A new blind source separation framework for signal analysis and artifact rejection in functional Near-Infrared Spectroscopy

In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenarios, artifact rejection is essential. However, currently there exists no gold-standard. Although a plenitude of methodological approaches implicitly assume the presence of latent processes in the signals,...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 200; pp. 72 - 88
Main Authors von Lühmann, Alexander, Boukouvalas, Zois, Müller, Klaus-Robert, Adalı, Tülay
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.10.2019
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenarios, artifact rejection is essential. However, currently there exists no gold-standard. Although a plenitude of methodological approaches implicitly assume the presence of latent processes in the signals, elaborate Blind-Source-Separation methods have rarely been applied. A reason are challenging characteristics such as Non-instantaneous and non-constant coupling, correlated noise and statistical dependencies between signal components. We present a novel suitable BSS framework that tackles these issues by incorporating A) Independent Component Analysis methods that exploit both higher order statistics and sample dependency, B) multimodality, i.e., fNIRS with accelerometer signals, and C) Canonical-Correlation Analysis with temporal embedding. This enables analysis of signal components and rejection of motion-induced physiological hemodynamic artifacts that would otherwise be hard to identify. We implement a method for Blind Source Separation and Accelerometer based Artifact Rejection and Detection (BLISSA2RD). It allows the analysis of a novel n-back based cognitive workload paradigm in freely moving subjects, that is also presented in this manuscript. We evaluate on the corresponding data set and simulated ground truth data, making use of metrics based on 1st and 2nd order statistics and SNR and compare with three established methods: PCA, Spline and Wavelet-based artifact removal. Across 17 subjects, the method is shown to reduce movement induced artifacts by up to two orders of magnitude, improves the SNR of continuous hemodynamic signals in single channels by up to 10dB, and significantly outperforms conventional methods in the extraction of simulated Hemodynamic Response Functions from strongly contaminated data. The framework and methods presented can serve as an introduction to a new type of multivariate methods for the analysis of fNIRS signals and as a blueprint for artifact rejection in complex environments beyond the applied paradigm. [Display omitted] •Blind-Source Separation framework for the unsupervised analysis of fNIRS signals•Multimodal approach reduces systemic physiological effects of movement•Remedies for non-instantaneous and non-constant coupling and correlated noise•Improved performance beyond conventional movement artifact correction
AbstractList In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenarios, artifact rejection is essential. However, currently there exists no gold-standard. Although a plenitude of methodological approaches implicitly assume the presence of latent processes in the signals, elaborate Blind-Source-Separation methods have rarely been applied. A reason are challenging characteristics such as Non-instantaneous and non-constant coupling, correlated noise and statistical dependencies between signal components. We present a novel suitable BSS framework that tackles these issues by incorporating A) Independent Component Analysis methods that exploit both higher order statistics and sample dependency, B) multimodality, i.e., fNIRS with accelerometer signals, and C) Canonical-Correlation Analysis with temporal embedding. This enables analysis of signal components and rejection of motion-induced physiological hemodynamic artifacts that would otherwise be hard to identify. We implement a method for Blind Source Separation and Accelerometer based Artifact Rejection and Detection (BLISSA2RD). It allows the analysis of a novel n-back based cognitive workload paradigm in freely moving subjects, that is also presented in this manuscript. We evaluate on the corresponding data set and simulated ground truth data, making use of metrics based on 1st and 2nd order statistics and SNR and compare with three established methods: PCA, Spline and Wavelet-based artifact removal. Across 17 subjects, the method is shown to reduce movement induced artifacts by up to two orders of magnitude, improves the SNR of continuous hemodynamic signals in single channels by up to 10dB, and significantly outperforms conventional methods in the extraction of simulated Hemodynamic Response Functions from strongly contaminated data. The framework and methods presented can serve as an introduction to a new type of multivariate methods for the analysis of fNIRS signals and as a blueprint for artifact rejection in complex environments beyond the applied paradigm. [Display omitted] •Blind-Source Separation framework for the unsupervised analysis of fNIRS signals•Multimodal approach reduces systemic physiological effects of movement•Remedies for non-instantaneous and non-constant coupling and correlated noise•Improved performance beyond conventional movement artifact correction
In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenarios, artifact rejection is essential. However, currently there exists no gold-standard. Although a plenitude of methodological approaches implicitly assume the presence of latent processes in the signals, elaborate Blind-Source-Separation methods have rarely been applied. A reason are challenging characteristics such as Non-instantaneous and non-constant coupling, correlated noise and statistical dependencies between signal components. We present a novel suitable BSS framework that tackles these issues by incorporating A) Independent Component Analysis methods that exploit both higher order statistics and sample dependency, B) multimodality, i.e., fNIRS with accelerometer signals, and C) Canonical-Correlation Analysis with temporal embedding. This enables analysis of signal components and rejection of motion-induced physiological hemodynamic artifacts that would otherwise be hard to identify. We implement a method for Blind Source Separation and Accelerometer based Artifact Rejection and Detection (BLISSA2RD). It allows the analysis of a novel n-back based cognitive workload paradigm in freely moving subjects, that is also presented in this manuscript. We evaluate on the corresponding data set and simulated ground truth data, making use of metrics based on 1st and 2nd order statistics and SNR and compare with three established methods: PCA, Spline and Wavelet-based artifact removal. Across 17 subjects, the method is shown to reduce movement induced artifacts by up to two orders of magnitude, improves the SNR of continuous hemodynamic signals in single channels by up to 10dB, and significantly outperforms conventional methods in the extraction of simulated Hemodynamic Response Functions from strongly contaminated data. The framework and methods presented can serve as an introduction to a new type of multivariate methods for the analysis of fNIRS signals and as a blueprint for artifact rejection in complex environments beyond the applied paradigm.
In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenarios, artifact rejection is essential. However, currently there exists no gold-standard. Although a plenitude of methodological approaches implicitly assume the presence of latent processes in the signals, elaborate Blind-Source-Separation methods have rarely been applied. A reason are challenging characteristics such as Non-instantaneous and non-constant coupling, correlated noise and statistical dependencies between signal components. We present a novel suitable BSS framework that tackles these issues by incorporating A) Independent Component Analysis methods that exploit both higher order statistics and sample dependency, B) multimodality, i.e., fNIRS with accelerometer signals, and C) Canonical-Correlation Analysis with temporal embedding. This enables analysis of signal components and rejection of motion-induced physiological hemodynamic artifacts that would otherwise be hard to identify. We implement a method for Blind Source Separation and Accelerometer based Artifact Rejection and Detection (BLISSA RD). It allows the analysis of a novel n-back based cognitive workload paradigm in freely moving subjects, that is also presented in this manuscript. We evaluate on the corresponding data set and simulated ground truth data, making use of metrics based on 1st and 2nd order statistics and SNR and compare with three established methods: PCA, Spline and Wavelet-based artifact removal. Across 17 subjects, the method is shown to reduce movement induced artifacts by up to two orders of magnitude, improves the SNR of continuous hemodynamic signals in single channels by up to 10dB, and significantly outperforms conventional methods in the extraction of simulated Hemodynamic Response Functions from strongly contaminated data. The framework and methods presented can serve as an introduction to a new type of multivariate methods for the analysis of fNIRS signals and as a blueprint for artifact rejection in complex environments beyond the applied paradigm.
In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenarios, artifact rejection is essential. However, currently there exists no gold-standard. Although a plenitude of methodological approaches implicitly assume the presence of latent processes in the signals, elaborate Blind-Source-Separation methods have rarely been applied. A reason are challenging characteristics such as Non-instantaneous and non-constant coupling, correlated noise and statistical dependencies between signal components. We present a novel suitable BSS framework that tackles these issues by incorporating A) Independent Component Analysis methods that exploit both higher order statistics and sample dependency, B) multimodality, i.e., fNIRS with accelerometer signals, and C) Canonical-Correlation Analysis with temporal embedding. This enables analysis of signal components and rejection of motion-induced physiological hemodynamic artifacts that would otherwise be hard to identify. We implement a method for Blind Source Separation and Accelerometer based Artifact Rejection and Detection (BLISSA2RD). It allows the analysis of a novel n-back based cognitive workload paradigm in freely moving subjects, that is also presented in this manuscript. We evaluate on the corresponding data set and simulated ground truth data, making use of metrics based on 1st and 2nd order statistics and SNR and compare with three established methods: PCA, Spline and Wavelet-based artifact removal. Across 17 subjects, the method is shown to reduce movement induced artifacts by up to two orders of magnitude, improves the SNR of continuous hemodynamic signals in single channels by up to 10dB, and significantly outperforms conventional methods in the extraction of simulated Hemodynamic Response Functions from strongly contaminated data. The framework and methods presented can serve as an introduction to a new type of multivariate methods for the analysis of fNIRS signals and as a blueprint for artifact rejection in complex environments beyond the applied paradigm.In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenarios, artifact rejection is essential. However, currently there exists no gold-standard. Although a plenitude of methodological approaches implicitly assume the presence of latent processes in the signals, elaborate Blind-Source-Separation methods have rarely been applied. A reason are challenging characteristics such as Non-instantaneous and non-constant coupling, correlated noise and statistical dependencies between signal components. We present a novel suitable BSS framework that tackles these issues by incorporating A) Independent Component Analysis methods that exploit both higher order statistics and sample dependency, B) multimodality, i.e., fNIRS with accelerometer signals, and C) Canonical-Correlation Analysis with temporal embedding. This enables analysis of signal components and rejection of motion-induced physiological hemodynamic artifacts that would otherwise be hard to identify. We implement a method for Blind Source Separation and Accelerometer based Artifact Rejection and Detection (BLISSA2RD). It allows the analysis of a novel n-back based cognitive workload paradigm in freely moving subjects, that is also presented in this manuscript. We evaluate on the corresponding data set and simulated ground truth data, making use of metrics based on 1st and 2nd order statistics and SNR and compare with three established methods: PCA, Spline and Wavelet-based artifact removal. Across 17 subjects, the method is shown to reduce movement induced artifacts by up to two orders of magnitude, improves the SNR of continuous hemodynamic signals in single channels by up to 10dB, and significantly outperforms conventional methods in the extraction of simulated Hemodynamic Response Functions from strongly contaminated data. The framework and methods presented can serve as an introduction to a new type of multivariate methods for the analysis of fNIRS signals and as a blueprint for artifact rejection in complex environments beyond the applied paradigm.
Author Boukouvalas, Zois
von Lühmann, Alexander
Müller, Klaus-Robert
Adalı, Tülay
Author_xml – sequence: 1
  givenname: Alexander
  surname: von Lühmann
  fullname: von Lühmann, Alexander
  email: avonluh@gmail.com
  organization: Machine Learning Dept., Berlin Institute of Technology, Berlin, Germany
– sequence: 2
  givenname: Zois
  surname: Boukouvalas
  fullname: Boukouvalas, Zois
  organization: Dept. of ENME, University of Maryland, College Park, MD, 20742, USA
– sequence: 3
  givenname: Klaus-Robert
  surname: Müller
  fullname: Müller, Klaus-Robert
  email: klaus.r.mueller@googlemail.com
  organization: Machine Learning Dept., Berlin Institute of Technology, Berlin, Germany
– sequence: 4
  givenname: Tülay
  surname: Adalı
  fullname: Adalı, Tülay
  email: adali@umbc.edu
  organization: Dept. of CSEE, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31203024$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wF5AlNmySXj_y8AZRKh6VKlgAa8tj31ROM_ZgJ1Qj_jzOTKtKs5qNfRffOdY9x-fFiQ8ei4JQqCjQ5nKoPM4xuLW-w4oBlRU0FTD6ojijIOtS1i07Weaalx2l8rQ4T2kAAElF96o45ZQBBybOin9XxOMDWY3OW5LCHA2ShBsd9eSCJ33Ua3wI8Z70IZLk7rweic7HNrmUB0t0nFyvzUQiDmh2Ipd1s9_Nmf6OOpY3PjtFtOTnJkMxJBM229fFy16PCd883hfF7y-ff11_K29_fL25vrotjajlVJpeSNFq24necMukBA2NANs0vTAtyJVmGgxrcVX3rOsAGqiZ7bPWYGM48ovi_d53E8OfGdOk1i4ZHEftMcxJMSYYpYK3LKPvDtAhZ5LXWKhWcMo5X6i3j9S8WqNVm5ibiFv1FGsGPuwBk1dNEXtl3LRLdIrajYqCWnpUg3ruUS09KmhU7jEbdAcGT28cIf20l2KO9K_DqJJx6A1aF3P2ygZ3jMnHAxOTf4gzerzH7XEW_wHHddWj
CitedBy_id crossref_primary_10_1016_j_neuroimage_2023_119880
crossref_primary_10_1364_OPTCON_477701
crossref_primary_10_1117_1_NPh_11_2_025002
crossref_primary_10_3389_fninf_2021_683735
crossref_primary_10_1002_hbm_25090
crossref_primary_10_3389_fnins_2024_1432138
crossref_primary_10_1098_rstb_2023_0087
crossref_primary_10_1016_j_jer_2023_07_016
crossref_primary_10_1016_j_compbiomed_2023_107902
crossref_primary_10_3390_s22197417
crossref_primary_10_3389_fnhum_2020_00030
crossref_primary_10_1016_j_jneumeth_2021_109262
crossref_primary_10_1117_1_NPh_7_3_035011
crossref_primary_10_1016_j_dcn_2024_101384
crossref_primary_10_1126_sciadv_abe7432
crossref_primary_10_1109_JSEN_2021_3069553
crossref_primary_10_1016_j_cobme_2021_100272
crossref_primary_10_3389_fnins_2022_878750
crossref_primary_10_1016_j_neuroimage_2019_116472
crossref_primary_10_3389_fnagi_2022_958656
crossref_primary_10_3390_s22155865
crossref_primary_10_3390_bioengineering11090933
crossref_primary_10_3390_s23146546
crossref_primary_10_3389_fpsyg_2022_1051256
crossref_primary_10_1117_1_NPh_11_4_045008
crossref_primary_10_1016_j_compbiomed_2023_106968
crossref_primary_10_3389_fnrgo_2024_1286586
crossref_primary_10_1016_j_bspc_2021_103301
crossref_primary_10_1117_1_NPh_9_2_025003
crossref_primary_10_3389_fnins_2020_566147
crossref_primary_10_3390_s24103173
crossref_primary_10_1016_j_jneumeth_2023_109810
crossref_primary_10_3390_s24216821
crossref_primary_10_1117_1_NPh_10_2_023515
crossref_primary_10_1016_j_neuroimage_2024_120714
crossref_primary_10_1093_braincomms_fcae259
crossref_primary_10_1364_BOE_394914
crossref_primary_10_3389_fnins_2020_579353
Cites_doi 10.1016/j.neuroimage.2011.07.084
10.1016/j.neuroimage.2009.11.050
10.1117/1.NPh.4.4.041413
10.1186/1475-925X-9-16
10.1006/nimg.2001.0921
10.1007/s11517-006-0116-3
10.1117/1.2805437
10.1109/TSP.2010.2055859
10.1038/sdata.2018.3
10.1016/j.neuroimage.2008.12.048
10.1109/TSP.2014.2333563
10.1109/TSP.2014.2333551
10.1103/PhysRevLett.103.214101
10.1016/j.neuroimage.2005.05.032
10.1007/BF02186476
10.1162/neco.1995.7.6.1129
10.1109/JPROC.2015.2461601
10.1364/OE.16.010323
10.1080/14639220210199753
10.1139/h04-031
10.1109/72.761722
10.1117/1.2363365
10.1109/TBME.2014.2309951
10.1088/1741-2552/aa8232
10.1109/TMM.2013.2250267
10.2307/2333955
10.1088/1741-2560/10/5/056001
10.1016/j.neuroimage.2013.10.067
10.1002/(SICI)1097-0193(1997)5:4<243::AID-HBM7>3.0.CO;2-3
10.1088/0031-9155/33/12/008
10.1088/0967-3334/33/2/259
10.1364/JOSAA.22.001874
10.1016/j.neuroimage.2013.04.082
10.1109/JPROC.2015.2413993
10.1117/1.NPh.3.1.010401
10.1109/TSP.2014.2318136
10.1002/hbm.20359
10.1109/JPROC.2015.2425807
10.1002/hbm.20678
10.1034/j.1600-0838.2001.110404.x
10.3389/fnpro.2010.00003
10.1088/0967-3334/31/5/004
10.1109/TNSRE.2016.2628057
10.1117/1.1852552
10.1016/j.neuroimage.2013.05.004
10.1364/AO.48.00D280
10.1117/1.3253323
10.1016/j.jfranklin.2017.07.003
10.1117/1.2804911
10.1016/j.neuroimage.2008.08.036
10.1117/1.2814249
10.3390/a8041052
10.1364/BOE.3.000064
10.1117/1.3606576
10.1016/j.brainres.2008.07.122
10.1007/BF02351016
10.1088/0967-3334/35/4/717
10.1109/TBME.2015.2422751
10.1080/13854040600910018
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
2019. Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
– notice: 2019. Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2019.06.021
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Psychology

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 88
ExternalDocumentID 31203024
10_1016_j_neuroimage_2019_06_021
S1053811919305129
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c459t-cf4947ad84fc3d2990a0640d66f4c709ba2a0c27eb5f288006052df459ce6c3e3
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Fri Jul 11 04:39:39 EDT 2025
Wed Aug 13 11:32:40 EDT 2025
Thu Apr 03 06:56:29 EDT 2025
Tue Jul 01 03:02:08 EDT 2025
Thu Apr 24 22:57:48 EDT 2025
Fri Feb 23 02:41:11 EST 2024
Tue Aug 26 18:33:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Entropy rate bound minimization
Artifact removal
fNIRS
Multimodality
Machine learning
Neuroimaging in motion
Blind source separation
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-cf4947ad84fc3d2990a0640d66f4c709ba2a0c27eb5f288006052df459ce6c3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31203024
PQID 2274313332
PQPubID 2031077
PageCount 17
ParticipantIDs proquest_miscellaneous_2242114372
proquest_journals_2274313332
pubmed_primary_31203024
crossref_citationtrail_10_1016_j_neuroimage_2019_06_021
crossref_primary_10_1016_j_neuroimage_2019_06_021
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_06_021
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_06_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-15
PublicationDateYYYYMMDD 2019-10-15
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Dähne, Bießman, Samek, Haufe, Goltz, Gundlach, Villringer, Fazli, Müller (bib20) 2015; 103
G. Pfurtscheller, B. Z. Allison, G. Bauernfeind, C. Brunner, T. Solis Escalante, R. Scherer, T. O. Zander, G. Müller-Putz, C. Neuper, N. Birbaumer, The hybrid BCI, Front. Neurosci. 4 (3). doi:10.3389/fnpro.2010.00003.
von Lühmann, Wabnitz, Sander, Müller (bib70) 2017; 64
Samek, Nakajima, Kawanabe, Müller (bib58) 2017; 14
Caicedo, Papademetriou, Elwell, Hoskote, Elliott, Van Huffel, Tachtsidis (bib14) 2013
Long, Jia, Boukouvalas, Gabrielson, Emge, Adali (bib43) 2018
Li, Adalı, Calhoun (bib42) 2007; 28
Fu, Anderson, Adalı (bib28) 2014; 62
Parasuraman (bib52) 2003; 4
Zheng, Ding, Poon, Lo, Zhang, Zhou, Yang, Zhao, Zhang (bib76) 2014; 61
Franceschini, Joseph, Huppert, Diamond, Boas (bib26) 2006; 11
Hyvärinen (bib35) 1999; 10
Boas, Brooks, Miller, DiMarzio, Kilmer, Gaudette, Zhang (bib9) 2001; 18
Scholkmann, Kleiser, Metz, Zimmermann, Pavia, Wolf, Wolf (bib61) 2014; 85
Choi, Cichocki, Zhang, Amari (bib16) 2003; 86
Haufe, Meinecke, Görgen, Dähne, Haynes, Blankertz, Bießmann (bib30) 2014; 87
Li, Adali (bib41) 2010; 58
Shin, von Lühmann, Kim, Mehnert, Hwang, Müller (bib64) 2018; 5
Molavi, Dumont (bib48) 2012; 33
Izzetoglu, Chitrapu, Bunce, Onaral (bib38) 2010; 9
Adali, Anderson, Fu (bib1) 2014; 31
Metz, Wolf, Achermann, Scholkmann (bib47) 2015; 8
Morren, Wolf, Lemmerling, Wolf, Choi, Gratton, De Lathauwer, Van Huffel (bib49) 2004; 42
Medvedev, Kainerstorfer, Borisov, Barbour, VanMeter (bib46) 2008; 1236
Ferrari, Mottola, Quaresima (bib25) 2004; 29
Adali, Levin-Schwartz, Calhoun (bib2) 2015; 103
Eriksson, Koivunen (bib22) 2004
Delpy, Cope, van der Zee, Arridge, Wray, Wyatt (bib21) 1988; 33
Comon, Jutten (bib17) 2010
Shin, von Lühmann, Blankertz, Kim, Jeong, Hwang, Müller (bib63) 2017; 25
Boukouvalas, Levin-Schwartz, Calhoun, Adalı (bib10) 2018; 355
Fazli, Mehnert, Steinbrink, Curio, Villringer, Müller, Blankertz (bib23) 2012; 59
Hotelling (bib32) 1936; 28
Hyvärinen, Karhunen, Oja (bib36) 2004; vol. 46
Müller-Putz, Leeb, Tangermann, Höhne, Kübler, Cincotti, Mattia, Rupp, Müller, Millan (bib51) 2015
von Bünau, Meinecke, Király, Müller (bib68) 2009; 103
Cui, Bray, Reiss (bib18) 2010; 49
Hoshi (bib31) 2007; 12
Bertsekas (bib7) 1988; 14
Rodriguez, Anderson, Li, Adalı (bib55) 2014; 62
Bießmann, Meinecke, Gretton, Rauch, Rainer, Logothetis, Müller (bib8) 2009; 79
Andreu-Perez, Leff, Ip, Yang (bib5) 2015; 62
Bell, Sejnowski (bib6) 1995; 7
Markham, White, Zeff, Culver (bib45) 2009; 30
von Lühmann, Herff, Heger, Schultz (bib69) 2015; 9
Macchi (bib44) 1993
Safaie, Grebe, Moghaddam, Wallois (bib57) 2013; 10
Fazli, Dähne, Samek, Bießmann, Müller (bib24) 2015; 103
Scholkmann, Spichtig, Muehlemann, Wolf (bib60) 2010; 31
Ziehe, Müller (bib77) 1998
Anderson (bib4) 1958; vol. 2
Virtanen, Noponen, Meriläinen (bib66) 2009; 14
Scholkmann, Metz, Wolf (bib62) 2014; 35
Virtanen, Noponen, Kotilahti, Virtanen, Ilmoniemi (bib67) 2011; 16
Zhang, Franceschini, Boas, Brooks (bib74) 2005; 10
Fu, Phlypo, Anderson, Li (bib27) 2014; 62
Brigadoi, Ceccherini, Cutini, Scarpa, Scatturin, Selb, Gagnon, Boas, Cooper (bib13) 2014; 85
Huppert (bib33) 2016; 3
Schelkanova, Toronov (bib59) 2012; 3
Irani, Platek, Bunce, Ruocco, Chute (bib37) 2007; 21
Huppert, Diamond, Franceschini, Boas (bib34) 2009; 48
Muehlemann, Haensse, Wolf (bib50) 2008; 16
Tachtsidis, Scholkmann (bib65) 2016; 3
Boukouvalas, Levin-Schwartz, Mowakeaa, Fu, Adalı (bib11) 2018; vol. 2018
Zhang, Strangman, Ganis (bib75) 2009; 45
Josephs, Turner, Friston (bib39) 1997; 5
Hamaoka, McCully, Quaresima, Yamamoto, Chance (bib29) 2007; 12
Saager, Berger (bib56) 2005; 22
Boushel, Langberg, Olesen, Gonzales-Alonzo, Bülow, Kjaer (bib12) 2001; 11
Akgül, Akin, Sankur (bib3) 2006; 44
Wolf, Ferrari, Quaresima (bib71) 2007; 12
Ye, Tak, Jang, Jung, Jang (bib73) 2009; 44
Kohno, Miyai, Seiyama, Oda, Ishikawa, Tsuneishi, Amita, Shimizu (bib40) 2007; 12
Parra, Spence, Gerson, Sajda (bib53) 2005; 28
Dähne, Bießman, Meinecke, Mehnert, Fazli, Müller (bib19) 2013; 15
Calhoun, Adali, McGinty, Pekar, Watson, Pearlson (bib15) 2001; 14
Wyser, Lambercy, Scholkmann, Wolf, Gassert (bib72) 2017; 4
Adali (10.1016/j.neuroimage.2019.06.021_bib1) 2014; 31
Zhang (10.1016/j.neuroimage.2019.06.021_bib75) 2009; 45
Molavi (10.1016/j.neuroimage.2019.06.021_bib48) 2012; 33
Boukouvalas (10.1016/j.neuroimage.2019.06.021_bib11) 2018; vol. 2018
von Lühmann (10.1016/j.neuroimage.2019.06.021_bib69) 2015; 9
Fazli (10.1016/j.neuroimage.2019.06.021_bib23) 2012; 59
Boushel (10.1016/j.neuroimage.2019.06.021_bib12) 2001; 11
Bell (10.1016/j.neuroimage.2019.06.021_bib6) 1995; 7
Rodriguez (10.1016/j.neuroimage.2019.06.021_bib55) 2014; 62
Macchi (10.1016/j.neuroimage.2019.06.021_bib44) 1993
Adali (10.1016/j.neuroimage.2019.06.021_bib2) 2015; 103
Delpy (10.1016/j.neuroimage.2019.06.021_bib21) 1988; 33
Zhang (10.1016/j.neuroimage.2019.06.021_bib74) 2005; 10
Schelkanova (10.1016/j.neuroimage.2019.06.021_bib59) 2012; 3
Bertsekas (10.1016/j.neuroimage.2019.06.021_bib7) 1988; 14
Calhoun (10.1016/j.neuroimage.2019.06.021_bib15) 2001; 14
Caicedo (10.1016/j.neuroimage.2019.06.021_bib14) 2013
Comon (10.1016/j.neuroimage.2019.06.021_bib17) 2010
Parra (10.1016/j.neuroimage.2019.06.021_bib53) 2005; 28
Anderson (10.1016/j.neuroimage.2019.06.021_bib4) 1958; vol. 2
Bießmann (10.1016/j.neuroimage.2019.06.021_bib8) 2009; 79
Franceschini (10.1016/j.neuroimage.2019.06.021_bib26) 2006; 11
Parasuraman (10.1016/j.neuroimage.2019.06.021_bib52) 2003; 4
Eriksson (10.1016/j.neuroimage.2019.06.021_bib22) 2004
Shin (10.1016/j.neuroimage.2019.06.021_bib63) 2017; 25
Akgül (10.1016/j.neuroimage.2019.06.021_bib3) 2006; 44
Boukouvalas (10.1016/j.neuroimage.2019.06.021_bib10) 2018; 355
von Lühmann (10.1016/j.neuroimage.2019.06.021_bib70) 2017; 64
Hotelling (10.1016/j.neuroimage.2019.06.021_bib32) 1936; 28
Li (10.1016/j.neuroimage.2019.06.021_bib42) 2007; 28
Dähne (10.1016/j.neuroimage.2019.06.021_bib20) 2015; 103
Josephs (10.1016/j.neuroimage.2019.06.021_bib39) 1997; 5
Hyvärinen (10.1016/j.neuroimage.2019.06.021_bib36) 2004; vol. 46
Fu (10.1016/j.neuroimage.2019.06.021_bib27) 2014; 62
Huppert (10.1016/j.neuroimage.2019.06.021_bib33) 2016; 3
Markham (10.1016/j.neuroimage.2019.06.021_bib45) 2009; 30
Zheng (10.1016/j.neuroimage.2019.06.021_bib76) 2014; 61
Dähne (10.1016/j.neuroimage.2019.06.021_bib19) 2013; 15
Fazli (10.1016/j.neuroimage.2019.06.021_bib24) 2015; 103
10.1016/j.neuroimage.2019.06.021_bib54
Hoshi (10.1016/j.neuroimage.2019.06.021_bib31) 2007; 12
Izzetoglu (10.1016/j.neuroimage.2019.06.021_bib38) 2010; 9
Kohno (10.1016/j.neuroimage.2019.06.021_bib40) 2007; 12
Saager (10.1016/j.neuroimage.2019.06.021_bib56) 2005; 22
Samek (10.1016/j.neuroimage.2019.06.021_bib58) 2017; 14
Choi (10.1016/j.neuroimage.2019.06.021_bib16) 2003; 86
Metz (10.1016/j.neuroimage.2019.06.021_bib47) 2015; 8
Haufe (10.1016/j.neuroimage.2019.06.021_bib30) 2014; 87
Fu (10.1016/j.neuroimage.2019.06.021_bib28) 2014; 62
Li (10.1016/j.neuroimage.2019.06.021_bib41) 2010; 58
Ziehe (10.1016/j.neuroimage.2019.06.021_bib77) 1998
Boas (10.1016/j.neuroimage.2019.06.021_bib9) 2001; 18
Tachtsidis (10.1016/j.neuroimage.2019.06.021_bib65) 2016; 3
Cui (10.1016/j.neuroimage.2019.06.021_bib18) 2010; 49
Andreu-Perez (10.1016/j.neuroimage.2019.06.021_bib5) 2015; 62
Müller-Putz (10.1016/j.neuroimage.2019.06.021_bib51) 2015
Brigadoi (10.1016/j.neuroimage.2019.06.021_bib13) 2014; 85
Morren (10.1016/j.neuroimage.2019.06.021_bib49) 2004; 42
Scholkmann (10.1016/j.neuroimage.2019.06.021_bib60) 2010; 31
Scholkmann (10.1016/j.neuroimage.2019.06.021_bib61) 2014; 85
Virtanen (10.1016/j.neuroimage.2019.06.021_bib67) 2011; 16
Muehlemann (10.1016/j.neuroimage.2019.06.021_bib50) 2008; 16
Scholkmann (10.1016/j.neuroimage.2019.06.021_bib62) 2014; 35
Medvedev (10.1016/j.neuroimage.2019.06.021_bib46) 2008; 1236
Ye (10.1016/j.neuroimage.2019.06.021_bib73) 2009; 44
Wolf (10.1016/j.neuroimage.2019.06.021_bib71) 2007; 12
Huppert (10.1016/j.neuroimage.2019.06.021_bib34) 2009; 48
Shin (10.1016/j.neuroimage.2019.06.021_bib64) 2018; 5
Irani (10.1016/j.neuroimage.2019.06.021_bib37) 2007; 21
Hamaoka (10.1016/j.neuroimage.2019.06.021_bib29) 2007; 12
Ferrari (10.1016/j.neuroimage.2019.06.021_bib25) 2004; 29
Hyvärinen (10.1016/j.neuroimage.2019.06.021_bib35) 1999; 10
Long (10.1016/j.neuroimage.2019.06.021_bib43) 2018
Wyser (10.1016/j.neuroimage.2019.06.021_bib72) 2017; 4
Virtanen (10.1016/j.neuroimage.2019.06.021_bib66) 2009; 14
Safaie (10.1016/j.neuroimage.2019.06.021_bib57) 2013; 10
von Bünau (10.1016/j.neuroimage.2019.06.021_bib68) 2009; 103
References_xml – start-page: 2581
  year: 2018
  end-page: 2585
  ident: bib43
  article-title: Consistent run selection for independent component analysis: application to fmri analysis
  publication-title: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 85
  start-page: 6
  year: 2014
  end-page: 27
  ident: bib61
  article-title: A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology
  publication-title: Neuroimage
– volume: 29
  start-page: 463
  year: 2004
  end-page: 487
  ident: bib25
  article-title: Principles, techniques, and limitations of near infrared spectroscopy
  publication-title: Can. J. Appl. Physiol.
– volume: 14
  start-page: 1080
  year: 2001
  end-page: 1088
  ident: bib15
  article-title: Fmri activation in a visual-perception task: network of areas detected using the general linear model and independent components analysis
  publication-title: Neuroimage
– volume: 79
  start-page: 5—27
  year: 2009
  ident: bib8
  article-title: Temporal kernel canonical correlation analysis and its application in multimodal neuronal data analysis
  publication-title: Mach. Learn.
– volume: 62
  start-page: 4237
  year: 2014
  end-page: 4244
  ident: bib28
  article-title: Likelihood estimators for dependent samples and their application to order detection
  publication-title: IEEE Trans. Signal Process.
– start-page: 1
  year: 2015
  end-page: 18
  ident: bib51
  article-title: Towards noninvasive hybrid brain computer interfaces: framework, practice, clinical application, and beyond
  publication-title: Proc. IEEE
– volume: 64
  start-page: 1199
  year: 2017
  end-page: 1210
  ident: bib70
  article-title: M3BA: a mobile, modular, multimodal biosignal acquisition architecture for miniaturized EEG-NIRS-based hybrid bci and monitoring
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 4
  start-page: 5
  year: 2003
  end-page: 20
  ident: bib52
  article-title: Neuroergonomics: research and practice
  publication-title: Theor. Issues Ergon. Sci.
– volume: 48
  start-page: D280
  year: 2009
  end-page: D298
  ident: bib34
  article-title: HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain
  publication-title: Appl. Opt.
– volume: 28
  start-page: 326
  year: 2005
  end-page: 341
  ident: bib53
  article-title: Recipes for the linear analysis of {EEG}
  publication-title: Neuroimage
– volume: 85
  start-page: 181
  year: 2014
  end-page: 191
  ident: bib13
  article-title: Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data
  publication-title: Neuroimage
– volume: 10
  year: 2013
  ident: bib57
  article-title: Toward a fully integrated wireless wearable EEG-nirs bimodal acquisition system
  publication-title: J. Neural Eng.
– volume: 31
  start-page: 18
  year: 2014
  end-page: 33
  ident: bib1
  article-title: Diversity in independent component and vector analyses: identifiability, algorithms, and applications in medical imaging, Signal Processing Magazine
  publication-title: IEEE
– volume: 86
  start-page: 198
  year: 2003
  end-page: 205
  ident: bib16
  article-title: Approximate maximum likelihood source separation using the natural gradient
  publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
– volume: 59
  start-page: 519
  year: 2012
  end-page: 529
  ident: bib23
  article-title: Enhanced performance by a hybrid NIRS-EEG brain computer interface
  publication-title: Neuroimage
– volume: 4
  year: 2017
  ident: bib72
  article-title: Wearable and modular functional near-infrared spectroscopy instrument with multidistance measurements at four wavelengths
  publication-title: Neurophotonics
– volume: 103
  start-page: 1494
  year: 2015
  end-page: 1506
  ident: bib2
  article-title: Multimodal data fusion using source separation: application to medical imaging
  publication-title: Proc. IEEE
– volume: 14
  start-page: 105
  year: 1988
  end-page: 123
  ident: bib7
  article-title: The auction algorithm: a distributed relaxation method for the assignment problem
  publication-title: Ann. Oper. Res.
– volume: 16
  year: 2011
  ident: bib67
  article-title: Accelerometer-based method for correcting signal baseline changes caused by motion artifacts in medical near-infrared spectroscopy
  publication-title: J. Biomed. Opt.
– year: 2010
  ident: bib17
  article-title: Handbook of Blind Source Separation: Independent Component Analysis and Applications
– volume: 87
  start-page: 96
  year: 2014
  end-page: 110
  ident: bib30
  article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging
  publication-title: Neuroimage
– volume: vol. 46
  year: 2004
  ident: bib36
  publication-title: Independent Component Analysis
– volume: 58
  start-page: 5151
  year: 2010
  end-page: 5164
  ident: bib41
  article-title: Independent component analysis by entropy bound minimization
  publication-title: IEEE Trans. Signal Process.
– volume: 33
  start-page: 1433
  year: 1988
  ident: bib21
  article-title: Estimation of optical pathlength through tissue from direct time of flight measurement
  publication-title: Phys. Med. Biol.
– volume: 103
  start-page: 1507
  year: 2015
  end-page: 1530
  ident: bib20
  article-title: Multivariate machine learning methods for fusing functional multimodal neuroimaging data
  publication-title: Proc. IEEE
– volume: 15
  start-page: 1001
  year: 2013
  end-page: 1013
  ident: bib19
  article-title: Integration of multivariate data streams with bandpower signals
  publication-title: IEEE Trans. Multimed.
– volume: 12
  year: 2007
  ident: bib29
  article-title: Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans
  publication-title: J. Biomed. Opt.
– volume: 25
  start-page: 1735
  year: 2017
  end-page: 1745
  ident: bib63
  article-title: Open access dataset for eeg+ nirs single-trial classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 14
  year: 2009
  ident: bib66
  article-title: Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals
  publication-title: J. Biomed. Opt.
– volume: 30
  start-page: 2382
  year: 2009
  end-page: 2392
  ident: bib45
  article-title: Blind identification of evoked human brain activity with independent component analysis of optical data
  publication-title: Hum. Brain Mapp.
– volume: 49
  start-page: 3039
  year: 2010
  end-page: 3046
  ident: bib18
  article-title: Functional near infrared spectroscopy (nirs) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics
  publication-title: Neuroimage
– volume: 11
  year: 2006
  ident: bib26
  article-title: Diffuse optical imaging of the whole head
  publication-title: J. Biomed. Opt.
– volume: 42
  start-page: 92
  year: 2004
  end-page: 99
  ident: bib49
  article-title: Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis
  publication-title: Med. Biol. Eng. Comput.
– volume: 31
  start-page: 649
  year: 2010
  ident: bib60
  article-title: How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation
  publication-title: Physiol. Meas.
– start-page: 675
  year: 1998
  end-page: 680
  ident: bib77
  article-title: TDSEP – an efficient algorithm for blind separation using time structure
  publication-title: Proc. Of the 8
– volume: 9
  year: 2015
  ident: bib69
  article-title: Towards a wireless open source instrument: functional near-infrared spectroscopy in mobile neuroergonomics and bci applications
  publication-title: Front. Hum. Neurosci.
– volume: vol. 2018
  start-page: 403
  year: 2018
  end-page: 407
  ident: bib11
  article-title: Independent component analysis using semi-parametric density estimation via entropy maximization
  publication-title: IEEE Statistical Signal Processing Workshop (SSP)
– volume: 21
  start-page: 9
  year: 2007
  end-page: 37
  ident: bib37
  article-title: Functional near infrared spectroscopy (fnirs): an emerging neuroimaging technology with important applications for the study of brain disorders
  publication-title: Clin. Neuropsychol.
– volume: 61
  start-page: 1538
  year: 2014
  end-page: 1554
  ident: bib76
  article-title: Unobtrusive sensing and wearable devices for health informatics
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 9
  start-page: 16
  year: 2010
  ident: bib38
  article-title: Motion artifact cancellation in nir spectroscopy using discrete kalman filtering
  publication-title: Biomed. Eng. Online
– volume: 14
  year: 2017
  ident: bib58
  article-title: On robust parameter estimation in brain–computer interfacing
  publication-title: J. Neural Eng.
– volume: 28
  start-page: 1251
  year: 2007
  end-page: 1266
  ident: bib42
  article-title: Estimating the number of independent components for functional magnetic resonance imaging data
  publication-title: Hum. Brain Mapp.
– volume: vol. 2
  year: 1958
  ident: bib4
  publication-title: An Introduction to Multivariate Statistical Analysis
– volume: 8
  start-page: 1052
  year: 2015
  end-page: 1075
  ident: bib47
  article-title: A new approach for automatic removal of movement artifacts in near-infrared spectroscopy time series by means of acceleration data
  publication-title: Algorithms
– volume: 5
  start-page: 243
  year: 1997
  end-page: 248
  ident: bib39
  article-title: Event-related fmri
  publication-title: Hum. Brain Mapp.
– volume: 10
  start-page: 626
  year: 1999
  end-page: 634
  ident: bib35
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Trans. Neural Netw.
– volume: 3
  start-page: 64
  year: 2012
  end-page: 74
  ident: bib59
  article-title: Independent component analysis of broadband near-infrared spectroscopy data acquired on adult human head
  publication-title: Biomed. Opt. Express
– volume: 22
  start-page: 1874
  year: 2005
  end-page: 1882
  ident: bib56
  article-title: Direct characterization and removal of interfering absorption trends in two-layer turbid media
  publication-title: J. Opt. Soc. Am.
– volume: 10
  year: 2005
  ident: bib74
  article-title: Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging
  publication-title: J. Biomed. Opt.
– start-page: 23
  year: 2013
  end-page: 29
  ident: bib14
  article-title: Canonical correlation analysis in the study of cerebral and peripheral haemodynamics interrelations with systemic variables in neonates supported on ecmo
  publication-title: Oxygen Transport to Tissue XXXIV
– volume: 44
  start-page: 428
  year: 2009
  end-page: 447
  ident: bib73
  article-title: Nirs-spm: statistical parametric mapping for near-infrared spectroscopy
  publication-title: Neuroimage
– volume: 18
  start-page: 57
  year: 2001
  end-page: 75
  ident: bib9
  article-title: Imaging the body with diffuse optical tomography, Signal Processing Magazine
  publication-title: IEEE
– volume: 62
  start-page: 2778
  year: 2014
  end-page: 2786
  ident: bib55
  article-title: General non-orthogonal constrained ica
  publication-title: IEEE Trans. Signal Process.
– volume: 33
  start-page: 259
  year: 2012
  ident: bib48
  article-title: Wavelet-based motion artifact removal for functional near-infrared spectroscopy
  publication-title: Physiol. Meas.
– volume: 355
  start-page: 1873
  year: 2018
  end-page: 1887
  ident: bib10
  article-title: Sparsity and independence: balancing two objectives in optimization for source separation with application to fmri analysis
  publication-title: J. Frankl. Inst.
– volume: 62
  start-page: 2750
  year: 2015
  end-page: 2762
  ident: bib5
  article-title: From wearable sensors to smart implants - toward pervasive and personalized healthcare
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 45
  start-page: 788
  year: 2009
  end-page: 794
  ident: bib75
  article-title: Adaptive filtering to reduce global interference in non-invasive nirs measures of brain activation: how well and when does it work?
  publication-title: Neuroimage
– volume: 11
  start-page: 213
  year: 2001
  end-page: 222
  ident: bib12
  article-title: Monitoring tissue oxygen availability with near infrared spectroscopy (nirs) in health and disease
  publication-title: Scand. J. Med. Sci. Sports
– volume: 12
  year: 2007
  ident: bib40
  article-title: Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis
  publication-title: J. Biomed. Opt.
– volume: 35
  start-page: 717
  year: 2014
  ident: bib62
  article-title: Measuring tissue hemodynamics and oxygenation by continuous-wave functional near-infrared spectroscopyhow robust are the different calculation methods against movement artifacts?
  publication-title: Physiol. Meas.
– volume: 7
  start-page: 1129
  year: 1995
  end-page: 1159
  ident: bib6
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
– start-page: 1154
  year: 1993
  end-page: 1159
  ident: bib44
  article-title: Self-adaptive source separation by direct and recursive networks
  publication-title: Proc. International Conference on Digital Signal Processing (DSP’93) Limasol
– volume: 62
  start-page: 4245
  year: 2014
  end-page: 4255
  ident: bib27
  article-title: Blind source separation by entropy rate minimization
  publication-title: IEEE Trans. Signal Process.
– volume: 12
  year: 2007
  ident: bib31
  article-title: Functional near-infrared spectroscopy: current status and future prospects
  publication-title: J. Biomed. Opt.
– volume: 16
  start-page: 10323
  year: 2008
  end-page: 10330
  ident: bib50
  article-title: Wireless miniaturized in-vivo near infrared imaging
  publication-title: Optic Express
– volume: 44
  start-page: 945
  year: 2006
  ident: bib3
  article-title: Extraction of cognitive activity-related waveforms from functional near-infrared spectroscopy signals
  publication-title: Med. Biol. Eng. Comput.
– volume: 3
  year: 2016
  ident: bib33
  article-title: Commentary on the statistical properties of noise and its implication on general linear models in functional near-infrared spectroscopy
  publication-title: Neurophotonics
– volume: 28
  start-page: 321
  year: 1936
  end-page: 377
  ident: bib32
  article-title: Relations between two sets of variates
  publication-title: Biometrika
– volume: 1236
  start-page: 145
  year: 2008
  end-page: 158
  ident: bib46
  article-title: Event-related fast optical signal in a rapid object recognition task: improving detection by the independent component analysis
  publication-title: Brain Res.
– volume: 3
  year: 2016
  ident: bib65
  article-title: False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward
  publication-title: Neurophotonics
– volume: 103
  start-page: 214101
  year: 2009
  ident: bib68
  article-title: Finding stationary subspaces in multivariate time series
  publication-title: Phys. Rev. Lett.
– reference: G. Pfurtscheller, B. Z. Allison, G. Bauernfeind, C. Brunner, T. Solis Escalante, R. Scherer, T. O. Zander, G. Müller-Putz, C. Neuper, N. Birbaumer, The hybrid BCI, Front. Neurosci. 4 (3). doi:10.3389/fnpro.2010.00003.
– start-page: 183
  year: 2004
  end-page: 192
  ident: bib22
  article-title: Complex-valued ica using second order statistics
  publication-title: Machine Learning for Signal Processing, 2004. Proceedings of the 2004 14th IEEE Signal Processing Society Workshop
– volume: 5
  start-page: 180003
  year: 2018
  ident: bib64
  article-title: Simultaneous acquisition of eeg and nirs during cognitive tasks for an open access dataset
  publication-title: Nat. Sci. Data
– volume: 12
  year: 2007
  ident: bib71
  article-title: Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications
  publication-title: J. Biomed. Opt.
– volume: 103
  start-page: 891
  year: 2015
  end-page: 906
  ident: bib24
  article-title: Learning from more than one data source: data fusion techniques for sensorimotor rhythm-based Brain-Computer Interfaces
  publication-title: Proc. IEEE
– volume: 59
  start-page: 519
  issue: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2019.06.021_bib23
  article-title: Enhanced performance by a hybrid NIRS-EEG brain computer interface
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.07.084
– start-page: 2581
  year: 2018
  ident: 10.1016/j.neuroimage.2019.06.021_bib43
  article-title: Consistent run selection for independent component analysis: application to fmri analysis
– volume: 49
  start-page: 3039
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2019.06.021_bib18
  article-title: Functional near infrared spectroscopy (nirs) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.050
– volume: 4
  issue: 4
  year: 2017
  ident: 10.1016/j.neuroimage.2019.06.021_bib72
  article-title: Wearable and modular functional near-infrared spectroscopy instrument with multidistance measurements at four wavelengths
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.4.4.041413
– volume: 9
  start-page: 16
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2019.06.021_bib38
  article-title: Motion artifact cancellation in nir spectroscopy using discrete kalman filtering
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-9-16
– volume: 14
  start-page: 1080
  issue: 5
  year: 2001
  ident: 10.1016/j.neuroimage.2019.06.021_bib15
  article-title: Fmri activation in a visual-perception task: network of areas detected using the general linear model and independent components analysis
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0921
– volume: 44
  start-page: 945
  issue: 11
  year: 2006
  ident: 10.1016/j.neuroimage.2019.06.021_bib3
  article-title: Extraction of cognitive activity-related waveforms from functional near-infrared spectroscopy signals
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-006-0116-3
– volume: 12
  issue: 6
  year: 2007
  ident: 10.1016/j.neuroimage.2019.06.021_bib29
  article-title: Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.2805437
– volume: 58
  start-page: 5151
  issue: 10
  year: 2010
  ident: 10.1016/j.neuroimage.2019.06.021_bib41
  article-title: Independent component analysis by entropy bound minimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2055859
– volume: 5
  start-page: 180003
  year: 2018
  ident: 10.1016/j.neuroimage.2019.06.021_bib64
  article-title: Simultaneous acquisition of eeg and nirs during cognitive tasks for an open access dataset
  publication-title: Nat. Sci. Data
  doi: 10.1038/sdata.2018.3
– volume: 45
  start-page: 788
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2019.06.021_bib75
  article-title: Adaptive filtering to reduce global interference in non-invasive nirs measures of brain activation: how well and when does it work?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.12.048
– volume: vol. 46
  year: 2004
  ident: 10.1016/j.neuroimage.2019.06.021_bib36
– volume: 9
  issue: 617
  year: 2015
  ident: 10.1016/j.neuroimage.2019.06.021_bib69
  article-title: Towards a wireless open source instrument: functional near-infrared spectroscopy in mobile neuroergonomics and bci applications
  publication-title: Front. Hum. Neurosci.
– volume: 62
  start-page: 4245
  issue: 16
  year: 2014
  ident: 10.1016/j.neuroimage.2019.06.021_bib27
  article-title: Blind source separation by entropy rate minimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2333563
– volume: 64
  start-page: 1199
  issue: 6
  year: 2017
  ident: 10.1016/j.neuroimage.2019.06.021_bib70
  article-title: M3BA: a mobile, modular, multimodal biosignal acquisition architecture for miniaturized EEG-NIRS-based hybrid bci and monitoring
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 62
  start-page: 4237
  issue: 16
  year: 2014
  ident: 10.1016/j.neuroimage.2019.06.021_bib28
  article-title: Likelihood estimators for dependent samples and their application to order detection
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2333551
– volume: 103
  start-page: 214101
  year: 2009
  ident: 10.1016/j.neuroimage.2019.06.021_bib68
  article-title: Finding stationary subspaces in multivariate time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.214101
– volume: 3
  issue: 3
  year: 2016
  ident: 10.1016/j.neuroimage.2019.06.021_bib65
  article-title: False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward
  publication-title: Neurophotonics
– volume: vol. 2018
  start-page: 403
  year: 2018
  ident: 10.1016/j.neuroimage.2019.06.021_bib11
  article-title: Independent component analysis using semi-parametric density estimation via entropy maximization
– volume: 28
  start-page: 326
  issue: 2
  year: 2005
  ident: 10.1016/j.neuroimage.2019.06.021_bib53
  article-title: Recipes for the linear analysis of {EEG}
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.05.032
– volume: vol. 2
  year: 1958
  ident: 10.1016/j.neuroimage.2019.06.021_bib4
– start-page: 23
  year: 2013
  ident: 10.1016/j.neuroimage.2019.06.021_bib14
  article-title: Canonical correlation analysis in the study of cerebral and peripheral haemodynamics interrelations with systemic variables in neonates supported on ecmo
– volume: 14
  start-page: 105
  issue: 1
  year: 1988
  ident: 10.1016/j.neuroimage.2019.06.021_bib7
  article-title: The auction algorithm: a distributed relaxation method for the assignment problem
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF02186476
– volume: 31
  start-page: 18
  issue: 3
  year: 2014
  ident: 10.1016/j.neuroimage.2019.06.021_bib1
  article-title: Diversity in independent component and vector analyses: identifiability, algorithms, and applications in medical imaging, Signal Processing Magazine
  publication-title: IEEE
– volume: 7
  start-page: 1129
  issue: 6
  year: 1995
  ident: 10.1016/j.neuroimage.2019.06.021_bib6
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.6.1129
– volume: 103
  start-page: 1494
  issue: 9
  year: 2015
  ident: 10.1016/j.neuroimage.2019.06.021_bib2
  article-title: Multimodal data fusion using source separation: application to medical imaging
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2461601
– volume: 16
  start-page: 10323
  issue: 14
  year: 2008
  ident: 10.1016/j.neuroimage.2019.06.021_bib50
  article-title: Wireless miniaturized in-vivo near infrared imaging
  publication-title: Optic Express
  doi: 10.1364/OE.16.010323
– volume: 4
  start-page: 5
  issue: 1–2
  year: 2003
  ident: 10.1016/j.neuroimage.2019.06.021_bib52
  article-title: Neuroergonomics: research and practice
  publication-title: Theor. Issues Ergon. Sci.
  doi: 10.1080/14639220210199753
– volume: 29
  start-page: 463
  issue: 4
  year: 2004
  ident: 10.1016/j.neuroimage.2019.06.021_bib25
  article-title: Principles, techniques, and limitations of near infrared spectroscopy
  publication-title: Can. J. Appl. Physiol.
  doi: 10.1139/h04-031
– volume: 10
  start-page: 626
  issue: 3
  year: 1999
  ident: 10.1016/j.neuroimage.2019.06.021_bib35
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.761722
– volume: 11
  year: 2006
  ident: 10.1016/j.neuroimage.2019.06.021_bib26
  article-title: Diffuse optical imaging of the whole head
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.2363365
– volume: 61
  start-page: 1538
  issue: 5
  year: 2014
  ident: 10.1016/j.neuroimage.2019.06.021_bib76
  article-title: Unobtrusive sensing and wearable devices for health informatics
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2309951
– volume: 14
  issue: 6
  year: 2017
  ident: 10.1016/j.neuroimage.2019.06.021_bib58
  article-title: On robust parameter estimation in brain–computer interfacing
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa8232
– volume: 15
  start-page: 1001
  issue: 5
  year: 2013
  ident: 10.1016/j.neuroimage.2019.06.021_bib19
  article-title: Integration of multivariate data streams with bandpower signals
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2013.2250267
– start-page: 1154
  year: 1993
  ident: 10.1016/j.neuroimage.2019.06.021_bib44
  article-title: Self-adaptive source separation by direct and recursive networks
– volume: 28
  start-page: 321
  issue: 3/4
  year: 1936
  ident: 10.1016/j.neuroimage.2019.06.021_bib32
  article-title: Relations between two sets of variates
  publication-title: Biometrika
  doi: 10.2307/2333955
– start-page: 675
  year: 1998
  ident: 10.1016/j.neuroimage.2019.06.021_bib77
  article-title: TDSEP – an efficient algorithm for blind separation using time structure
– volume: 79
  start-page: 5—27
  issue: 1–2
  year: 2009
  ident: 10.1016/j.neuroimage.2019.06.021_bib8
  article-title: Temporal kernel canonical correlation analysis and its application in multimodal neuronal data analysis
  publication-title: Mach. Learn.
– volume: 10
  issue: 5
  year: 2013
  ident: 10.1016/j.neuroimage.2019.06.021_bib57
  article-title: Toward a fully integrated wireless wearable EEG-nirs bimodal acquisition system
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/5/056001
– volume: 87
  start-page: 96
  year: 2014
  ident: 10.1016/j.neuroimage.2019.06.021_bib30
  article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.10.067
– volume: 5
  start-page: 243
  issue: 4
  year: 1997
  ident: 10.1016/j.neuroimage.2019.06.021_bib39
  article-title: Event-related fmri
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1997)5:4<243::AID-HBM7>3.0.CO;2-3
– volume: 33
  start-page: 1433
  issue: 12
  year: 1988
  ident: 10.1016/j.neuroimage.2019.06.021_bib21
  article-title: Estimation of optical pathlength through tissue from direct time of flight measurement
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/33/12/008
– volume: 33
  start-page: 259
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2019.06.021_bib48
  article-title: Wavelet-based motion artifact removal for functional near-infrared spectroscopy
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/33/2/259
– volume: 18
  start-page: 57
  issue: 6
  year: 2001
  ident: 10.1016/j.neuroimage.2019.06.021_bib9
  article-title: Imaging the body with diffuse optical tomography, Signal Processing Magazine
  publication-title: IEEE
– volume: 22
  start-page: 1874
  issue: 9
  year: 2005
  ident: 10.1016/j.neuroimage.2019.06.021_bib56
  article-title: Direct characterization and removal of interfering absorption trends in two-layer turbid media
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSAA.22.001874
– volume: 85
  start-page: 181
  year: 2014
  ident: 10.1016/j.neuroimage.2019.06.021_bib13
  article-title: Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.082
– volume: 103
  start-page: 891
  issue: 6
  year: 2015
  ident: 10.1016/j.neuroimage.2019.06.021_bib24
  article-title: Learning from more than one data source: data fusion techniques for sensorimotor rhythm-based Brain-Computer Interfaces
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2413993
– volume: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.neuroimage.2019.06.021_bib33
  article-title: Commentary on the statistical properties of noise and its implication on general linear models in functional near-infrared spectroscopy
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.3.1.010401
– volume: 62
  start-page: 2778
  issue: 11
  year: 2014
  ident: 10.1016/j.neuroimage.2019.06.021_bib55
  article-title: General non-orthogonal constrained ica
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2318136
– volume: 28
  start-page: 1251
  issue: 11
  year: 2007
  ident: 10.1016/j.neuroimage.2019.06.021_bib42
  article-title: Estimating the number of independent components for functional magnetic resonance imaging data
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20359
– volume: 103
  start-page: 1507
  issue: 9
  year: 2015
  ident: 10.1016/j.neuroimage.2019.06.021_bib20
  article-title: Multivariate machine learning methods for fusing functional multimodal neuroimaging data
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2425807
– volume: 30
  start-page: 2382
  issue: 8
  year: 2009
  ident: 10.1016/j.neuroimage.2019.06.021_bib45
  article-title: Blind identification of evoked human brain activity with independent component analysis of optical data
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20678
– volume: 11
  start-page: 213
  issue: 4
  year: 2001
  ident: 10.1016/j.neuroimage.2019.06.021_bib12
  article-title: Monitoring tissue oxygen availability with near infrared spectroscopy (nirs) in health and disease
  publication-title: Scand. J. Med. Sci. Sports
  doi: 10.1034/j.1600-0838.2001.110404.x
– ident: 10.1016/j.neuroimage.2019.06.021_bib54
  doi: 10.3389/fnpro.2010.00003
– volume: 31
  start-page: 649
  issue: 5
  year: 2010
  ident: 10.1016/j.neuroimage.2019.06.021_bib60
  article-title: How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/31/5/004
– volume: 25
  start-page: 1735
  issue: 10
  year: 2017
  ident: 10.1016/j.neuroimage.2019.06.021_bib63
  article-title: Open access dataset for eeg+ nirs single-trial classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2628057
– volume: 12
  issue: 6
  year: 2007
  ident: 10.1016/j.neuroimage.2019.06.021_bib71
  article-title: Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications
  publication-title: J. Biomed. Opt.
– volume: 10
  issue: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2019.06.021_bib74
  article-title: Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.1852552
– volume: 85
  start-page: 6
  year: 2014
  ident: 10.1016/j.neuroimage.2019.06.021_bib61
  article-title: A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.004
– volume: 48
  start-page: D280
  issue: 10
  year: 2009
  ident: 10.1016/j.neuroimage.2019.06.021_bib34
  article-title: HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain
  publication-title: Appl. Opt.
  doi: 10.1364/AO.48.00D280
– volume: 14
  issue: 5
  year: 2009
  ident: 10.1016/j.neuroimage.2019.06.021_bib66
  article-title: Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3253323
– start-page: 1
  issue: 99
  year: 2015
  ident: 10.1016/j.neuroimage.2019.06.021_bib51
  article-title: Towards noninvasive hybrid brain computer interfaces: framework, practice, clinical application, and beyond
  publication-title: Proc. IEEE
– volume: 355
  start-page: 1873
  issue: 4
  year: 2018
  ident: 10.1016/j.neuroimage.2019.06.021_bib10
  article-title: Sparsity and independence: balancing two objectives in optimization for source separation with application to fmri analysis
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2017.07.003
– volume: 12
  issue: 6
  year: 2007
  ident: 10.1016/j.neuroimage.2019.06.021_bib31
  article-title: Functional near-infrared spectroscopy: current status and future prospects
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.2804911
– volume: 44
  start-page: 428
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2019.06.021_bib73
  article-title: Nirs-spm: statistical parametric mapping for near-infrared spectroscopy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.08.036
– volume: 12
  issue: 6
  year: 2007
  ident: 10.1016/j.neuroimage.2019.06.021_bib40
  article-title: Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.2814249
– volume: 8
  start-page: 1052
  issue: 4
  year: 2015
  ident: 10.1016/j.neuroimage.2019.06.021_bib47
  article-title: A new approach for automatic removal of movement artifacts in near-infrared spectroscopy time series by means of acceleration data
  publication-title: Algorithms
  doi: 10.3390/a8041052
– volume: 3
  start-page: 64
  issue: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2019.06.021_bib59
  article-title: Independent component analysis of broadband near-infrared spectroscopy data acquired on adult human head
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.3.000064
– volume: 16
  issue: 8
  year: 2011
  ident: 10.1016/j.neuroimage.2019.06.021_bib67
  article-title: Accelerometer-based method for correcting signal baseline changes caused by motion artifacts in medical near-infrared spectroscopy
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3606576
– volume: 1236
  start-page: 145
  issue: 0
  year: 2008
  ident: 10.1016/j.neuroimage.2019.06.021_bib46
  article-title: Event-related fast optical signal in a rapid object recognition task: improving detection by the independent component analysis
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2008.07.122
– volume: 42
  start-page: 92
  issue: 1
  year: 2004
  ident: 10.1016/j.neuroimage.2019.06.021_bib49
  article-title: Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02351016
– volume: 35
  start-page: 717
  issue: 4
  year: 2014
  ident: 10.1016/j.neuroimage.2019.06.021_bib62
  article-title: Measuring tissue hemodynamics and oxygenation by continuous-wave functional near-infrared spectroscopyhow robust are the different calculation methods against movement artifacts?
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/35/4/717
– volume: 62
  start-page: 2750
  issue: 12
  year: 2015
  ident: 10.1016/j.neuroimage.2019.06.021_bib5
  article-title: From wearable sensors to smart implants - toward pervasive and personalized healthcare
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2422751
– start-page: 183
  year: 2004
  ident: 10.1016/j.neuroimage.2019.06.021_bib22
  article-title: Complex-valued ica using second order statistics
– year: 2010
  ident: 10.1016/j.neuroimage.2019.06.021_bib17
– volume: 86
  start-page: 198
  issue: 1
  year: 2003
  ident: 10.1016/j.neuroimage.2019.06.021_bib16
  article-title: Approximate maximum likelihood source separation using the natural gradient
  publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
– volume: 21
  start-page: 9
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2019.06.021_bib37
  article-title: Functional near infrared spectroscopy (fnirs): an emerging neuroimaging technology with important applications for the study of brain disorders
  publication-title: Clin. Neuropsychol.
  doi: 10.1080/13854040600910018
SSID ssj0009148
Score 2.508865
Snippet In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenarios, artifact rejection is essential. However, currently there...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 72
SubjectTerms Accelerometers
Adult
Artifact removal
Blind source separation
Blood
Brain research
Cerebral Cortex - diagnostic imaging
Cerebral Cortex - physiology
Cognitive ability
Correlation analysis
Decomposition
Embedding
Entropy rate bound minimization
fNIRS
Functional Neuroimaging - methods
Functional Neuroimaging - standards
Humans
I.R. radiation
Infrared spectroscopy
Machine Learning
Medical imaging
Models, Theoretical
Multimodality
Neuroimaging in motion
Physiology
Principal components analysis
Signal Processing, Computer-Assisted
Spectroscopy, Near-Infrared - methods
Spectroscopy, Near-Infrared - standards
Spectrum analysis
Statistical analysis
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxsxEBatA6GX0rzdOEWFXkV2Je2uRQ_BlISkkJwa8E1o9QCHZNfx4xD65zuz0tqnFN8M3hH2SjPzSfPpG0J-iDD2sL8RrKikZ7JW2ObFZwyFWAIA6MBrvJx8_1DePsrf02KaDtyWiVbZx8QuULvW4hn5JeeY64QQ_Gr-yrBrFFZXUwuNj2QPpcuQ0lVNq63obi7jVbhCsDE8kJg8kd_V6UXOXsBrkeClOhVPnr-Xnt6Dn10auvlCPif8SCdxwg_IB98ckv37VCE_In8nFIAyrQE9OhpP5unSR4HvtqGh52JRAKsUyRswmEnCJPDBUVxKeNuBLvxTR9Nq6AzsIP3FU0P6AL7B7hoYaeEdxf71K1TEbOdvx-Tx5vrPr1uWGiwwKwu1YjZIJSvjxjJY4TAxGSzsubIM0laZqg03meWVr4vAwdEz2PtwF8DW-tIKL07IoGkbfwbvlZciN0oEZ3JpallnsO8TwUtvlHKFGZKqf6_aJvVxbILxrHua2ZPezojGGdHIuOP5kOQby3lU4NjBRvVTp_sbphATNaSJHWx_bmwTConoYkfrUb9SdIoGS71du0PyffM1-DEWZ0zj2zU-I2EvjlXUITmNK2zzd0XOIRZz-fX_g5-TT_hLMLPmxYgMVou1vwDItKq_dX7xD_VKF2I
  priority: 102
  providerName: ProQuest
Title A new blind source separation framework for signal analysis and artifact rejection in functional Near-Infrared Spectroscopy
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919305129
https://dx.doi.org/10.1016/j.neuroimage.2019.06.021
https://www.ncbi.nlm.nih.gov/pubmed/31203024
https://www.proquest.com/docview/2274313332
https://www.proquest.com/docview/2242114372
Volume 200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIL6Id-eNCL7WtUnaGnyaokzFIV5gbyFtEphoN-Z8EMHf7jlNOvFBGPiyrVtP6ZJz-U7znRNCjrg7sZDf8CjNhY1EIXGbFxtH2IjFAYB2rMDi5Nte1n0S1_20P0fOm1oYpFUG3-99eu2twzftMJrt0WDQfgBkAOEG8g0JOgthCyvYRY5afvz1Q_OQifDlcCmP8OzA5vEcr7pn5OAVLBdJXrLu5MmSv0LUXxC0DkWXK2Q5YEja8be5SuZstUYWb8Mq-Tr57FAAy7QABGmofzpP36xv8j2sqGv4WBQAK0UCB1xMh-Yk8MFQHACseKBj-1xTtSo6ADkIgf7JIe2BfURXFVxpbA3FPewn2BVzOPrYIE-XF4_n3ShsshCVIpWTqHRCilybE-FKbjA4aVzcM1nmRJnHstBMxyXLbZE6BsYeQ_7DjAPZ0mYlt3yTzFfDym7DuLKMJ1pyZ3QidCGKGHI_7qywWkqT6hbJm3FVZehAjhthvKiGavasfmZE4YwoZN2xpEWSqeTId-GYQUY2U6eaKlPwiwpCxQyyp1PZX9o4o_ReoykqeIQ3xRhiNc45a5HD6c9gy7hAoys7fMdzBOTjuJLaIltew6Z_lycM_DETO_-6tV2yhEcYfJN0j8xPxu92H1DVpDiozQZe835-QBY6VzfdHryfXfTu7r8Bll4m7A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEN8UBhgJHiPijyS1EEIDNrVsrRBs0t48J7alTZCWthOa-J_4G7mLk_ZpqC97q5Se1drnu9_lfncH8FqGgcf4RiZZoXyiSk1jXnyaUCOWgAA6iJKKk8eTfHisvpxkJ1vwt6uFIVplZxMbQ-2mFb0jfysE-Toppfgw-5XQ1CjKrnYjNKJaHPjL3xiyLd6PPuP5vhFif-_o0zBppwoklcr0MqmC0qqwbqBCJR1ZY0vZLJfnQVVFqksrbFqJwpdZEKjdKQJ-4QLKVj6vpJe47g3YVhJDmR5sf9ybfP22bvPLVSy-y2Qy4Fy33KHIKGs6VJ79RDtBlDLd9A0V_CqHeBXgbRzf_l240yJWthtV7B5s-fo-3By3OfkH8GeXITRnJeJVx2IugC18bCk-rVno2F8M4TEjugguZttWKPjBMVJeqq9gc3_eEMNqdoZy6HDje0o2wW1PRjWuNPeOfZ81g3uonObyIRxfy-Y_gl49rf0T3FeRS261DM5yZUtVphhpyuCVt1q7zPah6PbVVG2_cxq78cN0xLZzsz4RQydiiOMneB_4SnIWe35sIKO7ozNdTStaYYOOaQPZdyvZFvdEPLOh9E6nKaa1Pwuzvi19eLV6jJaD0kG29tML-o7C6J_ytn14HDVs9XclF2j9hXr6_8Vfwq3h0fjQHI4mB8_gNv0q8us824Hecn7hnyNgW5Yv2lvC4PS6L-Y_LRdVdQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBZpCqGXkj7jJG1VaI9LVo9dWZQSQlMTN40ptAHfVO1KgoR27doOIfSf9ddlZqW1Tym-5GbwjrCleXza-WaGkHci9D3cb0RWKOkzWWkc8-LzDBuxBADQgVdYnHw2Kk_O5ZdxMd4g_7paGKRVdj6xddRuUuM78gPOMdYJIfhBSLSIb8eDw-mfDCdIYaa1G6cRVeTU31zD9W3-cXgMZ_2e88HnH59OsjRhIKtloRdZHaSWyrq-DLVw6JktZrZcWQZZq1xXltu85spXReCg6TmAf-4CyNa-rIUXsO4D8lCJgqGNqbFaNfxlMpbhFSLrM6YTiyhyy9pelRe_wWMguUy3HUQ5uys03gV92xA42CaPE3alR1HZnpAN3zwlW2cpO_-M_D2iANJpBcjV0ZgVoHMfm4tPGho6HhgFoEyROAKL2dQUBT44imqMlRZ05i9bilhDL0AOQm98Y0lHsOnZsIGVZt7R79N2hA8W1tw8J-f3svUvyGYzafwO7CsvBbNaBGeZtJWscrhziuClt1q7wvaI6vbV1KnzOQ7g-GU6itulWZ2IwRMxyPbjrEfYUnIau3-sIaO7ozNddSv4YwMhag3ZD0vZhIAisllTer_TFJM80dys7KZH3i6_Bh-CiSHb-MkVPiM53IuFgmdeRg1b_l3BOMQBLnf_v_gbsgXmaL4OR6d75BH-KAzwrNgnm4vZlX8FyG1RvW5NhJKf922TtyU5WEU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+blind+source+separation+framework+for+signal+analysis+and+artifact+rejection+in+functional+Near-Infrared+Spectroscopy&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=von+L%C3%BChmann%2C+Alexander&rft.au=Boukouvalas%2C+Zois&rft.au=M%C3%BCller%2C+Klaus-Robert&rft.au=Adal%C4%B1%2C+T%C3%BClay&rft.date=2019-10-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=200&rft.spage=72&rft.epage=88&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.06.021&rft.externalDocID=S1053811919305129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon