Experimental comparison of hydrothermal and vapothermal carbonization

The difference between hydrothermal carbonization and vapothermal carbonization for the densification of the energy content of biomass has been investigated systematically for the first time. Vapothermal carbonization allows for higher solid content (solid biomass mass (dry basis) per total mass of...

Full description

Saved in:
Bibliographic Details
Published inFuel processing technology Vol. 115; pp. 261 - 269
Main Authors Funke, Axel, Reebs, Felix, Kruse, Andrea
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.11.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The difference between hydrothermal carbonization and vapothermal carbonization for the densification of the energy content of biomass has been investigated systematically for the first time. Vapothermal carbonization allows for higher solid content (solid biomass mass (dry basis) per total mass of feedstock) in the reactor because the biomass is subject to saturated steam instead of liquid water. Results from the experiments show that the process efficiency can be increased due to two reasons: the carbon losses in the liquid phase are decreased and less water needs to be heated up during carbonization. It was also observed that the carbon content of the solid product is significantly lower than that of hydrothermal carbonization at the same process conditions. As it is even lower for dry torrefaction, it is concluded that liquid water facilitates the carbonization process. Calculations based on these experimental results reveal that a mechanical dewatering of wet biomass increases the process efficiency of hydrothermal processes and should be considered in practice. Due to the low efficiency of state of the art drying, torrefaction is less efficient than vapothermal carbonization. •The effect of solid content on hydrothermal carbonization was investigated.•Water facilitates carbonization as compared to dry processes.•The carbon losses in the liquid phase decrease with higher solid content.•Dewatering of biomass raises the process efficiency of hydrothermal carbonization.•Two different solid products can be isolated and analyzed.
AbstractList The difference between hydrothermal carbonization and vapothermal carbonization for the densification of the energy content of biomass has been investigated systematically for the first time. Vapothermal carbonization allows for higher solid content (solid biomass mass (dry basis) per total mass of feedstock) in the reactor because the biomass is subject to saturated steam instead of liquid water. Results from the experiments show that the process efficiency can be increased due to two reasons: the carbon losses in the liquid phase are decreased and less water needs to be heated up during carbonization. It was also observed that the carbon content of the solid product is significantly lower than that of hydrothermal carbonization at the same process conditions. As it is even lower for dry torrefaction, it is concluded that liquid water facilitates the carbonization process. Calculations based on these experimental results reveal that a mechanical dewatering of wet biomass increases the process efficiency of hydrothermal processes and should be considered in practice. Due to the low efficiency of state of the art drying, torrefaction is less efficient than vapothermal carbonization.
The difference between hydrothermal carbonization and vapothermal carbonization for the densification of the energy content of biomass has been investigated systematically for the first time. Vapothermal carbonization allows for higher solid content (solid biomass mass (dry basis) per total mass of feedstock) in the reactor because the biomass is subject to saturated steam instead of liquid water. Results from the experiments show that the process efficiency can be increased due to two reasons: the carbon losses in the liquid phase are decreased and less water needs to be heated up during carbonization. It was also observed that the carbon content of the solid product is significantly lower than that of hydrothermal carbonization at the same process conditions. As it is even lower for dry torrefaction, it is concluded that liquid water facilitates the carbonization process. Calculations based on these experimental results reveal that a mechanical dewatering of wet biomass increases the process efficiency of hydrothermal processes and should be considered in practice. Due to the low efficiency of state of the art drying, torrefaction is less efficient than vapothermal carbonization. •The effect of solid content on hydrothermal carbonization was investigated.•Water facilitates carbonization as compared to dry processes.•The carbon losses in the liquid phase decrease with higher solid content.•Dewatering of biomass raises the process efficiency of hydrothermal carbonization.•Two different solid products can be isolated and analyzed.
The difference between hydrothermal carbonization and vapothermal carbonization for the densiflcation of the energy content of biomass has been investigated systematically for the first time. Vapothermal carbonization allows for higher solid content (solid biomass mass (dry basis) per total mass of feedstock) in the reactor because the biomass is subject to saturated steam instead of liquid water. Results from the experiments show that the process efficiency can be increased due to two reasons: the carbon losses in the liquid phase are decreased and less water needs to be heated up during carbonization. It was also observed that the carbon content of the solid product is significantly lower than that of hydrothermal carbonization at the same process conditions. As it is even lower for dry torrefaction, it is concluded that liquid water facilitates the carbonization process. Calculations based on these experimental results reveal that a mechanical dewatering of wet biomass increases the process efficiency of hydrothermal processes and should be considered in practice. Due to the low efficiency of state of the art drying, torrefaction is less efficient than vapothermal carbonization.
Author Funke, Axel
Reebs, Felix
Kruse, Andrea
Author_xml – sequence: 1
  givenname: Axel
  surname: Funke
  fullname: Funke, Axel
  email: afunke@atb-potsdam.de
  organization: Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Germany
– sequence: 2
  givenname: Felix
  surname: Reebs
  fullname: Reebs, Felix
  organization: Karlsruhe Institute of Technology, Institute for Catalysis Research Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
– sequence: 3
  givenname: Andrea
  surname: Kruse
  fullname: Kruse, Andrea
  organization: Karlsruhe Institute of Technology, Institute for Catalysis Research Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27658570$$DView record in Pascal Francis
BookMark eNqFkUFrFDEYhoNUcFv9B4J7EbzM-GUymWQ8CFLWVih40J7Dt5kvNstsMiazxfrrzTqlBw_uKYQ8b5Lvec_ZWYiBGHvNoebAu_e72h2mFG3dABc1tDU08IytuFaiUlzrM7YCoXQldAMv2HnOOwCQslcrttn8mij5PYUZx7WN-wmTzzGso1vfPQwpzneU9uUIw7C-x-lpbzFtY_C_cfYxvGTPHY6ZXj2uF-z28-b75XV18_Xqy-Wnm8q2sp-rAbQVSI5ranRjYXASePnr0G85b1tODVk3WK3QgtVbsQU-dD1K7BwAEYoL9m65t0z780B5NnufLY0jBoqHbJoyFyghAE6iXIIUbV-UnEbbVisOxWRB3z6imC2OLmGwPpupGMT0YBrVSS3V8fV24WyKOSdyTwgHc-zM7MzSmTl2ZqA1xUOJffgnZv381_Cc0I-nwm-WsMNo8Eep0dx-K0BXnHQKZFeIjwtBpaN7T8lk6ylYGnwiO5sh-v8_8Qf5esBZ
CODEN FPTEDY
CitedBy_id crossref_primary_10_1016_j_renene_2020_07_100
crossref_primary_10_3390_en13215733
crossref_primary_10_1016_j_renene_2019_12_037
crossref_primary_10_1007_s13399_023_04191_z
crossref_primary_10_1016_j_jwpe_2024_105725
crossref_primary_10_1016_j_fuel_2023_129365
crossref_primary_10_1016_j_enconman_2020_113759
crossref_primary_10_1016_j_wasman_2014_06_024
crossref_primary_10_1016_j_still_2016_01_005
crossref_primary_10_1016_j_rser_2016_12_122
crossref_primary_10_2166_washdev_2015_017
crossref_primary_10_1002_cite_201400182
crossref_primary_10_1016_j_seta_2015_08_003
crossref_primary_10_1016_j_enconman_2016_05_016
crossref_primary_10_3390_en15155491
crossref_primary_10_1002_cite_201500039
crossref_primary_10_3390_asi4010019
crossref_primary_10_1016_j_jaap_2019_03_007
crossref_primary_10_1016_j_energy_2017_06_010
crossref_primary_10_3390_en14185608
crossref_primary_10_1016_j_geoderma_2015_12_018
crossref_primary_10_1021_ef402342e
crossref_primary_10_1016_j_supflu_2017_12_035
crossref_primary_10_1021_acsomega_0c00737
crossref_primary_10_1080_00102202_2022_2147793
crossref_primary_10_3390_en15062209
crossref_primary_10_1016_j_renene_2020_03_112
crossref_primary_10_1016_j_applthermaleng_2018_02_073
crossref_primary_10_3390_en17184643
crossref_primary_10_1002_cite_201400116
crossref_primary_10_34248_bsengineering_1347169
crossref_primary_10_1016_j_renene_2021_02_090
crossref_primary_10_3390_en12040630
crossref_primary_10_1016_j_jaap_2015_03_012
crossref_primary_10_1016_j_jenvman_2017_09_031
crossref_primary_10_1016_j_fuproc_2022_107479
crossref_primary_10_3390_pr11082486
crossref_primary_10_1016_j_biortech_2025_132329
crossref_primary_10_1016_j_fuel_2020_117796
crossref_primary_10_1007_s13399_017_0291_5
crossref_primary_10_1016_j_supflu_2018_01_012
crossref_primary_10_3390_en11030674
crossref_primary_10_1016_j_jaap_2024_106685
crossref_primary_10_1002_cite_201800075
crossref_primary_10_1016_j_biortech_2018_06_024
crossref_primary_10_1021_acssuschemeng_7b01895
crossref_primary_10_1115_1_4042822
crossref_primary_10_1016_j_energy_2022_126373
crossref_primary_10_1080_10643389_2020_1864957
crossref_primary_10_1016_j_jaap_2017_02_014
crossref_primary_10_1007_s13399_020_00743_9
crossref_primary_10_3390_agronomy13122881
crossref_primary_10_1016_j_indcrop_2021_113870
crossref_primary_10_4028_www_scientific_net_AMM_768_73
crossref_primary_10_1016_j_apsoil_2017_01_006
crossref_primary_10_1007_s13399_015_0172_8
crossref_primary_10_1007_s13399_021_01816_z
crossref_primary_10_1007_s13399_019_00488_0
crossref_primary_10_1016_j_biortech_2015_05_091
crossref_primary_10_1016_j_psep_2023_08_010
crossref_primary_10_1016_j_biortech_2017_09_072
crossref_primary_10_1016_j_fuel_2018_06_060
crossref_primary_10_3390_c7040077
crossref_primary_10_1007_s13399_017_0280_8
crossref_primary_10_1016_j_fuel_2021_120533
crossref_primary_10_3390_en15062227
crossref_primary_10_1016_j_supflu_2014_09_038
crossref_primary_10_1016_j_energy_2023_127803
crossref_primary_10_3390_polym14102053
crossref_primary_10_1016_j_biortech_2015_11_010
crossref_primary_10_1016_j_apenergy_2016_04_017
crossref_primary_10_1016_j_jaap_2019_02_003
crossref_primary_10_1016_j_scitotenv_2022_158465
crossref_primary_10_1016_j_scitotenv_2018_02_164
crossref_primary_10_1002_er_5865
crossref_primary_10_1016_j_jaap_2024_106928
crossref_primary_10_1039_C5EE01633A
crossref_primary_10_1155_er_3595643
crossref_primary_10_1007_s13399_020_00817_8
crossref_primary_10_1016_j_wasman_2019_09_009
Cites_doi 10.4155/bfs.10.81
10.1021/ie00004a027
10.1016/j.biortech.2011.05.016
10.1016/j.biombioe.2011.02.022
10.1021/ef101745n
10.1039/c1gc15742f
10.1002/cite.201100092
10.1039/c2ee21166a
10.1016/S0016-2361(01)00131-4
10.1016/j.fuel.2012.05.024
10.1016/j.rser.2006.05.014
10.1016/j.fuproc.2011.11.009
10.1016/j.biortech.2012.06.063
10.1021/ef9501859
10.1016/j.biortech.2012.05.060
10.1002/cite.201100126
10.1071/SR10010
10.1016/j.biortech.2011.06.099
10.1002/ceat.200800278
10.1021/es2004528
10.1021/ef101342v
10.1002/bbb.198
10.1039/b810100k
10.1016/j.energy.2010.05.019
10.1016/j.energy.2012.01.057
10.1002/cite.201100168
10.1016/j.biombioe.2010.01.032
10.1016/j.biombioe.2011.04.032
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7ST
C1K
SOI
7S9
L.6
DOI 10.1016/j.fuproc.2013.04.020
DatabaseName AGRIS
CrossRef
Pascal-Francis
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Environment Abstracts
Environment Abstracts
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-7188
EndPage 269
ExternalDocumentID 27658570
10_1016_j_fuproc_2013_04_020
US201600067056
S0378382013001872
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSK
SSR
SSZ
T5K
TWZ
UHS
WUQ
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AKRWK
ANKPU
BNPGV
FBQ
GROUPED_DOAJ
SSH
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
IQODW
7ST
C1K
SOI
7S9
L.6
ID FETCH-LOGICAL-c459t-d08c3aef18e282c0df501020d9b11441e2ecfdc87ac0c8b3b01d69a5a6f00eea3
IEDL.DBID .~1
ISSN 0378-3820
IngestDate Fri Jul 11 07:55:08 EDT 2025
Fri Jul 11 16:00:52 EDT 2025
Sun Aug 24 03:54:32 EDT 2025
Mon Jul 21 09:15:24 EDT 2025
Thu Apr 24 22:56:44 EDT 2025
Tue Jul 01 03:04:25 EDT 2025
Thu Apr 03 09:46:52 EDT 2025
Fri Feb 23 02:30:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Digestate
VTC
TorrO
daf
TOC
Thermochemical conversion
Vapothermal carbonization
TGA
Torrefaction
Hydrothermal carbonization
HTC
Energy efficiency
TorrC
db
Thermochemical treatment
Saturated vapor
Biomass
Anaerobic digestion
Carbonization
Hydrothermal treatment
Energy conservation
Energetic efficiency
By product
Comparative study
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-d08c3aef18e282c0df501020d9b11441e2ecfdc87ac0c8b3b01d69a5a6f00eea3
Notes http://dx.doi.org/10.1016/j.fuproc.2013.04.020
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1448710718
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_2000073300
proquest_miscellaneous_1505349382
proquest_miscellaneous_1448710718
pascalfrancis_primary_27658570
crossref_primary_10_1016_j_fuproc_2013_04_020
crossref_citationtrail_10_1016_j_fuproc_2013_04_020
fao_agris_US201600067056
elsevier_sciencedirect_doi_10_1016_j_fuproc_2013_04_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Fuel processing technology
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Fytili, Zabaniotou (bb0015) 2008; 12
Fuchs, Drosg (bb0165) 2010
Bergius (bb0145) 1913
Channiwala, Parikh (bb0190) 2002; 81
Ajanovic (bb0005) 2011; 36
Stemann, Ziegler (bb0110) 2011
Erlach, Hader, Tsatsaronis (bb0225) 2012; 45
Liu, Quek, Hoekman, Srinivasan, Balasubramanian (bb0205) 2012; 123
Mumme, Eckervogt, Pielert, Diakité, Rupp, Kern (bb0180) 2011; 102
U.S. Environmental Protection Agency (bb0020) 2004
Fuertes, Camps Arbestain, Sevilla, Maciá-Agulló, Fiol, López, Smernik, Aitkenhead, Arce, Macias (bb0200) 2010; 48
Libra, Ro, Kammann, Funke, Berge, Neubauer, Titirici, Fühner, Bens, Kern, Emmerich (bb0220) 2011; 2
Tremel, Stemann, Herrmann, Erlach, Spliethoff (bb0085) 2012; 102
Mok, Antal, Szabo, Varhegyi, Zelei (bb0195) 1992; 31
Ramke, Blöhse, Lehmann (bb0105) 2012; 9
Funke (bb0140) 2012
Berge, Ro, Mao, Flora, Chappell, Bae (bb0040) 2011; 45
European Commission Environment (bb0010) 1998
Hoekman, Broch, Robbins (bb0065) 2011; 25
R. Schlitt, B. Altensen, F. Richarts, A. Spantig, Verfahren zur Gewinnung von Rohstoff und Energieträgern aus Pflanzen und Pflanzenresten, German Patent Nr. DE 10 2009 010 233 A1, 2009.
Erlach, Tsatsaronis (bb0115) 2010
A. Kruse, A. Funke, M.-M. Titirici, Hydrothermal Conversion of Biomass to Fuels and Energetic Materials, Journal of Chemical Biology, in peer review.
Sevilla, Maciá-Agulló, Fuertes (bb0080) 2011; 35
Falco, Baccile, Titirici (bb0210) 2011; 13
(bb0170) 2009
Funke, Ziegler (bb0095) 2010; 4
Dahmen, Henrich, Kruse, Raffelt (bb0025) 2010
Román, Nabais, Laginhas, Ledesma, González (bb0075) 2012; 103
Mensinger (bb0100) 1980
Peterson, Vogel, Lachance, Fröling, Antal (bb0030) 2008; 1
Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (bb0185) 1976; Band III
Ramke, Blöhse, Lehmann, Antonietti, Fettig (bb0150) 2010
Kruse, Badoux, Grandl, Wüst (bb0070) 2012; 84
Xiao, Shi, Xu, Sun (bb0090) 2012; 18
Tropsch, Phillipovich (bb0155) 1922; 7
Funke, Ziegler (bb0230) 2011; 102
R. Schlitt, F. Richarts, Verfahren und Vorrichtung zur Carbonisierung von Biomasse mit Dampfsteuerung, European Patent Nr. EP 2 410 035 A1, 2010.
Titirici, White, Falco, Sevilla (bb0035) 2012; 5
A. Funke, J. Mumme, M. Koon, M. Diakitè, Cascaded production of biogas and hydrochar from wheat straw – recovery of energy, carbon and plant nutrients, Biomass and Bioenergy, in peer review.
Stemann, Ziegler (bb0120) 2011
Dinjus, Kruse, Tröger (bb0050) 2011; 83
Karayildirim, Sinag, Kruse (bb0215) 2008; 31
Heilmann, Davis, Jader, Lefebvre, Sadowsky, Schendel, von Keitz, Valentas (bb0055) 2010; 34
Antal, Croiset, Dai, DeAlmeida, Mok, Norberg, Richard, Al Majthoub (bb0160) 1996; 10
Heilmann, Jader, Sadowsky, Schendel, von Keitz, Valentas (bb0060) 2011; 35
Cao, Ro, Chappell, Li, Mao (bb0045) 2011; 25
Buttmann (bb0235) 2011; 83
Funke (10.1016/j.fuproc.2013.04.020_bb0140) 2012
Channiwala (10.1016/j.fuproc.2013.04.020_bb0190) 2002; 81
Funke (10.1016/j.fuproc.2013.04.020_bb0095) 2010; 4
Ramke (10.1016/j.fuproc.2013.04.020_bb0150) 2010
Antal (10.1016/j.fuproc.2013.04.020_bb0160) 1996; 10
U.S. Environmental Protection Agency (10.1016/j.fuproc.2013.04.020_bb0020) 2004
Xiao (10.1016/j.fuproc.2013.04.020_bb0090) 2012; 18
10.1016/j.fuproc.2013.04.020_bb0125
Cao (10.1016/j.fuproc.2013.04.020_bb0045) 2011; 25
Heilmann (10.1016/j.fuproc.2013.04.020_bb0055) 2010; 34
Bergius (10.1016/j.fuproc.2013.04.020_bb0145) 1913
Fuchs (10.1016/j.fuproc.2013.04.020_bb0165) 2010
Mok (10.1016/j.fuproc.2013.04.020_bb0195) 1992; 31
Peterson (10.1016/j.fuproc.2013.04.020_bb0030) 2008; 1
Buttmann (10.1016/j.fuproc.2013.04.020_bb0235) 2011; 83
European Commission Environment (10.1016/j.fuproc.2013.04.020_bb0010) 1998
Kruse (10.1016/j.fuproc.2013.04.020_bb0070) 2012; 84
Falco (10.1016/j.fuproc.2013.04.020_bb0210) 2011; 13
Fytili (10.1016/j.fuproc.2013.04.020_bb0015) 2008; 12
Titirici (10.1016/j.fuproc.2013.04.020_bb0035) 2012; 5
Tropsch (10.1016/j.fuproc.2013.04.020_bb0155) 1922; 7
Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (10.1016/j.fuproc.2013.04.020_bb0185) 1976; Band III
Hoekman (10.1016/j.fuproc.2013.04.020_bb0065) 2011; 25
Dinjus (10.1016/j.fuproc.2013.04.020_bb0050) 2011; 83
Ramke (10.1016/j.fuproc.2013.04.020_bb0105) 2012; 9
Dahmen (10.1016/j.fuproc.2013.04.020_bb0025) 2010
Karayildirim (10.1016/j.fuproc.2013.04.020_bb0215) 2008; 31
Funke (10.1016/j.fuproc.2013.04.020_bb0230) 2011; 102
Mumme (10.1016/j.fuproc.2013.04.020_bb0180) 2011; 102
Fuertes (10.1016/j.fuproc.2013.04.020_bb0200) 2010; 48
Libra (10.1016/j.fuproc.2013.04.020_bb0220) 2011; 2
Mensinger (10.1016/j.fuproc.2013.04.020_bb0100) 1980
Liu (10.1016/j.fuproc.2013.04.020_bb0205) 2012; 123
Stemann (10.1016/j.fuproc.2013.04.020_bb0110) 2011
Ajanovic (10.1016/j.fuproc.2013.04.020_bb0005) 2011; 36
Román (10.1016/j.fuproc.2013.04.020_bb0075) 2012; 103
10.1016/j.fuproc.2013.04.020_bb0135
Erlach (10.1016/j.fuproc.2013.04.020_bb0225) 2012; 45
Erlach (10.1016/j.fuproc.2013.04.020_bb0115) 2010
Sevilla (10.1016/j.fuproc.2013.04.020_bb0080) 2011; 35
Stemann (10.1016/j.fuproc.2013.04.020_bb0120) 2011
(10.1016/j.fuproc.2013.04.020_bb0170) 2009
Berge (10.1016/j.fuproc.2013.04.020_bb0040) 2011; 45
Heilmann (10.1016/j.fuproc.2013.04.020_bb0060) 2011; 35
Tremel (10.1016/j.fuproc.2013.04.020_bb0085) 2012; 102
10.1016/j.fuproc.2013.04.020_bb0175
10.1016/j.fuproc.2013.04.020_bb0130
References_xml – volume: 10
  start-page: 652
  year: 1996
  end-page: 658
  ident: bb0160
  article-title: High-yield biomass charcoal
  publication-title: Energy & Fuels
– year: 2004
  ident: bb0020
  article-title: Background Document for the Final Comprehensive Procurement Guideline (CPG) IV and Final Recovered Materials Advisory Notice (RMAN) IV 2004
– year: 1913
  ident: bb0145
  article-title: Die Anwendung hoher Drücke bei chemischen Vorgängen und eine Nachbildung des Entstehungsprozesses der Steinkohle
– volume: 102
  start-page: 396
  year: 2012
  end-page: 403
  ident: bb0085
  article-title: Entrained flow gasification of biocoal from hydrothermal carbonization
  publication-title: Fuel
– start-page: 1894
  year: 2011
  end-page: 1899
  ident: bb0110
  article-title: Hydrothermal carbonisation (HTC): recycling of process water
  publication-title: Proceedings of the 19th European Biomass Conference and Exhibition, Berlin, Germany, 6–10 June 2011
– volume: 48
  start-page: 618
  year: 2010
  end-page: 626
  ident: bb0200
  article-title: Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover
  publication-title: Australian Journal of Soil Research
– volume: 102
  start-page: 7595
  year: 2011
  end-page: 7598
  ident: bb0230
  article-title: Heat of reaction measurements for hydrothermal carbonization of biomass
  publication-title: Bioresource Technology
– volume: 84
  start-page: 1
  year: 2012
  end-page: 5
  ident: bb0070
  article-title: Hydrothermale Karbonisierung: 2. Kinetik der Biertreber-Umwandlung
  publication-title: Chemie Ingenieur Technik
– volume: 12
  start-page: 116
  year: 2008
  end-page: 140
  ident: bb0015
  article-title: Utilization of sewage sludge in EU application of old and new methods — a review
  publication-title: Renewable & Sustainable Energy Reviews
– volume: 4
  start-page: 160
  year: 2010
  end-page: 177
  ident: bb0095
  article-title: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering
  publication-title: Biofuels, Bioproducts and Biorefining
– volume: 25
  start-page: 388
  year: 2011
  end-page: 397
  ident: bb0045
  article-title: Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state
  publication-title: Energy & Fuels
– year: 2009
  ident: bb0170
  publication-title: Gülzower Fachgespräche Band 30. Gärrestaufbereitung für eine pflanzenbauliche Nutzung - Stand und F
– volume: 35
  start-page: 3152
  year: 2011
  end-page: 3159
  ident: bb0080
  article-title: Hydrothermal carbonization of biomass as a route for the sequestration of CO
  publication-title: Biomass and Bioenergy
– volume: 34
  start-page: 875
  year: 2010
  end-page: 882
  ident: bb0055
  article-title: Hydrothermal carbonization of microalgae
  publication-title: Biomass and Bioenergy
– volume: 35
  start-page: 2526
  year: 2011
  end-page: 2533
  ident: bb0060
  article-title: Hydrothermal carbonization of distiller's grains
  publication-title: Biomass and Bioenergy
– reference: A. Funke, J. Mumme, M. Koon, M. Diakitè, Cascaded production of biogas and hydrochar from wheat straw – recovery of energy, carbon and plant nutrients, Biomass and Bioenergy, in peer review.
– volume: Band III
  year: 1976
  ident: bb0185
  publication-title: Methodenbuch
– volume: 45
  start-page: 5696
  year: 2011
  end-page: 5703
  ident: bb0040
  article-title: Hydrothermal carbonization of municipal waste streams
  publication-title: Environmental Science & Technology
– reference: R. Schlitt, B. Altensen, F. Richarts, A. Spantig, Verfahren zur Gewinnung von Rohstoff und Energieträgern aus Pflanzen und Pflanzenresten, German Patent Nr. DE 10 2009 010 233 A1, 2009.
– year: 1998
  ident: bb0010
  article-title: Urban Waste Water Treatment — Commission Directive 98/15/EC Amending Council Directive 98/271/EEC
– volume: 5
  start-page: 6796
  year: 2012
  end-page: 6822
  ident: bb0035
  article-title: Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage
  publication-title: Energy & Environmental Science
– volume: 31
  start-page: 1162
  year: 1992
  end-page: 1166
  ident: bb0195
  article-title: Formation of charcoal from biomass in a sealed reactor
  publication-title: Industrial and Engineering Chemistry Research
– year: 2012
  ident: bb0140
  article-title: Hydrothermale Karbonisierung von Biomasse - Reaktionsmechanismen und Reaktionswärme
– volume: 31
  start-page: 1561
  year: 2008
  end-page: 1568
  ident: bb0215
  article-title: Char and coke formation as unwanted side reaction of the hydrothermal biomass gasification
  publication-title: Chemical Engineering and Technology
– volume: 103
  start-page: 78
  year: 2012
  end-page: 83
  ident: bb0075
  article-title: Hydrothermal carbonization as an effective way of densifying the energy content of biomass
  publication-title: Fuel Processing Technology
– volume: 7
  start-page: 84
  year: 1922
  end-page: 102
  ident: bb0155
  article-title: Über die künstliche Inkohlung von Cellulose und Lignin in Gegenwart von Wasser
  publication-title: Gesammelte Abhandlungen zur Kenntnis der Kohle
– year: 2010
  ident: bb0165
  article-title: Technologiebewertung von Gärrestbehandlungs- und Verwertungskonzepten
– volume: 83
  start-page: 1734
  year: 2011
  end-page: 1741
  ident: bb0050
  article-title: Hydrothermale Karbonisierung: 1. Einfluss des Lignins in Lignocellulosen
  publication-title: Chemie Ingenieur Technik
– year: 2011
  ident: bb0120
  article-title: Assessment of the energetic efficiency of a continuously operating plant for hydrothermal carbonisation of biomass
  publication-title: Proceedings of World Renewable Energy Congress 2011, Linköping, Sweden, 8–13 May 2011
– volume: 102
  start-page: 9255
  year: 2011
  end-page: 9260
  ident: bb0180
  article-title: Hydrothermal carbonization of anaerobically digested maize silage
  publication-title: Bioresource Technology
– reference: A. Kruse, A. Funke, M.-M. Titirici, Hydrothermal Conversion of Biomass to Fuels and Energetic Materials, Journal of Chemical Biology, in peer review.
– volume: 83
  start-page: 1890
  year: 2011
  end-page: 1896
  ident: bb0235
  article-title: Klimafreundliche Kohle durch Hydrothermale Karbonisierung von Biomasse
  publication-title: Chemie Ingenieur Technik
– volume: 36
  start-page: 2070
  year: 2011
  end-page: 2076
  ident: bb0005
  article-title: Biofuels versus food production: does biofuels production increase food prices?
  publication-title: Energy
– volume: 9
  start-page: 476
  year: 2012
  end-page: 483
  ident: bb0105
  article-title: Hydrothermal carbonization of organic municipal solid waste — scientific and technical principles
  publication-title: Müll und Abfall
– start-page: 91
  year: 2010
  end-page: 122
  ident: bb0025
  article-title: Biomass liquefaction and gasification
  publication-title: Biomass to Biofuels: Strategies for Global Industries
– volume: 123
  start-page: 646
  year: 2012
  end-page: 652
  ident: bb0205
  article-title: Thermogravimetric investigation of hydrochar-lignite co-combustion
  publication-title: Bioresource Technology
– reference: R. Schlitt, F. Richarts, Verfahren und Vorrichtung zur Carbonisierung von Biomasse mit Dampfsteuerung, European Patent Nr. EP 2 410 035 A1, 2010.
– volume: 81
  start-page: 1051
  year: 2002
  end-page: 1063
  ident: bb0190
  article-title: A unified correlation for estimating HHV of solid, liquid and gaseous fuels
  publication-title: Fuel
– volume: 1
  start-page: 32
  year: 2008
  end-page: 65
  ident: bb0030
  article-title: Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies
  publication-title: Energy & Environmental Science
– year: 2010
  ident: bb0115
  article-title: Upgrading of biomass by hydrothermal carbonisation: analysis of an industrial-scale plant design
  publication-title: Proceedings of the ECOS 2010 — 23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems
– year: 2010
  ident: bb0150
  article-title: Machbarkeitsstudie zur Energiegewinnung aus organischen Siedlungsabfällen durch Hydrothermale Carbonisierung
– volume: 25
  start-page: 1802
  year: 2011
  end-page: 1810
  ident: bb0065
  article-title: Hydrothermal carbonization (HTC) of lignocellulosic biomass
  publication-title: Energy & Fuels
– volume: 13
  start-page: 3273
  year: 2011
  end-page: 3281
  ident: bb0210
  article-title: Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons
  publication-title: Green Chemistry
– volume: 18
  start-page: 619
  year: 2012
  end-page: 623
  ident: bb0090
  article-title: Hydrothermal carbonization of lignocellulosic biomass
  publication-title: Bioresource Technology
– volume: 45
  start-page: 329
  year: 2012
  end-page: 338
  ident: bb0225
  article-title: Combined hydrothermal carbonization and gasification of biomass with carbon capture
  publication-title: Energy
– volume: 2
  start-page: 71
  year: 2011
  end-page: 106
  ident: bb0220
  article-title: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis
  publication-title: Biofuels
– start-page: 249
  year: 1980
  end-page: 280
  ident: bb0100
  article-title: Wet carbonization of peat: state of the art review
  publication-title: Peat as an Energy Alternative: Symposium Proceedings Chicago, Ill. IGT
– ident: 10.1016/j.fuproc.2013.04.020_bb0130
– volume: 2
  start-page: 71
  year: 2011
  ident: 10.1016/j.fuproc.2013.04.020_bb0220
  article-title: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis
  publication-title: Biofuels
  doi: 10.4155/bfs.10.81
– year: 2010
  ident: 10.1016/j.fuproc.2013.04.020_bb0165
– volume: 31
  start-page: 1162
  year: 1992
  ident: 10.1016/j.fuproc.2013.04.020_bb0195
  article-title: Formation of charcoal from biomass in a sealed reactor
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie00004a027
– volume: 102
  start-page: 7595
  year: 2011
  ident: 10.1016/j.fuproc.2013.04.020_bb0230
  article-title: Heat of reaction measurements for hydrothermal carbonization of biomass
  publication-title: Bioresource Technology
  doi: 10.1016/j.biortech.2011.05.016
– year: 1998
  ident: 10.1016/j.fuproc.2013.04.020_bb0010
– volume: 35
  start-page: 2526
  year: 2011
  ident: 10.1016/j.fuproc.2013.04.020_bb0060
  article-title: Hydrothermal carbonization of distiller's grains
  publication-title: Biomass and Bioenergy
  doi: 10.1016/j.biombioe.2011.02.022
– volume: 25
  start-page: 1802
  year: 2011
  ident: 10.1016/j.fuproc.2013.04.020_bb0065
  article-title: Hydrothermal carbonization (HTC) of lignocellulosic biomass
  publication-title: Energy & Fuels
  doi: 10.1021/ef101745n
– year: 2010
  ident: 10.1016/j.fuproc.2013.04.020_bb0115
  article-title: Upgrading of biomass by hydrothermal carbonisation: analysis of an industrial-scale plant design
– volume: 13
  start-page: 3273
  year: 2011
  ident: 10.1016/j.fuproc.2013.04.020_bb0210
  article-title: Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons
  publication-title: Green Chemistry
  doi: 10.1039/c1gc15742f
– volume: 83
  start-page: 1734
  year: 2011
  ident: 10.1016/j.fuproc.2013.04.020_bb0050
  article-title: Hydrothermale Karbonisierung: 1. Einfluss des Lignins in Lignocellulosen
  publication-title: Chemie Ingenieur Technik
  doi: 10.1002/cite.201100092
– volume: 5
  start-page: 6796
  year: 2012
  ident: 10.1016/j.fuproc.2013.04.020_bb0035
  article-title: Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage
  publication-title: Energy & Environmental Science
  doi: 10.1039/c2ee21166a
– year: 2011
  ident: 10.1016/j.fuproc.2013.04.020_bb0120
  article-title: Assessment of the energetic efficiency of a continuously operating plant for hydrothermal carbonisation of biomass
– volume: 81
  start-page: 1051
  year: 2002
  ident: 10.1016/j.fuproc.2013.04.020_bb0190
  article-title: A unified correlation for estimating HHV of solid, liquid and gaseous fuels
  publication-title: Fuel
  doi: 10.1016/S0016-2361(01)00131-4
– volume: 102
  start-page: 396
  year: 2012
  ident: 10.1016/j.fuproc.2013.04.020_bb0085
  article-title: Entrained flow gasification of biocoal from hydrothermal carbonization
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.05.024
– volume: 9
  start-page: 476
  year: 2012
  ident: 10.1016/j.fuproc.2013.04.020_bb0105
  article-title: Hydrothermal carbonization of organic municipal solid waste — scientific and technical principles
  publication-title: Müll und Abfall
– volume: 7
  start-page: 84
  year: 1922
  ident: 10.1016/j.fuproc.2013.04.020_bb0155
  article-title: Über die künstliche Inkohlung von Cellulose und Lignin in Gegenwart von Wasser
  publication-title: Gesammelte Abhandlungen zur Kenntnis der Kohle
– volume: 12
  start-page: 116
  year: 2008
  ident: 10.1016/j.fuproc.2013.04.020_bb0015
  article-title: Utilization of sewage sludge in EU application of old and new methods — a review
  publication-title: Renewable & Sustainable Energy Reviews
  doi: 10.1016/j.rser.2006.05.014
– volume: 103
  start-page: 78
  year: 2012
  ident: 10.1016/j.fuproc.2013.04.020_bb0075
  article-title: Hydrothermal carbonization as an effective way of densifying the energy content of biomass
  publication-title: Fuel Processing Technology
  doi: 10.1016/j.fuproc.2011.11.009
– year: 2004
  ident: 10.1016/j.fuproc.2013.04.020_bb0020
– volume: 123
  start-page: 646
  year: 2012
  ident: 10.1016/j.fuproc.2013.04.020_bb0205
  article-title: Thermogravimetric investigation of hydrochar-lignite co-combustion
  publication-title: Bioresource Technology
  doi: 10.1016/j.biortech.2012.06.063
– ident: 10.1016/j.fuproc.2013.04.020_bb0135
– volume: 10
  start-page: 652
  year: 1996
  ident: 10.1016/j.fuproc.2013.04.020_bb0160
  article-title: High-yield biomass charcoal
  publication-title: Energy & Fuels
  doi: 10.1021/ef9501859
– start-page: 91
  year: 2010
  ident: 10.1016/j.fuproc.2013.04.020_bb0025
  article-title: Biomass liquefaction and gasification
– volume: 18
  start-page: 619
  year: 2012
  ident: 10.1016/j.fuproc.2013.04.020_bb0090
  article-title: Hydrothermal carbonization of lignocellulosic biomass
  publication-title: Bioresource Technology
  doi: 10.1016/j.biortech.2012.05.060
– volume: 83
  start-page: 1890
  year: 2011
  ident: 10.1016/j.fuproc.2013.04.020_bb0235
  article-title: Klimafreundliche Kohle durch Hydrothermale Karbonisierung von Biomasse
  publication-title: Chemie Ingenieur Technik
  doi: 10.1002/cite.201100126
– ident: 10.1016/j.fuproc.2013.04.020_bb0175
– volume: 48
  start-page: 618
  year: 2010
  ident: 10.1016/j.fuproc.2013.04.020_bb0200
  article-title: Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover
  publication-title: Australian Journal of Soil Research
  doi: 10.1071/SR10010
– ident: 10.1016/j.fuproc.2013.04.020_bb0125
– volume: 102
  start-page: 9255
  year: 2011
  ident: 10.1016/j.fuproc.2013.04.020_bb0180
  article-title: Hydrothermal carbonization of anaerobically digested maize silage
  publication-title: Bioresource Technology
  doi: 10.1016/j.biortech.2011.06.099
– year: 1913
  ident: 10.1016/j.fuproc.2013.04.020_bb0145
– volume: 31
  start-page: 1561
  year: 2008
  ident: 10.1016/j.fuproc.2013.04.020_bb0215
  article-title: Char and coke formation as unwanted side reaction of the hydrothermal biomass gasification
  publication-title: Chemical Engineering and Technology
  doi: 10.1002/ceat.200800278
– volume: 45
  start-page: 5696
  year: 2011
  ident: 10.1016/j.fuproc.2013.04.020_bb0040
  article-title: Hydrothermal carbonization of municipal waste streams
  publication-title: Environmental Science & Technology
  doi: 10.1021/es2004528
– volume: 25
  start-page: 388
  year: 2011
  ident: 10.1016/j.fuproc.2013.04.020_bb0045
  article-title: Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy
  publication-title: Energy & Fuels
  doi: 10.1021/ef101342v
– volume: 4
  start-page: 160
  year: 2010
  ident: 10.1016/j.fuproc.2013.04.020_bb0095
  article-title: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering
  publication-title: Biofuels, Bioproducts and Biorefining
  doi: 10.1002/bbb.198
– year: 2012
  ident: 10.1016/j.fuproc.2013.04.020_bb0140
– volume: 1
  start-page: 32
  year: 2008
  ident: 10.1016/j.fuproc.2013.04.020_bb0030
  article-title: Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies
  publication-title: Energy & Environmental Science
  doi: 10.1039/b810100k
– volume: 36
  start-page: 2070
  year: 2011
  ident: 10.1016/j.fuproc.2013.04.020_bb0005
  article-title: Biofuels versus food production: does biofuels production increase food prices?
  publication-title: Energy
  doi: 10.1016/j.energy.2010.05.019
– volume: Band III
  year: 1976
  ident: 10.1016/j.fuproc.2013.04.020_bb0185
– volume: 45
  start-page: 329
  year: 2012
  ident: 10.1016/j.fuproc.2013.04.020_bb0225
  article-title: Combined hydrothermal carbonization and gasification of biomass with carbon capture
  publication-title: Energy
  doi: 10.1016/j.energy.2012.01.057
– start-page: 249
  year: 1980
  ident: 10.1016/j.fuproc.2013.04.020_bb0100
  article-title: Wet carbonization of peat: state of the art review
– year: 2010
  ident: 10.1016/j.fuproc.2013.04.020_bb0150
– year: 2009
  ident: 10.1016/j.fuproc.2013.04.020_bb0170
– volume: 84
  start-page: 1
  year: 2012
  ident: 10.1016/j.fuproc.2013.04.020_bb0070
  article-title: Hydrothermale Karbonisierung: 2. Kinetik der Biertreber-Umwandlung
  publication-title: Chemie Ingenieur Technik
  doi: 10.1002/cite.201100168
– volume: 34
  start-page: 875
  year: 2010
  ident: 10.1016/j.fuproc.2013.04.020_bb0055
  article-title: Hydrothermal carbonization of microalgae
  publication-title: Biomass and Bioenergy
  doi: 10.1016/j.biombioe.2010.01.032
– volume: 35
  start-page: 3152
  year: 2011
  ident: 10.1016/j.fuproc.2013.04.020_bb0080
  article-title: Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products
  publication-title: Biomass and Bioenergy
  doi: 10.1016/j.biombioe.2011.04.032
– start-page: 1894
  year: 2011
  ident: 10.1016/j.fuproc.2013.04.020_bb0110
  article-title: Hydrothermal carbonisation (HTC): recycling of process water
SSID ssj0005597
Score 2.3871555
Snippet The difference between hydrothermal carbonization and vapothermal carbonization for the densification of the energy content of biomass has been investigated...
The difference between hydrothermal carbonization and vapothermal carbonization for the densiflcation of the energy content of biomass has been investigated...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 261
SubjectTerms Applied sciences
Biological and medical sciences
Biomass
Biotechnology
carbon
dewatering
Digestate
drying
Energy
energy content
Energy efficiency
Exact sciences and technology
feedstocks
Fundamental and applied biological sciences. Psychology
Hydrothermal carbonization
Industrial applications and implications. Economical aspects
Natural energy
steam
Thermochemical conversion
Torrefaction
Vapothermal carbonization
Title Experimental comparison of hydrothermal and vapothermal carbonization
URI https://dx.doi.org/10.1016/j.fuproc.2013.04.020
https://www.proquest.com/docview/1448710718
https://www.proquest.com/docview/1505349382
https://www.proquest.com/docview/2000073300
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJemkPJX2RbZvFhV7Vla2XfQxhw7aFXNKF3ISsR5uQ2stmt9BLfntmZHvZ0DSBHG2PQJ4ZzQPNzEfI57IucmUrQQuuAhUgZWoh6aGqkpXyWnjpU4HsqZrNxbdzeb5DjodeGCyr7G1_Z9OTte7fTHpuThYXF5MzxnXJ0YHxhCyHdlgIjVr-5WarzEMmgBUkpkg9tM-lGq-4RjeBBV48DTxF1O_73dNutC3WTdprYF3sMC_-Md_JJ53sk5d9MJkddft9RXZC85q82Box-IZMp1sj_DO3QR3M2pj9-uuXqQHrN3yyjc_-2MXm2dll3Q5dmm_J_GT643hGe-gE6oSsVtSz0nEbYl4GyKkc81Hi8DjmqzrHFCoUwUXvSm0dc2XNa5Z7VVlpVWQsBMvfkb2mbcIByRxXsqqD1Fp5ESWvwTyGoC3XNjhehBHhA8eM6-eKI7zFlRkKyC5Nx2eDfDZMGNjIiNDNqkU3V-MRej0Iw9zRDwOm_5GVByA7Y38Cd838rMCReqk7SaoRGd8R6GYnhYbATGpY-2mQsIFjh3cptgnt-hoyJsj0IHXOywdoILrkogKt-z9Nke6SOajw-yf_4QfyHJ-6DsmPZG-1XIdDCJVW9TidhTF5dvT1--z0Fk9NEjk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dD2UPWFWEppKvVqrRPHdnJEaNFS6F5gJW6W40cB0WS17CLx7xk7yQLqA6nHJDOSM2PPQ575BuBbUWWp0GVOMiYcyVHLRGPSQ0TJS2FlbrmNBbJTMZnl38_5-QYc9L0woayys_2tTY_Wunsz6qQ5ml9ejk4pkwULDozFyXJohzcDOhUfwOb-0fFk-lDpweOMlUBPAkPfQRfLvPwqeIpQ48Ui5mkY_P1nD_XC6yaUTuoblJ5vx178ZsGjWzp8C2-6eDLZb5f8DjZc_R5eP0IZ_ADj8SMU_8SsBw8mjU8u7uwi9mD9wk-6tsmtnq-fjV5UTd-o-RFmh-OzgwnppicQk_NySSwtDNPOp4XDtMpQ63nAj6O2rNKQRbnMGW9NIbWhpqhYRVMrSs218JQ6p9kWDOqmdtuQGCZ4WTkupbC556xCC-mc1ExqZ1jmhsB6iSnTQYuHCRfXqq8hu1KtnFWQs6K5woUMgay55i20xjP0sleGerJFFFr_Zzi3UXdK_0TpqtlpFlD1YoMSF0PYe6LQ9UoyibEZl8j7tdewwpMXrlN07ZrVDSZNmOxh9pwW_6DBAJPlJe66v9Nk8TqZ4S7e-e8__AIvJ2c_TtTJ0fT4E7wKX9qGyV0YLBcr9xkjp2W1152Me6apFOo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+comparison+of+hydrothermal+and+vapothermal+carbonization&rft.jtitle=Fuel+processing+technology&rft.au=Funke%2C+Axel&rft.au=Reebs%2C+Felix&rft.au=Kruse%2C+Andrea&rft.date=2013-11-01&rft.issn=0378-3820&rft.volume=115&rft.spage=261&rft.epage=269&rft_id=info:doi/10.1016%2Fj.fuproc.2013.04.020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon