Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review

The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare. Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals. This paper presents a systematic review of deep learning methods for ECG data from both mo...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 122; p. 103801
Main Authors Hong, Shenda, Zhou, Yuxi, Shang, Junyuan, Xiao, Cao, Sun, Jimeng
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.07.2020
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2020.103801

Cover

Abstract The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare. Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals. This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives. We extracted papers that applied deep learning (deep neural network) models to ECG data that were published between January 1st of 2010 and February 29th of 2020 from Google Scholar, PubMed, and the Digital Bibliography & Library Project. We then analyzed each article according to three factors: tasks, models, and data. Finally, we discuss open challenges and unsolved problems in this area. The total number of papers extracted was 191. Among these papers, 108 were published after 2019. Different deep learning architectures have been used in various ECG analytics tasks, such as disease detection/classification, annotation/localization, sleep staging, biometric human identification, and denoising. The number of works on deep learning for ECG data has grown explosively in recent years. Such works have achieved accuracy comparable to that of traditional feature-based approaches and ensembles of multiple approaches can achieve even better results. Specifically, we found that a hybrid architecture of a convolutional neural network and recurrent neural network ensemble using expert features yields the best results. However, there are some new challenges and problems related to interpretability, scalability, and efficiency that must be addressed. Furthermore, it is also worth investigating new applications from the perspectives of datasets and methods. This paper summarizes existing deep learning research using ECG data from multiple perspectives and highlights existing challenges and problems to identify potential future research directions. •A systematic review of deep learning methods on Electrocardiogram data.•Including 191 papers from multiple research fields from 2010 to 2020.•Analyzing papers from perspectives of task, model and data.•Discussing 7 aspects of challenges and potential opportunities for future works.
AbstractList The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare. Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals. This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives. We extracted papers that applied deep learning (deep neural network) models to ECG data that were published between January 1st of 2010 and February 29th of 2020 from Google Scholar, PubMed, and the Digital Bibliography & Library Project. We then analyzed each article according to three factors: tasks, models, and data. Finally, we discuss open challenges and unsolved problems in this area. The total number of papers extracted was 191. Among these papers, 108 were published after 2019. Different deep learning architectures have been used in various ECG analytics tasks, such as disease detection/classification, annotation/localization, sleep staging, biometric human identification, and denoising. The number of works on deep learning for ECG data has grown explosively in recent years. Such works have achieved accuracy comparable to that of traditional feature-based approaches and ensembles of multiple approaches can achieve even better results. Specifically, we found that a hybrid architecture of a convolutional neural network and recurrent neural network ensemble using expert features yields the best results. However, there are some new challenges and problems related to interpretability, scalability, and efficiency that must be addressed. Furthermore, it is also worth investigating new applications from the perspectives of datasets and methods. This paper summarizes existing deep learning research using ECG data from multiple perspectives and highlights existing challenges and problems to identify potential future research directions. •A systematic review of deep learning methods on Electrocardiogram data.•Including 191 papers from multiple research fields from 2010 to 2020.•Analyzing papers from perspectives of task, model and data.•Discussing 7 aspects of challenges and potential opportunities for future works.
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare. Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals. This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives. We extracted papers that applied deep learning (deep neural network) models to ECG data that were published between January 1st of 2010 and February 29th of 2020 from Google Scholar, PubMed, and the Digital Bibliography & Library Project. We then analyzed each article according to three factors: tasks, models, and data. Finally, we discuss open challenges and unsolved problems in this area. The total number of papers extracted was 191. Among these papers, 108 were published after 2019. Different deep learning architectures have been used in various ECG analytics tasks, such as disease detection/classification, annotation/localization, sleep staging, biometric human identification, and denoising. The number of works on deep learning for ECG data has grown explosively in recent years. Such works have achieved accuracy comparable to that of traditional feature-based approaches and ensembles of multiple approaches can achieve even better results. Specifically, we found that a hybrid architecture of a convolutional neural network and recurrent neural network ensemble using expert features yields the best results. However, there are some new challenges and problems related to interpretability, scalability, and efficiency that must be addressed. Furthermore, it is also worth investigating new applications from the perspectives of datasets and methods. This paper summarizes existing deep learning research using ECG data from multiple perspectives and highlights existing challenges and problems to identify potential future research directions.
BackgroundThe electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare. Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.ObjectiveThis paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.MethodsWe extracted papers that applied deep learning (deep neural network) models to ECG data that were published between January 1st of 2010 and February 29th of 2020 from Google Scholar, PubMed, and the Digital Bibliography & Library Project. We then analyzed each article according to three factors: tasks, models, and data. Finally, we discuss open challenges and unsolved problems in this area.ResultsThe total number of papers extracted was 191. Among these papers, 108 were published after 2019. Different deep learning architectures have been used in various ECG analytics tasks, such as disease detection/classification, annotation/localization, sleep staging, biometric human identification, and denoising.ConclusionThe number of works on deep learning for ECG data has grown explosively in recent years. Such works have achieved accuracy comparable to that of traditional feature-based approaches and ensembles of multiple approaches can achieve even better results. Specifically, we found that a hybrid architecture of a convolutional neural network and recurrent neural network ensemble using expert features yields the best results. However, there are some new challenges and problems related to interpretability, scalability, and efficiency that must be addressed. Furthermore, it is also worth investigating new applications from the perspectives of datasets and methods.SignificanceThis paper summarizes existing deep learning research using ECG data from multiple perspectives and highlights existing challenges and problems to identify potential future research directions.
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare. Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.BACKGROUNDThe electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare. Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.OBJECTIVEThis paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.We extracted papers that applied deep learning (deep neural network) models to ECG data that were published between January 1st of 2010 and February 29th of 2020 from Google Scholar, PubMed, and the Digital Bibliography & Library Project. We then analyzed each article according to three factors: tasks, models, and data. Finally, we discuss open challenges and unsolved problems in this area.METHODSWe extracted papers that applied deep learning (deep neural network) models to ECG data that were published between January 1st of 2010 and February 29th of 2020 from Google Scholar, PubMed, and the Digital Bibliography & Library Project. We then analyzed each article according to three factors: tasks, models, and data. Finally, we discuss open challenges and unsolved problems in this area.The total number of papers extracted was 191. Among these papers, 108 were published after 2019. Different deep learning architectures have been used in various ECG analytics tasks, such as disease detection/classification, annotation/localization, sleep staging, biometric human identification, and denoising.RESULTSThe total number of papers extracted was 191. Among these papers, 108 were published after 2019. Different deep learning architectures have been used in various ECG analytics tasks, such as disease detection/classification, annotation/localization, sleep staging, biometric human identification, and denoising.The number of works on deep learning for ECG data has grown explosively in recent years. Such works have achieved accuracy comparable to that of traditional feature-based approaches and ensembles of multiple approaches can achieve even better results. Specifically, we found that a hybrid architecture of a convolutional neural network and recurrent neural network ensemble using expert features yields the best results. However, there are some new challenges and problems related to interpretability, scalability, and efficiency that must be addressed. Furthermore, it is also worth investigating new applications from the perspectives of datasets and methods.CONCLUSIONThe number of works on deep learning for ECG data has grown explosively in recent years. Such works have achieved accuracy comparable to that of traditional feature-based approaches and ensembles of multiple approaches can achieve even better results. Specifically, we found that a hybrid architecture of a convolutional neural network and recurrent neural network ensemble using expert features yields the best results. However, there are some new challenges and problems related to interpretability, scalability, and efficiency that must be addressed. Furthermore, it is also worth investigating new applications from the perspectives of datasets and methods.This paper summarizes existing deep learning research using ECG data from multiple perspectives and highlights existing challenges and problems to identify potential future research directions.SIGNIFICANCEThis paper summarizes existing deep learning research using ECG data from multiple perspectives and highlights existing challenges and problems to identify potential future research directions.
ArticleNumber 103801
Author Zhou, Yuxi
Hong, Shenda
Sun, Jimeng
Shang, Junyuan
Xiao, Cao
Author_xml – sequence: 1
  givenname: Shenda
  surname: Hong
  fullname: Hong, Shenda
  email: hongshenda@pku.edu.cn
  organization: Department of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, USA
– sequence: 2
  givenname: Yuxi
  surname: Zhou
  fullname: Zhou, Yuxi
  email: joy_yuxi@pku.edu.cn
  organization: School of Electronics Engineering and Computer Science, Peking University, Beijing, China
– sequence: 3
  givenname: Junyuan
  surname: Shang
  fullname: Shang, Junyuan
  email: sjy1203@pku.edu.cn
  organization: School of Electronics Engineering and Computer Science, Peking University, Beijing, China
– sequence: 4
  givenname: Cao
  surname: Xiao
  fullname: Xiao, Cao
  email: cao.xiao@iqvia.com
  organization: Analytics Center of Excellence, IQVIA, Cambridge, USA
– sequence: 5
  givenname: Jimeng
  surname: Sun
  fullname: Sun, Jimeng
  email: jimeng@illinois.edu
  organization: Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32658725$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9vFCEYh4mpsdvqVzAkXrzMCsMwCx6MtfFf0qQXPRMG3tmyMjACo9lvL5ttY7KnPRHI8z7A73eFLkIMgBCmZE0J7d_t1iZO8-DiBHbdkvZwzAShz9CKio1sCGfdBVoRQknTiZZfoqucd4SQjjDyAl2ytudi0_IVgvt5jqkswRUHGetgsXnQ3kPY1m0csQWYsQedggtbPEF5iDbjMSYMHkxJ0ehkXdwmPWGri36Pb3De5wKTLs7gBH8c_H2Jno_aZ3j1uF6jn18-_7j91tzdf_1-e3PXmI7L0lgyDkZqJjQH2Ag9dK0lXDMOvRyk3BiuJYgeDAMYBzranlOtGRUjt5z2ll2jt0fvnOLvBXJRk8sGvNcB4pJV27VsI0VP-4q-OUF3cUmhvq5SVJJOSHagXj9Sy1CzVnNyk0579RRgBT4cAZNizglGZVypP4-hJO28okQdGlM79b8xdWhMHRurAnEieLrjjNFPx1GokdaYk8rGQTBgXarVKBvdOZKPJxLjXXBG-1-wP0_xD8nszbk
CitedBy_id crossref_primary_10_3389_fcvm_2025_1471989
crossref_primary_10_1109_ACCESS_2022_3165966
crossref_primary_10_1109_ACCESS_2024_3378730
crossref_primary_10_1007_s00521_023_09267_5
crossref_primary_10_1007_s11042_024_18302_z
crossref_primary_10_3390_s22114075
crossref_primary_10_1007_s11761_024_00436_5
crossref_primary_10_1038_s41598_023_50334_7
crossref_primary_10_1109_JBHI_2023_3281977
crossref_primary_10_1016_j_engappai_2024_109480
crossref_primary_10_1186_s12911_022_02035_w
crossref_primary_10_1371_journal_pone_0317630
crossref_primary_10_1016_j_compbiomed_2024_109088
crossref_primary_10_3390_app13084964
crossref_primary_10_3390_jintelligence9020017
crossref_primary_10_1016_j_cpcardiol_2023_101744
crossref_primary_10_1088_1361_6579_ac6aa2
crossref_primary_10_1098_rsta_2020_0262
crossref_primary_10_1109_LSP_2022_3172014
crossref_primary_10_1109_ACCESS_2024_3516495
crossref_primary_10_2196_30798
crossref_primary_10_1016_j_bspc_2022_103750
crossref_primary_10_1109_ACCESS_2023_3236189
crossref_primary_10_1007_s12652_022_03868_z
crossref_primary_10_1155_2022_2047576
crossref_primary_10_1109_ACCESS_2021_3095248
crossref_primary_10_1515_jisys_2023_0002
crossref_primary_10_1016_j_bspc_2022_103749
crossref_primary_10_1088_1361_6501_ad7e46
crossref_primary_10_1007_s13239_025_00777_y
crossref_primary_10_1186_s13634_024_01197_1
crossref_primary_10_1109_JSEN_2022_3228517
crossref_primary_10_1038_s41598_024_71932_z
crossref_primary_10_1098_rsif_2022_0317
crossref_primary_10_1155_2024_8813251
crossref_primary_10_1253_circj_CJ_22_0827
crossref_primary_10_31083_j_rcm2512463
crossref_primary_10_1002_joa3_13052
crossref_primary_10_3390_app13063474
crossref_primary_10_1088_1361_6579_ac69a8
crossref_primary_10_32604_cmc_2023_042590
crossref_primary_10_1145_3678569
crossref_primary_10_1109_ACCESS_2023_3282315
crossref_primary_10_1109_ACCESS_2024_3402359
crossref_primary_10_1109_JBHI_2020_3022989
crossref_primary_10_1155_2021_5599272
crossref_primary_10_1093_ehjdh_ztab045
crossref_primary_10_1109_ACCESS_2022_3204703
crossref_primary_10_3390_s20247307
crossref_primary_10_1093_ehjdh_ztac016
crossref_primary_10_1109_JBHI_2021_3068481
crossref_primary_10_4258_hir_2023_29_2_132
crossref_primary_10_1016_j_compbiomed_2024_107928
crossref_primary_10_3389_fphys_2022_912739
crossref_primary_10_1007_s13246_021_01072_5
crossref_primary_10_1109_ACCESS_2023_3335176
crossref_primary_10_3390_asi6050095
crossref_primary_10_3390_s21030773
crossref_primary_10_1007_s11356_021_17442_1
crossref_primary_10_1016_j_bspc_2024_107227
crossref_primary_10_1016_j_cmpb_2023_107623
crossref_primary_10_1038_s41598_022_24574_y
crossref_primary_10_3390_bioengineering11030217
crossref_primary_10_1109_JBHI_2023_3310989
crossref_primary_10_1016_j_ins_2022_01_030
crossref_primary_10_1186_s12911_022_01808_7
crossref_primary_10_1016_j_ins_2021_12_083
crossref_primary_10_7856_kjcls_2024_35_3_497
crossref_primary_10_1186_s12875_024_02407_3
crossref_primary_10_1016_j_compbiomed_2022_106390
crossref_primary_10_1109_JIOT_2021_3108792
crossref_primary_10_2174_1574362417666220518120229
crossref_primary_10_1080_10255842_2025_2480264
crossref_primary_10_1053_j_jvca_2024_04_009
crossref_primary_10_1109_RBME_2023_3296938
crossref_primary_10_1016_j_bspc_2024_106388
crossref_primary_10_1016_j_bspc_2024_107236
crossref_primary_10_1016_j_bspc_2024_107478
crossref_primary_10_1016_j_bspc_2021_102674
crossref_primary_10_1016_j_compbiomed_2021_105114
crossref_primary_10_3390_s21051906
crossref_primary_10_1155_2021_2195922
crossref_primary_10_1007_s11042_023_17071_5
crossref_primary_10_1016_j_artmed_2023_102690
crossref_primary_10_1109_TBME_2023_3239527
crossref_primary_10_1097_CRD_0000000000000764
crossref_primary_10_1038_s41591_023_02396_3
crossref_primary_10_1016_j_measurement_2023_113239
crossref_primary_10_1016_j_bspc_2025_107523
crossref_primary_10_1016_j_knosys_2021_107187
crossref_primary_10_3390_s23031507
crossref_primary_10_1109_RBME_2022_3154893
crossref_primary_10_1016_j_engappai_2024_109222
crossref_primary_10_1007_s40747_024_01419_x
crossref_primary_10_1063_5_0202497
crossref_primary_10_1109_ACCESS_2023_3338191
crossref_primary_10_1038_s41598_021_84374_8
crossref_primary_10_3390_app12168368
crossref_primary_10_1038_s41598_021_82520_w
crossref_primary_10_1038_s44325_024_00010_0
crossref_primary_10_1007_s11760_023_02737_2
crossref_primary_10_1088_1361_6579_acaa1a
crossref_primary_10_3389_frsip_2022_921973
crossref_primary_10_3390_electronics13163222
crossref_primary_10_1016_j_bspc_2022_104388
crossref_primary_10_3390_app11062758
crossref_primary_10_1016_j_hjc_2024_08_011
crossref_primary_10_3390_app14198772
crossref_primary_10_1109_JBHI_2023_3325540
crossref_primary_10_1109_JBHI_2022_3169325
crossref_primary_10_3233_IDT_240649
crossref_primary_10_1038_s41467_023_39472_8
crossref_primary_10_1016_j_dajour_2024_100489
crossref_primary_10_3390_s25051400
crossref_primary_10_1016_j_bspc_2024_107388
crossref_primary_10_1016_j_eswa_2022_118540
crossref_primary_10_1016_j_health_2024_100366
crossref_primary_10_3390_app12073332
crossref_primary_10_1016_j_patter_2023_100687
crossref_primary_10_1016_j_neucom_2023_126524
crossref_primary_10_1016_j_bspc_2021_102528
crossref_primary_10_1016_j_imed_2021_09_001
crossref_primary_10_1016_j_jelectrocard_2021_07_003
crossref_primary_10_1038_s41598_023_45184_2
crossref_primary_10_1109_TIM_2022_3232646
crossref_primary_10_1109_JBHI_2024_3411792
crossref_primary_10_1371_journal_pone_0271270
crossref_primary_10_2196_18803
crossref_primary_10_1155_2022_8413294
crossref_primary_10_3390_s21124173
crossref_primary_10_1007_s11042_023_16506_3
crossref_primary_10_3389_fphys_2023_1118360
crossref_primary_10_1016_j_ijcard_2021_05_017
crossref_primary_10_1016_j_bspc_2024_106744
crossref_primary_10_1016_j_jelectrocard_2023_11_002
crossref_primary_10_1007_s11760_024_03133_0
crossref_primary_10_1088_1361_6579_ac89cb
crossref_primary_10_1109_TBME_2020_3042646
crossref_primary_10_1016_j_imu_2023_101375
crossref_primary_10_1016_j_ijin_2022_11_001
crossref_primary_10_1016_j_comcom_2021_08_002
crossref_primary_10_1109_JSEN_2022_3206225
crossref_primary_10_3390_s23031390
crossref_primary_10_1109_RBME_2024_3486439
crossref_primary_10_1007_s11936_023_01004_4
crossref_primary_10_1111_exsy_13277
crossref_primary_10_1016_j_patter_2024_101116
crossref_primary_10_3390_app12157711
crossref_primary_10_3390_bioengineering11050489
crossref_primary_10_4103_bbrj_bbrj_341_22
crossref_primary_10_1088_1361_6579_ad5cc0
crossref_primary_10_3389_fphys_2021_811661
crossref_primary_10_1109_MRL_2024_3430192
crossref_primary_10_1109_TKDE_2021_3140058
crossref_primary_10_1109_ACCESS_2024_3467181
crossref_primary_10_1016_j_patrec_2020_06_016
crossref_primary_10_1080_03091902_2022_2026508
crossref_primary_10_1016_j_bspc_2024_106160
crossref_primary_10_1007_s42979_024_03508_7
crossref_primary_10_1186_s12911_024_02764_0
crossref_primary_10_1038_s41598_022_24254_x
crossref_primary_10_1016_j_bspc_2024_105997
crossref_primary_10_3389_fgene_2021_638191
crossref_primary_10_3390_jcm11237072
crossref_primary_10_1038_s41746_023_00840_9
crossref_primary_10_1186_s40635_022_00490_3
crossref_primary_10_1109_ACCESS_2022_3192390
crossref_primary_10_18632_aging_204688
crossref_primary_10_3390_bioengineering10010027
crossref_primary_10_1080_10255842_2022_2072684
crossref_primary_10_1088_2057_1976_ad40b0
crossref_primary_10_1186_s12911_021_01453_6
crossref_primary_10_3390_s24165087
crossref_primary_10_1016_j_neunet_2023_03_004
crossref_primary_10_1016_j_bspc_2022_104194
crossref_primary_10_1016_j_cmpb_2020_105847
crossref_primary_10_1109_ACCESS_2021_3095312
crossref_primary_10_1016_j_imu_2025_101624
crossref_primary_10_3389_fphys_2023_1246746
crossref_primary_10_1007_s11831_022_09720_z
crossref_primary_10_3390_s23218691
crossref_primary_10_1109_ACCESS_2020_3029211
crossref_primary_10_3390_e22060595
crossref_primary_10_3390_s24247896
crossref_primary_10_1007_s44196_023_00182_0
crossref_primary_10_2147_NSS_S275252
crossref_primary_10_1109_JSEN_2022_3162691
crossref_primary_10_3390_hearts2040037
crossref_primary_10_1016_j_engappai_2022_105584
crossref_primary_10_1016_j_patcog_2024_111311
crossref_primary_10_23919_CJEE_2023_000008
crossref_primary_10_1016_j_cmpb_2023_107359
crossref_primary_10_1016_j_isci_2021_102373
crossref_primary_10_1016_j_bspc_2022_103548
crossref_primary_10_1109_OJIM_2022_3196703
crossref_primary_10_3934_mbe_2022460
crossref_primary_10_3390_s22072538
crossref_primary_10_4103_mjhs_mjhs_148_22
crossref_primary_10_35784_iapgos_6022
crossref_primary_10_3390_medicina58020210
crossref_primary_10_1109_TBME_2024_3454545
crossref_primary_10_1016_j_cmpb_2021_106312
crossref_primary_10_1002_btm2_70002
crossref_primary_10_1016_j_cmpb_2020_105740
crossref_primary_10_1016_j_bspc_2023_105265
crossref_primary_10_1109_ACCESS_2023_3325283
crossref_primary_10_1108_IJICC_11_2023_0336
crossref_primary_10_1109_TSMC_2023_3257022
crossref_primary_10_1109_ACCESS_2023_3286311
crossref_primary_10_3390_s20247246
crossref_primary_10_1088_2057_1976_adbbf5
crossref_primary_10_3390_app13053070
crossref_primary_10_1016_j_compbiomed_2024_109062
crossref_primary_10_1109_JBHI_2024_3481505
crossref_primary_10_3390_s23198328
crossref_primary_10_1016_j_bspc_2023_104963
crossref_primary_10_3390_sym17030469
crossref_primary_10_1111_exsy_13002
crossref_primary_10_1007_s42979_021_00924_x
crossref_primary_10_1016_j_cvdhj_2022_07_074
crossref_primary_10_3390_bios11060188
crossref_primary_10_1016_j_bspc_2023_105922
crossref_primary_10_3934_mbe_2024189
crossref_primary_10_1007_s13755_022_00192_w
crossref_primary_10_1109_JBHI_2022_3171918
crossref_primary_10_1088_1361_6579_ac826e
crossref_primary_10_32604_cmc_2025_061998
crossref_primary_10_1088_1361_6579_ac6f40
crossref_primary_10_1109_ACCESS_2023_3280565
Cites_doi 10.1016/j.neucom.2019.03.083
10.1371/journal.pone.0210103
10.1088/1361-6579/aac7b7
10.1109/ACCESS.2018.2883213
10.1109/ACCESS.2020.2974712
10.1109/ACCESS.2019.2931500
10.1109/ACCESS.2019.2939947
10.1109/ACCESS.2019.2934928
10.1016/j.compbiomed.2018.12.012
10.3389/fphys.2018.01390
10.1088/1361-6579/aad7e4
10.1109/ACCESS.2019.2936516
10.1166/jmihi.2018.2442
10.1088/1361-6579/aad386
10.1038/s41598-018-33424-9
10.1038/s41598-019-56927-5
10.1016/j.compbiomed.2017.08.022
10.1038/s41598-019-57025-2
10.1109/JBHI.2019.2936583
10.1016/j.cmpb.2019.05.004
10.1109/ACCESS.2019.2946932
10.1109/ACCESS.2019.2921568
10.1016/j.jelectrocard.2019.11.046
10.1088/1361-6579/ab15a2
10.1016/j.jacc.2017.07.723
10.1109/ACCESS.2019.2927726
10.1016/j.compbiomed.2018.03.016
10.1016/j.compbiomed.2018.09.009
10.1016/j.jelectrocard.2019.08.008
10.1109/ACCESS.2019.2907076
10.1088/0967-3334/37/12/2214
10.1109/ACCESS.2019.2960116
10.1016/j.cmpb.2010.02.009
10.1109/JBHI.2018.2885139
10.1016/j.jelectrocard.2018.07.026
10.1016/j.eswa.2018.12.037
10.1016/j.camwa.2007.04.035
10.1016/j.ijcard.2005.02.007
10.1371/journal.pone.0219302
10.1016/j.jelectrocard.2007.03.008
10.1038/s41598-017-09544-z
10.1016/j.compbiomed.2018.05.013
10.1109/JBHI.2019.2911367
10.1109/ACCESS.2019.2930882
10.1109/ACCESS.2018.2886573
10.1016/j.jelectrocard.2018.08.008
10.1016/j.jelectrocard.2019.08.004
10.1109/ACCESS.2019.2939822
10.1016/j.patrec.2019.07.009
10.1371/journal.pone.0226990
10.1109/TSMC.2017.2705582
10.1016/j.eswa.2018.08.011
10.1109/JBHI.2017.2771768
10.1016/j.jelectrocard.2019.09.018
10.1109/ACCESS.2017.2707460
10.1016/j.compbiomed.2017.12.023
10.1161/circ.136.suppl_1.21042
10.1109/ACCESS.2019.2933473
10.1109/ACCESS.2019.2904095
10.1016/j.jelectrocard.2018.11.013
10.1088/1361-6579/aab297
10.1109/JBHI.2019.2942938
10.1088/1361-6579/aad5a9
10.1088/1361-6579/aae304
10.1109/TIP.2015.2475625
10.1109/ACCESS.2019.2926749
10.1016/j.neucom.2018.03.011
10.1038/s41591-018-0268-3
10.1371/journal.pone.0201059
10.1109/ACCESS.2018.2833841
10.1016/j.patrec.2018.03.028
10.1016/j.compbiomed.2017.12.007
10.1109/51.932724
10.1109/ACCESS.2019.2948857
10.1016/j.compbiomed.2018.09.027
10.1016/j.neucom.2020.01.019
10.1088/1361-6579/aad9ee
10.1109/ACCESS.2019.2921991
10.1016/j.cmpb.2019.105138
10.1109/ACCESS.2019.2910880
10.1038/s41591-018-0240-2
10.1016/j.eswa.2019.07.010
10.1016/j.cmpb.2019.105286
10.1109/ACCESS.2018.2855420
10.1109/ACCESS.2019.2912036
10.1109/ACCESS.2019.2890865
10.1007/BF02345439
10.1161/01.CIR.101.23.e215
10.1109/ACCESS.2019.2928017
10.1016/j.patrec.2019.02.016
10.1016/j.eswa.2019.05.033
10.1016/j.compbiomed.2018.07.001
10.1088/1361-6579/aaaa9d
10.1109/ACCESS.2019.2955738
10.1088/1361-6579/aad5bd
10.1016/j.neucom.2018.06.068
10.1109/ACCESS.2019.2912519
10.1109/ACCESS.2019.2920900
10.3390/s18072074
10.1109/ACCESS.2019.2950383
10.1109/ACCESS.2019.2924980
10.1109/JBHI.2019.2910082
10.1016/j.cmpb.2019.105001
10.1109/ACCESS.2018.2807700
10.1038/s41598-019-42516-z
10.1088/1361-6579/aad9ed
10.1161/01.CIR.66.1.218
10.1016/j.compbiomed.2019.04.009
10.1016/j.eswa.2018.07.030
10.1371/journal.pone.0216756
10.1109/JBHI.2019.2919732
10.1038/nature14539
10.3390/s19122828
10.1109/ACCESS.2019.2943197
10.1109/ACCESS.2019.2930770
10.1088/1361-6579/aaff04
10.1109/JBHI.2019.2957809
10.1016/j.cmpb.2016.12.005
10.1109/JBHI.2018.2871510
10.1016/j.compbiomed.2018.06.002
10.1109/ACCESS.2019.2900719
10.1088/1361-6579/ab17f0
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
2020. Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
– notice: 2020. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2020.103801
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database (Proquest)
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Research Library Prep
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1879-0534
ExternalDocumentID 32658725
10_1016_j_compbiomed_2020_103801
S0010482520301694
Genre Research Support, U.S. Gov't, Non-P.H.S
Systematic Review
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R56 HL138415
– fundername: NINDS NIH HHS
  grantid: R01 NS107291
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
M0N
RIG
AAYXX
AFCTW
AGRNS
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
77I
7X8
ID FETCH-LOGICAL-c459t-d0fbc9a38a5ee78ab42d05a35e69b997c5a9e86ec3eefb1fd651aa318f5d516d3
IEDL.DBID BENPR
ISSN 0010-4825
1879-0534
IngestDate Fri Sep 05 08:29:42 EDT 2025
Wed Aug 13 07:24:28 EDT 2025
Mon Jul 21 05:57:37 EDT 2025
Tue Jul 01 03:28:37 EDT 2025
Thu Apr 24 23:04:13 EDT 2025
Fri Feb 23 02:46:42 EST 2024
Tue Aug 26 16:33:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Systematic review
Deep neural network(s)
Electrocardiogram (ECG/EKG)
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-d0fbc9a38a5ee78ab42d05a35e69b997c5a9e86ec3eefb1fd651aa318f5d516d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Undefined-4
PMID 32658725
PQID 2419048936
PQPubID 1226355
ParticipantIDs proquest_miscellaneous_2423798616
proquest_journals_2419048936
pubmed_primary_32658725
crossref_citationtrail_10_1016_j_compbiomed_2020_103801
crossref_primary_10_1016_j_compbiomed_2020_103801
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2020_103801
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2020_103801
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Habib, Karmakar, Yearwood (bib53) 2019; 7
Lee, Oh, Kim, Yoo (bib90) 2019; 24
Sellami, Hwang (bib159) 2019; 122
Golrizkhatami, Acan (bib47) 2018; 114
Hong, Zhou, Wu, Shang, Wang, Li, Xie (bib69) 2019; 40
Zhang, Xiao, Guo, Wang (bib221) 2019; 125
Yang, Gregg, Babaeizadeh (bib206) 2020
Liu, Kim (bib111) 2018
Xu, Mak, Cheung (bib203) 2019; 23
Ye, Zhu, Fu, Shen (bib208) 2019; 7
Wang, Yao (bib185) 2019
Xu, Biswal, Deshpande, Maher, Sun (bib205) 2018
Moskalenko, Zolotykh, Osipov (bib124) 2020
Oh, Ng, San Tan, Acharya (bib133) 2019; 105
Wei, Qi, Wang, Liu, Wang, Yan (bib188) 2019; 7
He, Wang, Hu, Li, Guo, Li (bib63) 2019; 7
Li, Pang, Wang, Li (bib101) 2020; 391
Andersen, Peimankar, Puthusserypady (bib4) 2019; 115
Li, Zhang, Zhao, Zhang, Liu, Zhang, Zhang, Li, Wang, Ng (bib102) 2018; 6
Mousavi, Fotoohinasab, Afghah (bib126) 2020; 15
Zhang, Zhao, Chen, Wu (bib217) 2017; 12
Andreotti, Carr, Pimentel, Mahdi, De Vos (bib5) 2017
Zhai, Tin (bib216) 2018; 6
Chu, Shen, Huang (bib29) 2019; 7
Zihlmann, Perekrestenko, Tschannen (bib231) 2017
Tison, Zhang, Delling, Deo (bib175) 2019; 12
He, Liu, Wang, Zhao, Yuan, Li, Zhang (bib62) 2019; 7
Qiu, Xiao, Shen (bib144) 2017
Chen, Chen (bib26) 2018
Hong, Fu, Zhou, Yu, Li, Wang, Cheng (bib66) 2020
Li, Feng, Wu, Yang, Bai, Yang (bib103) 2019; 7
Yildirim, Baloglu, Tan, Ciaccio, Acharya (bib210) 2019; 176
Ribeiro, Singh, Guestrin (bib150) 2018
Ballinger, Hsieh, Singh, Sohoni, Wang, Tison, Marcus, Sanchez, Maguire, Olgin (bib12) 2018
Behar, Rosenberg, Weiser-Bitoun, Shemla, Alexandrovich, Konyukhov, Yaniv (bib14) 2018; 9
Choi, Bahadori, Sun, Kulas, Schuetz, Stewart (bib28) 2016
Niu, Tang, Sun, Zhang (bib130) 2019; 24
Attia, Kapa, Lopez-Jimenez, Asirvatham, Friedman, Noseworthy (bib7) 2018; 138
Santamaria-Granados, Munoz-Organero, Ramirez-Gonzalez, Abdulhay, Arunkumar (bib156) 2018; 7
Tan, Hagiwara, Pang, Lim, Oh, Adam, San Tan, Chen, Acharya (bib171) 2018; 94
Goto, Kimura, Katsumata, Goto, Kamatani, Ichihara, Ko, Sasaki, Fukuda, Sano (bib49) 2019; 14
Zhong, Liao, Guo, Wang (bib226) 2018; 39
Doersch (bib33) 2016
Clifford, Liu, Moody, Li-wei, Silva, Li, Johnson, Mark (bib30) 2017
Parvaneh, Rubin, Rahman, Conroy, Babaeizadeh (bib137) 2018; 39
Pourbabaee, Roshtkhari, Khorasani (bib143) 2017; 48
Fotiadou, Konopczyński, Hesser, Vullings (bib40) 2020
Baloglu, Talo, Yildirim, San Tan, Acharya (bib13) 2019; 122
Deng, Dong, Socher, Li, Li, Fei-Fei (bib32) 2009
Li, Pan, Li, Jiang, Liu (bib97) 2018; 294
Xiong, Wang, Liu, Lin, Hou, Liu (bib199) 2016; 37
Yıldırım, Pławiak, Tan, Acharya (bib211) 2018; 102
Lee, Sun, Yang, Sohn, Park, Lee, Kim (bib91) 2018; 23
Attia, Kapa, Lopez-Jimenez, McKie, Ladewig, Satam, Pellikka, Enriquez-Sarano, Noseworthy, Munger (bib8) 2019; 25
Feng, Xu, Liang, Liu (bib38) 2019; 7
Camm, Malik, Bigger, Breithardt, Cerutti, Cohen, Coumel, Fallen, Kennedy, Kleiger (bib19) 1996
Lee, Kwak (bib92) 2019; 7
Faust, Shenfield, Kareem, San, Fujita, Acharya (bib37) 2018; 102
Lai, Zhang, Bu, Su, Ma (bib88) 2019; 7
Attin, Cogliati, Duan (bib10) 2017; 136
Moody (bib122) 1983
Zhou, Hong, Shang, Wu, Wang, Li, Xie (bib229) 2019
Zhang, Zhou, Zeng (bib219) 2017; 5
Han, Mao, Dally (bib56) 2016
Kiranyaz, Ince, Hamila, Gabbouj (bib82) 2015
Zhao, Zhang, Deng, Zhang (bib225) 2018; 102
Hao, Gao, Li, Zhang, Wu, Bai (bib59) 2020; 184
Attia, Friedman, Noseworthy, Lopez-Jimenez, Ladewig, Satam, Pellikka, Munger, Asirvatham, Scott (bib6) 2019; 12
Jia, Zhao, Hu, Wang, Yan, Li (bib73) 2019
Wang, Li, Li, Li, Zeng, Xie, Liu (bib180) 2019; 349
Elola, Aramendi, Irusta, Picón, Alonso, Owens, Idris (bib34) 2018
Xiong, Stiles, Zhao (bib201) 2017
Liu, Wang, Huang, Chang, Wang, He (bib112) 2020; 24
Shaker, Tantawi, Shedeed, Tolba (bib162) 2020; 8
Rubin, Parvaneh, Rahman, Conroy, Babaeizadeh (bib154) 2018; 51
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib48) 2014
Wu, Feng, Yang (bib190) 2019
Gyawali, Chen, Liu, Horacek, Sapp, Wang (bib51) 2017
Gogna, Majumdar, Ward (bib44) 2016; 64
Chang, Wu, Tseng, Chao, Ko (bib23) 2018
Sun, Zeng, He (bib169) 2019
Jiang, Zhang, Pi, Dai (bib75) 2019; 1
Camps, Rodríguez, Mincholé (bib20) 2018
Noseworthy, Attia, Brewer, Hayes, Yao, Kapa, Friedman, Lopez-Jimenez (bib131) 2020
Xiong, Nash, Cheng, Fedorov, Stiles, Zhao (bib200) 2018; 39
Smith, Walsh, Grauer, Wang, Rapin, Li, Fennell, Taboulet (bib166) 2019; 52
Parvaneh, Rubin, Babaeizadeh, Xu-Wilson (bib136) 2019; 57
Hong, Wu, Zhou, Wang, Shang, Li, Xie (bib67) 2017
Hong, Hsiao, Chung, Feng, Wu (bib65) 2019
Tison, Singh, Ohashi, Hsieh, Ballinger, Olgin, Marcus, Pletcher (bib174) 2017; 136
Picon, Irusta, Álvarez-Gila, Aramendi, Alonso-Atienza, Figuera, Ayala, Garrote, Wik, Kramer-Johansen (bib140) 2019; 14
Xiao, Xu, Pelter, Mortara, Hu (bib196) 2018
Zhang, Lin, Xiong, Du, Zhang, Liu, Hou, Liub (bib218) 2019
Dang, Sun, Zhang, Qi, Zhou, Chang (bib31) 2019
Chiang, Hsieh, Fu, Hung, Tsao, Chien (bib27) 2019; 7
Sodmann, Vollmer, Nath, Kaderali (bib167) 2018; 39
Jia, Zhao, Li, Hu, Yan, Wang, You (bib74) 2019
Hu, Ma, Liu, Hovy, Xing (bib70) 2016; vol. 1
Hong, Xiao, Ma, Li, Sun (bib68) 2019
Wang, Hou, Shao, Yan (bib182) 2019; 7
Nikolic, Bishop, Singh (bib129) 1982; 66
Strodthoff, Strodthoff (bib168) 2018
Moody, Mark (bib123) 2001; 20
Zhao, Liu, Li, Li, Wang, Lin, Li (bib223) 2019; 7
Acharya, Oh, Hagiwara, Tan, Adam, Gertych, San Tan (bib1) 2017; 89
Ghiasi, Abdollahpur, Madani, Kiani, Ghaffari (bib43) 2017
Lynn, Pan, Kim (bib114) 2019; 7
Tadesse, Zhu, Liu, Zhou, Chen, Tian, Clifton (bib170) 2019
Guglin, Thatai (bib50) 2006; 106
Vullings (bib178) 2019
Chauhan, Vig, Ahmad (bib24) 2019; 109
Raghunath, Ulloa Cerna, Jing, vanMaanen, Stough, Hartzel, Leader, Kirchner, Good, Patel (bib145) 2019; 140
Schläpfer, Wellens (bib157) 2017; 70
Li, Xu, Chen, Liu (bib95) 2019; 7
Parvaneh, Rubin (bib135) 2018
Philips (bib139) 2003
Baalman, Ramos, Lopes, Van Der Stuijt, Bleijendaal, Brouwer, Marquering, Driessen, Knops, de Groot (bib11) 2019; 140
Harada, Hayashi, Uchida (bib60) 2019; 7
Kiranyaz, Ince, Gabbouj (bib80) 2015; 63
Kiranyaz, Ince, Gabbouj (bib81) 2017; 7
Wołk (bib189) 2019
Zhou, Liu, Hooi, Cheng, Ye (bib227) 2019
Romero, Serrano (bib151) 2001
Lin, Goyal, Girshick, He, Dollár (bib108) 2017
Maidens, Slamon (bib116) 2018; 138
Schwab, Scebba, Zhang, Delai, Karlen (bib158) 2017
Xu, Li, Liu, Wu (bib202) 2019; 7
Yildirim (bib209) 2018; 96
Cao, Yao, Chen (bib21) 2019; 7
Wang, Zhang, Pan (bib179) 2019
Mincholé, Camps, Lyon, Rodríguez (bib121) 2019; 57
Xia, Xie (bib193) 2019; 7
Han, Shi (bib55) 2020; 185
Li, Zhou, Wan, Li, Mou (bib104) 2020; 58
Bousseljot, Kreiseler, Schnabel (bib15) 1995; 40
Li, Liu, Li, Shashikumar, Nemati, Shen, Clifford (bib98) 2019; 40
Shashikumar, Shah, Clifford, Nemati (bib163) 2018
Teijeiro, García, Castro, Félix (bib173) 2018; 39
Xia, Wulan, Wang, Zhang (bib192) 2018; 93
Lee, Lee, Choi, Seo, Kim (bib93) 2019; 134
Kwon, Kim, Jeon, Lee, Lee, Cho, Choi, Jeon, Kim, Kim (bib85) 2019; 14
Limam, Precioso (bib105) 2017
Oh, Ng, San Tan, Acharya (bib132) 2018; 102
Xia, Zhang, Xu, Gao, Zhang, Liu, Li (bib194) 2018; 6
Labati, Muñoz, Piuri, Sassi, Scotti (bib86) 2019; 126
Liu, Zhang, Zhang, Liao, Huang, Chang, Wang, He (bib113) 2017; 22
Rajan, Beymer, Narayan (bib146) 2018
Huang, Chen, Yao, He (bib71) 2019; 7
Yin, Zhao, Wang, Yang, Zhang (bib213) 2017; 140
Miller, Obermeyer, Mullainathan (bib120) 2019
Nguyen, Van Nguyen, Kim (bib128) 2018; 8
He, Li, Liao, Zhang, Jiang (bib61) 2019; 7
Li, Wu, Jia, Chen, Pu (bib94) 2019
Cai, Chen, Guo, Han, Shi, Ji, Wang, Zhang, Luo (bib18) 2019
Attia, Sugrue, Asirvatham, Ackerman, Kapa, Friedman, Noseworthy (bib9) 2018; 13
Lin (bib106) 2008; 55
Zhang, Li, Dai, Liu, Zhou, Wang (bib220) 2019; 7
Hammad, Liu, Wang (bib54) 2018; 7
Li, Zhang, Dai, Zhou, Wang (bib99) 2019; 7
Laguna, Mark, Goldberg, Moody (bib87) 1997
Zhu, Ye, Fu, Liu, Shen (bib230) 2019; 9
Brisk, Bond, Banks, Piadlo, Finlay, McLaughlin, McEneaney (bib16) 2019; 57
Hannun, Rajpurkar, Haghpanahi, Tison, Bourn, Turakhia, Ng (bib57) 2019; 25
Malik, Lo, Wu (bib118) 2018; 39
Lin, Li, He, Zhang, Sun (bib107) 2017
Mathews, Kambhamettu, Barner (bib119) 2018; 99
Kuznetsov, Moskalenko, Zolotykh (bib84) 2020
Porumb, Stranges, Pescapè, Pecchia (bib142) 2020; 10
Selvalingam, Alhusseini, Rogers, Krummen, Abuzaid, Zaman, Baykaner, Clopton, Bailis, Zaharia (bib160) 2019; 140
Warrick, Homsi (bib186) 2017
Maknickas, Maknickas (bib117) 2017
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (bib46) 2000; 101
Park, Yun, Kang (bib134) 2019; 7
Golany, Radinsky (bib45) 2019
Yin, Yang, Zhang, Oki (bib212) 2016; 4
Mukherjee, Choudhury, Datta, Puri, Banerjee, Singh, Ukil, Bandyopadhyay, Pal, Khandelwal (bib127) 2019; 40
Xie, Tu, Wang, Lian, Xu (bib198) 2019; 7
Wang, Zhou, Chang, Chen, Zhou (bib181) 2019
Zhou, Zhu, Nakamura, Mahito (bib228) 2018
Koh, Lee (bib83) 2019; 19
LeCun, Bengio, Hinton (bib89) 2015; 521
Al Rahhal, Bazi, Almubarak, Alajlan, Al Zuair (bib2) 2019; 7
Brock, Donahue, Simonyan (bib17) 2018
Chan, Jia, Gao, Lu, Zeng, Ma (bib22) 2015; 24
Yang, Yu, Jin, Wu, He (bib207) 2017; 65
Xia, Wulan, Wang, Zhang (bib191) 2017
Shen, Voisin, Aliamiri, Avati, Hannun, Ng (bib164) 2019
Xu, Mak, Cheung (bib204) 2020; 24
Zhao, Wang, Cai, Li, Liu (bib224) 2019
Hao, Wibowo, Majmudar, Rajput (bib58) 2019
Rubin, Parvaneh, Rahman, Conroy, Babaeizadeh (bib153) 2017
Shu, Xie, Yang, Li, Li, Liao, Xu, Yang (bib165) 2018; 18
Yu, Gao, Duan, Zhu, Wang, Jiao (bib214) 2018
Ribeiro, Singh, Guestrin (bib149) 2016
Alcaraz, Abásolo, Hornero, Rieta (bib3) 2010; 99
Farhadi, Attarodi, Dabanloo, Mohandespoor, Eslamizadeh (bib36) 2018
Hinton, Vinyals, Dean (bib64) 2015
Ronneberger, Fischer, Brox (bib152) 2015
Plesinger, Nejedly, Viscor, Halamek, Jurak (bib141) 2018; 39
Kamaleswaran, Mahajan, Akbilgic (bib78) 2018; 39
Rajan, Thiagarajan (bib147) 2018
Shah, Rubin (bib161) 2007; 40
Chen, Wang, Xie, Sang, Lv, Zhang, Yang (bib25) 2018
Wang, Xiao, Bi, Li, Zhang, Ma (bib184) 2019
Xiao, Xu, Pelter, Fidler, Badilini, Mortara, Hu (bib195) 2018; 51
Zhao, Hu, Jia, Wang, Li, Yan, You (bib222) 2019
Mousavi, Afghah (bib125) 2019
Tateno, Glass (bib172) 2001; 39
Li, Pang, Wang, Li (bib100) 2018; 314
Liu, Zhou, Cao, Wang, Wang, Zhang (bib110) 2019
Gadaleta, Rossi, Steinhubl, Quer (bi
Baloglu (10.1016/j.compbiomed.2020.103801_bib13) 2019; 122
Hong (10.1016/j.compbiomed.2020.103801_bib68) 2019
Li (10.1016/j.compbiomed.2020.103801_bib102) 2018; 6
Fotiadou (10.1016/j.compbiomed.2020.103801_bib40) 2020
Lee (10.1016/j.compbiomed.2020.103801_bib90) 2019; 24
Attia (10.1016/j.compbiomed.2020.103801_bib7) 2018; 138
Wang (10.1016/j.compbiomed.2020.103801_bib182) 2019; 7
Selvalingam (10.1016/j.compbiomed.2020.103801_bib160) 2019; 140
Cai (10.1016/j.compbiomed.2020.103801_bib18) 2019
Xiong (10.1016/j.compbiomed.2020.103801_bib200) 2018; 39
Lee (10.1016/j.compbiomed.2020.103801_bib93) 2019; 134
Ghiasi (10.1016/j.compbiomed.2020.103801_bib43) 2017
Xiao (10.1016/j.compbiomed.2020.103801_bib196) 2018
Li (10.1016/j.compbiomed.2020.103801_bib95) 2019; 7
Choi (10.1016/j.compbiomed.2020.103801_bib28) 2016
Sellami (10.1016/j.compbiomed.2020.103801_bib159) 2019; 122
Chan (10.1016/j.compbiomed.2020.103801_bib22) 2015; 24
Zhang (10.1016/j.compbiomed.2020.103801_bib218) 2019
Zhong (10.1016/j.compbiomed.2020.103801_bib226) 2018; 39
Chen (10.1016/j.compbiomed.2020.103801_bib25) 2018
Limam (10.1016/j.compbiomed.2020.103801_bib105) 2017
Xia (10.1016/j.compbiomed.2020.103801_bib194) 2018; 6
Moody (10.1016/j.compbiomed.2020.103801_bib122) 1983
Mousavi (10.1016/j.compbiomed.2020.103801_bib126) 2020; 15
Oh (10.1016/j.compbiomed.2020.103801_bib132) 2018; 102
Gadaleta (10.1016/j.compbiomed.2020.103801_bib41) 2018; 138
Xiong (10.1016/j.compbiomed.2020.103801_bib201) 2017
Zhou (10.1016/j.compbiomed.2020.103801_bib229) 2019
Feng (10.1016/j.compbiomed.2020.103801_bib38) 2019; 7
Yang (10.1016/j.compbiomed.2020.103801_bib206) 2020
Malik (10.1016/j.compbiomed.2020.103801_bib118) 2018; 39
Ballinger (10.1016/j.compbiomed.2020.103801_bib12) 2018
Labati (10.1016/j.compbiomed.2020.103801_bib86) 2019; 126
Jia (10.1016/j.compbiomed.2020.103801_bib74) 2019
Hong (10.1016/j.compbiomed.2020.103801_bib69) 2019; 40
Dang (10.1016/j.compbiomed.2020.103801_bib31) 2019
Zhao (10.1016/j.compbiomed.2020.103801_bib222) 2019
Brisk (10.1016/j.compbiomed.2020.103801_bib16) 2019; 57
Parvaneh (10.1016/j.compbiomed.2020.103801_bib135) 2018
Han (10.1016/j.compbiomed.2020.103801_bib55) 2020; 185
Zihlmann (10.1016/j.compbiomed.2020.103801_bib231) 2017
Yang (10.1016/j.compbiomed.2020.103801_bib207) 2017; 65
Picon (10.1016/j.compbiomed.2020.103801_bib140) 2019; 14
Gyawali (10.1016/j.compbiomed.2020.103801_bib51) 2017
Hong (10.1016/j.compbiomed.2020.103801_bib67) 2017
He (10.1016/j.compbiomed.2020.103801_bib63) 2019; 7
Jia (10.1016/j.compbiomed.2020.103801_bib73) 2019
Warrick (10.1016/j.compbiomed.2020.103801_bib187) 2018; 39
Schläpfer (10.1016/j.compbiomed.2020.103801_bib157) 2017; 70
Wang (10.1016/j.compbiomed.2020.103801_bib184) 2019
Kiranyaz (10.1016/j.compbiomed.2020.103801_bib80) 2015; 63
Yu (10.1016/j.compbiomed.2020.103801_bib214) 2018
Li (10.1016/j.compbiomed.2020.103801_bib98) 2019; 40
Mincholé (10.1016/j.compbiomed.2020.103801_bib121) 2019; 57
Alcaraz (10.1016/j.compbiomed.2020.103801_bib3) 2010; 99
Yuen (10.1016/j.compbiomed.2020.103801_bib215) 2019; 7
Zhou (10.1016/j.compbiomed.2020.103801_bib228) 2018
Gyawali (10.1016/j.compbiomed.2020.103801_bib52) 2019; 67
Tan (10.1016/j.compbiomed.2020.103801_bib171) 2018; 94
Liu (10.1016/j.compbiomed.2020.103801_bib113) 2017; 22
Hannun (10.1016/j.compbiomed.2020.103801_bib57) 2019; 25
Erdenebayar (10.1016/j.compbiomed.2020.103801_bib35) 2019; 180
Noseworthy (10.1016/j.compbiomed.2020.103801_bib131) 2020
Tison (10.1016/j.compbiomed.2020.103801_bib175) 2019; 12
Han (10.1016/j.compbiomed.2020.103801_bib56) 2016
Zhao (10.1016/j.compbiomed.2020.103801_bib225) 2018; 102
Ghassemi (10.1016/j.compbiomed.2020.103801_bib42) 2018
Lee (10.1016/j.compbiomed.2020.103801_bib91) 2018; 23
Shah (10.1016/j.compbiomed.2020.103801_bib161) 2007; 40
Attia (10.1016/j.compbiomed.2020.103801_bib8) 2019; 25
Li (10.1016/j.compbiomed.2020.103801_bib94) 2019
Wang (10.1016/j.compbiomed.2020.103801_bib185)
Harada (10.1016/j.compbiomed.2020.103801_bib60) 2019; 7
Kiranyaz (10.1016/j.compbiomed.2020.103801_bib81) 2017; 7
Lin (10.1016/j.compbiomed.2020.103801_bib108) 2017
Goodfellow (10.1016/j.compbiomed.2020.103801_bib48) 2014
Acharya (10.1016/j.compbiomed.2020.103801_bib1) 2017; 89
Camm (10.1016/j.compbiomed.2020.103801_bib19) 1996
Smith (10.1016/j.compbiomed.2020.103801_bib166) 2019; 52
Yin (10.1016/j.compbiomed.2020.103801_bib213) 2017; 140
Attin (10.1016/j.compbiomed.2020.103801_bib10) 2017; 136
Li (10.1016/j.compbiomed.2020.103801_bib97) 2018; 294
Yin (10.1016/j.compbiomed.2020.103801_bib212) 2016; 4
Parvaneh (10.1016/j.compbiomed.2020.103801_bib136) 2019; 57
Zhang (10.1016/j.compbiomed.2020.103801_bib221) 2019; 125
Ronneberger (10.1016/j.compbiomed.2020.103801_bib152) 2015
Bousseljot (10.1016/j.compbiomed.2020.103801_bib15) 1995; 40
Shaker (10.1016/j.compbiomed.2020.103801_bib162) 2020; 8
Nikolic (10.1016/j.compbiomed.2020.103801_bib129) 1982; 66
Al Rahhal (10.1016/j.compbiomed.2020.103801_bib2) 2019; 7
Park (10.1016/j.compbiomed.2020.103801_bib134) 2019; 7
Saadatnejad (10.1016/j.compbiomed.2020.103801_bib155) 2020; 24
Tateno (10.1016/j.compbiomed.2020.103801_bib172) 2001; 39
Warrick (10.1016/j.compbiomed.2020.103801_bib186) 2017
Yıldırım (10.1016/j.compbiomed.2020.103801_bib211) 2018; 102
Baalman (10.1016/j.compbiomed.2020.103801_bib11) 2019; 140
Zhang (10.1016/j.compbiomed.2020.103801_bib220) 2019; 7
He (10.1016/j.compbiomed.2020.103801_bib62) 2019; 7
Pourbabaee (10.1016/j.compbiomed.2020.103801_bib143) 2017; 48
Zhang (10.1016/j.compbiomed.2020.103801_bib219) 2017; 5
Elola (10.1016/j.compbiomed.2020.103801_bib34) 2018
Shu (10.1016/j.compbiomed.2020.103801_bib165) 2018; 18
Attia (10.1016/j.compbiomed.2020.103801_bib9) 2018; 13
Fotiadou (10.1016/j.compbiomed.2020.103801_bib39) 2019
Nguyen (10.1016/j.compbiomed.2020.103801_bib128) 2018; 8
Zhou (10.1016/j.compbiomed.2020.103801_bib227) 2019
Gogna (10.1016/j.compbiomed.2020.103801_bib44) 2016; 64
Golany (10.1016/j.compbiomed.2020.103801_bib45) 2019
LeCun (10.1016/j.compbiomed.2020.103801_bib89) 2015; 521
Lai (10.1016/j.compbiomed.2020.103801_bib88) 2019; 7
Zhao (10.1016/j.compbiomed.2020.103801_bib223) 2019; 7
Shashikumar (10.1016/j.compbiomed.2020.103801_bib163) 2018
Chu (10.1016/j.compbiomed.2020.103801_bib29) 2019; 7
Mousavi (10.1016/j.compbiomed.2020.103801_bib125) 2019
Brock (10.1016/j.compbiomed.2020.103801_bib17) 2018
Romero (10.1016/j.compbiomed.2020.103801_bib151) 2001
Kiranyaz (10.1016/j.compbiomed.2020.103801_bib82) 2015
Hinton (10.1016/j.compbiomed.2020.103801_bib64)
Kwon (10.1016/j.compbiomed.2020.103801_bib85) 2019; 14
Wu (10.1016/j.compbiomed.2020.103801_bib190) 2019
Hao (10.1016/j.compbiomed.2020.103801_bib58) 2019
Faust (10.1016/j.compbiomed.2020.103801_bib37) 2018; 102
Kalyakulina (10.1016/j.compbiomed.2020.103801_bib77) 2018
Van Steenkiste (10.1016/j.compbiomed.2020.103801_bib177) 2020; 10
Rastgoo (10.1016/j.compbiomed.2020.103801_bib148) 2019; 138
Yildirim (10.1016/j.compbiomed.2020.103801_bib209) 2018; 96
Xia (10.1016/j.compbiomed.2020.103801_bib192) 2018; 93
Xu (10.1016/j.compbiomed.2020.103801_bib203) 2019; 23
Chiang (10.1016/j.compbiomed.2020.103801_bib27) 2019; 7
Zhao (10.1016/j.compbiomed.2020.103801_bib224) 2019
Qiu (10.1016/j.compbiomed.2020.103801_bib144) 2017
Xu (10.1016/j.compbiomed.2020.103801_bib205) 2018
Xiong (10.1016/j.compbiomed.2020.103801_bib199) 2016; 37
Li (10.1016/j.compbiomed.2020.103801_bib101) 2020; 391
Zhang (10.1016/j.compbiomed.2020.103801_bib217) 2017; 12
Ribeiro (10.1016/j.compbiomed.2020.103801_bib149) 2016
Xu (10.1016/j.compbiomed.2020.103801_bib202) 2019; 7
Hammad (10.1016/j.compbiomed.2020.103801_bib54) 2018; 7
Tadesse (10.1016/j.compbiomed.2020.103801_bib170) 2019
Xie (10.1016/j.compbiomed.2020.103801_bib197) 2018
Kamaleswaran (10.1016/j.compbiomed.2020.103801_bib78) 2018; 39
Hong (10.1016/j.compbiomed.2020.103801_bib65) 2019
Habib (10.1016/j.compbiomed.2020.103801_bib53) 2019; 7
Lee (10.1016/j.compbiomed.2020.103801_bib92) 2019; 7
Ye (10.1016/j.compbiomed.2020.103801_bib208) 2019; 7
Chauhan (10.1016/j.compbiomed.2020.103801_bib24) 2019; 109
Lin (10.1016/j.compbiomed.2020.103801_bib107) 2017
Maaten (10.1016/j.compbiomed.2020.103801_bib115) 2008; 9
Oh (10.1016/j.compbiomed.2020.103801_bib133) 2019; 105
Zhai (10.1016/j.compbiomed.2020.103801_bib216) 2018; 6
Behar (10.1016/j.compbiomed.2020.103801_bib14) 2018; 9
Li (10.1016/j.compbiomed.2020.103801_bib100) 2018; 314
Niu (10.1016/j.compbiomed.2020.103801_bib130) 2019; 24
Lin (10.1016/j.compbiomed.2020.103801_bib106) 2008; 55
Rajan (10.1016/j.compbiomed.2020.103801_bib147) 2018
Sun (10.1016/j.compbiomed.2020.103801_bib169) 2019
Wołk (10.1016/j.compbiomed.2020.103801_bib189) 2019
Mukherjee (10.1016/j.compbiomed.2020.103801_bib127) 2019; 40
Jimenez-Perez (10.1016/j.compbiomed.2020.103801_bib76) 2019
Porumb (10.1016/j.compbiomed.2020.103801_bib142) 2020; 10
Maknickas (10.1016/j.compbiomed.2020.103801_bib117) 2017
Parvaneh (10.1016/j.compbiomed.2020.103801_bib137) 2018; 39
Huang (10.1016/j.compbiomed.2020.103801_bib71) 2019; 7
Mathews (10.1016/j.compbiomed.2020.103801_bib119) 2018; 99
Ribeiro (10.1016/j.compbiomed.2020.103801_bib150) 2018
Lynn (10.1016/j.compbiomed.2020.103801_bib114) 2019; 7
Rubin (10.1016/j.compbiomed.2020.103801_bib153) 2017
Li (10.1016/j.compbiomed.2020.103801_bib103) 2019; 7
Strodthoff (10.1016/j.compbiomed.2020.103801_bib168) 2018
Hong (10.1016/j.compbiomed.2020.103801_bib66) 2020
Wang (10.1016/j.compbiomed.2020.103801_bib179) 2019
Xia (10.1016/j.compbiomed.2020.103801_bib191) 2017
He (10.1016/j.compbiomed.2020.103801_bib61) 2019; 7
Chen (10.1016/j.compbiomed.2020.103801_bib26) 2018
Doersch (10.1016/j.compbiomed.2020.103801_bib33) 2016
Kimura (10.1016/j.compbiomed.2020.103801_bib79) 2018; 138
Liu (10.1016/j.compbiomed.2020.103801_bib112) 2020; 24
Wang (10.1016/j.compbiomed.2020.103801_bib183) 2017
Liu (10.1016/j.compbiomed.2020.103801_bib109) 2018; 8
Sodmann (10.1016/j.compbiomed.2020.103801_bib167) 2018; 39
Koh (10.1016/j.compbiomed.2020.103801_bib83) 2019; 19
Urtnasan (10.1016/j.compbiomed.2020.103801_bib176) 2018; 39
Chang (10.1016/j.compbiomed.2020.103801_bib23) 2018
Farhadi (10.1016/j.compbiomed.2020.103801_bib36) 2018
Wang (10.1016/j.compbiomed.2020.1
References_xml – volume: 39
  year: 2018
  ident: bib173
  article-title: Abductive reasoning as a basis to reproduce expert criteria in ecg atrial fibrillation identification
  publication-title: Physiol. Meas.
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: bib48
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– volume: 7
  start-page: 144292
  year: 2019
  end-page: 144302
  ident: bib60
  article-title: Biosignal generation and latent variable analysis with recurrent generative adversarial networks
  publication-title: IEEE Access
– volume: 55
  start-page: 680
  year: 2008
  end-page: 690
  ident: bib106
  article-title: Frequency-domain features for ecg beat discrimination using grey relational analysis-based classifier
  publication-title: Comput. Math. Appl.
– volume: 7
  start-page: 146457
  year: 2019
  end-page: 146469
  ident: bib96
  article-title: Dual-input neural network integrating feature extraction and deep learning for coronary artery disease detection using electrocardiogram and phonocardiogram
  publication-title: IEEE Access
– start-page: 1909
  year: 2019
  end-page: 1916
  ident: bib164
  article-title: Ambulatory atrial fibrillation monitoring using wearable photoplethysmography with deep learning
  publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– start-page: 227
  year: 1983
  end-page: 230
  ident: bib122
  article-title: A new method for detecting atrial fibrillation using rr intervals
  publication-title: Comput. Cardiol.
– volume: 14
  year: 2019
  ident: bib140
  article-title: Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia
  publication-title: PloS One
– volume: 39
  year: 2018
  ident: bib176
  article-title: Multiclass classification of obstructive sleep apnea/hypopnea based on a convolutional neural network from a single-lead electrocardiogram
  publication-title: Physiol. Meas.
– volume: 39
  year: 2018
  ident: bib141
  article-title: Parallel use of a convolutional neural network and bagged tree ensemble for the classification of holter ecg
  publication-title: Physiol. Meas.
– start-page: 673
  year: 1997
  end-page: 676
  ident: bib87
  article-title: A database for evaluation of algorithms for measurement of qt and other waveform intervals in the ecg
  publication-title: Computers in Cardiology 1997
– start-page: 2559
  year: 2018
  end-page: 2562
  ident: bib25
  article-title: Region aggregation network: improving convolutional neural network for ecg characteristic detection
  publication-title: 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 9
  start-page: 6734
  year: 2019
  ident: bib230
  article-title: Electrocardiogram generation with a bidirectional lstm-cnn generative adversarial network
  publication-title: Sci. Rep.
– volume: 99
  start-page: 53
  year: 2018
  end-page: 62
  ident: bib119
  article-title: A novel application of deep learning for single-lead ecg classification
  publication-title: Comput. Biol. Med.
– volume: 39
  year: 2018
  ident: bib137
  article-title: Analyzing single-lead short ecg recordings using dense convolutional neural networks and feature-based post-processing to detect atrial fibrillation
  publication-title: Physiol. Meas.
– start-page: 2633
  year: 2019
  end-page: 2636
  ident: bib65
  article-title: Ecg biometric recognition: template-free approaches based on deep learning
  publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– start-page: 2565
  year: 2018
  end-page: 2573
  ident: bib205
  article-title: Raim: recurrent attentive and intensive model of multimodal patient monitoring data
  publication-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– volume: 8
  start-page: 1368
  year: 2018
  end-page: 1373
  ident: bib109
  article-title: An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection
  publication-title: Journal of Medical Imaging and Health Informatics
– volume: 52
  start-page: 88
  year: 2019
  end-page: 95
  ident: bib166
  article-title: A deep neural network learning algorithm outperforms a conventional algorithm for emergency department electrocardiogram interpretation
  publication-title: J. Electrocardiol.
– volume: 7
  start-page: 89152
  year: 2019
  end-page: 89161
  ident: bib21
  article-title: Atrial fibrillation detection using an improved multi-scale decomposition enhanced residual convolutional neural network
  publication-title: IEEE Access
– volume: 7
  start-page: 93275
  year: 2019
  end-page: 93285
  ident: bib53
  article-title: Impact of ecg dataset diversity on generalization of cnn model for detecting qrs complex
  publication-title: IEEE access
– volume: 138
  year: 2019
  ident: bib148
  article-title: Automatic driver stress level classification using multimodal deep learning
  publication-title: Expert Syst. Appl.
– year: 2001
  ident: bib151
  article-title: Ecg frequency domain features extraction: a new characteristic for arrhythmias classification
  publication-title: 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 106
  start-page: 232
  year: 2006
  end-page: 237
  ident: bib50
  article-title: Common errors in computer electrocardiogram interpretation
  publication-title: Int. J. Cardiol.
– year: 1996
  ident: bib19
  article-title: Heart Rate Variability: Standards of Measurement, Physiological Interpretation and Clinical Use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology
– volume: 7
  start-page: 51598
  year: 2019
  end-page: 51607
  ident: bib29
  article-title: Ecg authentication method based on parallel multi-scale one-dimensional residual network with center and margin loss
  publication-title: IEEE Access
– year: 2019
  ident: bib218
  article-title: Automated detection and localization of myocardial infarction with staked sparse autoencoder and treebagger
– year: 2019
  ident: bib189
  article-title: Early and Remote Detection of Possible Heartbeat Problems with Convolutional Neural Networks and Multipart Interactive Training
– volume: 7
  start-page: 153751
  year: 2019
  end-page: 153760
  ident: bib198
  article-title: Feature enrichment based convolutional neural network for heartbeat classification from electrocardiogram
  publication-title: IEEE Access
– volume: 25
  start-page: 65
  year: 2019
  ident: bib57
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nat. Med.
– volume: 12
  year: 2017
  ident: bib217
  article-title: Ecg data compression using a neural network model based on multi-objective optimization
  publication-title: PloS One
– start-page: 1913
  year: 2019
  end-page: 1916
  ident: bib74
  article-title: An electrocardiogram delineator via deep segmentation network
  publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 102
  start-page: 411
  year: 2018
  end-page: 420
  ident: bib211
  article-title: Arrhythmia detection using deep convolutional neural network with long duration ecg signals
  publication-title: Comput. Biol. Med.
– volume: 136
  year: 2017
  ident: bib10
  article-title: Annotating ecg signals with deep neural networks
  publication-title: Circulation
– volume: 138
  year: 2018
  ident: bib7
  article-title: Electrocardiographic screening for atrial fibrillation while in sinus rhythm using deep learning
  publication-title: Circulation
– volume: 122
  start-page: 75
  year: 2019
  end-page: 84
  ident: bib159
  article-title: A robust deep convolutional neural network with batch-weighted loss for heartbeat classification
  publication-title: Expert Syst. Appl.
– volume: 24
  start-page: 503
  year: 2020
  end-page: 514
  ident: bib112
  article-title: Mfb-cbrnn: a hybrid network for mi detection using 12-lead ecgs
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 140
  year: 2019
  ident: bib145
  article-title: Deep neural networks can predict 1-year mortality directly from ecg signal, even when clinically interpreted as normal
  publication-title: Circulation
– start-page: 2551
  year: 2018
  end-page: 2554
  ident: bib228
  article-title: Premature ventricular contraction detection from ambulatory ecg using recurrent neural networks
  publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– year: 2020
  ident: bib206
  article-title: Detection of strict left bundle branch block by neural network and a method to test detection consistency
– volume: 7
  start-page: 169359
  year: 2019
  end-page: 169370
  ident: bib215
  article-title: Inter-patient cnn-lstm for qrs complex detection in noisy ecg signals
  publication-title: IEEE Access
– start-page: 3504
  year: 2016
  end-page: 3512
  ident: bib28
  article-title: RETAIN: an interpretable predictive model for healthcare using reverse time attention mechanism
  publication-title: Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib186
  article-title: Cardiac arrhythmia detection from ecg combining convolutional and long short-term memory networks
  publication-title: 2017 Computing in Cardiology (CinC)
– volume: 180
  year: 2019
  ident: bib35
  article-title: Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram
  publication-title: Comput. Methods Progr. Biomed.
– start-page: 5642
  year: 2019
  end-page: 5645
  ident: bib58
  article-title: Spectro-temporal feature based multi-channel convolutional neural network for ecg beat classification
  publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– year: 2018
  ident: bib77
  article-title: Lu Electrocardiography Database: a New Open-Access Validation Tool for Delineation Algorithms
– start-page: 1
  year: 2018
  end-page: 3
  ident: bib36
  article-title: Classification of atrial fibrillation using stacked auto encoders neural networks
  publication-title: 2018 Computing in Cardiology Conference (CinC)
– year: 2019
  ident: bib179
  article-title: Automatic Classification of Cad Ecg Signals with Sdae and Bidirectional Long Short-Term Term Network
– volume: 99
  start-page: 124
  year: 2010
  end-page: 132
  ident: bib3
  article-title: Optimal parameters study for sample entropy-based atrial fibrillation organization analysis
  publication-title: Comput. Methods Progr. Biomed.
– volume: 7
  start-page: 77849
  year: 2019
  end-page: 77856
  ident: bib103
  article-title: Classification of atrial fibrillation recurrence based on a convolution neural network with svm architecture
  publication-title: IEEE Access
– start-page: 1
  year: 2017
  end-page: 9
  ident: bib183
  article-title: Using a random forest to inspire a neural network and improving on it
  publication-title: Proceedings of the 2017 SIAM International Conference on Data Mining, Houston, Texas, USA, April 27-29, 2017
– volume: 12
  year: 2019
  ident: bib6
  article-title: Age and sex estimation using artificial intelligence from standard 12-lead ecgs
  publication-title: Circulation: Arrhythmia and Electrophysiology
– volume: 105
  start-page: 92
  year: 2019
  end-page: 101
  ident: bib133
  article-title: Automated beat-wise arrhythmia diagnosis using modified u-net on extended electrocardiographic recordings with heterogeneous arrhythmia types
  publication-title: Comput. Biol. Med.
– year: 2018
  ident: bib168
  article-title: Detecting and Interpreting Myocardial Infarction Using Fully Convolutional Neural Networks
– year: 2019
  ident: bib76
  article-title: U-net architecture for the automatic detection and delineation of the electrocardiogram
  publication-title: 2019 Computing in Cardiology (CinC)
– year: 2020
  ident: bib84
  article-title: Electrocardiogram Generation and Feature Extraction Using a Variational Autoencoder
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib105
  article-title: Atrial fibrillation detection and ecg classification based on convolutional recurrent neural network
  publication-title: 2017 Computing in Cardiology (CinC)
– year: 2018
  ident: bib17
  article-title: Large Scale gan Training for High Fidelity Natural Image Synthesis
– volume: 39
  start-page: 664
  year: 2001
  end-page: 671
  ident: bib172
  article-title: Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of rr and δrr intervals
  publication-title: Med. Biol. Eng. Comput.
– volume: 125
  start-page: 668
  year: 2019
  end-page: 676
  ident: bib221
  article-title: Ecg-based personal recognition using a convolutional neural network
  publication-title: Pattern Recogn. Lett.
– volume: 40
  year: 2019
  ident: bib98
  article-title: Ventricular ectopic beat detection using a wavelet transform and a convolutional neural network
  publication-title: Physiol. Meas.
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib32
  article-title: Imagenet: a large-scale hierarchical image database
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 20
  start-page: 45
  year: 2001
  end-page: 50
  ident: bib123
  article-title: The impact of the mit-bih arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib191
  article-title: Atrial fibrillation detection using stationary wavelet transform and deep learning
  publication-title: 2017 Computing in Cardiology (CinC)
– volume: 138
  year: 2018
  ident: bib41
  article-title: Deep learning to detect atrial fibrillation from short noisy ecg segments measured with wireless sensors
  publication-title: Circulation
– start-page: 256
  year: 2018
  ident: bib196
  article-title: A deep learning approach to examine ischemic st changes in ambulatory ecg recordings
  publication-title: AMIA Summits on Translational Science Proceedings
– volume: 48
  start-page: 2095
  year: 2017
  end-page: 2104
  ident: bib143
  article-title: Deep convolutional neural networks and learning ecg features for screening paroxysmal atrial fibrillation patients
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– start-page: 1
  year: 2019
  end-page: 4
  ident: bib224
  article-title: Pvc recognition for wearable ecgs using modified frequency slice wavelet transform and convolutional neural network
  publication-title: 2019 Computing in Cardiology (CinC)
– volume: 115
  start-page: 465
  year: 2019
  end-page: 473
  ident: bib4
  article-title: A deep learning approach for real-time detection of atrial fibrillation
  publication-title: Expert Syst. Appl.
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib51
  article-title: Automatic coordinate prediction of the exit of ventricular tachycardia from 12-lead electrocardiogram
  publication-title: 2017 Computing in Cardiology (CinC)
– volume: 93
  start-page: 84
  year: 2018
  end-page: 92
  ident: bib192
  article-title: Detecting atrial fibrillation by deep convolutional neural networks
  publication-title: Comput. Biol. Med.
– volume: 109
  start-page: 14
  year: 2019
  end-page: 21
  ident: bib24
  article-title: Ecg anomaly class identification using lstm and error profile modeling
  publication-title: Comput. Biol. Med.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 16
  ident: bib142
  article-title: Precision medicine and artificial intelligence: a pilot study on deep learning for hypoglycemic events detection based on ecg
  publication-title: Sci. Rep.
– volume: 134
  start-page: 66
  year: 2019
  end-page: 78
  ident: bib93
  article-title: Qrs detection method based on fully convolutional networks for capacitive electrocardiogram
  publication-title: Expert Syst. Appl.
– start-page: 5888
  year: 2019
  end-page: 5894
  ident: bib68
  article-title: Mina: multilevel knowledge-guided attention for modeling electrocardiography signals
  publication-title: Tweenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI)
– volume: 185
  year: 2020
  ident: bib55
  article-title: Ml–resnet: a novel network to detect and locate myocardial infarction using 12 leads ecg
  publication-title: Comput. Methods Progr. Biomed.
– volume: 184
  year: 2020
  ident: bib59
  article-title: Multi-branch fusion network for myocardial infarction screening from 12-lead ecg images
  publication-title: Comput. Methods Progr. Biomed.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib89
  article-title: Deep learning
  publication-title: Nature
– start-page: 1
  year: 2018
  end-page: 4
  ident: bib23
  article-title: Af detection by exploiting the spectral and temporal characteristics of ecg signals with the lstm model
  publication-title: 2018 Computing in Cardiology Conference (CinC)
– volume: 40
  year: 2019
  ident: bib69
  article-title: Combining deep neural networks and engineered features for cardiac arrhythmia detection from ecg recordings
  publication-title: Physiol. Meas.
– volume: 7
  start-page: 76295
  year: 2019
  end-page: 76304
  ident: bib95
  article-title: Automated heartbeat classification using 3-d inputs based on convolutional neural network with multi-fields of view
  publication-title: IEEE Access
– start-page: 1135
  year: 2016
  end-page: 1144
  ident: bib149
  article-title: why should I trust you?”: explaining the predictions of any classifier
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016
– volume: 6
  start-page: 16529
  year: 2018
  end-page: 16538
  ident: bib194
  article-title: An automatic cardiac arrhythmia classification system with wearable electrocardiogram
  publication-title: IEEE Access
– volume: 7
  start-page: 34060
  year: 2019
  end-page: 34067
  ident: bib223
  article-title: Noise rejection for wearable ecgs using modified frequency slice wavelet transform and convolutional neural networks
  publication-title: IEEE Access
– year: 2015
  ident: bib64
  article-title: Distilling the knowledge in a neural network. CoRR abs/1503
– year: 2019
  ident: bib184
  article-title: Pay attention and watch temporal correlation: a novel 1-d convolutional neural network for ecg record classification
  publication-title: 2019 Computing in Cardiology (CinC)
– year: 2019
  ident: bib169
  article-title: Morphological Arrhythmia Automated Diagnosis Method Using Gray-Level Co-occurrence Matrix Enhanced Convolutional Neural Network
– volume: 89
  start-page: 389
  year: 2017
  end-page: 396
  ident: bib1
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
– volume: 7
  start-page: 48392
  year: 2019
  end-page: 48404
  ident: bib92
  article-title: Personal identification using a robust eigen ecg network based on time-frequency representations of ecg signals
  publication-title: IEEE Access
– start-page: 1500
  year: 2019
  end-page: 1503
  ident: bib222
  article-title: Deep learning based patient-specific classification of arrhythmia on ecg signal
  publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 102
  start-page: 168
  year: 2018
  end-page: 179
  ident: bib225
  article-title: Ecg authentication system design incorporating a convolutional neural network and generalized s-transformation
  publication-title: Comput. Biol. Med.
– volume: 8
  start-page: 35592
  year: 2020
  end-page: 35605
  ident: bib162
  article-title: Generalization of convolutional neural networks for ecg classification using generative adversarial networks
  publication-title: IEEE Access
– volume: 7
  start-page: 57
  year: 2018
  end-page: 67
  ident: bib156
  article-title: Using deep convolutional neural network for emotion detection on a physiological signals dataset (amigos)
  publication-title: IEEE Access
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib158
  article-title: Beat by beat: classifying cardiac arrhythmias with recurrent neural networks
  publication-title: 2017 Computing in Cardiology (CinC)
– start-page: 2707
  year: 2018
  end-page: 2710
  ident: bib111
  article-title: Classification of heart diseases based on ecg signals using long short-term memory
  publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib5
  article-title: Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ecg
  publication-title: 2017 Computing in Cardiology (CinC)
– start-page: 1527
  year: 2018
  end-page: 1535
  ident: bib150
  article-title: Anchors: high-precision model-agnostic explanations
  publication-title: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18)
– volume: 9
  start-page: 1390
  year: 2018
  ident: bib14
  article-title: Physiozoo: a novel open access platform for heart rate variability analysis of mammalian electrocardiographic data
  publication-title: Front. Physiol.
– volume: 1
  year: 2019
  ident: bib75
  article-title: A novel multi-module neural network system for imbalanced heartbeats classification
  publication-title: Expert Syst. Appl. X
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib152
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 94
  start-page: 19
  year: 2018
  end-page: 26
  ident: bib171
  article-title: Application of stacked convolutional and long short-term memory network for accurate identification of cad ecg signals
  publication-title: Comput. Biol. Med.
– volume: 51
  start-page: S78
  year: 2018
  ident: bib195
  article-title: Monitoring significant st changes through deep learning
  publication-title: J. Electrocardiol.
– year: 2016
  ident: bib33
  article-title: Tutorial on Variational Autoencoders
– volume: 24
  start-page: 515
  year: 2020
  end-page: 523
  ident: bib155
  article-title: Lstm-based ecg classification for continuous monitoring on personal wearable devices
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 391
  start-page: 83
  year: 2020
  end-page: 95
  ident: bib101
  article-title: Toward improving ecg biometric identification using cascaded convolutional neural networks
  publication-title: Neurocomputing
– volume: 7
  start-page: 159369
  year: 2019
  end-page: 159378
  ident: bib208
  article-title: Ecg generation with sequence generative adversarial nets optimized by policy gradient
  publication-title: IEEE Access
– volume: 7
  start-page: 50431
  year: 2019
  end-page: 50439
  ident: bib38
  article-title: A probabilistic process neural network and its application in ecg classification
  publication-title: IEEE Access
– start-page: 4433
  year: 2019
  end-page: 4439
  ident: bib227
  article-title: Beatgan: anomalous rhythm detection using adversarially generated time series
  publication-title: Proceedings of the 28th International Joint Conference on Artificial Intelligence
– start-page: 3155
  year: 2017
  end-page: 3165
  ident: bib107
  article-title: Adversarial ranking for language generation
  publication-title: Advances in Neural Information Processing Systems
– volume: 10
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib177
  article-title: Transfer learning in ecg classification from human to horse using a novel parallel neural network architecture
  publication-title: Sci. Rep.
– start-page: 2608
  year: 2015
  end-page: 2611
  ident: bib82
  article-title: Convolutional neural networks for patient-specific ecg classification
  publication-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 7
  start-page: 145395
  year: 2019
  end-page: 145405
  ident: bib114
  article-title: A deep bidirectional gru network model for biometric electrocardiogram classification based on recurrent neural networks
  publication-title: IEEE Access
– volume: 6
  start-page: 39734
  year: 2018
  end-page: 39744
  ident: bib102
  article-title: Combining convolutional neural network and distance distribution matrix for identification of congestive heart failure
  publication-title: IEEE Access
– volume: 23
  start-page: 1574
  year: 2019
  end-page: 1584
  ident: bib203
  article-title: Towards end-to-end ecg classification with raw signal extraction and deep neural networks
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 7
  start-page: 60806
  year: 2019
  end-page: 60813
  ident: bib27
  article-title: Noise reduction in ecg signals using fully convolutional denoising autoencoders
  publication-title: IEEE Access
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib201
  article-title: Robust ecg signal classification for detection of atrial fibrillation using a novel neural network
  publication-title: 2017 Computing in Cardiology (CinC)
– volume: 6
  start-page: 27465
  year: 2018
  end-page: 27472
  ident: bib216
  article-title: Automated ecg classification using dual heartbeat coupling based on convolutional neural network
  publication-title: IEEE Access
– start-page: 1303
  year: 2019
  end-page: 1307
  ident: bib110
  article-title: A lstm and cnn based assemble neural network framework for arrhythmias classification
  publication-title: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 7
  start-page: 9270
  year: 2017
  ident: bib81
  article-title: Personalized monitoring and advance warning system for cardiac arrhythmias
  publication-title: Sci. Rep.
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib30
  article-title: Af Classification from a Short Single Lead Ecg Recording: the Physionet/computing in Cardiology Challenge 2017
  publication-title: 2017 Computing in Cardiology (CinC)
– volume: 19
  start-page: 2828
  year: 2019
  ident: bib83
  article-title: An evaluation method of safe driving for senior adults using ecg signals
  publication-title: Sensors
– volume: 39
  year: 2018
  ident: bib200
  article-title: Ecg signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network
  publication-title: Physiol. Meas.
– volume: 349
  start-page: 212
  year: 2019
  end-page: 224
  ident: bib180
  article-title: Adversarial de-noising of electrocardiogram
  publication-title: Neurocomputing
– year: 2020
  ident: bib40
  article-title: End-to-end trained cnn encoder-decoder network for fetal ecg signal denoising
– start-page: 82
  year: 2019
  ident: bib120
  article-title: A comparison of patient history-and ekg-based cardiac risk scores
  publication-title: AMIA Summits on Translational Science Proceedings
– start-page: 2999
  year: 2017
  end-page: 3007
  ident: bib108
  article-title: Focal loss for dense object detection
  publication-title: IEEE International Conference on Computer Vision, October 22-29, 2017
– volume: 14
  year: 2019
  ident: bib85
  article-title: Artificial intelligence algorithm for predicting mortality of patients with acute heart failure
  publication-title: PloS One
– start-page: 1
  year: 2019
  ident: bib73
  article-title: Detection of first-degree atrioventricular block on variable-length electrocardiogram via a multimodal deep learning method
  publication-title: 2019 Computing in Cardiology (CinC)
– volume: 7
  start-page: 7989
  year: 2019
  end-page: 8001
  ident: bib193
  article-title: A novel wearable electrocardiogram classification system using convolutional neural networks and active learning
  publication-title: IEEE Access
– start-page: 1
  year: 2018
  end-page: 4
  ident: bib20
  article-title: Deep learning based qrs multilead delineator in electrocardiogram signals
  publication-title: 2018 Computing in Cardiology Conference (CinC)
– start-page: 336
  year: 2018
  end-page: 339
  ident: bib26
  article-title: Finger ecg based two-phase authentication using 1d convolutional neural networks
  publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: bib46
  article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– start-page: 4636
  year: 2018
  end-page: 4639
  ident: bib214
  article-title: Qrs detection and measurement method of ecg paper based on convolutional neural networks
  publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 63
  start-page: 664
  year: 2015
  end-page: 675
  ident: bib80
  article-title: Real-time patient-specific ecg classification by 1-d convolutional neural networks
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– year: 2003
  ident: bib139
  article-title: The Philips 12-lead algorithm physician's guide
– volume: 39
  start-page: 104005
  year: 2018
  ident: bib167
  article-title: A convolutional neural network for ecg annotation as the basis for classification of cardiac rhythms
  publication-title: Physiol. Meas.
– volume: 14
  year: 2019
  ident: bib49
  article-title: Artificial intelligence to predict needs for urgent revascularization from 12-leads electrocardiography in emergency patients
  publication-title: PloS One
– volume: 7
  start-page: 182225
  year: 2019
  end-page: 182237
  ident: bib2
  article-title: Dense convolutional networks with focal loss and image generation for electrocardiogram classification
  publication-title: IEEE Access
– volume: 7
  start-page: 130074
  year: 2019
  end-page: 130084
  ident: bib88
  article-title: An automatic system for real-time identifying atrial fibrillation by using a lightweight convolutional neural network
  publication-title: IEEE access
– volume: 314
  start-page: 336
  year: 2018
  end-page: 346
  ident: bib100
  article-title: Patient-specific ecg classification by deeper cnn from generic to dedicated
  publication-title: Neurocomputing
– volume: 138
  year: 2018
  ident: bib116
  article-title: Artificial intelligence detects pediatric heart murmurs with cardiologist-level accuracy
  publication-title: Circulation
– start-page: 715
  year: 2018
  end-page: 723
  ident: bib163
  article-title: Detection of paroxysmal atrial fibrillation using attention-based bidirectional recurrent neural networks
  publication-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– volume: 24
  start-page: 717
  year: 2020
  end-page: 727
  ident: bib204
  article-title: I-vector based patient adaptation of deep neural networks for automatic heartbeat classification
  publication-title: IEEE Journal of Biomedical and Health Informatics
– year: 2019
  ident: bib94
  article-title: Automated heartbeat classification exploiting convolutional neural network with channel-wise attention
– volume: 294
  start-page: 94
  year: 2018
  end-page: 101
  ident: bib97
  article-title: A method to detect sleep apnea based on deep neural network and hidden markov model using single-lead ecg signal
  publication-title: Neurocomputing
– start-page: 1
  year: 2018
  end-page: 4
  ident: bib34
  article-title: Deep learning for pulse detection in out-of-hospital cardiac arrest using the ecg
  publication-title: 2018 Computing in Cardiology Conference (CinC)
– volume: 4
  start-page: 6344
  year: 2016
  end-page: 6351
  ident: bib212
  article-title: Ecg monitoring system integrated with ir-uwb radar based on cnn
  publication-title: IEEE Access
– volume: 66
  start-page: 218
  year: 1982
  end-page: 225
  ident: bib129
  article-title: Sudden death recorded during holter monitoring
  publication-title: Circulation
– volume: 57
  start-page: S61
  year: 2019
  end-page: S64
  ident: bib121
  article-title: Machine learning in the electrocardiogram
  publication-title: J. Electrocardiol.
– volume: 114
  start-page: 54
  year: 2018
  end-page: 64
  ident: bib47
  article-title: Ecg classification using three-level fusion of different feature descriptors
  publication-title: Expert Syst. Appl.
– volume: 122
  start-page: 23
  year: 2019
  end-page: 30
  ident: bib13
  article-title: Classification of myocardial infarction with multi-lead ecg signals and deep cnn
  publication-title: Pattern Recogn. Lett.
– volume: 7
  start-page: 161152
  year: 2019
  end-page: 161166
  ident: bib220
  article-title: Localization of myocardial infarction with multi-lead bidirectional gated recurrent unit neural network
  publication-title: IEEE Access
– volume: 7
  start-page: 92871
  year: 2019
  end-page: 92880
  ident: bib71
  article-title: Ecg arrhythmia classification using stft-based spectrogram and convolutional neural network
  publication-title: IEEE Access
– volume: 15
  year: 2020
  ident: bib126
  article-title: Single-modal and multi-modal false arrhythmia alarm reduction using attention-based convolutional and recurrent neural networks
  publication-title: PloS One
– volume: 13
  year: 2018
  ident: bib9
  article-title: Noninvasive assessment of dofetilide plasma concentration using a deep learning (neural network) analysis of the surface electrocardiogram: a proof of concept study
  publication-title: PloS One
– volume: 24
  start-page: 5017
  year: 2015
  end-page: 5032
  ident: bib22
  article-title: Pcanet: a simple deep learning baseline for image classification?
  publication-title: IEEE Trans. Image Process.
– start-page: 2296
  year: 2017
  end-page: 2299
  ident: bib144
  article-title: Elimination of power line interference from ecg signals using recurrent neural networks
  publication-title: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 18
  start-page: 2074
  year: 2018
  ident: bib165
  article-title: A review of emotion recognition using physiological signals
  publication-title: Sensors
– volume: 22
  start-page: 1434
  year: 2017
  end-page: 1444
  ident: bib113
  article-title: Real-time multilead convolutional neural network for myocardial infarction detection
  publication-title: IEEE journal of biomedical and health informatics
– start-page: 148
  year: 2020
  end-page: 152
  ident: bib66
  article-title: Cardiolearn: a cloud deep learning service for cardiac disease detection from electrocardiogram
  publication-title: Companion Proceedings of the Web Conference 2020
– volume: 23
  start-page: 2375
  year: 2018
  end-page: 2385
  ident: bib91
  article-title: Bidirectional recurrent auto-encoder for photoplethysmogram denoising
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 39
  year: 2018
  ident: bib78
  article-title: A robust deep convolutional neural network for the classification of abnormal cardiac rhythm using single lead electrocardiograms of variable length
  publication-title: Physiol. Meas.
– start-page: 246
  year: 2020
  end-page: 254
  ident: bib124
  article-title: Deep learning for ecg segmentation
  publication-title: Advances in Neural Computation, Machine Learning, and Cognitive Research III
– start-page: 6057
  year: 2019
  end-page: 6063
  ident: bib229
  article-title: K-margin-based residual-convolution-recurrent neural network for atrial fibrillation detection
  publication-title: IJCAI
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib43
  article-title: Atrial fibrillation detection using feature based algorithm and deep convolutional neural network
  publication-title: 2017 Computing in Cardiology (CinC)
– volume: 126
  start-page: 78
  year: 2019
  end-page: 85
  ident: bib86
  article-title: Deep-ecg: convolutional neural networks for ecg biometric recognition
  publication-title: Pattern Recogn. Lett.
– volume: 64
  start-page: 2196
  year: 2016
  end-page: 2205
  ident: bib44
  article-title: Semi-supervised stacked label consistent autoencoder for reconstruction and analysis of biomedical signals
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 37
  start-page: 2214
  year: 2016
  ident: bib199
  article-title: A stacked contractive denoising auto-encoder for ecg signal denoising
  publication-title: Physiol. Meas.
– start-page: 2571
  year: 2018
  end-page: 2574
  ident: bib147
  article-title: A generative modeling approach to limited channel ecg classification
  publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 140
  year: 2019
  ident: bib11
  article-title: A deep learning model to predict outcome after thoracoscopic surgery for atrial fibrillation using single beat electrocardiographic samples
  publication-title: Circulation
– start-page: 2555
  year: 2018
  end-page: 2558
  ident: bib197
  article-title: Bidirectional recurrent neural network and convolutional neural network (bircnn) for ecg beat classification
  publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 96
  start-page: 189
  year: 2018
  end-page: 202
  ident: bib209
  article-title: A novel wavelet sequence based on deep bidirectional lstm network model for ecg signal classification
  publication-title: Comput. Biol. Med.
– start-page: 1284
  year: 2019
  end-page: 1288
  ident: bib138
  article-title: An ensemble of deep recurrent neural networks for p-wave detection in electrocardiogram
  publication-title: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– start-page: 1908
  year: 2019
  end-page: 1912
  ident: bib190
  article-title: A deep learning method to detect atrial fibrillation based on continuous wavelet transform
  publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib231
  article-title: Convolutional recurrent neural networks for electrocardiogram classification
  publication-title: 2017 Computing in Cardiology (CinC)
– volume: 7
  start-page: 118739
  year: 2019
  end-page: 118748
  ident: bib202
  article-title: A parallel gru recurrent network model and its application to multi-channel time-varying signal classification
  publication-title: IEEE Access
– volume: vol. 1
  year: 2016
  ident: bib70
  article-title: Harnessing deep neural networks with logic rules
  publication-title: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
– year: 2019
  ident: bib31
  article-title: A novel deep arrhythmia-diagnosis network for atrial fibrillation classification using electrocardiogram signals
  publication-title: IEEE Access
– volume: 12
  year: 2019
  ident: bib175
  article-title: Automated and interpretable patient ecg profiles for disease detection, tracking, and discovery
  publication-title: Circulation: Cardiovascular Quality and Outcomes
– volume: 39
  year: 2018
  ident: bib118
  article-title: Sleep-wake classification via quantifying heart rate variability by convolutional neural network
  publication-title: Physiol. Meas.
– volume: 57
  start-page: S70
  year: 2019
  end-page: S74
  ident: bib136
  article-title: Cardiac arrhythmia detection using deep learning: a review
  publication-title: J. Electrocardiol.
– volume: 24
  start-page: 1321
  year: 2019
  end-page: 1332
  ident: bib130
  article-title: Inter-patient ecg classification with symbolic representations and multi-perspective convolutional neural networks
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 136
  year: 2017
  ident: bib174
  article-title: Cardiovascular risk stratification using off-the-shelf wearables and a multi-task deep learning algorithm
  publication-title: Circulation
– volume: 51
  start-page: S18
  year: 2018
  end-page: S21
  ident: bib154
  article-title: Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ecg recordings
  publication-title: J. Electrocardiol.
– volume: 40
  start-page: 385
  year: 2007
  end-page: 390
  ident: bib161
  article-title: Errors in the computerized electrocardiogram interpretation of cardiac rhythm
  publication-title: J. Electrocardiol.
– volume: 67
  start-page: 1505
  year: 2019
  end-page: 1516
  ident: bib52
  article-title: Sequential factorized autoencoder for localizing the origin of ventricular activation from 12-lead electrocardiograms
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 39
  year: 2018
  ident: bib226
  article-title: A deep learning approach for fetal qrs complex detection
  publication-title: Physiol. Meas.
– volume: 140
  start-page: 93
  year: 2017
  end-page: 110
  ident: bib213
  article-title: Recognition of emotions using multimodal physiological signals and an ensemble deep learning model
  publication-title: Comput. Methods Progr. Biomed.
– start-page: 1
  year: 2018
  end-page: 4
  ident: bib42
  article-title: You snooze, you win: the physionet/computing in cardiology challenge 2018
  publication-title: 2018 Computing in Cardiology Conference (CinC)
– volume: 58
  start-page: 105
  year: 2020
  end-page: 112
  ident: bib104
  article-title: Heartbeat classification using deep residual convolutional neural network from 2-lead electrocardiogram
  publication-title: J. Electrocardiol.
– volume: 5
  start-page: 11805
  year: 2017
  end-page: 11816
  ident: bib219
  article-title: Heartid: a multiresolution convolutional neural network for ecg-based biometric human identification in smart health applications
  publication-title: Ieee Access
– start-page: 4262
  year: 2019
  end-page: 4265
  ident: bib170
  article-title: Cardiovascular disease diagnosis using cross-domain transfer learning
  publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 24
  start-page: 1265
  year: 2019
  end-page: 1275
  ident: bib90
  article-title: Synthesis of electrocardiogram v lead signals from limb lead measurement using r peak aligned generative adversarial network
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: bib115
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– volume: 57
  start-page: S65
  year: 2019
  ident: bib16
  article-title: Deep learning to automatically interpret images of the electrocardiogram: do we need the raw samples?
  publication-title: J. Electrocardiol.
– year: 2019
  ident: bib178
  article-title: Fetal electrocardiography and deep learning for prenatal detection of congenital heart disease
  publication-title: 2019 Computing in Cardiology (CinC),
– start-page: 557
  year: 2019
  end-page: 564
  ident: bib45
  article-title: Pgans: personalized generative adversarial networks for ecg synthesis to improve patient-specific deep ecg classification
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 8
  start-page: 17196
  year: 2018
  ident: bib128
  article-title: Deep feature learning for sudden cardiac arrest detection in automated external defibrillators
  publication-title: Sci. Rep.
– start-page: 1
  year: 2018
  end-page: 4
  ident: bib135
  article-title: Electrocardiogram monitoring and interpretation: from traditional machine learning to deep learning, and their combination
  publication-title: 2018 Computing in Cardiology Conference (CinC)
– volume: 7
  start-page: 42710
  year: 2019
  end-page: 42717
  ident: bib61
  article-title: Real-time detection of acute cognitive stress using a convolutional neural network from electrocardiographic signal
  publication-title: IEEE Access
– volume: 7
  start-page: 102119
  year: 2019
  end-page: 102135
  ident: bib62
  article-title: Automatic cardiac arrhythmia classification using combination of deep residual network and bidirectional lstm
  publication-title: IEEE Access
– volume: 7
  start-page: 85959
  year: 2019
  end-page: 85970
  ident: bib188
  article-title: A multi-class automatic sleep staging method based on long short-term memory network using single-lead electrocardiogram signals
  publication-title: IEEE Access
– year: 2019
  ident: bib185
  article-title: Few-shot learning: a survey. CoRR abs/1904
– volume: 24
  start-page: 407
  year: 2019
  end-page: 413
  ident: bib72
  article-title: Atrial fibrillation prediction with residual network using sensitivity & orthogonality constraints
  publication-title: IEEE Journal of Biomedical and Health Informatics
– year: 2018
  ident: bib12
  article-title: Deepheart: semi-supervised sequence learning for cardiovascular risk prediction
  publication-title: Thirty-Second AAAI Conference on Artificial Intelligence
– start-page: 1308
  year: 2019
  end-page: 1312
  ident: bib125
  article-title: Inter-and intra-patient ecg heartbeat classification for arrhythmia detection: a sequence to sequence deep learning approach
  publication-title: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 39
  year: 2018
  ident: bib187
  article-title: Ensembling convolutional and long short-term memory networks for electrocardiogram arrhythmia detection
  publication-title: Physiol. Meas.
– year: 2019
  ident: bib39
  article-title: Deep convolutional encoder-decoder framework for fetal ecg signal denoising
  publication-title: 2019 Computing in Cardiology (CinC)
– volume: 40
  year: 2019
  ident: bib127
  article-title: Detection of atrial fibrillation and other abnormal rhythms from ecg using a multi-layer classifier architecture
  publication-title: Physiol. Meas.
– volume: 7
  start-page: 99964
  year: 2019
  end-page: 99977
  ident: bib134
  article-title: Preprocessing method for performance enhancement in cnn-based stemi detection from 12-lead ecg
  publication-title: IEEE Access
– volume: 102
  start-page: 278
  year: 2018
  end-page: 287
  ident: bib132
  article-title: Automated diagnosis of arrhythmia using combination of cnn and lstm techniques with variable length heart beats
  publication-title: Comput. Biol. Med.
– volume: 40
  start-page: 317
  year: 1995
  end-page: 318
  ident: bib15
  article-title: Nutzung der ekg-signaldatenbank cardiodat der ptb über das internet
  publication-title: Biomedizinische Technik/Biomedical Engineering
– start-page: 1
  year: 2018
  end-page: 4
  ident: bib146
  article-title: Generalization studies of neural network models for cardiac disease detection using limited channel ecg
  publication-title: 2018 Computing in Cardiology Conference (CinC)
– volume: 138
  year: 2018
  ident: bib79
  article-title: A 10-rr-interval-based rhythm classifier using a deep neural network
  publication-title: Circulation
– year: 2019
  ident: bib18
  article-title: Accurate detection of atrial fibrillation from 12-lead ecg using deep neural network
  publication-title: Comput. Biol. Med.
– volume: 7
  start-page: 109870
  year: 2019
  end-page: 109883
  ident: bib99
  article-title: Interpretability analysis of heartbeat classification based on heartbeat activity's global sequence features and bilstm-attention neural network
  publication-title: IEEE Access
– volume: 70
  start-page: 1183
  year: 2017
  end-page: 1192
  ident: bib157
  article-title: Computer-interpreted electrocardiograms: benefits and limitations
  publication-title: J. Am. Coll. Cardiol.
– volume: 176
  start-page: 121
  year: 2019
  end-page: 133
  ident: bib210
  article-title: A new approach for arrhythmia classification using deep coded features and lstm networks
  publication-title: Comput. Methods Progr. Biomed.
– volume: 7
  start-page: 26527
  year: 2018
  end-page: 26542
  ident: bib54
  article-title: Multimodal biometric authentication systems using convolution neural network based on different level fusion of ecg and fingerprint
  publication-title: IEEE Access
– year: 2019
  ident: bib181
  article-title: Deep ensemble detection of congestive heart failure using short-term rr intervals
– volume: 140
  year: 2019
  ident: bib160
  article-title: Developing convolutional neural networks for deep learning of ventricular action potentials to predict risk for ventricular arrhythmias
  publication-title: Circulation
– volume: 65
  start-page: 1662
  year: 2017
  end-page: 1671
  ident: bib207
  article-title: Localization of origins of premature ventricular contraction by means of convolutional neural network from 12-lead ecg
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib117
  article-title: Atrial fibrillation classification using qrs complex features and lstm
  publication-title: 2017 Computing in Cardiology (CinC)
– volume: 102
  start-page: 327
  year: 2018
  end-page: 335
  ident: bib37
  article-title: Automated detection of atrial fibrillation using long short-term memory network with rr interval signals
  publication-title: Comput. Biol. Med.
– volume: 7
  start-page: 100910
  year: 2019
  end-page: 100922
  ident: bib182
  article-title: Ecg arrhythmias detection using auxiliary classifier generative adversarial network and residual network
  publication-title: IEEE Access
– year: 2020
  ident: bib131
  article-title: Assessing and mitigating bias in medical artificial intelligence: the effects of race and ethnicity on a deep learning model for ecg analysis
  publication-title: Circulation: Arrhythmia and Electrophysiology
– volume: 25
  start-page: 70
  year: 2019
  ident: bib8
  article-title: Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram
  publication-title: Nat. Med.
– volume: 7
  start-page: 85985
  year: 2019
  end-page: 85994
  ident: bib63
  article-title: Simultaneous human health monitoring and time-frequency sparse representation using eeg and ecg signals
  publication-title: IEEE Access
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib67
  article-title: Encase: an ensemble classifier for ecg classification using expert features and deep neural networks
  publication-title: 2017 Computing in Cardiology (CinC)
– year: 2016
  ident: bib56
  article-title: Deep compression: compressing deep neural network with pruning, trained quantization and huffman coding
  publication-title: 4th International Conference on Learning Representations
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib153
  article-title: Densely connected convolutional networks and signal quality analysis to detect atrial fibrillation using short single-lead ecg recordings
  publication-title: 2017 Computing in Cardiology (CinC)
– start-page: 715
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib163
  article-title: Detection of paroxysmal atrial fibrillation using attention-based bidirectional recurrent neural networks
– start-page: 234
  year: 2015
  ident: 10.1016/j.compbiomed.2020.103801_bib152
  article-title: U-net: convolutional networks for biomedical image segmentation
– start-page: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib224
  article-title: Pvc recognition for wearable ecgs using modified frequency slice wavelet transform and convolutional neural network
– year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib12
  article-title: Deepheart: semi-supervised sequence learning for cardiovascular risk prediction
– volume: 40
  start-page: 317
  year: 1995
  ident: 10.1016/j.compbiomed.2020.103801_bib15
  article-title: Nutzung der ekg-signaldatenbank cardiodat der ptb über das internet
  publication-title: Biomedizinische Technik/Biomedical Engineering
– volume: 138
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib116
  article-title: Artificial intelligence detects pediatric heart murmurs with cardiologist-level accuracy
  publication-title: Circulation
– volume: 349
  start-page: 212
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib180
  article-title: Adversarial de-noising of electrocardiogram
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.083
– volume: 14
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib49
  article-title: Artificial intelligence to predict needs for urgent revascularization from 12-leads electrocardiography in emergency patients
  publication-title: PloS One
  doi: 10.1371/journal.pone.0210103
– volume: 39
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib176
  article-title: Multiclass classification of obstructive sleep apnea/hypopnea based on a convolutional neural network from a single-lead electrocardiogram
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aac7b7
– volume: 7
  start-page: 57
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib156
  article-title: Using deep convolutional neural network for emotion detection on a physiological signals dataset (amigos)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2883213
– volume: 8
  start-page: 35592
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103801_bib162
  article-title: Generalization of convolutional neural networks for ecg classification using generative adversarial networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974712
– ident: 10.1016/j.compbiomed.2020.103801_bib139
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib20
  article-title: Deep learning based qrs multilead delineator in electrocardiogram signals
– volume: 7
  start-page: 102119
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib62
  article-title: Automatic cardiac arrhythmia classification using combination of deep residual network and bidirectional lstm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2931500
– volume: 7
  start-page: 145395
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib114
  article-title: A deep bidirectional gru network model for biometric electrocardiogram classification based on recurrent neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939947
– year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib178
  article-title: Fetal electrocardiography and deep learning for prenatal detection of congenital heart disease
– volume: 7
  start-page: 144292
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib60
  article-title: Biosignal generation and latent variable analysis with recurrent generative adversarial networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2934928
– volume: 105
  start-page: 92
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib133
  article-title: Automated beat-wise arrhythmia diagnosis using modified u-net on extended electrocardiographic recordings with heterogeneous arrhythmia types
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.12.012
– volume: 9
  start-page: 1390
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib14
  article-title: Physiozoo: a novel open access platform for heart rate variability analysis of mammalian electrocardiographic data
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.01390
– volume: 39
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib173
  article-title: Abductive reasoning as a basis to reproduce expert criteria in ecg atrial fibrillation identification
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aad7e4
– volume: 7
  start-page: 118739
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib202
  article-title: A parallel gru recurrent network model and its application to multi-channel time-varying signal classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936516
– start-page: 2672
  year: 2014
  ident: 10.1016/j.compbiomed.2020.103801_bib48
  article-title: Generative adversarial nets
– year: 2020
  ident: 10.1016/j.compbiomed.2020.103801_bib40
– volume: 8
  start-page: 1368
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib109
  article-title: An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection
  publication-title: Journal of Medical Imaging and Health Informatics
  doi: 10.1166/jmihi.2018.2442
– volume: 39
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib187
  article-title: Ensembling convolutional and long short-term memory networks for electrocardiogram arrhythmia detection
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aad386
– volume: 8
  start-page: 17196
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib128
  article-title: Deep feature learning for sudden cardiac arrest detection in automated external defibrillators
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33424-9
– year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib17
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib30
  article-title: Af Classification from a Short Single Lead Ecg Recording: the Physionet/computing in Cardiology Challenge 2017
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103801_bib142
  article-title: Precision medicine and artificial intelligence: a pilot study on deep learning for hypoglycemic events detection based on ecg
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56927-5
– volume: 89
  start-page: 389
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib1
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.08.022
– start-page: 336
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib26
  article-title: Finger ecg based two-phase authentication using 1d convolutional neural networks
– volume: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib75
  article-title: A novel multi-module neural network system for imbalanced heartbeats classification
  publication-title: Expert Syst. Appl. X
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103801_bib177
  article-title: Transfer learning in ecg classification from human to horse using a novel parallel neural network architecture
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-57025-2
– volume: 24
  start-page: 1265
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib90
  article-title: Synthesis of electrocardiogram v lead signals from limb lead measurement using r peak aligned generative adversarial network
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2019.2936583
– volume: 140
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib145
  article-title: Deep neural networks can predict 1-year mortality directly from ecg signal, even when clinically interpreted as normal
  publication-title: Circulation
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib5
  article-title: Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ecg
– volume: 176
  start-page: 121
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib210
  article-title: A new approach for arrhythmia classification using deep coded features and lstm networks
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2019.05.004
– volume: 7
  start-page: 161152
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib220
  article-title: Localization of myocardial infarction with multi-lead bidirectional gated recurrent unit neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2946932
– volume: 7
  start-page: 85985
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib63
  article-title: Simultaneous human health monitoring and time-frequency sparse representation using eeg and ecg signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921568
– year: 2020
  ident: 10.1016/j.compbiomed.2020.103801_bib84
– volume: 58
  start-page: 105
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103801_bib104
  article-title: Heartbeat classification using deep residual convolutional neural network from 2-lead electrocardiogram
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2019.11.046
– volume: 40
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib69
  article-title: Combining deep neural networks and engineered features for cardiac arrhythmia detection from ecg recordings
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ab15a2
– volume: 70
  start-page: 1183
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib157
  article-title: Computer-interpreted electrocardiograms: benefits and limitations
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2017.07.723
– volume: 7
  start-page: 93275
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib53
  article-title: Impact of ecg dataset diversity on generalization of cnn model for detecting qrs complex
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2019.2927726
– volume: 96
  start-page: 189
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib209
  article-title: A novel wavelet sequence based on deep bidirectional lstm network model for ecg signal classification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.03.016
– volume: 102
  start-page: 411
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib211
  article-title: Arrhythmia detection using deep convolutional neural network with long duration ecg signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.09.009
– volume: 57
  start-page: S61
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib121
  article-title: Machine learning in the electrocardiogram
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2019.08.008
– year: 2020
  ident: 10.1016/j.compbiomed.2020.103801_bib131
  article-title: Assessing and mitigating bias in medical artificial intelligence: the effects of race and ethnicity on a deep learning model for ecg analysis
– year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib94
– volume: 7
  start-page: 42710
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib61
  article-title: Real-time detection of acute cognitive stress using a convolutional neural network from electrocardiographic signal
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907076
– volume: 37
  start-page: 2214
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103801_bib199
  article-title: A stacked contractive denoising auto-encoder for ecg signal denoising
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/37/12/2214
– volume: 138
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib79
  article-title: A 10-rr-interval-based rhythm classifier using a deep neural network
  publication-title: Circulation
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib34
  article-title: Deep learning for pulse detection in out-of-hospital cardiac arrest using the ecg
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.compbiomed.2020.103801_bib115
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 182225
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib2
  article-title: Dense convolutional networks with focal loss and image generation for electrocardiogram classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960116
– volume: 65
  start-page: 1662
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib207
  article-title: Localization of origins of premature ventricular contraction by means of convolutional neural network from 12-lead ecg
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 99
  start-page: 124
  year: 2010
  ident: 10.1016/j.compbiomed.2020.103801_bib3
  article-title: Optimal parameters study for sample entropy-based atrial fibrillation organization analysis
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2010.02.009
– volume: 23
  start-page: 2375
  issue: 6
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib91
  article-title: Bidirectional recurrent auto-encoder for photoplethysmogram denoising
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2018.2885139
– volume: 51
  start-page: S78
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib195
  article-title: Monitoring significant st changes through deep learning
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2018.07.026
– volume: 122
  start-page: 75
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib159
  article-title: A robust deep convolutional neural network with batch-weighted loss for heartbeat classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.12.037
– volume: 55
  start-page: 680
  year: 2008
  ident: 10.1016/j.compbiomed.2020.103801_bib106
  article-title: Frequency-domain features for ecg beat discrimination using grey relational analysis-based classifier
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2007.04.035
– start-page: 2633
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib65
  article-title: Ecg biometric recognition: template-free approaches based on deep learning
– volume: 106
  start-page: 232
  year: 2006
  ident: 10.1016/j.compbiomed.2020.103801_bib50
  article-title: Common errors in computer electrocardiogram interpretation
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2005.02.007
– volume: 14
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib85
  article-title: Artificial intelligence algorithm for predicting mortality of patients with acute heart failure
  publication-title: PloS One
  doi: 10.1371/journal.pone.0219302
– volume: 138
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib7
  article-title: Electrocardiographic screening for atrial fibrillation while in sinus rhythm using deep learning
  publication-title: Circulation
– volume: 40
  start-page: 385
  year: 2007
  ident: 10.1016/j.compbiomed.2020.103801_bib161
  article-title: Errors in the computerized electrocardiogram interpretation of cardiac rhythm
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2007.03.008
– volume: 7
  start-page: 9270
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib81
  article-title: Personalized monitoring and advance warning system for cardiac arrhythmias
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-09544-z
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib231
  article-title: Convolutional recurrent neural networks for electrocardiogram classification
– volume: 99
  start-page: 53
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib119
  article-title: A novel application of deep learning for single-lead ecg classification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.05.013
– year: 2001
  ident: 10.1016/j.compbiomed.2020.103801_bib151
  article-title: Ecg frequency domain features extraction: a new characteristic for arrhythmias classification
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib153
  article-title: Densely connected convolutional networks and signal quality analysis to detect atrial fibrillation using short single-lead ecg recordings
– volume: 24
  start-page: 515
  issue: 2
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103801_bib155
  article-title: Lstm-based ecg classification for continuous monitoring on personal wearable devices
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2019.2911367
– start-page: 4433
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib227
  article-title: Beatgan: anomalous rhythm detection using adversarially generated time series
– volume: 140
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib160
  article-title: Developing convolutional neural networks for deep learning of ventricular action potentials to predict risk for ventricular arrhythmias
  publication-title: Circulation
– volume: 7
  start-page: 100910
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib182
  article-title: Ecg arrhythmias detection using auxiliary classifier generative adversarial network and residual network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2930882
– start-page: 2565
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib205
  article-title: Raim: recurrent attentive and intensive model of multimodal patient monitoring data
– volume: 7
  start-page: 26527
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib54
  article-title: Multimodal biometric authentication systems using convolution neural network based on different level fusion of ecg and fingerprint
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886573
– start-page: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib73
  article-title: Detection of first-degree atrioventricular block on variable-length electrocardiogram via a multimodal deep learning method
– volume: 51
  start-page: S18
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib154
  article-title: Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ecg recordings
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2018.08.008
– volume: 57
  start-page: S70
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib136
  article-title: Cardiac arrhythmia detection using deep learning: a review
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2019.08.004
– volume: 7
  start-page: 130074
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib88
  article-title: An automatic system for real-time identifying atrial fibrillation by using a lightweight convolutional neural network
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2019.2939822
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib146
  article-title: Generalization studies of neural network models for cardiac disease detection using limited channel ecg
– start-page: 3504
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103801_bib28
  article-title: RETAIN: an interpretable predictive model for healthcare using reverse time attention mechanism
– volume: 125
  start-page: 668
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib221
  article-title: Ecg-based personal recognition using a convolutional neural network
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2019.07.009
– start-page: 2551
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib228
  article-title: Premature ventricular contraction detection from ambulatory ecg using recurrent neural networks
– year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib31
  article-title: A novel deep arrhythmia-diagnosis network for atrial fibrillation classification using electrocardiogram signals
– volume: 15
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103801_bib126
  article-title: Single-modal and multi-modal false arrhythmia alarm reduction using attention-based convolutional and recurrent neural networks
  publication-title: PloS One
  doi: 10.1371/journal.pone.0226990
– volume: 48
  start-page: 2095
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib143
  article-title: Deep convolutional neural networks and learning ecg features for screening paroxysmal atrial fibrillation patients
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2017.2705582
– start-page: 1909
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib164
  article-title: Ambulatory atrial fibrillation monitoring using wearable photoplethysmography with deep learning
– volume: 115
  start-page: 465
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib4
  article-title: A deep learning approach for real-time detection of atrial fibrillation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.011
– ident: 10.1016/j.compbiomed.2020.103801_bib64
– volume: 22
  start-page: 1434
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib113
  article-title: Real-time multilead convolutional neural network for myocardial infarction detection
  publication-title: IEEE journal of biomedical and health informatics
  doi: 10.1109/JBHI.2017.2771768
– volume: 57
  start-page: S65
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib16
  article-title: Deep learning to automatically interpret images of the electrocardiogram: do we need the raw samples?
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2019.09.018
– volume: 5
  start-page: 11805
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib219
  article-title: Heartid: a multiresolution convolutional neural network for ecg-based biometric human identification in smart health applications
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2017.2707460
– volume: 94
  start-page: 19
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib171
  article-title: Application of stacked convolutional and long short-term memory network for accurate identification of cad ecg signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.12.023
– year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib189
– volume: 136
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib174
  article-title: Cardiovascular risk stratification using off-the-shelf wearables and a multi-task deep learning algorithm
  publication-title: Circulation
  doi: 10.1161/circ.136.suppl_1.21042
– volume: 7
  start-page: 109870
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib99
  article-title: Interpretability analysis of heartbeat classification based on heartbeat activity's global sequence features and bilstm-attention neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933473
– year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib181
– volume: 7
  start-page: 48392
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib92
  article-title: Personal identification using a robust eigen ecg network based on time-frequency representations of ecg signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2904095
– volume: 52
  start-page: 88
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib166
  article-title: A deep neural network learning algorithm outperforms a conventional algorithm for emergency department electrocardiogram interpretation
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2018.11.013
– volume: 39
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib226
  article-title: A deep learning approach for fetal qrs complex detection
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aab297
– volume: 24
  start-page: 1321
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib130
  article-title: Inter-patient ecg classification with symbolic representations and multi-perspective convolutional neural networks
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2019.2942938
– start-page: 1308
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib125
  article-title: Inter-and intra-patient ecg heartbeat classification for arrhythmia detection: a sequence to sequence deep learning approach
– volume: 39
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib118
  article-title: Sleep-wake classification via quantifying heart rate variability by convolutional neural network
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aad5a9
– volume: 39
  start-page: 104005
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib167
  article-title: A convolutional neural network for ecg annotation as the basis for classification of cardiac rhythms
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aae304
– volume: 24
  start-page: 5017
  year: 2015
  ident: 10.1016/j.compbiomed.2020.103801_bib22
  article-title: Pcanet: a simple deep learning baseline for image classification?
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2475625
– volume: 7
  start-page: 89152
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib21
  article-title: Atrial fibrillation detection using an improved multi-scale decomposition enhanced residual convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2926749
– volume: 294
  start-page: 94
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib97
  article-title: A method to detect sleep apnea based on deep neural network and hidden markov model using single-lead ecg signal
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.011
– volume: 25
  start-page: 65
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib57
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0268-3
– start-page: 2559
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib25
  article-title: Region aggregation network: improving convolutional neural network for ecg characteristic detection
– year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib39
  article-title: Deep convolutional encoder-decoder framework for fetal ecg signal denoising
– start-page: 4262
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib170
  article-title: Cardiovascular disease diagnosis using cross-domain transfer learning
– volume: 140
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib11
  article-title: A deep learning model to predict outcome after thoracoscopic surgery for atrial fibrillation using single beat electrocardiographic samples
  publication-title: Circulation
– volume: 13
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib9
  article-title: Noninvasive assessment of dofetilide plasma concentration using a deep learning (neural network) analysis of the surface electrocardiogram: a proof of concept study
  publication-title: PloS One
  doi: 10.1371/journal.pone.0201059
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib43
  article-title: Atrial fibrillation detection using feature based algorithm and deep convolutional neural network
– volume: 6
  start-page: 27465
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib216
  article-title: Automated ecg classification using dual heartbeat coupling based on convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2833841
– year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib169
– volume: 126
  start-page: 78
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib86
  article-title: Deep-ecg: convolutional neural networks for ecg biometric recognition
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2018.03.028
– start-page: 1500
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib222
  article-title: Deep learning based patient-specific classification of arrhythmia on ecg signal
– start-page: 1303
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib110
  article-title: A lstm and cnn based assemble neural network framework for arrhythmias classification
– volume: 93
  start-page: 84
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib192
  article-title: Detecting atrial fibrillation by deep convolutional neural networks
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.12.007
– volume: 20
  start-page: 45
  year: 2001
  ident: 10.1016/j.compbiomed.2020.103801_bib123
  article-title: The impact of the mit-bih arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.932724
– volume: 7
  start-page: 153751
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib198
  article-title: Feature enrichment based convolutional neural network for heartbeat classification from electrocardiogram
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2948857
– volume: 102
  start-page: 168
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib225
  article-title: Ecg authentication system design incorporating a convolutional neural network and generalized s-transformation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.09.027
– start-page: 246
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103801_bib124
  article-title: Deep learning for ecg segmentation
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib42
  article-title: You snooze, you win: the physionet/computing in cardiology challenge 2018
– volume: 391
  start-page: 83
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103801_bib101
  article-title: Toward improving ecg biometric identification using cascaded convolutional neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.019
– volume: 39
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib141
  article-title: Parallel use of a convolutional neural network and bagged tree ensemble for the classification of holter ecg
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aad9ee
– volume: 7
  start-page: 76295
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib95
  article-title: Automated heartbeat classification using 3-d inputs based on convolutional neural network with multi-fields of view
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921991
– start-page: 82
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib120
  article-title: A comparison of patient history-and ekg-based cardiac risk scores
  publication-title: AMIA Summits on Translational Science Proceedings
– volume: 185
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103801_bib55
  article-title: Ml–resnet: a novel network to detect and locate myocardial infarction using 12 leads ecg
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2019.105138
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib51
  article-title: Automatic coordinate prediction of the exit of ventricular tachycardia from 12-lead electrocardiogram
– volume: 7
  start-page: 50431
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib38
  article-title: A probabilistic process neural network and its application in ecg classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2910880
– start-page: 248
  year: 2009
  ident: 10.1016/j.compbiomed.2020.103801_bib32
  article-title: Imagenet: a large-scale hierarchical image database
– volume: 25
  start-page: 70
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib8
  article-title: Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0240-2
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib158
  article-title: Beat by beat: classifying cardiac arrhythmias with recurrent neural networks
– volume: 64
  start-page: 2196
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103801_bib44
  article-title: Semi-supervised stacked label consistent autoencoder for reconstruction and analysis of biomedical signals
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 138
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib148
  article-title: Automatic driver stress level classification using multimodal deep learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.07.010
– volume: 184
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103801_bib59
  article-title: Multi-branch fusion network for myocardial infarction screening from 12-lead ecg images
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2019.105286
– ident: 10.1016/j.compbiomed.2020.103801_bib185
– start-page: 1135
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103801_bib149
  article-title: why should I trust you?”: explaining the predictions of any classifier
– volume: 6
  start-page: 39734
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib102
  article-title: Combining convolutional neural network and distance distribution matrix for identification of congestive heart failure
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2855420
– volume: vol. 1
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103801_bib70
  article-title: Harnessing deep neural networks with logic rules
– start-page: 1284
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib138
  article-title: An ensemble of deep recurrent neural networks for p-wave detection in electrocardiogram
– year: 2020
  ident: 10.1016/j.compbiomed.2020.103801_bib206
– volume: 67
  start-page: 1505
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib52
  article-title: Sequential factorized autoencoder for localizing the origin of ventricular activation from 12-lead electrocardiograms
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 7
  start-page: 60806
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib27
  article-title: Noise reduction in ecg signals using fully convolutional denoising autoencoders
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912036
– volume: 7
  start-page: 7989
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib193
  article-title: A novel wearable electrocardiogram classification system using convolutional neural networks and active learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2890865
– volume: 39
  start-page: 664
  year: 2001
  ident: 10.1016/j.compbiomed.2020.103801_bib172
  article-title: Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of rr and δrr intervals
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02345439
– volume: 101
  start-page: e215
  year: 2000
  ident: 10.1016/j.compbiomed.2020.103801_bib46
  article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 7
  start-page: 92871
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib71
  article-title: Ecg arrhythmia classification using stft-based spectrogram and convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928017
– volume: 122
  start-page: 23
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib13
  article-title: Classification of myocardial infarction with multi-lead ecg signals and deep cnn
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2019.02.016
– volume: 134
  start-page: 66
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib93
  article-title: Qrs detection method based on fully convolutional networks for capacitive electrocardiogram
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.05.033
– volume: 102
  start-page: 327
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib37
  article-title: Automated detection of atrial fibrillation using long short-term memory network with rr interval signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.07.001
– volume: 136
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib10
  article-title: Annotating ecg signals with deep neural networks
  publication-title: Circulation
– start-page: 1527
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib150
  article-title: Anchors: high-precision model-agnostic explanations
– start-page: 2555
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib197
  article-title: Bidirectional recurrent neural network and convolutional neural network (bircnn) for ecg beat classification
– year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib77
– volume: 39
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib78
  article-title: A robust deep convolutional neural network for the classification of abnormal cardiac rhythm using single lead electrocardiograms of variable length
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aaaa9d
– year: 2016
  ident: 10.1016/j.compbiomed.2020.103801_bib33
– year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib76
  article-title: U-net architecture for the automatic detection and delineation of the electrocardiogram
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib186
  article-title: Cardiac arrhythmia detection from ecg combining convolutional and long short-term memory networks
– volume: 7
  start-page: 169359
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib215
  article-title: Inter-patient cnn-lstm for qrs complex detection in noisy ecg signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2955738
– start-page: 2608
  year: 2015
  ident: 10.1016/j.compbiomed.2020.103801_bib82
  article-title: Convolutional neural networks for patient-specific ecg classification
– volume: 39
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib137
  article-title: Analyzing single-lead short ecg recordings using dense convolutional neural networks and feature-based post-processing to detect atrial fibrillation
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aad5bd
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib105
  article-title: Atrial fibrillation detection and ecg classification based on convolutional recurrent neural network
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib201
  article-title: Robust ecg signal classification for detection of atrial fibrillation using a novel neural network
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib67
  article-title: Encase: an ensemble classifier for ecg classification using expert features and deep neural networks
– start-page: 673
  year: 1997
  ident: 10.1016/j.compbiomed.2020.103801_bib87
  article-title: A database for evaluation of algorithms for measurement of qt and other waveform intervals in the ecg
– volume: 314
  start-page: 336
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib100
  article-title: Patient-specific ecg classification by deeper cnn from generic to dedicated
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.068
– volume: 12
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib6
  article-title: Age and sex estimation using artificial intelligence from standard 12-lead ecgs
  publication-title: Circulation: Arrhythmia and Electrophysiology
– start-page: 227
  year: 1983
  ident: 10.1016/j.compbiomed.2020.103801_bib122
  article-title: A new method for detecting atrial fibrillation using rr intervals
  publication-title: Comput. Cardiol.
– year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib184
  article-title: Pay attention and watch temporal correlation: a novel 1-d convolutional neural network for ecg record classification
– volume: 7
  start-page: 51598
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib29
  article-title: Ecg authentication method based on parallel multi-scale one-dimensional residual network with center and margin loss
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912519
– volume: 7
  start-page: 77849
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib103
  article-title: Classification of atrial fibrillation recurrence based on a convolution neural network with svm architecture
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920900
– volume: 18
  start-page: 2074
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib165
  article-title: A review of emotion recognition using physiological signals
  publication-title: Sensors
  doi: 10.3390/s18072074
– volume: 7
  start-page: 159369
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib208
  article-title: Ecg generation with sequence generative adversarial nets optimized by policy gradient
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2950383
– start-page: 5642
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib58
  article-title: Spectro-temporal feature based multi-channel convolutional neural network for ecg beat classification
– volume: 7
  start-page: 85959
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib188
  article-title: A multi-class automatic sleep staging method based on long short-term memory network using single-lead electrocardiogram signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2924980
– start-page: 1913
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib74
  article-title: An electrocardiogram delineator via deep segmentation network
– volume: 24
  start-page: 503
  issue: 2
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103801_bib112
  article-title: Mfb-cbrnn: a hybrid network for mi detection using 12-lead ecgs
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2019.2910082
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib117
  article-title: Atrial fibrillation classification using qrs complex features and lstm
– volume: 180
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib35
  article-title: Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2019.105001
– start-page: 2296
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib144
  article-title: Elimination of power line interference from ecg signals using recurrent neural networks
– volume: 6
  start-page: 16529
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib194
  article-title: An automatic cardiac arrhythmia classification system with wearable electrocardiogram
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2807700
– volume: 9
  start-page: 6734
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib230
  article-title: Electrocardiogram generation with a bidirectional lstm-cnn generative adversarial network
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-42516-z
– volume: 39
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib200
  article-title: Ecg signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aad9ed
– start-page: 2571
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib147
  article-title: A generative modeling approach to limited channel ecg classification
– start-page: 256
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib196
  article-title: A deep learning approach to examine ischemic st changes in ambulatory ecg recordings
  publication-title: AMIA Summits on Translational Science Proceedings
– year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib218
– year: 1996
  ident: 10.1016/j.compbiomed.2020.103801_bib19
– start-page: 5888
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib68
  article-title: Mina: multilevel knowledge-guided attention for modeling electrocardiography signals
– volume: 66
  start-page: 218
  year: 1982
  ident: 10.1016/j.compbiomed.2020.103801_bib129
  article-title: Sudden death recorded during holter monitoring
  publication-title: Circulation
  doi: 10.1161/01.CIR.66.1.218
– start-page: 4636
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib214
  article-title: Qrs detection and measurement method of ecg paper based on convolutional neural networks
– volume: 63
  start-page: 664
  year: 2015
  ident: 10.1016/j.compbiomed.2020.103801_bib80
  article-title: Real-time patient-specific ecg classification by 1-d convolutional neural networks
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 109
  start-page: 14
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib24
  article-title: Ecg anomaly class identification using lstm and error profile modeling
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.04.009
– volume: 114
  start-page: 54
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib47
  article-title: Ecg classification using three-level fusion of different feature descriptors
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.07.030
– year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib18
  article-title: Accurate detection of atrial fibrillation from 12-lead ecg using deep neural network
  publication-title: Comput. Biol. Med.
– volume: 14
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib140
  article-title: Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia
  publication-title: PloS One
  doi: 10.1371/journal.pone.0216756
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib135
  article-title: Electrocardiogram monitoring and interpretation: from traditional machine learning to deep learning, and their combination
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib191
  article-title: Atrial fibrillation detection using stationary wavelet transform and deep learning
– start-page: 6057
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib229
  article-title: K-margin-based residual-convolution-recurrent neural network for atrial fibrillation detection
  publication-title: IJCAI
– volume: 24
  start-page: 717
  issue: 3
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103801_bib204
  article-title: I-vector based patient adaptation of deep neural networks for automatic heartbeat classification
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2019.2919732
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib36
  article-title: Classification of atrial fibrillation using stacked auto encoders neural networks
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.compbiomed.2020.103801_bib89
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 19
  start-page: 2828
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib83
  article-title: An evaluation method of safe driving for senior adults using ecg signals
  publication-title: Sensors
  doi: 10.3390/s19122828
– volume: 7
  start-page: 146457
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib96
  article-title: Dual-input neural network integrating feature extraction and deep learning for coronary artery disease detection using electrocardiogram and phonocardiogram
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2943197
– start-page: 1908
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib190
  article-title: A deep learning method to detect atrial fibrillation based on continuous wavelet transform
– volume: 4
  start-page: 6344
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103801_bib212
  article-title: Ecg monitoring system integrated with ir-uwb radar based on cnn
  publication-title: IEEE Access
– start-page: 557
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib45
  article-title: Pgans: personalized generative adversarial networks for ecg synthesis to improve patient-specific deep ecg classification
– volume: 7
  start-page: 99964
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib134
  article-title: Preprocessing method for performance enhancement in cnn-based stemi detection from 12-lead ecg
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2930770
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib183
  article-title: Using a random forest to inspire a neural network and improving on it
– start-page: 2999
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib108
  article-title: Focal loss for dense object detection
– volume: 40
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib127
  article-title: Detection of atrial fibrillation and other abnormal rhythms from ecg using a multi-layer classifier architecture
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aaff04
– volume: 24
  start-page: 407
  issue: 2
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib72
  article-title: Atrial fibrillation prediction with residual network using sensitivity & orthogonality constraints
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2019.2957809
– start-page: 2707
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib111
  article-title: Classification of heart diseases based on ecg signals using long short-term memory
– start-page: 148
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103801_bib66
  article-title: Cardiolearn: a cloud deep learning service for cardiac disease detection from electrocardiogram
– volume: 12
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib175
  article-title: Automated and interpretable patient ecg profiles for disease detection, tracking, and discovery
  publication-title: Circulation: Cardiovascular Quality and Outcomes
– year: 2016
  ident: 10.1016/j.compbiomed.2020.103801_bib56
  article-title: Deep compression: compressing deep neural network with pruning, trained quantization and huffman coding
– volume: 140
  start-page: 93
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib213
  article-title: Recognition of emotions using multimodal physiological signals and an ensemble deep learning model
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2016.12.005
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib23
  article-title: Af detection by exploiting the spectral and temporal characteristics of ecg signals with the lstm model
– volume: 23
  start-page: 1574
  issue: 4
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib203
  article-title: Towards end-to-end ecg classification with raw signal extraction and deep neural networks
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2018.2871510
– year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib179
– volume: 138
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib41
  article-title: Deep learning to detect atrial fibrillation from short noisy ecg segments measured with wireless sensors
  publication-title: Circulation
– year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib168
– volume: 102
  start-page: 278
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103801_bib132
  article-title: Automated diagnosis of arrhythmia using combination of cnn and lstm techniques with variable length heart beats
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.06.002
– volume: 7
  start-page: 34060
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib223
  article-title: Noise rejection for wearable ecgs using modified frequency slice wavelet transform and convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2900719
– volume: 12
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib217
  article-title: Ecg data compression using a neural network model based on multi-objective optimization
  publication-title: PloS One
– volume: 40
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103801_bib98
  article-title: Ventricular ectopic beat detection using a wavelet transform and a convolutional neural network
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ab17f0
– start-page: 3155
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103801_bib107
  article-title: Adversarial ranking for language generation
SSID ssj0004030
Score 2.6599011
SecondaryResourceType review_article
Snippet The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare. Deep learning methods have achieved promising results...
BackgroundThe electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare. Deep learning methods have achieved...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103801
SubjectTerms Annotations
Artificial intelligence
Artificial neural networks
Biomedical engineering
Biometric Identification
Biometrics
Cardiac arrhythmia
Cardiology
Classification
Data mining
Deep Learning
Deep neural network(s)
Diagnostic software
Diagnostic systems
EKG
Electrocardiogram (ECG/EKG)
Electrocardiography
Engineering
Health care
Health informatics
Humans
Identification
International conferences
Keywords
Localization
Machine learning
Neural networks
Neural Networks, Computer
Noise reduction
Physiology
Recurrent neural networks
Scientific papers
Signal processing
Sleep
Sleep Stages
Systematic review
SummonAdditionalLinks – databaseName: ScienceDirect Journal Collection
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90gvgifju_iOBrcW2atNGnIcpU1BcF30KaD1GkG277_7006YagMPCxbQ7SS-7yO_K7O4AzJwqRlponWWpMkjtqE8WtTnyp9lwJp5VpWL6PfPCS372y1yW4anNhPK0y-v7g0xtvHd-cR22ej97ffY4vhhIY4GQe1XORL8NKRgVnHVjp394PHufpkT0aMlHQ5XiBSOgJNC_P3A6Z7hgsZqFgeOwQ88sp9RcKbU6jmw1YjzCS9MNMN2HJ1luw-hAvyrfBPo08sJ7WTcFUompDdNs2ZUyGjhhrRyS2jHgjoY_0mCCCJbExjm6Iqp67RTyL9IL0ybzqMwkZLzvwcnP9fDVIYkeFROdMTBLTc5UWipaKWVuUqsoz02OKMstFJUShmRK2xLWi1roqdYazVCk0e8cMS7mhu9Cph7XdB0KdcSkuK8X4Ja8qrgx1Gbq_onKOcie6ULQalDqWG_ddLz5lyyv7kHPdS697GXTfhXQmOQolNxaQEe0iyTalFJ2gxHNhAdnLmeyPrbeg9FG7J2Q0_7FEWCR6vqwP78Lp7DMarr-NUbUdTv2YjBai5CmO2Qt7afa7iKlZWWTs4F9TO4Q1_xTIxUfQmXxN7TFCqEl1Ek3kG83RHOg
  priority: 102
  providerName: Elsevier
Title Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482520301694
https://dx.doi.org/10.1016/j.compbiomed.2020.103801
https://www.ncbi.nlm.nih.gov/pubmed/32658725
https://www.proquest.com/docview/2419048936
https://www.proquest.com/docview/2423798616
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB3tbiXEHhAsH1tYKiNxDTRxbMcghAraUkAUhFipN8vxBxJCaaHtld_OOLZbDoB6ySWZKMmMx-P4zXsAj70UsmwML6rS2qL21BWaO1MEqvZaS2-07VG-cz67qt8t2OII5rkXJsAqc07sE7VdmvCP_CnONHIcmFL4y9WPIqhGhd3VLKGhk7SCfdFTjB3DAFNyg3E_eHU5__R53yk5prEpBbNPjYujhO2JiK8A4o5N77hurCJ3eBKL-cuE9a-CtJ-YpjfhRqooySSGwC04ct0ZnP7BM3gG1z6kHfTb4D6uQsW97XomVaI7S0zWU1mTpSfWuRVJWhJfSRSYXhMsbUlSzDE9gjWAukiAlz4jE7KngyaxFeYOXE0vv7yeFUlqoTA1k5vCjn1rpKaNZs6JRrd1ZcdMU-a4bKUUhmnpGnQidc63pbeclVpjPvDMspJbehdOumXnzoFQb32J_qa4sKnblmtLfYV5UbTeU-7lEET-nsokHvIgh_FdZcDZN7X3hAqeUNETQyh3lqvIxXGAjcwuU7nXFLOjwgnjANvnO9tUj8Q640DrixwhKuWFtdpH8RAe7U7jiA7bNLpzy224pqJCNrzEa-7FyNq9LhbbrBEVu___mz-A6-FJIqz4Ak42P7fuIRZPm3YEx09-lXgUC4HHZvpmBIPJ2_ez-SiNld_mGx_2
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrcTjUEF5bVvASHCM2MSxE4MqVKDVlrYLQq3Um3H8qFSh7NLdFeLP8dsYx_YuB0B76Tkey8nY43H8zfcBvHCiEnmteVbkxmSlozZT3OrMU7WXSjitTIfyHfHhWfnxnJ2vwa9UC-NhlSkmdoHajLX_R_4Kdxox8Ewp_O3ke-ZVo_ztapLQUFFawex2FGOxsOPI_vyBR7jp7uEH9PfLojjYP30_zKLKQKZLJmaZGbhGC0VrxaytatWUhRkwRZnlohGi0kwJW-P4qbWuyZ3hLFcKl4JjhuXcUOz3BqyXvsK1B-vv9kefvywrMwc0FMFgtCvxMBaxRAFh5kHjocgez6lF4CqP4jR_2SD_lQB3G-HBXdiIGSzZC1PuHqzZdhPu_MFruAk3T-KN_X2wnyY-w5-3HXMrUa0hOum3TMnYEWPthETtigsSBK2nBFNpEhV6dIeY9SAy4uGsr8keWdJPk1B68wDOruWjP4ReO27tYyDUGZfj_KJ4kCqbhitDXYFxuGqco9yJPlTpe0odec-9_MY3mQBul3LpCek9IYMn-pAvLCeB-2MFG5FcJlNtK0ZjiRvUCrZvFrYx_wl5zYrWO2mGyBiHpnK5avrwfPEYI4i_FlKtHc99m4JWouY5tnkUZtbidTG5Z3VVsK3_d_4Mbg1PT47l8eHoaBtu-1EFSPMO9GZXc_sEE7dZ8zSuDgJfr3tB_gY-dFq4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anTTBA4Jx6zbASPAYrYljJx6a0GCrNgZlQkzam3F8mTShtKytEH-RX8VxbLc8AOrLnpsTJTk-F9ff-T6Al05UIq81z4rcmKx01GaKW515qvZSCaeV6VC-I358Xr6_YBdr8CvNwnhYZcqJXaI2Y-3_I9_FSiMGnimF77oIizg7HL6ZfM-8gpQ_aU1yGirKLJj9jm4sDnmc2p8_cDs33T85RN-_Korh0Zd3x1lUHMh0ycQsMwPXaKForZi1Va2asjADpiizXDRCVJopYWt8F2qta3JnOMuVwrBwzLCcG4r3vQXrFVbJsgfrb49GZ5-XU5oDGgZiMPOVuDGLuKKANvMA8jBwj3vWIvCWR6GavxTLfzXDXVEc3oO7sZslB2H53Yc1227CnT84Djdh42M8vX8A9tPEd_vztmNxJao1RCctlykZO2KsnZCoY3FJgrj1lGBbTaJaj-7Qsx5QRjy0dY8ckCUVNQljOA_h_EY--iPotePWPgFCnXE5rjWKm6qyabgy1BWYk6vGOcqd6EOVvqfUkQPdS3F8kwnsdiWXnpDeEzJ4og_5wnISeEBWsBHJZTLNuWJmllisVrB9vbCNvVDocVa03kkrRMacNJXLCOrDi8XPmE38EZFq7XjuryloJWqe4zWPw8pavC42-qyuCrb1_5s_hw0MTPnhZHS6Dbf9QwV08w70Ztdz-xR7uFnzLAYHga83HY-_AQzdXuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Opportunities+and+challenges+of+deep+learning+methods+for+electrocardiogram+data%3A+A+systematic+review&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Hong%2C+Shenda&rft.au=Zhou%2C+Yuxi&rft.au=Shang%2C+Junyuan&rft.au=Xiao%2C+Cao&rft.date=2020-07-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=122&rft_id=info:doi/10.1016%2Fj.compbiomed.2020.103801&rft.externalDocID=S0010482520301694
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon