_primary_10_1016_j_seppur_2020_117501
crossref_primary_10_1007_s00604_020_4182_2
crossref_primary_10_1021_acsaelm_3c00626
crossref_primary_10_1007_s12034_018_1693_0
crossref_primary_10_3390_batteries9070357
crossref_primary_10_1088_2053_1591_aaab0a
crossref_primary_10_1016_j_ijbiomac_2022_07_082
crossref_primary_10_1515_msp_2017_0015
crossref_primary_10_1016_j_surfin_2021_101232
crossref_primary_10_1016_j_jpowsour_2018_10_005
crossref_primary_10_1016_j_jics_2024_101440
crossref_primary_10_1016_S1872_5805_21_60070_7
crossref_primary_10_1039_D0NR04362A
Cites_doi 10.1021/ja207285b
10.1002/aenm.201200088
10.1039/b813846j
10.1002/cssc.200800087
10.1039/c3ee44164d
10.1039/C4RA06136E
10.1021/jp9097155
10.1039/c0jm00059k
10.1002/adma.201003658
10.1007/s10008-014-2498-8
10.1021/nn500942k
10.1021/cr020733x
10.1002/cplu.201200023
10.1039/C4CE00708E
10.1039/C5RA11239G
10.1021/sc5000072
10.1021/jp209165v
10.1039/c1ra00258a
10.1002/aenm.201400236
10.1021/ic202651b
10.1016/j.jelechem.2015.10.031
10.1016/j.electacta.2013.02.078
10.1002/anie.201000235
10.1016/j.jpowsour.2014.09.118
10.1021/am403739g
10.1021/am301162p
10.1016/j.electacta.2012.09.085
10.1016/j.matchemphys.2015.12.051
10.1039/C4TA04062G
10.1039/C0CS00034E
10.1039/c3ta13690f
10.1039/C4TA03731F
10.1039/C4TA05769D
10.1016/j.electacta.2013.05.023
10.1016/j.matchemphys.2015.09.023
10.1021/nl402969r
10.1039/c3cs60012b
10.1016/0013-4686(90)85068-X
10.1016/j.ijhydene.2015.06.046
10.1016/j.ijhydene.2014.07.168
10.1039/c3cs00009e
10.1039/c2ra00793b
10.1016/j.jpowsour.2010.11.149
10.1021/am2011965
10.1016/j.cap.2015.01.026
10.1016/j.jcis.2015.12.057
10.1016/j.jcis.2016.01.020
10.1038/nmat2297
10.1039/C4TA03123G
10.1002/anie.200500946
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7U5
8FD
L7M
7S9
L.6
DOI 10.1016/j.jcis.2016.03.050
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed

Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 219
ExternalDocumentID 27038783
10_1016_j_jcis_2016_03_050
S0021979716301928
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
NPM
7X8
7U5
8FD
L7M
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c459t-d1c9213480af6a2f6e4b565e1eb39c6027a223f237dc75c907d014d5f34e29353
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Wed Jul 30 10:46:17 EDT 2025
Fri Jul 11 04:10:48 EDT 2025
Fri Jul 11 10:00:50 EDT 2025
Wed Feb 19 01:56:23 EST 2025
Thu Apr 24 23:06:57 EDT 2025
Tue Jul 01 01:18:15 EDT 2025
Fri Feb 23 02:33:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Vanadium oxide
Hydrothermal synthesis
Nanochains morphology
CTAB
Pseudocapacitive behavior
Language English
License Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-d1c9213480af6a2f6e4b565e1eb39c6027a223f237dc75c907d014d5f34e29353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27038783
PQID 1780511346
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2116937932
proquest_miscellaneous_1816063012
proquest_miscellaneous_1780511346
pubmed_primary_27038783
crossref_citationtrail_10_1016_j_jcis_2016_03_050
crossref_primary_10_1016_j_jcis_2016_03_050
elsevier_sciencedirect_doi_10_1016_j_jcis_2016_03_050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-15
PublicationDateYYYYMMDD 2016-06-15
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Xu, Wang, An, Wang, Jiao, Yuan (b0125) 2014; 2
Béguin, Frackowiak (b0055) 2013
Horrocks, Likely, Velazquez, Banerjee (b0195) 2013; 1
Orilall, Wiesner (b0035) 2011; 40
Qian, Xu, Zhou, Yang, Liu, Shen, Liang, Yan (b0215) 2015; 3
Saravanakumar, Purushothaman, Muralidharan (b0130) 2012; 4
Qu, Zhu, Gao, Wu (b0155) 2012; 2
Guo, Li, Chen, Gao (b0165) 2015; 273
Reed, Ceder (b0020) 2004; 104
Bai, Wang, Lu, Sun, Gao (b0105) 2016; 468
Sathiya, Prakash, Ramesha, Tarascon, Shukla (b0235) 2011; 133
Umeshbabu, Rajeshkhanna, Ranga Rao (b0050) 2015
Chen, Augustyn, Wen, Zhang, Shen, Dunn, Lu (b0245) 2011; 23
Umeshbabu, Rajeshkhanna, Justin, Ranga Rao (b0025) 2015; 165
Zhang, Uchaker, Candelaria, Cao (b0005) 2013; 42
Liu, Cao, Yang, Wang, Dubois, Zhou, Graff, Pederson, Zhang (b0010) 2008; 1
Perera, Patel, Bonso, Grunewald, Ferraris, Balkus (b0150) 2011; 3
Saravanakumar, Purushothaman, Muralidharan (b0255) 2015; 758
Baddour-Hadjean, Smirnov, Smirnov, Kazimirov, Gallardo-Amores, Amador, Dompablo, Pereira-Ramos (b0190) 2012; 51
Li, Jiao, Wang, Wei, Lia, Xie (b0205) 2014; 2
Cao, Hu, Liang, Wan (b0225) 2005; 44
Dhibar, Bhattacharya, Hatui, Sahoo, Das (b0075) 2014; 2
Patzke, Zhou, Kontic, Conrad (b0030) 2011; 50
Yang, Lan, Liu, Song, Wei (b0170) 2013; 105
Ardizzone, Fregonara, Trasatti (b0230) 1990; 35
Li, Li, Zhou, Wang, Zhang, Li, Feng (b0090) 2014; 18
Li, Sun, Yin, Ruan, Ai (b0065) 2013; 5
Roy, Pradhan, Ray, Sahoo, Dutta, Pal (b0200) 2014; 16
Wee, Soh, Cheah, Mhaisalkar, Srinivasan (b0140) 2010; 20
Davis, Gümeci, Black, Korzeniewski, Hope-Weeks (b0120) 2012; 2
Wang, Zhang, Hu, Zhao, Meng (b0210) 2015; 15
Shi, Song, Zhang (b0040) 2013; 42
Zhang, Guo, Zheng, Zhang, Hao, Kang, Liu (b0115) 2013; 87
Justin, Meher, Ranga Rao (b0045) 2010; 114
Augustyn, Simon, Dunn (b0220) 2014; 7
Du, Seng, Guo, Liu, Li, Jia, Cook, Liu, Liu (b0175) 2011; 1
Rajeshkhanna, Umeshbabu, Justin, Ranga Rao (b0250) 2015; 40
Qu, Liu, Wu, Holze (b0160) 2013; 96
Saravanakumar, Purushothaman, Muralidharan (b0260) 2016; 170
Simon, Gogotsi (b0060) 2008; 20
Umeshbabu, Rajeshkhanna, Ranga Rao (b0100) 2014; 39
Foo, Sumboja, Tan, Wang, Lee (b0185) 2014; 4
Nagaraju, Wang, Beaujuge, Alshareef (b0180) 2014; 2
Aravindan, Cheah, Mak, Wee, Chowdari, Madhavi (b0145) 2012; 77
Shi, Li, Wang, Gu, Tu (b0080) 2014; 4
Zhang, Zhao (b0070) 2009; 38
Meher, Ranga Rao (b0015) 2011; 115
Umeshbabu, Rajeshkhanna, Justin, Ranga Rao (b0110) 2015; 5
Ding, Zhang, Yao, Gao (b0095) 2016; 467
Zhu, Cao, Wu, Gong, Liu, Hoster, Zhang, Zhang, Yang, Yan, Ajayan, Vajtai (b0135) 2013; 13
Devadas, Baranton, Napporn, Coutanceau (b0085) 2011; 196
Tan, Rui, Yu, Liu, Xu, Xu, Hng, Yan (b0240) 2014; 8
Horrocks (10.1016/j.jcis.2016.03.050_b0195) 2013; 1
Augustyn (10.1016/j.jcis.2016.03.050_b0220) 2014; 7
Zhang (10.1016/j.jcis.2016.03.050_b0005) 2013; 42
Du (10.1016/j.jcis.2016.03.050_b0175) 2011; 1
Baddour-Hadjean (10.1016/j.jcis.2016.03.050_b0190) 2012; 51
Patzke (10.1016/j.jcis.2016.03.050_b0030) 2011; 50
Bai (10.1016/j.jcis.2016.03.050_b0105) 2016; 468
Reed (10.1016/j.jcis.2016.03.050_b0020) 2004; 104
Li (10.1016/j.jcis.2016.03.050_b0205) 2014; 2
Davis (10.1016/j.jcis.2016.03.050_b0120) 2012; 2
Qian (10.1016/j.jcis.2016.03.050_b0215) 2015; 3
Shi (10.1016/j.jcis.2016.03.050_b0080) 2014; 4
Ardizzone (10.1016/j.jcis.2016.03.050_b0230) 1990; 35
Orilall (10.1016/j.jcis.2016.03.050_b0035) 2011; 40
Wang (10.1016/j.jcis.2016.03.050_b0210) 2015; 15
Zhang (10.1016/j.jcis.2016.03.050_b0070) 2009; 38
Qu (10.1016/j.jcis.2016.03.050_b0160) 2013; 96
Zhang (10.1016/j.jcis.2016.03.050_b0115) 2013; 87
Devadas (10.1016/j.jcis.2016.03.050_b0085) 2011; 196
Guo (10.1016/j.jcis.2016.03.050_b0165) 2015; 273
Saravanakumar (10.1016/j.jcis.2016.03.050_b0260) 2016; 170
Umeshbabu (10.1016/j.jcis.2016.03.050_b0025) 2015; 165
Perera (10.1016/j.jcis.2016.03.050_b0150) 2011; 3
Yang (10.1016/j.jcis.2016.03.050_b0170) 2013; 105
Wee (10.1016/j.jcis.2016.03.050_b0140) 2010; 20
Qu (10.1016/j.jcis.2016.03.050_b0155) 2012; 2
Meher (10.1016/j.jcis.2016.03.050_b0015) 2011; 115
Umeshbabu (10.1016/j.jcis.2016.03.050_b0050) 2015
Nagaraju (10.1016/j.jcis.2016.03.050_b0180) 2014; 2
Liu (10.1016/j.jcis.2016.03.050_b0010) 2008; 1
Aravindan (10.1016/j.jcis.2016.03.050_b0145) 2012; 77
Foo (10.1016/j.jcis.2016.03.050_b0185) 2014; 4
Sathiya (10.1016/j.jcis.2016.03.050_b0235) 2011; 133
Simon (10.1016/j.jcis.2016.03.050_b0060) 2008; 20
Umeshbabu (10.1016/j.jcis.2016.03.050_b0110) 2015; 5
Chen (10.1016/j.jcis.2016.03.050_b0245) 2011; 23
Béguin (10.1016/j.jcis.2016.03.050_b0055) 2013
Tan (10.1016/j.jcis.2016.03.050_b0240) 2014; 8
Li (10.1016/j.jcis.2016.03.050_b0065) 2013; 5
Saravanakumar (10.1016/j.jcis.2016.03.050_b0130) 2012; 4
Shi (10.1016/j.jcis.2016.03.050_b0040) 2013; 42
Ding (10.1016/j.jcis.2016.03.050_b0095) 2016; 467
Dhibar (10.1016/j.jcis.2016.03.050_b0075) 2014; 2
Zhu (10.1016/j.jcis.2016.03.050_b0135) 2013; 13
Li (10.1016/j.jcis.2016.03.050_b0090) 2014; 18
Saravanakumar (10.1016/j.jcis.2016.03.050_b0255) 2015; 758
Umeshbabu (10.1016/j.jcis.2016.03.050_b0100) 2014; 39
Roy (10.1016/j.jcis.2016.03.050_b0200) 2014; 16
Cao (10.1016/j.jcis.2016.03.050_b0225) 2005; 44
Justin (10.1016/j.jcis.2016.03.050_b0045) 2010; 114
Xu (10.1016/j.jcis.2016.03.050_b0125) 2014; 2
Rajeshkhanna (10.1016/j.jcis.2016.03.050_b0250) 2015; 40
References_xml – volume: 20
  start-page: 6720
  year: 2010
  end-page: 6725
  ident: b0140
  article-title: Synthesis and electrochemical properties of electrospun V
  publication-title: J. Mater. Chem.
– volume: 468
  start-page: 1
  year: 2016
  end-page: 9
  ident: b0105
  article-title: Template method to controllable synthesis 3D porous NiCo
  publication-title: J. Colloid Interface Sci.
– volume: 42
  start-page: 3127
  year: 2013
  end-page: 3171
  ident: b0005
  article-title: Nanomaterials for energy conversion and storage
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 1597
  year: 2014
  end-page: 1614
  ident: b0220
  article-title: Pseudocapacitive oxide materials for high-rate electrochemical energy storage
  publication-title: Energy Environ. Sci.
– volume: 51
  start-page: 3194
  year: 2012
  end-page: 3201
  ident: b0190
  article-title: Lattice dynamics of β-V
  publication-title: Inorg. Chem.
– volume: 133
  start-page: 16291
  year: 2011
  end-page: 16299
  ident: b0235
  article-title: V
  publication-title: J. Am. Chem. Soc.
– volume: 96
  start-page: 8
  year: 2013
  end-page: 12
  ident: b0160
  article-title: Electrochemical behavior of V
  publication-title: Electrochim. Acta
– volume: 758
  start-page: 111
  year: 2015
  end-page: 116
  ident: b0255
  article-title: High performance supercapacitor based on carbon coated V
  publication-title: J. Electroanal. Chem.
– volume: 2
  start-page: 16480
  year: 2014
  end-page: 16488
  ident: b0125
  article-title: Facile synthesis route of porous MnCo
  publication-title: J. Mater. Chem. A
– volume: 165
  start-page: 235
  year: 2015
  end-page: 244
  ident: b0025
  article-title: Magnetic, optical and electrocatalytic properties of urchin and sheaf-like NiCo
  publication-title: Mater. Chem. Phys.
– volume: 20
  start-page: 845
  year: 2008
  end-page: 854
  ident: b0060
  article-title: Materials for electrochemical capacitors
  publication-title: Nat. Mater.
– volume: 5
  start-page: 11462
  year: 2013
  end-page: 11470
  ident: b0065
  article-title: Controlling the formation of rodlike V
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 676
  year: 2008
  end-page: 697
  ident: b0010
  article-title: Oriented nanostructures for energy conversion and storage
  publication-title: ChemSusChem
– volume: 1
  start-page: 690
  year: 2011
  end-page: 697
  ident: b0175
  article-title: Graphene-V
  publication-title: RSC Adv.
– volume: 23
  start-page: 791
  year: 2011
  end-page: 795
  ident: b0245
  article-title: High performance supercapacitors based on intertwined CNT/V
  publication-title: Adv. Mater.
– volume: 115
  start-page: 25543
  year: 2011
  end-page: 25556
  ident: b0015
  article-title: Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 4004
  year: 2014
  end-page: 4014
  ident: b0240
  article-title: Aqueous-based chemical route toward ambient preparation of multicomponent core-shell nanotubes
  publication-title: ACS Nano
– volume: 5
  start-page: 66657
  year: 2015
  end-page: 66666
  ident: b0110
  article-title: Synthesis of mesoporous NiCo
  publication-title: RSC Adv.
– volume: 38
  start-page: 2520
  year: 2009
  end-page: 2531
  ident: b0070
  article-title: Carbon-based materials as supercapacitor electrodes
  publication-title: Chem. Soc. Rev.
– volume: 273
  start-page: 804
  year: 2015
  end-page: 809
  ident: b0165
  article-title: Facile synthesis of vanadium pentoxide@carbon core-shell nanowires for high-performance supercapacitors
  publication-title: J. Power Sources
– volume: 4
  start-page: 41910
  year: 2014
  end-page: 41921
  ident: b0080
  article-title: Metal oxide/hydroxide-based materials for supercapacitors
  publication-title: RSC Adv.
– volume: 467
  start-page: 140
  year: 2016
  end-page: 147
  ident: b0095
  article-title: Crystalline NiCo
  publication-title: J. Colloid Interface Sci.
– volume: 104
  start-page: 4513
  year: 2004
  end-page: 4534
  ident: b0020
  article-title: Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation
  publication-title: Chem. Rev.
– volume: 3
  start-page: 488
  year: 2015
  end-page: 493
  ident: b0215
  article-title: Interconnected three-dimensional V
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 17146
  year: 2014
  end-page: 17152
  ident: b0180
  article-title: Two-dimensional heterostructures of V
  publication-title: J. Mater. Chem. A
– volume: 40
  start-page: 520
  year: 2011
  end-page: 535
  ident: b0035
  article-title: Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells
  publication-title: Chem. Soc. Rev.
– year: 2013
  ident: b0055
  article-title: Supercapacitors: Materials, Systems, and Applications
– volume: 18
  start-page: 2521
  year: 2014
  end-page: 2527
  ident: b0090
  article-title: Facile controlled synthesis of MnO
  publication-title: J. Solid State Electro Chem.
– volume: 1
  start-page: 15265
  year: 2013
  end-page: 15277
  ident: b0195
  article-title: Finite size effects on the structural progression induced by lithiation of V
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 950
  year: 2012
  end-page: 955
  ident: b0155
  article-title: Core-shell structure of polypyrrole grown on V
  publication-title: Adv. Energy Mater.
– volume: 105
  start-page: 489
  year: 2013
  end-page: 495
  ident: b0170
  article-title: Supercapacitor electrode of hollow spherical V
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 18806
  year: 2014
  end-page: 18815
  ident: b0205
  article-title: Micelle anchored in situ synthesis of V
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 7738
  year: 2014
  end-page: 7744
  ident: b0200
  article-title: Facile synthesis of pyridine intercalated ultra-long V
  publication-title: CrystEngComm
– volume: 4
  start-page: 1400236
  year: 2014
  ident: b0185
  article-title: Flexible and highly scalable V
  publication-title: Adv. Energy Mater.
– volume: 50
  start-page: 826
  year: 2011
  end-page: 859
  ident: b0030
  article-title: Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations
  publication-title: Angew. Chem. Int. Ed.
– year: 2015
  ident: b0050
  article-title: Effect of solvents on the morphology of NiCo
  publication-title: J. Solid State Electro Chem.
– volume: 87
  start-page: 546
  year: 2013
  end-page: 553
  ident: b0115
  article-title: Preparation of NiMn
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 1114
  year: 2014
  end-page: 1127
  ident: b0075
  article-title: Transition metal-doped polyaniline/single-walled carbon nanotubes nanocomposites: efficient electrode material for high performance supercapacitors
  publication-title: ACS Sustain. Chem. Eng.
– volume: 40
  start-page: 12303
  year: 2015
  end-page: 12314
  ident: b0250
  article-title: In situ fabrication of porous festuca scoparia-like Ni
  publication-title: Int. J. Hydrogen Energy
– volume: 170
  start-page: 266
  year: 2016
  end-page: 275
  ident: b0260
  article-title: Fabrication of two-dimensional reduced graphene oxide supported V
  publication-title: Mater. Chem. Phys.
– volume: 15
  start-page: 493
  year: 2015
  end-page: 498
  ident: b0210
  article-title: Facile hydrothermal synthesis of ultrahigh-aspect-ratio V
  publication-title: Curr. Appl. Phys.
– volume: 13
  start-page: 5408
  year: 2013
  end-page: 5413
  ident: b0135
  article-title: Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors
  publication-title: Nano Lett.
– volume: 4
  start-page: 4484
  year: 2012
  end-page: 4490
  ident: b0130
  article-title: Interconnected V
  publication-title: ACS Appl. Mater. Interfaces
– volume: 114
  start-page: 5203
  year: 2010
  end-page: 5210
  ident: b0045
  article-title: Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 2061
  year: 2012
  end-page: 2066
  ident: b0120
  article-title: Tailoring cobalt doped zinc oxide nanocrystals with high capacitance activity: factors affecting structure and surface morphology
  publication-title: RSC Adv.
– volume: 39
  start-page: 15627
  year: 2014
  end-page: 15638
  ident: b0100
  article-title: Urchin and sheaf-like NiCo
  publication-title: Int. J. Hydrogen Energy
– volume: 44
  start-page: 4391
  year: 2005
  end-page: 4395
  ident: b0225
  article-title: Self-assembled vanadium pentoxide (V
  publication-title: Angew. Chem. Int. Ed.
– volume: 42
  start-page: 5714
  year: 2013
  end-page: 5743
  ident: b0040
  article-title: Hydrothermal synthetic strategies of inorganic semiconducting nanostructures
  publication-title: Chem. Soc. Rev.
– volume: 196
  start-page: 4044
  year: 2011
  end-page: 4053
  ident: b0085
  article-title: Tailoring of RuO
  publication-title: J. Power Sources
– volume: 77
  start-page: 570
  year: 2012
  end-page: 575
  ident: b0145
  article-title: Fabrication of high energy-density hybrid supercapacitors using electrospun V
  publication-title: ChemPlusChem
– volume: 3
  start-page: 4512
  year: 2011
  end-page: 4517
  ident: b0150
  article-title: Vanadium oxide nanotube spherical clusters prepared on carbon fabrics for energy storage applications
  publication-title: ACS Appl. Mater. Interfaces
– volume: 35
  start-page: 263
  year: 1990
  end-page: 267
  ident: b0230
  article-title: “Inner” and “outer” active surface of RuO
  publication-title: Electrochim. Acta
– volume: 133
  start-page: 16291
  year: 2011
  ident: 10.1016/j.jcis.2016.03.050_b0235
  article-title: V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207285b
– volume: 2
  start-page: 950
  year: 2012
  ident: 10.1016/j.jcis.2016.03.050_b0155
  article-title: Core-shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200088
– year: 2013
  ident: 10.1016/j.jcis.2016.03.050_b0055
– volume: 38
  start-page: 2520
  year: 2009
  ident: 10.1016/j.jcis.2016.03.050_b0070
  article-title: Carbon-based materials as supercapacitor electrodes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b813846j
– volume: 1
  start-page: 676
  year: 2008
  ident: 10.1016/j.jcis.2016.03.050_b0010
  article-title: Oriented nanostructures for energy conversion and storage
  publication-title: ChemSusChem
  doi: 10.1002/cssc.200800087
– volume: 7
  start-page: 1597
  year: 2014
  ident: 10.1016/j.jcis.2016.03.050_b0220
  article-title: Pseudocapacitive oxide materials for high-rate electrochemical energy storage
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee44164d
– volume: 4
  start-page: 41910
  year: 2014
  ident: 10.1016/j.jcis.2016.03.050_b0080
  article-title: Metal oxide/hydroxide-based materials for supercapacitors
  publication-title: RSC Adv.
  doi: 10.1039/C4RA06136E
– volume: 114
  start-page: 5203
  year: 2010
  ident: 10.1016/j.jcis.2016.03.050_b0045
  article-title: Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp9097155
– volume: 20
  start-page: 6720
  year: 2010
  ident: 10.1016/j.jcis.2016.03.050_b0140
  article-title: Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm00059k
– volume: 23
  start-page: 791
  year: 2011
  ident: 10.1016/j.jcis.2016.03.050_b0245
  article-title: High performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003658
– volume: 18
  start-page: 2521
  year: 2014
  ident: 10.1016/j.jcis.2016.03.050_b0090
  article-title: Facile controlled synthesis of MnO2 nanowires for supercapacitors
  publication-title: J. Solid State Electro Chem.
  doi: 10.1007/s10008-014-2498-8
– volume: 8
  start-page: 4004
  year: 2014
  ident: 10.1016/j.jcis.2016.03.050_b0240
  article-title: Aqueous-based chemical route toward ambient preparation of multicomponent core-shell nanotubes
  publication-title: ACS Nano
  doi: 10.1021/nn500942k
– volume: 104
  start-page: 4513
  year: 2004
  ident: 10.1016/j.jcis.2016.03.050_b0020
  article-title: Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation
  publication-title: Chem. Rev.
  doi: 10.1021/cr020733x
– year: 2015
  ident: 10.1016/j.jcis.2016.03.050_b0050
  article-title: Effect of solvents on the morphology of NiCo2O4/graphene nanostructures for electrochemical pseudocapacitor application
  publication-title: J. Solid State Electro Chem.
– volume: 77
  start-page: 570
  year: 2012
  ident: 10.1016/j.jcis.2016.03.050_b0145
  article-title: Fabrication of high energy-density hybrid supercapacitors using electrospun V2O5 nanofibers with a self-supported carbon nanotube network
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201200023
– volume: 16
  start-page: 7738
  year: 2014
  ident: 10.1016/j.jcis.2016.03.050_b0200
  article-title: Facile synthesis of pyridine intercalated ultra-long V2O5 nanowire from commercial V2O5: catalytic applications in selective dye degradation
  publication-title: CrystEngComm
  doi: 10.1039/C4CE00708E
– volume: 5
  start-page: 66657
  year: 2015
  ident: 10.1016/j.jcis.2016.03.050_b0110
  article-title: Synthesis of mesoporous NiCo2O4-rGO by a solvothermal method for charge storage applications
  publication-title: RSC Adv.
  doi: 10.1039/C5RA11239G
– volume: 2
  start-page: 1114
  year: 2014
  ident: 10.1016/j.jcis.2016.03.050_b0075
  article-title: Transition metal-doped polyaniline/single-walled carbon nanotubes nanocomposites: efficient electrode material for high performance supercapacitors
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/sc5000072
– volume: 115
  start-page: 25543
  year: 2011
  ident: 10.1016/j.jcis.2016.03.050_b0015
  article-title: Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp209165v
– volume: 1
  start-page: 690
  year: 2011
  ident: 10.1016/j.jcis.2016.03.050_b0175
  article-title: Graphene-V2O5·nH2O xerogel composite cathodes for lithium ion batteries
  publication-title: RSC Adv.
  doi: 10.1039/c1ra00258a
– volume: 4
  start-page: 1400236
  year: 2014
  ident: 10.1016/j.jcis.2016.03.050_b0185
  article-title: Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400236
– volume: 51
  start-page: 3194
  year: 2012
  ident: 10.1016/j.jcis.2016.03.050_b0190
  article-title: Lattice dynamics of β-V2O5: Raman spectroscopic insight into the atomistic structure of a high-pressure vanadium pentoxide polymorph
  publication-title: Inorg. Chem.
  doi: 10.1021/ic202651b
– volume: 758
  start-page: 111
  year: 2015
  ident: 10.1016/j.jcis.2016.03.050_b0255
  article-title: High performance supercapacitor based on carbon coated V2O5 nanorods
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2015.10.031
– volume: 96
  start-page: 8
  year: 2013
  ident: 10.1016/j.jcis.2016.03.050_b0160
  article-title: Electrochemical behavior of V2O5·0.6H2O nanoribbons in neutral aqueous electrolyte solution
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.02.078
– volume: 50
  start-page: 826
  year: 2011
  ident: 10.1016/j.jcis.2016.03.050_b0030
  article-title: Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201000235
– volume: 273
  start-page: 804
  year: 2015
  ident: 10.1016/j.jcis.2016.03.050_b0165
  article-title: Facile synthesis of vanadium pentoxide@carbon core-shell nanowires for high-performance supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.09.118
– volume: 5
  start-page: 11462
  year: 2013
  ident: 10.1016/j.jcis.2016.03.050_b0065
  article-title: Controlling the formation of rodlike V2O5 nanocrystals on reduced graphene oxide for high-performance supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am403739g
– volume: 4
  start-page: 4484
  year: 2012
  ident: 10.1016/j.jcis.2016.03.050_b0130
  article-title: Interconnected V2O5 nanoporous network for high-performance supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am301162p
– volume: 87
  start-page: 546
  year: 2013
  ident: 10.1016/j.jcis.2016.03.050_b0115
  article-title: Preparation of NiMn2O4 with large specific surface area from an epoxide-driven sol-gel process and its capacitance
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.09.085
– volume: 170
  start-page: 266
  year: 2016
  ident: 10.1016/j.jcis.2016.03.050_b0260
  article-title: Fabrication of two-dimensional reduced graphene oxide supported V2O5 networks and their application in supercapacitors
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2015.12.051
– volume: 2
  start-page: 18806
  year: 2014
  ident: 10.1016/j.jcis.2016.03.050_b0205
  article-title: Micelle anchored in situ synthesis of V2O3 nanoflakes@C composites for supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04062G
– volume: 40
  start-page: 520
  year: 2011
  ident: 10.1016/j.jcis.2016.03.050_b0035
  article-title: Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C0CS00034E
– volume: 1
  start-page: 15265
  year: 2013
  ident: 10.1016/j.jcis.2016.03.050_b0195
  article-title: Finite size effects on the structural progression induced by lithiation of V2O5: a combined diffraction and Raman spectroscopy study
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta13690f
– volume: 2
  start-page: 17146
  year: 2014
  ident: 10.1016/j.jcis.2016.03.050_b0180
  article-title: Two-dimensional heterostructures of V2O5 and reduced graphene oxide as electrodes for high energy density asymmetric supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03731F
– volume: 3
  start-page: 488
  year: 2015
  ident: 10.1016/j.jcis.2016.03.050_b0215
  article-title: Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05769D
– volume: 105
  start-page: 489
  year: 2013
  ident: 10.1016/j.jcis.2016.03.050_b0170
  article-title: Supercapacitor electrode of hollow spherical V2O5 with a high pseudocapacitance in aqueous solution
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.05.023
– volume: 165
  start-page: 235
  year: 2015
  ident: 10.1016/j.jcis.2016.03.050_b0025
  article-title: Magnetic, optical and electrocatalytic properties of urchin and sheaf-like NiCo2O4 nanostructures
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2015.09.023
– volume: 13
  start-page: 5408
  year: 2013
  ident: 10.1016/j.jcis.2016.03.050_b0135
  article-title: Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors
  publication-title: Nano Lett.
  doi: 10.1021/nl402969r
– volume: 42
  start-page: 5714
  year: 2013
  ident: 10.1016/j.jcis.2016.03.050_b0040
  article-title: Hydrothermal synthetic strategies of inorganic semiconducting nanostructures
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60012b
– volume: 35
  start-page: 263
  year: 1990
  ident: 10.1016/j.jcis.2016.03.050_b0230
  article-title: “Inner” and “outer” active surface of RuO2 electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(90)85068-X
– volume: 40
  start-page: 12303
  year: 2015
  ident: 10.1016/j.jcis.2016.03.050_b0250
  article-title: In situ fabrication of porous festuca scoparia-like Ni0.3Co2.7O4 nanostructures on Ni-foam: an efficient electrode material for supercapacitor applications
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.06.046
– volume: 39
  start-page: 15627
  year: 2014
  ident: 10.1016/j.jcis.2016.03.050_b0100
  article-title: Urchin and sheaf-like NiCo2O4 nanostructures: synthesis and electrochemical energy storage application
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.07.168
– volume: 42
  start-page: 3127
  year: 2013
  ident: 10.1016/j.jcis.2016.03.050_b0005
  article-title: Nanomaterials for energy conversion and storage
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs00009e
– volume: 2
  start-page: 2061
  year: 2012
  ident: 10.1016/j.jcis.2016.03.050_b0120
  article-title: Tailoring cobalt doped zinc oxide nanocrystals with high capacitance activity: factors affecting structure and surface morphology
  publication-title: RSC Adv.
  doi: 10.1039/c2ra00793b
– volume: 196
  start-page: 4044
  year: 2011
  ident: 10.1016/j.jcis.2016.03.050_b0085
  article-title: Tailoring of RuO2 nanoparticles by microwave assisted “instant method” for energy storage applications
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.11.149
– volume: 3
  start-page: 4512
  year: 2011
  ident: 10.1016/j.jcis.2016.03.050_b0150
  article-title: Vanadium oxide nanotube spherical clusters prepared on carbon fabrics for energy storage applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am2011965
– volume: 15
  start-page: 493
  year: 2015
  ident: 10.1016/j.jcis.2016.03.050_b0210
  article-title: Facile hydrothermal synthesis of ultrahigh-aspect-ratio V2O5 nanowires for high-performance supercapacitors
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2015.01.026
– volume: 467
  start-page: 140
  year: 2016
  ident: 10.1016/j.jcis.2016.03.050_b0095
  article-title: Crystalline NiCo2S4 nanotube array coated with amorphous NiCoxSy for supercapacitor electrodes
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2015.12.057
– volume: 468
  start-page: 1
  year: 2016
  ident: 10.1016/j.jcis.2016.03.050_b0105
  article-title: Template method to controllable synthesis 3D porous NiCo2O4 with enhanced capacitance and stability for supercapacitors
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.01.020
– volume: 20
  start-page: 845
  year: 2008
  ident: 10.1016/j.jcis.2016.03.050_b0060
  article-title: Materials for electrochemical capacitors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2297
– volume: 2
  start-page: 16480
  year: 2014
  ident: 10.1016/j.jcis.2016.03.050_b0125
  article-title: Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03123G
– volume: 44
  start-page: 4391
  year: 2005
  ident: 10.1016/j.jcis.2016.03.050_b0225
  article-title: Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200500946
SSID ssj0011559
Score 2.369987
Snippet [Display omitted] •Synthesis of V2O5 nanochains for charge storage applications.•Hydrothermal medium with CTAB surfactant is crucial to obtain V2O5...
We have synthesized unique hierarchical one dimensional (1D) nanochains of V2O5 by employing simple hydrothermal method using cetyltrimethylammonium bromide...
We have synthesized unique hierarchical one dimensional (1D) nanochains of V sub(2)O sub(5) by employing simple hydrothermal method using...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 210
SubjectTerms Capacitance
cetyltrimethylammonium bromide
CTAB
Current density
dielectric spectroscopy
Electrochemical analysis
Electrochemical impedance spectroscopy
electrochemistry
electrodes
hot water treatment
Hydrothermal synthesis
Ion exchangers
ions
lithium
Nanochains morphology
Nanostructure
Pseudocapacitive behavior
Specific surface
surface area
vanadium
Vanadium oxide
Vanadium pentoxide
Title Vanadium pentoxide nanochains for high-performance electrochemical supercapacitors
URI https://dx.doi.org/10.1016/j.jcis.2016.03.050
https://www.ncbi.nlm.nih.gov/pubmed/27038783
https://www.proquest.com/docview/1780511346
https://www.proquest.com/docview/1816063012
https://www.proquest.com/docview/2116937932
Volume 472
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hemg5oHZ5dHkplbghlzhxnOwRrUDbVuVQFcTNcvwQQZBddXclTvx2ZhJnAYndQ49JxpEznni-kWe-ATj2NjGpKEumnR4wYUXByoR7VhqN8LzMtBZUKPz7Uo6uxM-b7GYNhl0tDKVVhr2_3dOb3TrcOQ3aPJ1UFdX44t-WEwVSSjiFCn6FyMnKvz8t0jw4Hbu1aR6ckXQonGlzvO5MRZTdXDZEp1R7_75zWgY-Gyd08Rk2A3qMztoJfoE1V_fg47Br2taDjVf8glvw57pJ6Zo_RBP0LePHyrqo1vXY3OqqnkaIVyOiK2aTl-qBKPTFMYFIIJrO8alBl2oqasyzDVcX53-HIxaaKDAjssGMWW4GxNpWxNpLnXjpRIkgznGMogdGYlSqESH4JM2tyTODsbLFqMlmPhUOoUCW7sB6Pa7dV4gkerLYWvTqPhZO68IV2seJtfi-wnnRB95pT5nAME6NLu5Vl0p2p0jjijSu4lShxvtwshgzafk1Vkpn3aKoN1ai0AGsHPetW0GFC0JnIrp24_lUcerpwFE_coVMwSVRk_FkuQzG0RKRHqLhPuy2JrL4niSnHIEi3fvP2e_DJ7qiBDWeHcD67N_cHSIUmpVHja0fwYezH79Gl8-NRAj5
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOACHqjy7fUCQuCFDnDje7LFaFS3PAwLEzXL8EFnR7IrdlXrqb-9M4mxBKnvoNbajZPyYb-RvvgE48jYxqSgKpp3uMWFFzoqEe1YYjfC8yLQWlCh8fSMH9-LiMXtcgn6bC0O0ynD2N2d6fVqHJ6fBmqfjsqQcX9xtXZJASgmn5MuwKnD7UhmDk99zngene7eG58EZdQ-ZMw3Ja2hK0uzmslY6peT7f3un99Bn7YXOPsKHAB-j780XbsKSq7Zgrd9WbduCjVcCg9tw-1BzumY_ozE6l9Gv0rqo0tXIPOmymkQIWCPSK2bjv-kDUSiMY4KSQDSZYatBn2pKqsyzA_dnP-76AxaqKDAjst6UWW56JNuWx9pLnXjpRIEoznEMo3tGYliqESL4JO1a080MBssWwyab-VQ4xAJZugsr1ahynyCS6Mpia9Gt-1g4rXOXax8n1uL7cudFB3hrPWWCxDhVunhWLZdsqMjiiiyu4lShxTtwPB8zbgQ2FvbO2klRb5aJQg-wcNxhO4MKJ4QuRXTlRrOJ4lTUgaN95II-OZekTcaT9_tgIC0R6iEc7sBes0Tm_5N0iSSQp5__8-sPYG1wd32lrs5vLr_AOrUQW41nX2Fl-jJz3xAXTYv9et3_AYE6Coc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vanadium+pentoxide+nanochains+for+high-performance+electrochemical+supercapacitors&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Umeshbabu%2C+Ediga&rft.au=Rao%2C+GRanga&rft.date=2016-06-15&rft.issn=0021-9797&rft.volume=472&rft.spage=210&rft.epage=219&rft_id=info:doi/10.1016%2Fj.jcis.2016.03.050&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon