Experimental comparison of hydrothermal and vapothermal carbonization
The difference between hydrothermal carbonization and vapothermal carbonization for the densification of the energy content of biomass has been investigated systematically for the first time. Vapothermal carbonization allows for higher solid content (solid biomass mass (dry basis) per total mass of...
Saved in:
Published in | Fuel processing technology Vol. 115; pp. 261 - 269 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.11.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The difference between hydrothermal carbonization and vapothermal carbonization for the densification of the energy content of biomass has been investigated systematically for the first time. Vapothermal carbonization allows for higher solid content (solid biomass mass (dry basis) per total mass of feedstock) in the reactor because the biomass is subject to saturated steam instead of liquid water. Results from the experiments show that the process efficiency can be increased due to two reasons: the carbon losses in the liquid phase are decreased and less water needs to be heated up during carbonization. It was also observed that the carbon content of the solid product is significantly lower than that of hydrothermal carbonization at the same process conditions. As it is even lower for dry torrefaction, it is concluded that liquid water facilitates the carbonization process. Calculations based on these experimental results reveal that a mechanical dewatering of wet biomass increases the process efficiency of hydrothermal processes and should be considered in practice. Due to the low efficiency of state of the art drying, torrefaction is less efficient than vapothermal carbonization.
•The effect of solid content on hydrothermal carbonization was investigated.•Water facilitates carbonization as compared to dry processes.•The carbon losses in the liquid phase decrease with higher solid content.•Dewatering of biomass raises the process efficiency of hydrothermal carbonization.•Two different solid products can be isolated and analyzed. |
---|---|
AbstractList | The difference between hydrothermal carbonization and vapothermal carbonization for the densification of the energy content of biomass has been investigated systematically for the first time. Vapothermal carbonization allows for higher solid content (solid biomass mass (dry basis) per total mass of feedstock) in the reactor because the biomass is subject to saturated steam instead of liquid water. Results from the experiments show that the process efficiency can be increased due to two reasons: the carbon losses in the liquid phase are decreased and less water needs to be heated up during carbonization. It was also observed that the carbon content of the solid product is significantly lower than that of hydrothermal carbonization at the same process conditions. As it is even lower for dry torrefaction, it is concluded that liquid water facilitates the carbonization process. Calculations based on these experimental results reveal that a mechanical dewatering of wet biomass increases the process efficiency of hydrothermal processes and should be considered in practice. Due to the low efficiency of state of the art drying, torrefaction is less efficient than vapothermal carbonization. The difference between hydrothermal carbonization and vapothermal carbonization for the densification of the energy content of biomass has been investigated systematically for the first time. Vapothermal carbonization allows for higher solid content (solid biomass mass (dry basis) per total mass of feedstock) in the reactor because the biomass is subject to saturated steam instead of liquid water. Results from the experiments show that the process efficiency can be increased due to two reasons: the carbon losses in the liquid phase are decreased and less water needs to be heated up during carbonization. It was also observed that the carbon content of the solid product is significantly lower than that of hydrothermal carbonization at the same process conditions. As it is even lower for dry torrefaction, it is concluded that liquid water facilitates the carbonization process. Calculations based on these experimental results reveal that a mechanical dewatering of wet biomass increases the process efficiency of hydrothermal processes and should be considered in practice. Due to the low efficiency of state of the art drying, torrefaction is less efficient than vapothermal carbonization. •The effect of solid content on hydrothermal carbonization was investigated.•Water facilitates carbonization as compared to dry processes.•The carbon losses in the liquid phase decrease with higher solid content.•Dewatering of biomass raises the process efficiency of hydrothermal carbonization.•Two different solid products can be isolated and analyzed. The difference between hydrothermal carbonization and vapothermal carbonization for the densiflcation of the energy content of biomass has been investigated systematically for the first time. Vapothermal carbonization allows for higher solid content (solid biomass mass (dry basis) per total mass of feedstock) in the reactor because the biomass is subject to saturated steam instead of liquid water. Results from the experiments show that the process efficiency can be increased due to two reasons: the carbon losses in the liquid phase are decreased and less water needs to be heated up during carbonization. It was also observed that the carbon content of the solid product is significantly lower than that of hydrothermal carbonization at the same process conditions. As it is even lower for dry torrefaction, it is concluded that liquid water facilitates the carbonization process. Calculations based on these experimental results reveal that a mechanical dewatering of wet biomass increases the process efficiency of hydrothermal processes and should be considered in practice. Due to the low efficiency of state of the art drying, torrefaction is less efficient than vapothermal carbonization. |
Author | Funke, Axel Reebs, Felix Kruse, Andrea |
Author_xml | – sequence: 1 givenname: Axel surname: Funke fullname: Funke, Axel email: afunke@atb-potsdam.de organization: Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Germany – sequence: 2 givenname: Felix surname: Reebs fullname: Reebs, Felix organization: Karlsruhe Institute of Technology, Institute for Catalysis Research Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany – sequence: 3 givenname: Andrea surname: Kruse fullname: Kruse, Andrea organization: Karlsruhe Institute of Technology, Institute for Catalysis Research Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27658570$$DView record in Pascal Francis |
BookMark | eNqFkUFrFDEYhoNUcFv9B4J7EbzM-GUymWQ8CFLWVih40J7Dt5kvNstsMiazxfrrzTqlBw_uKYQ8b5Lvec_ZWYiBGHvNoebAu_e72h2mFG3dABc1tDU08IytuFaiUlzrM7YCoXQldAMv2HnOOwCQslcrttn8mij5PYUZx7WN-wmTzzGso1vfPQwpzneU9uUIw7C-x-lpbzFtY_C_cfYxvGTPHY6ZXj2uF-z28-b75XV18_Xqy-Wnm8q2sp-rAbQVSI5ranRjYXASePnr0G85b1tODVk3WK3QgtVbsQU-dD1K7BwAEYoL9m65t0z780B5NnufLY0jBoqHbJoyFyghAE6iXIIUbV-UnEbbVisOxWRB3z6imC2OLmGwPpupGMT0YBrVSS3V8fV24WyKOSdyTwgHc-zM7MzSmTl2ZqA1xUOJffgnZv381_Cc0I-nwm-WsMNo8Eep0dx-K0BXnHQKZFeIjwtBpaN7T8lk6ylYGnwiO5sh-v8_8Qf5esBZ |
CODEN | FPTEDY |
CitedBy_id | crossref_primary_10_1016_j_renene_2020_07_100 crossref_primary_10_3390_en13215733 crossref_primary_10_1016_j_renene_2019_12_037 crossref_primary_10_1007_s13399_023_04191_z crossref_primary_10_1016_j_jwpe_2024_105725 crossref_primary_10_1016_j_fuel_2023_129365 crossref_primary_10_1016_j_enconman_2020_113759 crossref_primary_10_1016_j_wasman_2014_06_024 crossref_primary_10_1016_j_still_2016_01_005 crossref_primary_10_1016_j_rser_2016_12_122 crossref_primary_10_2166_washdev_2015_017 crossref_primary_10_1002_cite_201400182 crossref_primary_10_1016_j_seta_2015_08_003 crossref_primary_10_1016_j_enconman_2016_05_016 crossref_primary_10_3390_en15155491 crossref_primary_10_1002_cite_201500039 crossref_primary_10_3390_asi4010019 crossref_primary_10_1016_j_jaap_2019_03_007 crossref_primary_10_1016_j_energy_2017_06_010 crossref_primary_10_3390_en14185608 crossref_primary_10_1016_j_geoderma_2015_12_018 crossref_primary_10_1021_ef402342e crossref_primary_10_1016_j_supflu_2017_12_035 crossref_primary_10_1021_acsomega_0c00737 crossref_primary_10_1080_00102202_2022_2147793 crossref_primary_10_3390_en15062209 crossref_primary_10_1016_j_renene_2020_03_112 crossref_primary_10_1016_j_applthermaleng_2018_02_073 crossref_primary_10_3390_en17184643 crossref_primary_10_1002_cite_201400116 crossref_primary_10_34248_bsengineering_1347169 crossref_primary_10_1016_j_renene_2021_02_090 crossref_primary_10_3390_en12040630 crossref_primary_10_1016_j_jaap_2015_03_012 crossref_primary_10_1016_j_jenvman_2017_09_031 crossref_primary_10_1016_j_fuproc_2022_107479 crossref_primary_10_3390_pr11082486 crossref_primary_10_1016_j_biortech_2025_132329 crossref_primary_10_1016_j_fuel_2020_117796 crossref_primary_10_1007_s13399_017_0291_5 crossref_primary_10_1016_j_supflu_2018_01_012 crossref_primary_10_3390_en11030674 crossref_primary_10_1016_j_jaap_2024_106685 crossref_primary_10_1002_cite_201800075 crossref_primary_10_1016_j_biortech_2018_06_024 crossref_primary_10_1021_acssuschemeng_7b01895 crossref_primary_10_1115_1_4042822 crossref_primary_10_1016_j_energy_2022_126373 crossref_primary_10_1080_10643389_2020_1864957 crossref_primary_10_1016_j_jaap_2017_02_014 crossref_primary_10_1007_s13399_020_00743_9 crossref_primary_10_3390_agronomy13122881 crossref_primary_10_1016_j_indcrop_2021_113870 crossref_primary_10_4028_www_scientific_net_AMM_768_73 crossref_primary_10_1016_j_apsoil_2017_01_006 crossref_primary_10_1007_s13399_015_0172_8 crossref_primary_10_1007_s13399_021_01816_z crossref_primary_10_1007_s13399_019_00488_0 crossref_primary_10_1016_j_biortech_2015_05_091 crossref_primary_10_1016_j_psep_2023_08_010 crossref_primary_10_1016_j_biortech_2017_09_072 crossref_primary_10_1016_j_fuel_2018_06_060 crossref_primary_10_3390_c7040077 crossref_primary_10_1007_s13399_017_0280_8 crossref_primary_10_1016_j_fuel_2021_120533 crossref_primary_10_3390_en15062227 crossref_primary_10_1016_j_supflu_2014_09_038 crossref_primary_10_1016_j_energy_2023_127803 crossref_primary_10_3390_polym14102053 crossref_primary_10_1016_j_biortech_2015_11_010 crossref_primary_10_1016_j_apenergy_2016_04_017 crossref_primary_10_1016_j_jaap_2019_02_003 crossref_primary_10_1016_j_scitotenv_2022_158465 crossref_primary_10_1016_j_scitotenv_2018_02_164 crossref_primary_10_1002_er_5865 crossref_primary_10_1016_j_jaap_2024_106928 crossref_primary_10_1039_C5EE01633A crossref_primary_10_1155_er_3595643 crossref_primary_10_1007_s13399_020_00817_8 crossref_primary_10_1016_j_wasman_2019_09_009 |
Cites_doi | 10.4155/bfs.10.81 10.1021/ie00004a027 10.1016/j.biortech.2011.05.016 10.1016/j.biombioe.2011.02.022 10.1021/ef101745n 10.1039/c1gc15742f 10.1002/cite.201100092 10.1039/c2ee21166a 10.1016/S0016-2361(01)00131-4 10.1016/j.fuel.2012.05.024 10.1016/j.rser.2006.05.014 10.1016/j.fuproc.2011.11.009 10.1016/j.biortech.2012.06.063 10.1021/ef9501859 10.1016/j.biortech.2012.05.060 10.1002/cite.201100126 10.1071/SR10010 10.1016/j.biortech.2011.06.099 10.1002/ceat.200800278 10.1021/es2004528 10.1021/ef101342v 10.1002/bbb.198 10.1039/b810100k 10.1016/j.energy.2010.05.019 10.1016/j.energy.2012.01.057 10.1002/cite.201100168 10.1016/j.biombioe.2010.01.032 10.1016/j.biombioe.2011.04.032 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2014 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2014 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7ST C1K SOI 7S9 L.6 |
DOI | 10.1016/j.fuproc.2013.04.020 |
DatabaseName | AGRIS CrossRef Pascal-Francis Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Environment Abstracts Environment Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-7188 |
EndPage | 269 |
ExternalDocumentID | 27658570 10_1016_j_fuproc_2013_04_020 US201600067056 S0378382013001872 |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SES SEW SPC SPCBC SSG SSK SSR SSZ T5K TWZ UHS WUQ ZY4 ~02 ~G- AAHBH AATTM AAXKI ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AKRWK ANKPU BNPGV FBQ GROUPED_DOAJ SSH AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS IQODW 7ST C1K SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c459t-d08c3aef18e282c0df501020d9b11441e2ecfdc87ac0c8b3b01d69a5a6f00eea3 |
IEDL.DBID | .~1 |
ISSN | 0378-3820 |
IngestDate | Fri Jul 11 07:55:08 EDT 2025 Fri Jul 11 16:00:52 EDT 2025 Sun Aug 24 03:54:32 EDT 2025 Mon Jul 21 09:15:24 EDT 2025 Thu Apr 24 22:56:44 EDT 2025 Tue Jul 01 03:04:25 EDT 2025 Thu Apr 03 09:46:52 EDT 2025 Fri Feb 23 02:30:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Digestate VTC TorrO daf TOC Thermochemical conversion Vapothermal carbonization TGA Torrefaction Hydrothermal carbonization HTC Energy efficiency TorrC db Thermochemical treatment Saturated vapor Biomass Anaerobic digestion Carbonization Hydrothermal treatment Energy conservation Energetic efficiency By product Comparative study |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-d08c3aef18e282c0df501020d9b11441e2ecfdc87ac0c8b3b01d69a5a6f00eea3 |
Notes | http://dx.doi.org/10.1016/j.fuproc.2013.04.020 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1448710718 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000073300 proquest_miscellaneous_1505349382 proquest_miscellaneous_1448710718 pascalfrancis_primary_27658570 crossref_primary_10_1016_j_fuproc_2013_04_020 crossref_citationtrail_10_1016_j_fuproc_2013_04_020 fao_agris_US201600067056 elsevier_sciencedirect_doi_10_1016_j_fuproc_2013_04_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-11-01 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Fuel processing technology |
PublicationYear | 2013 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Fytili, Zabaniotou (bb0015) 2008; 12 Fuchs, Drosg (bb0165) 2010 Bergius (bb0145) 1913 Channiwala, Parikh (bb0190) 2002; 81 Ajanovic (bb0005) 2011; 36 Stemann, Ziegler (bb0110) 2011 Erlach, Hader, Tsatsaronis (bb0225) 2012; 45 Liu, Quek, Hoekman, Srinivasan, Balasubramanian (bb0205) 2012; 123 Mumme, Eckervogt, Pielert, Diakité, Rupp, Kern (bb0180) 2011; 102 U.S. Environmental Protection Agency (bb0020) 2004 Fuertes, Camps Arbestain, Sevilla, Maciá-Agulló, Fiol, López, Smernik, Aitkenhead, Arce, Macias (bb0200) 2010; 48 Libra, Ro, Kammann, Funke, Berge, Neubauer, Titirici, Fühner, Bens, Kern, Emmerich (bb0220) 2011; 2 Tremel, Stemann, Herrmann, Erlach, Spliethoff (bb0085) 2012; 102 Mok, Antal, Szabo, Varhegyi, Zelei (bb0195) 1992; 31 Ramke, Blöhse, Lehmann (bb0105) 2012; 9 Funke (bb0140) 2012 Berge, Ro, Mao, Flora, Chappell, Bae (bb0040) 2011; 45 European Commission Environment (bb0010) 1998 Hoekman, Broch, Robbins (bb0065) 2011; 25 R. Schlitt, B. Altensen, F. Richarts, A. Spantig, Verfahren zur Gewinnung von Rohstoff und Energieträgern aus Pflanzen und Pflanzenresten, German Patent Nr. DE 10 2009 010 233 A1, 2009. Erlach, Tsatsaronis (bb0115) 2010 A. Kruse, A. Funke, M.-M. Titirici, Hydrothermal Conversion of Biomass to Fuels and Energetic Materials, Journal of Chemical Biology, in peer review. Sevilla, Maciá-Agulló, Fuertes (bb0080) 2011; 35 Falco, Baccile, Titirici (bb0210) 2011; 13 (bb0170) 2009 Funke, Ziegler (bb0095) 2010; 4 Dahmen, Henrich, Kruse, Raffelt (bb0025) 2010 Román, Nabais, Laginhas, Ledesma, González (bb0075) 2012; 103 Mensinger (bb0100) 1980 Peterson, Vogel, Lachance, Fröling, Antal (bb0030) 2008; 1 Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (bb0185) 1976; Band III Ramke, Blöhse, Lehmann, Antonietti, Fettig (bb0150) 2010 Kruse, Badoux, Grandl, Wüst (bb0070) 2012; 84 Xiao, Shi, Xu, Sun (bb0090) 2012; 18 Tropsch, Phillipovich (bb0155) 1922; 7 Funke, Ziegler (bb0230) 2011; 102 R. Schlitt, F. Richarts, Verfahren und Vorrichtung zur Carbonisierung von Biomasse mit Dampfsteuerung, European Patent Nr. EP 2 410 035 A1, 2010. Titirici, White, Falco, Sevilla (bb0035) 2012; 5 A. Funke, J. Mumme, M. Koon, M. Diakitè, Cascaded production of biogas and hydrochar from wheat straw – recovery of energy, carbon and plant nutrients, Biomass and Bioenergy, in peer review. Stemann, Ziegler (bb0120) 2011 Dinjus, Kruse, Tröger (bb0050) 2011; 83 Karayildirim, Sinag, Kruse (bb0215) 2008; 31 Heilmann, Davis, Jader, Lefebvre, Sadowsky, Schendel, von Keitz, Valentas (bb0055) 2010; 34 Antal, Croiset, Dai, DeAlmeida, Mok, Norberg, Richard, Al Majthoub (bb0160) 1996; 10 Heilmann, Jader, Sadowsky, Schendel, von Keitz, Valentas (bb0060) 2011; 35 Cao, Ro, Chappell, Li, Mao (bb0045) 2011; 25 Buttmann (bb0235) 2011; 83 Funke (10.1016/j.fuproc.2013.04.020_bb0140) 2012 Channiwala (10.1016/j.fuproc.2013.04.020_bb0190) 2002; 81 Funke (10.1016/j.fuproc.2013.04.020_bb0095) 2010; 4 Ramke (10.1016/j.fuproc.2013.04.020_bb0150) 2010 Antal (10.1016/j.fuproc.2013.04.020_bb0160) 1996; 10 U.S. Environmental Protection Agency (10.1016/j.fuproc.2013.04.020_bb0020) 2004 Xiao (10.1016/j.fuproc.2013.04.020_bb0090) 2012; 18 10.1016/j.fuproc.2013.04.020_bb0125 Cao (10.1016/j.fuproc.2013.04.020_bb0045) 2011; 25 Heilmann (10.1016/j.fuproc.2013.04.020_bb0055) 2010; 34 Bergius (10.1016/j.fuproc.2013.04.020_bb0145) 1913 Fuchs (10.1016/j.fuproc.2013.04.020_bb0165) 2010 Mok (10.1016/j.fuproc.2013.04.020_bb0195) 1992; 31 Peterson (10.1016/j.fuproc.2013.04.020_bb0030) 2008; 1 Buttmann (10.1016/j.fuproc.2013.04.020_bb0235) 2011; 83 European Commission Environment (10.1016/j.fuproc.2013.04.020_bb0010) 1998 Kruse (10.1016/j.fuproc.2013.04.020_bb0070) 2012; 84 Falco (10.1016/j.fuproc.2013.04.020_bb0210) 2011; 13 Fytili (10.1016/j.fuproc.2013.04.020_bb0015) 2008; 12 Titirici (10.1016/j.fuproc.2013.04.020_bb0035) 2012; 5 Tropsch (10.1016/j.fuproc.2013.04.020_bb0155) 1922; 7 Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (10.1016/j.fuproc.2013.04.020_bb0185) 1976; Band III Hoekman (10.1016/j.fuproc.2013.04.020_bb0065) 2011; 25 Dinjus (10.1016/j.fuproc.2013.04.020_bb0050) 2011; 83 Ramke (10.1016/j.fuproc.2013.04.020_bb0105) 2012; 9 Dahmen (10.1016/j.fuproc.2013.04.020_bb0025) 2010 Karayildirim (10.1016/j.fuproc.2013.04.020_bb0215) 2008; 31 Funke (10.1016/j.fuproc.2013.04.020_bb0230) 2011; 102 Mumme (10.1016/j.fuproc.2013.04.020_bb0180) 2011; 102 Fuertes (10.1016/j.fuproc.2013.04.020_bb0200) 2010; 48 Libra (10.1016/j.fuproc.2013.04.020_bb0220) 2011; 2 Mensinger (10.1016/j.fuproc.2013.04.020_bb0100) 1980 Liu (10.1016/j.fuproc.2013.04.020_bb0205) 2012; 123 Stemann (10.1016/j.fuproc.2013.04.020_bb0110) 2011 Ajanovic (10.1016/j.fuproc.2013.04.020_bb0005) 2011; 36 Román (10.1016/j.fuproc.2013.04.020_bb0075) 2012; 103 10.1016/j.fuproc.2013.04.020_bb0135 Erlach (10.1016/j.fuproc.2013.04.020_bb0225) 2012; 45 Erlach (10.1016/j.fuproc.2013.04.020_bb0115) 2010 Sevilla (10.1016/j.fuproc.2013.04.020_bb0080) 2011; 35 Stemann (10.1016/j.fuproc.2013.04.020_bb0120) 2011 (10.1016/j.fuproc.2013.04.020_bb0170) 2009 Berge (10.1016/j.fuproc.2013.04.020_bb0040) 2011; 45 Heilmann (10.1016/j.fuproc.2013.04.020_bb0060) 2011; 35 Tremel (10.1016/j.fuproc.2013.04.020_bb0085) 2012; 102 10.1016/j.fuproc.2013.04.020_bb0175 10.1016/j.fuproc.2013.04.020_bb0130 |
References_xml | – volume: 10 start-page: 652 year: 1996 end-page: 658 ident: bb0160 article-title: High-yield biomass charcoal publication-title: Energy & Fuels – year: 2004 ident: bb0020 article-title: Background Document for the Final Comprehensive Procurement Guideline (CPG) IV and Final Recovered Materials Advisory Notice (RMAN) IV 2004 – year: 1913 ident: bb0145 article-title: Die Anwendung hoher Drücke bei chemischen Vorgängen und eine Nachbildung des Entstehungsprozesses der Steinkohle – volume: 102 start-page: 396 year: 2012 end-page: 403 ident: bb0085 article-title: Entrained flow gasification of biocoal from hydrothermal carbonization publication-title: Fuel – start-page: 1894 year: 2011 end-page: 1899 ident: bb0110 article-title: Hydrothermal carbonisation (HTC): recycling of process water publication-title: Proceedings of the 19th European Biomass Conference and Exhibition, Berlin, Germany, 6–10 June 2011 – volume: 48 start-page: 618 year: 2010 end-page: 626 ident: bb0200 article-title: Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover publication-title: Australian Journal of Soil Research – volume: 102 start-page: 7595 year: 2011 end-page: 7598 ident: bb0230 article-title: Heat of reaction measurements for hydrothermal carbonization of biomass publication-title: Bioresource Technology – volume: 84 start-page: 1 year: 2012 end-page: 5 ident: bb0070 article-title: Hydrothermale Karbonisierung: 2. Kinetik der Biertreber-Umwandlung publication-title: Chemie Ingenieur Technik – volume: 12 start-page: 116 year: 2008 end-page: 140 ident: bb0015 article-title: Utilization of sewage sludge in EU application of old and new methods — a review publication-title: Renewable & Sustainable Energy Reviews – volume: 4 start-page: 160 year: 2010 end-page: 177 ident: bb0095 article-title: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering publication-title: Biofuels, Bioproducts and Biorefining – volume: 25 start-page: 388 year: 2011 end-page: 397 ident: bb0045 article-title: Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state publication-title: Energy & Fuels – year: 2009 ident: bb0170 publication-title: Gülzower Fachgespräche Band 30. Gärrestaufbereitung für eine pflanzenbauliche Nutzung - Stand und F – volume: 35 start-page: 3152 year: 2011 end-page: 3159 ident: bb0080 article-title: Hydrothermal carbonization of biomass as a route for the sequestration of CO publication-title: Biomass and Bioenergy – volume: 34 start-page: 875 year: 2010 end-page: 882 ident: bb0055 article-title: Hydrothermal carbonization of microalgae publication-title: Biomass and Bioenergy – volume: 35 start-page: 2526 year: 2011 end-page: 2533 ident: bb0060 article-title: Hydrothermal carbonization of distiller's grains publication-title: Biomass and Bioenergy – reference: A. Funke, J. Mumme, M. Koon, M. Diakitè, Cascaded production of biogas and hydrochar from wheat straw – recovery of energy, carbon and plant nutrients, Biomass and Bioenergy, in peer review. – volume: Band III year: 1976 ident: bb0185 publication-title: Methodenbuch – volume: 45 start-page: 5696 year: 2011 end-page: 5703 ident: bb0040 article-title: Hydrothermal carbonization of municipal waste streams publication-title: Environmental Science & Technology – reference: R. Schlitt, B. Altensen, F. Richarts, A. Spantig, Verfahren zur Gewinnung von Rohstoff und Energieträgern aus Pflanzen und Pflanzenresten, German Patent Nr. DE 10 2009 010 233 A1, 2009. – year: 1998 ident: bb0010 article-title: Urban Waste Water Treatment — Commission Directive 98/15/EC Amending Council Directive 98/271/EEC – volume: 5 start-page: 6796 year: 2012 end-page: 6822 ident: bb0035 article-title: Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage publication-title: Energy & Environmental Science – volume: 31 start-page: 1162 year: 1992 end-page: 1166 ident: bb0195 article-title: Formation of charcoal from biomass in a sealed reactor publication-title: Industrial and Engineering Chemistry Research – year: 2012 ident: bb0140 article-title: Hydrothermale Karbonisierung von Biomasse - Reaktionsmechanismen und Reaktionswärme – volume: 31 start-page: 1561 year: 2008 end-page: 1568 ident: bb0215 article-title: Char and coke formation as unwanted side reaction of the hydrothermal biomass gasification publication-title: Chemical Engineering and Technology – volume: 103 start-page: 78 year: 2012 end-page: 83 ident: bb0075 article-title: Hydrothermal carbonization as an effective way of densifying the energy content of biomass publication-title: Fuel Processing Technology – volume: 7 start-page: 84 year: 1922 end-page: 102 ident: bb0155 article-title: Über die künstliche Inkohlung von Cellulose und Lignin in Gegenwart von Wasser publication-title: Gesammelte Abhandlungen zur Kenntnis der Kohle – year: 2010 ident: bb0165 article-title: Technologiebewertung von Gärrestbehandlungs- und Verwertungskonzepten – volume: 83 start-page: 1734 year: 2011 end-page: 1741 ident: bb0050 article-title: Hydrothermale Karbonisierung: 1. Einfluss des Lignins in Lignocellulosen publication-title: Chemie Ingenieur Technik – year: 2011 ident: bb0120 article-title: Assessment of the energetic efficiency of a continuously operating plant for hydrothermal carbonisation of biomass publication-title: Proceedings of World Renewable Energy Congress 2011, Linköping, Sweden, 8–13 May 2011 – volume: 102 start-page: 9255 year: 2011 end-page: 9260 ident: bb0180 article-title: Hydrothermal carbonization of anaerobically digested maize silage publication-title: Bioresource Technology – reference: A. Kruse, A. Funke, M.-M. Titirici, Hydrothermal Conversion of Biomass to Fuels and Energetic Materials, Journal of Chemical Biology, in peer review. – volume: 83 start-page: 1890 year: 2011 end-page: 1896 ident: bb0235 article-title: Klimafreundliche Kohle durch Hydrothermale Karbonisierung von Biomasse publication-title: Chemie Ingenieur Technik – volume: 36 start-page: 2070 year: 2011 end-page: 2076 ident: bb0005 article-title: Biofuels versus food production: does biofuels production increase food prices? publication-title: Energy – volume: 9 start-page: 476 year: 2012 end-page: 483 ident: bb0105 article-title: Hydrothermal carbonization of organic municipal solid waste — scientific and technical principles publication-title: Müll und Abfall – start-page: 91 year: 2010 end-page: 122 ident: bb0025 article-title: Biomass liquefaction and gasification publication-title: Biomass to Biofuels: Strategies for Global Industries – volume: 123 start-page: 646 year: 2012 end-page: 652 ident: bb0205 article-title: Thermogravimetric investigation of hydrochar-lignite co-combustion publication-title: Bioresource Technology – reference: R. Schlitt, F. Richarts, Verfahren und Vorrichtung zur Carbonisierung von Biomasse mit Dampfsteuerung, European Patent Nr. EP 2 410 035 A1, 2010. – volume: 81 start-page: 1051 year: 2002 end-page: 1063 ident: bb0190 article-title: A unified correlation for estimating HHV of solid, liquid and gaseous fuels publication-title: Fuel – volume: 1 start-page: 32 year: 2008 end-page: 65 ident: bb0030 article-title: Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies publication-title: Energy & Environmental Science – year: 2010 ident: bb0115 article-title: Upgrading of biomass by hydrothermal carbonisation: analysis of an industrial-scale plant design publication-title: Proceedings of the ECOS 2010 — 23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems – year: 2010 ident: bb0150 article-title: Machbarkeitsstudie zur Energiegewinnung aus organischen Siedlungsabfällen durch Hydrothermale Carbonisierung – volume: 25 start-page: 1802 year: 2011 end-page: 1810 ident: bb0065 article-title: Hydrothermal carbonization (HTC) of lignocellulosic biomass publication-title: Energy & Fuels – volume: 13 start-page: 3273 year: 2011 end-page: 3281 ident: bb0210 article-title: Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons publication-title: Green Chemistry – volume: 18 start-page: 619 year: 2012 end-page: 623 ident: bb0090 article-title: Hydrothermal carbonization of lignocellulosic biomass publication-title: Bioresource Technology – volume: 45 start-page: 329 year: 2012 end-page: 338 ident: bb0225 article-title: Combined hydrothermal carbonization and gasification of biomass with carbon capture publication-title: Energy – volume: 2 start-page: 71 year: 2011 end-page: 106 ident: bb0220 article-title: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis publication-title: Biofuels – start-page: 249 year: 1980 end-page: 280 ident: bb0100 article-title: Wet carbonization of peat: state of the art review publication-title: Peat as an Energy Alternative: Symposium Proceedings Chicago, Ill. IGT – ident: 10.1016/j.fuproc.2013.04.020_bb0130 – volume: 2 start-page: 71 year: 2011 ident: 10.1016/j.fuproc.2013.04.020_bb0220 article-title: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis publication-title: Biofuels doi: 10.4155/bfs.10.81 – year: 2010 ident: 10.1016/j.fuproc.2013.04.020_bb0165 – volume: 31 start-page: 1162 year: 1992 ident: 10.1016/j.fuproc.2013.04.020_bb0195 article-title: Formation of charcoal from biomass in a sealed reactor publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie00004a027 – volume: 102 start-page: 7595 year: 2011 ident: 10.1016/j.fuproc.2013.04.020_bb0230 article-title: Heat of reaction measurements for hydrothermal carbonization of biomass publication-title: Bioresource Technology doi: 10.1016/j.biortech.2011.05.016 – year: 1998 ident: 10.1016/j.fuproc.2013.04.020_bb0010 – volume: 35 start-page: 2526 year: 2011 ident: 10.1016/j.fuproc.2013.04.020_bb0060 article-title: Hydrothermal carbonization of distiller's grains publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2011.02.022 – volume: 25 start-page: 1802 year: 2011 ident: 10.1016/j.fuproc.2013.04.020_bb0065 article-title: Hydrothermal carbonization (HTC) of lignocellulosic biomass publication-title: Energy & Fuels doi: 10.1021/ef101745n – year: 2010 ident: 10.1016/j.fuproc.2013.04.020_bb0115 article-title: Upgrading of biomass by hydrothermal carbonisation: analysis of an industrial-scale plant design – volume: 13 start-page: 3273 year: 2011 ident: 10.1016/j.fuproc.2013.04.020_bb0210 article-title: Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons publication-title: Green Chemistry doi: 10.1039/c1gc15742f – volume: 83 start-page: 1734 year: 2011 ident: 10.1016/j.fuproc.2013.04.020_bb0050 article-title: Hydrothermale Karbonisierung: 1. Einfluss des Lignins in Lignocellulosen publication-title: Chemie Ingenieur Technik doi: 10.1002/cite.201100092 – volume: 5 start-page: 6796 year: 2012 ident: 10.1016/j.fuproc.2013.04.020_bb0035 article-title: Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage publication-title: Energy & Environmental Science doi: 10.1039/c2ee21166a – year: 2011 ident: 10.1016/j.fuproc.2013.04.020_bb0120 article-title: Assessment of the energetic efficiency of a continuously operating plant for hydrothermal carbonisation of biomass – volume: 81 start-page: 1051 year: 2002 ident: 10.1016/j.fuproc.2013.04.020_bb0190 article-title: A unified correlation for estimating HHV of solid, liquid and gaseous fuels publication-title: Fuel doi: 10.1016/S0016-2361(01)00131-4 – volume: 102 start-page: 396 year: 2012 ident: 10.1016/j.fuproc.2013.04.020_bb0085 article-title: Entrained flow gasification of biocoal from hydrothermal carbonization publication-title: Fuel doi: 10.1016/j.fuel.2012.05.024 – volume: 9 start-page: 476 year: 2012 ident: 10.1016/j.fuproc.2013.04.020_bb0105 article-title: Hydrothermal carbonization of organic municipal solid waste — scientific and technical principles publication-title: Müll und Abfall – volume: 7 start-page: 84 year: 1922 ident: 10.1016/j.fuproc.2013.04.020_bb0155 article-title: Über die künstliche Inkohlung von Cellulose und Lignin in Gegenwart von Wasser publication-title: Gesammelte Abhandlungen zur Kenntnis der Kohle – volume: 12 start-page: 116 year: 2008 ident: 10.1016/j.fuproc.2013.04.020_bb0015 article-title: Utilization of sewage sludge in EU application of old and new methods — a review publication-title: Renewable & Sustainable Energy Reviews doi: 10.1016/j.rser.2006.05.014 – volume: 103 start-page: 78 year: 2012 ident: 10.1016/j.fuproc.2013.04.020_bb0075 article-title: Hydrothermal carbonization as an effective way of densifying the energy content of biomass publication-title: Fuel Processing Technology doi: 10.1016/j.fuproc.2011.11.009 – year: 2004 ident: 10.1016/j.fuproc.2013.04.020_bb0020 – volume: 123 start-page: 646 year: 2012 ident: 10.1016/j.fuproc.2013.04.020_bb0205 article-title: Thermogravimetric investigation of hydrochar-lignite co-combustion publication-title: Bioresource Technology doi: 10.1016/j.biortech.2012.06.063 – ident: 10.1016/j.fuproc.2013.04.020_bb0135 – volume: 10 start-page: 652 year: 1996 ident: 10.1016/j.fuproc.2013.04.020_bb0160 article-title: High-yield biomass charcoal publication-title: Energy & Fuels doi: 10.1021/ef9501859 – start-page: 91 year: 2010 ident: 10.1016/j.fuproc.2013.04.020_bb0025 article-title: Biomass liquefaction and gasification – volume: 18 start-page: 619 year: 2012 ident: 10.1016/j.fuproc.2013.04.020_bb0090 article-title: Hydrothermal carbonization of lignocellulosic biomass publication-title: Bioresource Technology doi: 10.1016/j.biortech.2012.05.060 – volume: 83 start-page: 1890 year: 2011 ident: 10.1016/j.fuproc.2013.04.020_bb0235 article-title: Klimafreundliche Kohle durch Hydrothermale Karbonisierung von Biomasse publication-title: Chemie Ingenieur Technik doi: 10.1002/cite.201100126 – ident: 10.1016/j.fuproc.2013.04.020_bb0175 – volume: 48 start-page: 618 year: 2010 ident: 10.1016/j.fuproc.2013.04.020_bb0200 article-title: Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover publication-title: Australian Journal of Soil Research doi: 10.1071/SR10010 – ident: 10.1016/j.fuproc.2013.04.020_bb0125 – volume: 102 start-page: 9255 year: 2011 ident: 10.1016/j.fuproc.2013.04.020_bb0180 article-title: Hydrothermal carbonization of anaerobically digested maize silage publication-title: Bioresource Technology doi: 10.1016/j.biortech.2011.06.099 – year: 1913 ident: 10.1016/j.fuproc.2013.04.020_bb0145 – volume: 31 start-page: 1561 year: 2008 ident: 10.1016/j.fuproc.2013.04.020_bb0215 article-title: Char and coke formation as unwanted side reaction of the hydrothermal biomass gasification publication-title: Chemical Engineering and Technology doi: 10.1002/ceat.200800278 – volume: 45 start-page: 5696 year: 2011 ident: 10.1016/j.fuproc.2013.04.020_bb0040 article-title: Hydrothermal carbonization of municipal waste streams publication-title: Environmental Science & Technology doi: 10.1021/es2004528 – volume: 25 start-page: 388 year: 2011 ident: 10.1016/j.fuproc.2013.04.020_bb0045 article-title: Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy publication-title: Energy & Fuels doi: 10.1021/ef101342v – volume: 4 start-page: 160 year: 2010 ident: 10.1016/j.fuproc.2013.04.020_bb0095 article-title: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering publication-title: Biofuels, Bioproducts and Biorefining doi: 10.1002/bbb.198 – year: 2012 ident: 10.1016/j.fuproc.2013.04.020_bb0140 – volume: 1 start-page: 32 year: 2008 ident: 10.1016/j.fuproc.2013.04.020_bb0030 article-title: Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies publication-title: Energy & Environmental Science doi: 10.1039/b810100k – volume: 36 start-page: 2070 year: 2011 ident: 10.1016/j.fuproc.2013.04.020_bb0005 article-title: Biofuels versus food production: does biofuels production increase food prices? publication-title: Energy doi: 10.1016/j.energy.2010.05.019 – volume: Band III year: 1976 ident: 10.1016/j.fuproc.2013.04.020_bb0185 – volume: 45 start-page: 329 year: 2012 ident: 10.1016/j.fuproc.2013.04.020_bb0225 article-title: Combined hydrothermal carbonization and gasification of biomass with carbon capture publication-title: Energy doi: 10.1016/j.energy.2012.01.057 – start-page: 249 year: 1980 ident: 10.1016/j.fuproc.2013.04.020_bb0100 article-title: Wet carbonization of peat: state of the art review – year: 2010 ident: 10.1016/j.fuproc.2013.04.020_bb0150 – year: 2009 ident: 10.1016/j.fuproc.2013.04.020_bb0170 – volume: 84 start-page: 1 year: 2012 ident: 10.1016/j.fuproc.2013.04.020_bb0070 article-title: Hydrothermale Karbonisierung: 2. Kinetik der Biertreber-Umwandlung publication-title: Chemie Ingenieur Technik doi: 10.1002/cite.201100168 – volume: 34 start-page: 875 year: 2010 ident: 10.1016/j.fuproc.2013.04.020_bb0055 article-title: Hydrothermal carbonization of microalgae publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2010.01.032 – volume: 35 start-page: 3152 year: 2011 ident: 10.1016/j.fuproc.2013.04.020_bb0080 article-title: Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2011.04.032 – start-page: 1894 year: 2011 ident: 10.1016/j.fuproc.2013.04.020_bb0110 article-title: Hydrothermal carbonisation (HTC): recycling of process water |
SSID | ssj0005597 |
Score | 2.3871555 |
Snippet | The difference between hydrothermal carbonization and vapothermal carbonization for the densification of the energy content of biomass has been investigated... The difference between hydrothermal carbonization and vapothermal carbonization for the densiflcation of the energy content of biomass has been investigated... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 261 |
SubjectTerms | Applied sciences Biological and medical sciences Biomass Biotechnology carbon dewatering Digestate drying Energy energy content Energy efficiency Exact sciences and technology feedstocks Fundamental and applied biological sciences. Psychology Hydrothermal carbonization Industrial applications and implications. Economical aspects Natural energy steam Thermochemical conversion Torrefaction Vapothermal carbonization |
Title | Experimental comparison of hydrothermal and vapothermal carbonization |
URI | https://dx.doi.org/10.1016/j.fuproc.2013.04.020 https://www.proquest.com/docview/1448710718 https://www.proquest.com/docview/1505349382 https://www.proquest.com/docview/2000073300 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJemkPJX2RbZvFhV7Vla2XfQxhw7aFXNKF3ISsR5uQ2stmt9BLfntmZHvZ0DSBHG2PQJ4ZzQPNzEfI57IucmUrQQuuAhUgZWoh6aGqkpXyWnjpU4HsqZrNxbdzeb5DjodeGCyr7G1_Z9OTte7fTHpuThYXF5MzxnXJ0YHxhCyHdlgIjVr-5WarzEMmgBUkpkg9tM-lGq-4RjeBBV48DTxF1O_73dNutC3WTdprYF3sMC_-Md_JJ53sk5d9MJkddft9RXZC85q82Box-IZMp1sj_DO3QR3M2pj9-uuXqQHrN3yyjc_-2MXm2dll3Q5dmm_J_GT643hGe-gE6oSsVtSz0nEbYl4GyKkc81Hi8DjmqzrHFCoUwUXvSm0dc2XNa5Z7VVlpVWQsBMvfkb2mbcIByRxXsqqD1Fp5ESWvwTyGoC3XNjhehBHhA8eM6-eKI7zFlRkKyC5Nx2eDfDZMGNjIiNDNqkU3V-MRej0Iw9zRDwOm_5GVByA7Y38Cd838rMCReqk7SaoRGd8R6GYnhYbATGpY-2mQsIFjh3cptgnt-hoyJsj0IHXOywdoILrkogKt-z9Nke6SOajw-yf_4QfyHJ-6DsmPZG-1XIdDCJVW9TidhTF5dvT1--z0Fk9NEjk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dD2UPWFWEppKvVqrRPHdnJEaNFS6F5gJW6W40cB0WS17CLx7xk7yQLqA6nHJDOSM2PPQ575BuBbUWWp0GVOMiYcyVHLRGPSQ0TJS2FlbrmNBbJTMZnl38_5-QYc9L0woayys_2tTY_Wunsz6qQ5ml9ejk4pkwULDozFyXJohzcDOhUfwOb-0fFk-lDpweOMlUBPAkPfQRfLvPwqeIpQ48Ui5mkY_P1nD_XC6yaUTuoblJ5vx178ZsGjWzp8C2-6eDLZb5f8DjZc_R5eP0IZ_ADj8SMU_8SsBw8mjU8u7uwi9mD9wk-6tsmtnq-fjV5UTd-o-RFmh-OzgwnppicQk_NySSwtDNPOp4XDtMpQ63nAj6O2rNKQRbnMGW9NIbWhpqhYRVMrSs218JQ6p9kWDOqmdtuQGCZ4WTkupbC556xCC-mc1ExqZ1jmhsB6iSnTQYuHCRfXqq8hu1KtnFWQs6K5woUMgay55i20xjP0sleGerJFFFr_Zzi3UXdK_0TpqtlpFlD1YoMSF0PYe6LQ9UoyibEZl8j7tdewwpMXrlN07ZrVDSZNmOxh9pwW_6DBAJPlJe66v9Nk8TqZ4S7e-e8__AIvJ2c_TtTJ0fT4E7wKX9qGyV0YLBcr9xkjp2W1152Me6apFOo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+comparison+of+hydrothermal+and+vapothermal+carbonization&rft.jtitle=Fuel+processing+technology&rft.au=Funke%2C+Axel&rft.au=Reebs%2C+Felix&rft.au=Kruse%2C+Andrea&rft.date=2013-11-01&rft.issn=0378-3820&rft.volume=115&rft.spage=261&rft.epage=269&rft_id=info:doi/10.1016%2Fj.fuproc.2013.04.020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon |