A new blind source separation framework for signal analysis and artifact rejection in functional Near-Infrared Spectroscopy
In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenarios, artifact rejection is essential. However, currently there exists no gold-standard. Although a plenitude of methodological approaches implicitly assume the presence of latent processes in the signals,...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 200; pp. 72 - 88 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.10.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenarios, artifact rejection is essential. However, currently there exists no gold-standard. Although a plenitude of methodological approaches implicitly assume the presence of latent processes in the signals, elaborate Blind-Source-Separation methods have rarely been applied. A reason are challenging characteristics such as Non-instantaneous and non-constant coupling, correlated noise and statistical dependencies between signal components. We present a novel suitable BSS framework that tackles these issues by incorporating A) Independent Component Analysis methods that exploit both higher order statistics and sample dependency, B) multimodality, i.e., fNIRS with accelerometer signals, and C) Canonical-Correlation Analysis with temporal embedding. This enables analysis of signal components and rejection of motion-induced physiological hemodynamic artifacts that would otherwise be hard to identify. We implement a method for Blind Source Separation and Accelerometer based Artifact Rejection and Detection (BLISSA2RD). It allows the analysis of a novel n-back based cognitive workload paradigm in freely moving subjects, that is also presented in this manuscript. We evaluate on the corresponding data set and simulated ground truth data, making use of metrics based on 1st and 2nd order statistics and SNR and compare with three established methods: PCA, Spline and Wavelet-based artifact removal. Across 17 subjects, the method is shown to reduce movement induced artifacts by up to two orders of magnitude, improves the SNR of continuous hemodynamic signals in single channels by up to 10dB, and significantly outperforms conventional methods in the extraction of simulated Hemodynamic Response Functions from strongly contaminated data. The framework and methods presented can serve as an introduction to a new type of multivariate methods for the analysis of fNIRS signals and as a blueprint for artifact rejection in complex environments beyond the applied paradigm.
[Display omitted]
•Blind-Source Separation framework for the unsupervised analysis of fNIRS signals•Multimodal approach reduces systemic physiological effects of movement•Remedies for non-instantaneous and non-constant coupling and correlated noise•Improved performance beyond conventional movement artifact correction |
---|---|
AbstractList | In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenarios, artifact rejection is essential. However, currently there exists no gold-standard. Although a plenitude of methodological approaches implicitly assume the presence of latent processes in the signals, elaborate Blind-Source-Separation methods have rarely been applied. A reason are challenging characteristics such as Non-instantaneous and non-constant coupling, correlated noise and statistical dependencies between signal components. We present a novel suitable BSS framework that tackles these issues by incorporating A) Independent Component Analysis methods that exploit both higher order statistics and sample dependency, B) multimodality, i.e., fNIRS with accelerometer signals, and C) Canonical-Correlation Analysis with temporal embedding. This enables analysis of signal components and rejection of motion-induced physiological hemodynamic artifacts that would otherwise be hard to identify. We implement a method for Blind Source Separation and Accelerometer based Artifact Rejection and Detection (BLISSA2RD). It allows the analysis of a novel n-back based cognitive workload paradigm in freely moving subjects, that is also presented in this manuscript. We evaluate on the corresponding data set and simulated ground truth data, making use of metrics based on 1st and 2nd order statistics and SNR and compare with three established methods: PCA, Spline and Wavelet-based artifact removal. Across 17 subjects, the method is shown to reduce movement induced artifacts by up to two orders of magnitude, improves the SNR of continuous hemodynamic signals in single channels by up to 10dB, and significantly outperforms conventional methods in the extraction of simulated Hemodynamic Response Functions from strongly contaminated data. The framework and methods presented can serve as an introduction to a new type of multivariate methods for the analysis of fNIRS signals and as a blueprint for artifact rejection in complex environments beyond the applied paradigm.
[Display omitted]
•Blind-Source Separation framework for the unsupervised analysis of fNIRS signals•Multimodal approach reduces systemic physiological effects of movement•Remedies for non-instantaneous and non-constant coupling and correlated noise•Improved performance beyond conventional movement artifact correction In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenarios, artifact rejection is essential. However, currently there exists no gold-standard. Although a plenitude of methodological approaches implicitly assume the presence of latent processes in the signals, elaborate Blind-Source-Separation methods have rarely been applied. A reason are challenging characteristics such as Non-instantaneous and non-constant coupling, correlated noise and statistical dependencies between signal components. We present a novel suitable BSS framework that tackles these issues by incorporating A) Independent Component Analysis methods that exploit both higher order statistics and sample dependency, B) multimodality, i.e., fNIRS with accelerometer signals, and C) Canonical-Correlation Analysis with temporal embedding. This enables analysis of signal components and rejection of motion-induced physiological hemodynamic artifacts that would otherwise be hard to identify. We implement a method for Blind Source Separation and Accelerometer based Artifact Rejection and Detection (BLISSA2RD). It allows the analysis of a novel n-back based cognitive workload paradigm in freely moving subjects, that is also presented in this manuscript. We evaluate on the corresponding data set and simulated ground truth data, making use of metrics based on 1st and 2nd order statistics and SNR and compare with three established methods: PCA, Spline and Wavelet-based artifact removal. Across 17 subjects, the method is shown to reduce movement induced artifacts by up to two orders of magnitude, improves the SNR of continuous hemodynamic signals in single channels by up to 10dB, and significantly outperforms conventional methods in the extraction of simulated Hemodynamic Response Functions from strongly contaminated data. The framework and methods presented can serve as an introduction to a new type of multivariate methods for the analysis of fNIRS signals and as a blueprint for artifact rejection in complex environments beyond the applied paradigm. In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenarios, artifact rejection is essential. However, currently there exists no gold-standard. Although a plenitude of methodological approaches implicitly assume the presence of latent processes in the signals, elaborate Blind-Source-Separation methods have rarely been applied. A reason are challenging characteristics such as Non-instantaneous and non-constant coupling, correlated noise and statistical dependencies between signal components. We present a novel suitable BSS framework that tackles these issues by incorporating A) Independent Component Analysis methods that exploit both higher order statistics and sample dependency, B) multimodality, i.e., fNIRS with accelerometer signals, and C) Canonical-Correlation Analysis with temporal embedding. This enables analysis of signal components and rejection of motion-induced physiological hemodynamic artifacts that would otherwise be hard to identify. We implement a method for Blind Source Separation and Accelerometer based Artifact Rejection and Detection (BLISSA RD). It allows the analysis of a novel n-back based cognitive workload paradigm in freely moving subjects, that is also presented in this manuscript. We evaluate on the corresponding data set and simulated ground truth data, making use of metrics based on 1st and 2nd order statistics and SNR and compare with three established methods: PCA, Spline and Wavelet-based artifact removal. Across 17 subjects, the method is shown to reduce movement induced artifacts by up to two orders of magnitude, improves the SNR of continuous hemodynamic signals in single channels by up to 10dB, and significantly outperforms conventional methods in the extraction of simulated Hemodynamic Response Functions from strongly contaminated data. The framework and methods presented can serve as an introduction to a new type of multivariate methods for the analysis of fNIRS signals and as a blueprint for artifact rejection in complex environments beyond the applied paradigm. In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenarios, artifact rejection is essential. However, currently there exists no gold-standard. Although a plenitude of methodological approaches implicitly assume the presence of latent processes in the signals, elaborate Blind-Source-Separation methods have rarely been applied. A reason are challenging characteristics such as Non-instantaneous and non-constant coupling, correlated noise and statistical dependencies between signal components. We present a novel suitable BSS framework that tackles these issues by incorporating A) Independent Component Analysis methods that exploit both higher order statistics and sample dependency, B) multimodality, i.e., fNIRS with accelerometer signals, and C) Canonical-Correlation Analysis with temporal embedding. This enables analysis of signal components and rejection of motion-induced physiological hemodynamic artifacts that would otherwise be hard to identify. We implement a method for Blind Source Separation and Accelerometer based Artifact Rejection and Detection (BLISSA2RD). It allows the analysis of a novel n-back based cognitive workload paradigm in freely moving subjects, that is also presented in this manuscript. We evaluate on the corresponding data set and simulated ground truth data, making use of metrics based on 1st and 2nd order statistics and SNR and compare with three established methods: PCA, Spline and Wavelet-based artifact removal. Across 17 subjects, the method is shown to reduce movement induced artifacts by up to two orders of magnitude, improves the SNR of continuous hemodynamic signals in single channels by up to 10dB, and significantly outperforms conventional methods in the extraction of simulated Hemodynamic Response Functions from strongly contaminated data. The framework and methods presented can serve as an introduction to a new type of multivariate methods for the analysis of fNIRS signals and as a blueprint for artifact rejection in complex environments beyond the applied paradigm.In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenarios, artifact rejection is essential. However, currently there exists no gold-standard. Although a plenitude of methodological approaches implicitly assume the presence of latent processes in the signals, elaborate Blind-Source-Separation methods have rarely been applied. A reason are challenging characteristics such as Non-instantaneous and non-constant coupling, correlated noise and statistical dependencies between signal components. We present a novel suitable BSS framework that tackles these issues by incorporating A) Independent Component Analysis methods that exploit both higher order statistics and sample dependency, B) multimodality, i.e., fNIRS with accelerometer signals, and C) Canonical-Correlation Analysis with temporal embedding. This enables analysis of signal components and rejection of motion-induced physiological hemodynamic artifacts that would otherwise be hard to identify. We implement a method for Blind Source Separation and Accelerometer based Artifact Rejection and Detection (BLISSA2RD). It allows the analysis of a novel n-back based cognitive workload paradigm in freely moving subjects, that is also presented in this manuscript. We evaluate on the corresponding data set and simulated ground truth data, making use of metrics based on 1st and 2nd order statistics and SNR and compare with three established methods: PCA, Spline and Wavelet-based artifact removal. Across 17 subjects, the method is shown to reduce movement induced artifacts by up to two orders of magnitude, improves the SNR of continuous hemodynamic signals in single channels by up to 10dB, and significantly outperforms conventional methods in the extraction of simulated Hemodynamic Response Functions from strongly contaminated data. The framework and methods presented can serve as an introduction to a new type of multivariate methods for the analysis of fNIRS signals and as a blueprint for artifact rejection in complex environments beyond the applied paradigm. |
Author | Boukouvalas, Zois von Lühmann, Alexander Müller, Klaus-Robert Adalı, Tülay |
Author_xml | – sequence: 1 givenname: Alexander surname: von Lühmann fullname: von Lühmann, Alexander email: avonluh@gmail.com organization: Machine Learning Dept., Berlin Institute of Technology, Berlin, Germany – sequence: 2 givenname: Zois surname: Boukouvalas fullname: Boukouvalas, Zois organization: Dept. of ENME, University of Maryland, College Park, MD, 20742, USA – sequence: 3 givenname: Klaus-Robert surname: Müller fullname: Müller, Klaus-Robert email: klaus.r.mueller@googlemail.com organization: Machine Learning Dept., Berlin Institute of Technology, Berlin, Germany – sequence: 4 givenname: Tülay surname: Adalı fullname: Adalı, Tülay email: adali@umbc.edu organization: Dept. of CSEE, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31203024$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhSNURB_wF5AlNmySXj_y8AZRKh6VKlgAa8tj31ROM_ZgJ1Qj_jzOTKtKs5qNfRffOdY9x-fFiQ8ei4JQqCjQ5nKoPM4xuLW-w4oBlRU0FTD6ojijIOtS1i07Weaalx2l8rQ4T2kAAElF96o45ZQBBybOin9XxOMDWY3OW5LCHA2ShBsd9eSCJ33Ua3wI8Z70IZLk7rweic7HNrmUB0t0nFyvzUQiDmh2Ipd1s9_Nmf6OOpY3PjtFtOTnJkMxJBM229fFy16PCd883hfF7y-ff11_K29_fL25vrotjajlVJpeSNFq24necMukBA2NANs0vTAtyJVmGgxrcVX3rOsAGqiZ7bPWYGM48ovi_d53E8OfGdOk1i4ZHEftMcxJMSYYpYK3LKPvDtAhZ5LXWKhWcMo5X6i3j9S8WqNVm5ibiFv1FGsGPuwBk1dNEXtl3LRLdIrajYqCWnpUg3ruUS09KmhU7jEbdAcGT28cIf20l2KO9K_DqJJx6A1aF3P2ygZ3jMnHAxOTf4gzerzH7XEW_wHHddWj |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2023_119880 crossref_primary_10_1364_OPTCON_477701 crossref_primary_10_1117_1_NPh_11_2_025002 crossref_primary_10_3389_fninf_2021_683735 crossref_primary_10_1002_hbm_25090 crossref_primary_10_3389_fnins_2024_1432138 crossref_primary_10_1098_rstb_2023_0087 crossref_primary_10_1016_j_jer_2023_07_016 crossref_primary_10_1016_j_compbiomed_2023_107902 crossref_primary_10_3390_s22197417 crossref_primary_10_3389_fnhum_2020_00030 crossref_primary_10_1016_j_jneumeth_2021_109262 crossref_primary_10_1117_1_NPh_7_3_035011 crossref_primary_10_1016_j_dcn_2024_101384 crossref_primary_10_1126_sciadv_abe7432 crossref_primary_10_1109_JSEN_2021_3069553 crossref_primary_10_1016_j_cobme_2021_100272 crossref_primary_10_3389_fnins_2022_878750 crossref_primary_10_1016_j_neuroimage_2019_116472 crossref_primary_10_3389_fnagi_2022_958656 crossref_primary_10_3390_s22155865 crossref_primary_10_3390_bioengineering11090933 crossref_primary_10_3390_s23146546 crossref_primary_10_3389_fpsyg_2022_1051256 crossref_primary_10_1117_1_NPh_11_4_045008 crossref_primary_10_1016_j_compbiomed_2023_106968 crossref_primary_10_3389_fnrgo_2024_1286586 crossref_primary_10_1016_j_bspc_2021_103301 crossref_primary_10_1117_1_NPh_9_2_025003 crossref_primary_10_3389_fnins_2020_566147 crossref_primary_10_3390_s24103173 crossref_primary_10_1016_j_jneumeth_2023_109810 crossref_primary_10_3390_s24216821 crossref_primary_10_1117_1_NPh_10_2_023515 crossref_primary_10_1016_j_neuroimage_2024_120714 crossref_primary_10_1093_braincomms_fcae259 crossref_primary_10_1364_BOE_394914 crossref_primary_10_3389_fnins_2020_579353 |
Cites_doi | 10.1016/j.neuroimage.2011.07.084 10.1016/j.neuroimage.2009.11.050 10.1117/1.NPh.4.4.041413 10.1186/1475-925X-9-16 10.1006/nimg.2001.0921 10.1007/s11517-006-0116-3 10.1117/1.2805437 10.1109/TSP.2010.2055859 10.1038/sdata.2018.3 10.1016/j.neuroimage.2008.12.048 10.1109/TSP.2014.2333563 10.1109/TSP.2014.2333551 10.1103/PhysRevLett.103.214101 10.1016/j.neuroimage.2005.05.032 10.1007/BF02186476 10.1162/neco.1995.7.6.1129 10.1109/JPROC.2015.2461601 10.1364/OE.16.010323 10.1080/14639220210199753 10.1139/h04-031 10.1109/72.761722 10.1117/1.2363365 10.1109/TBME.2014.2309951 10.1088/1741-2552/aa8232 10.1109/TMM.2013.2250267 10.2307/2333955 10.1088/1741-2560/10/5/056001 10.1016/j.neuroimage.2013.10.067 10.1002/(SICI)1097-0193(1997)5:4<243::AID-HBM7>3.0.CO;2-3 10.1088/0031-9155/33/12/008 10.1088/0967-3334/33/2/259 10.1364/JOSAA.22.001874 10.1016/j.neuroimage.2013.04.082 10.1109/JPROC.2015.2413993 10.1117/1.NPh.3.1.010401 10.1109/TSP.2014.2318136 10.1002/hbm.20359 10.1109/JPROC.2015.2425807 10.1002/hbm.20678 10.1034/j.1600-0838.2001.110404.x 10.3389/fnpro.2010.00003 10.1088/0967-3334/31/5/004 10.1109/TNSRE.2016.2628057 10.1117/1.1852552 10.1016/j.neuroimage.2013.05.004 10.1364/AO.48.00D280 10.1117/1.3253323 10.1016/j.jfranklin.2017.07.003 10.1117/1.2804911 10.1016/j.neuroimage.2008.08.036 10.1117/1.2814249 10.3390/a8041052 10.1364/BOE.3.000064 10.1117/1.3606576 10.1016/j.brainres.2008.07.122 10.1007/BF02351016 10.1088/0967-3334/35/4/717 10.1109/TBME.2015.2422751 10.1080/13854040600910018 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. 2019. Elsevier Inc. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. – notice: 2019. Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
DOI | 10.1016/j.neuroimage.2019.06.021 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 88 |
ExternalDocumentID | 31203024 10_1016_j_neuroimage_2019_06_021 S1053811919305129 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c459t-cf4947ad84fc3d2990a0640d66f4c709ba2a0c27eb5f288006052df459ce6c3e3 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Jul 11 04:39:39 EDT 2025 Wed Aug 13 11:32:40 EDT 2025 Thu Apr 03 06:56:29 EDT 2025 Tue Jul 01 03:02:08 EDT 2025 Thu Apr 24 22:57:48 EDT 2025 Fri Feb 23 02:41:11 EST 2024 Tue Aug 26 18:33:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Entropy rate bound minimization Artifact removal fNIRS Multimodality Machine learning Neuroimaging in motion Blind source separation |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-cf4947ad84fc3d2990a0640d66f4c709ba2a0c27eb5f288006052df459ce6c3e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 31203024 |
PQID | 2274313332 |
PQPubID | 2031077 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2242114372 proquest_journals_2274313332 pubmed_primary_31203024 crossref_citationtrail_10_1016_j_neuroimage_2019_06_021 crossref_primary_10_1016_j_neuroimage_2019_06_021 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_06_021 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_06_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-15 |
PublicationDateYYYYMMDD | 2019-10-15 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Dähne, Bießman, Samek, Haufe, Goltz, Gundlach, Villringer, Fazli, Müller (bib20) 2015; 103 G. Pfurtscheller, B. Z. Allison, G. Bauernfeind, C. Brunner, T. Solis Escalante, R. Scherer, T. O. Zander, G. Müller-Putz, C. Neuper, N. Birbaumer, The hybrid BCI, Front. Neurosci. 4 (3). doi:10.3389/fnpro.2010.00003. von Lühmann, Wabnitz, Sander, Müller (bib70) 2017; 64 Samek, Nakajima, Kawanabe, Müller (bib58) 2017; 14 Caicedo, Papademetriou, Elwell, Hoskote, Elliott, Van Huffel, Tachtsidis (bib14) 2013 Long, Jia, Boukouvalas, Gabrielson, Emge, Adali (bib43) 2018 Li, Adalı, Calhoun (bib42) 2007; 28 Fu, Anderson, Adalı (bib28) 2014; 62 Parasuraman (bib52) 2003; 4 Zheng, Ding, Poon, Lo, Zhang, Zhou, Yang, Zhao, Zhang (bib76) 2014; 61 Franceschini, Joseph, Huppert, Diamond, Boas (bib26) 2006; 11 Hyvärinen (bib35) 1999; 10 Boas, Brooks, Miller, DiMarzio, Kilmer, Gaudette, Zhang (bib9) 2001; 18 Scholkmann, Kleiser, Metz, Zimmermann, Pavia, Wolf, Wolf (bib61) 2014; 85 Choi, Cichocki, Zhang, Amari (bib16) 2003; 86 Haufe, Meinecke, Görgen, Dähne, Haynes, Blankertz, Bießmann (bib30) 2014; 87 Li, Adali (bib41) 2010; 58 Shin, von Lühmann, Kim, Mehnert, Hwang, Müller (bib64) 2018; 5 Molavi, Dumont (bib48) 2012; 33 Izzetoglu, Chitrapu, Bunce, Onaral (bib38) 2010; 9 Adali, Anderson, Fu (bib1) 2014; 31 Metz, Wolf, Achermann, Scholkmann (bib47) 2015; 8 Morren, Wolf, Lemmerling, Wolf, Choi, Gratton, De Lathauwer, Van Huffel (bib49) 2004; 42 Medvedev, Kainerstorfer, Borisov, Barbour, VanMeter (bib46) 2008; 1236 Ferrari, Mottola, Quaresima (bib25) 2004; 29 Adali, Levin-Schwartz, Calhoun (bib2) 2015; 103 Eriksson, Koivunen (bib22) 2004 Delpy, Cope, van der Zee, Arridge, Wray, Wyatt (bib21) 1988; 33 Comon, Jutten (bib17) 2010 Shin, von Lühmann, Blankertz, Kim, Jeong, Hwang, Müller (bib63) 2017; 25 Boukouvalas, Levin-Schwartz, Calhoun, Adalı (bib10) 2018; 355 Fazli, Mehnert, Steinbrink, Curio, Villringer, Müller, Blankertz (bib23) 2012; 59 Hotelling (bib32) 1936; 28 Hyvärinen, Karhunen, Oja (bib36) 2004; vol. 46 Müller-Putz, Leeb, Tangermann, Höhne, Kübler, Cincotti, Mattia, Rupp, Müller, Millan (bib51) 2015 von Bünau, Meinecke, Király, Müller (bib68) 2009; 103 Cui, Bray, Reiss (bib18) 2010; 49 Hoshi (bib31) 2007; 12 Bertsekas (bib7) 1988; 14 Rodriguez, Anderson, Li, Adalı (bib55) 2014; 62 Bießmann, Meinecke, Gretton, Rauch, Rainer, Logothetis, Müller (bib8) 2009; 79 Andreu-Perez, Leff, Ip, Yang (bib5) 2015; 62 Bell, Sejnowski (bib6) 1995; 7 Markham, White, Zeff, Culver (bib45) 2009; 30 von Lühmann, Herff, Heger, Schultz (bib69) 2015; 9 Macchi (bib44) 1993 Safaie, Grebe, Moghaddam, Wallois (bib57) 2013; 10 Fazli, Dähne, Samek, Bießmann, Müller (bib24) 2015; 103 Scholkmann, Spichtig, Muehlemann, Wolf (bib60) 2010; 31 Ziehe, Müller (bib77) 1998 Anderson (bib4) 1958; vol. 2 Virtanen, Noponen, Meriläinen (bib66) 2009; 14 Scholkmann, Metz, Wolf (bib62) 2014; 35 Virtanen, Noponen, Kotilahti, Virtanen, Ilmoniemi (bib67) 2011; 16 Zhang, Franceschini, Boas, Brooks (bib74) 2005; 10 Fu, Phlypo, Anderson, Li (bib27) 2014; 62 Brigadoi, Ceccherini, Cutini, Scarpa, Scatturin, Selb, Gagnon, Boas, Cooper (bib13) 2014; 85 Huppert (bib33) 2016; 3 Schelkanova, Toronov (bib59) 2012; 3 Irani, Platek, Bunce, Ruocco, Chute (bib37) 2007; 21 Huppert, Diamond, Franceschini, Boas (bib34) 2009; 48 Muehlemann, Haensse, Wolf (bib50) 2008; 16 Tachtsidis, Scholkmann (bib65) 2016; 3 Boukouvalas, Levin-Schwartz, Mowakeaa, Fu, Adalı (bib11) 2018; vol. 2018 Zhang, Strangman, Ganis (bib75) 2009; 45 Josephs, Turner, Friston (bib39) 1997; 5 Hamaoka, McCully, Quaresima, Yamamoto, Chance (bib29) 2007; 12 Saager, Berger (bib56) 2005; 22 Boushel, Langberg, Olesen, Gonzales-Alonzo, Bülow, Kjaer (bib12) 2001; 11 Akgül, Akin, Sankur (bib3) 2006; 44 Wolf, Ferrari, Quaresima (bib71) 2007; 12 Ye, Tak, Jang, Jung, Jang (bib73) 2009; 44 Kohno, Miyai, Seiyama, Oda, Ishikawa, Tsuneishi, Amita, Shimizu (bib40) 2007; 12 Parra, Spence, Gerson, Sajda (bib53) 2005; 28 Dähne, Bießman, Meinecke, Mehnert, Fazli, Müller (bib19) 2013; 15 Calhoun, Adali, McGinty, Pekar, Watson, Pearlson (bib15) 2001; 14 Wyser, Lambercy, Scholkmann, Wolf, Gassert (bib72) 2017; 4 Adali (10.1016/j.neuroimage.2019.06.021_bib1) 2014; 31 Zhang (10.1016/j.neuroimage.2019.06.021_bib75) 2009; 45 Molavi (10.1016/j.neuroimage.2019.06.021_bib48) 2012; 33 Boukouvalas (10.1016/j.neuroimage.2019.06.021_bib11) 2018; vol. 2018 von Lühmann (10.1016/j.neuroimage.2019.06.021_bib69) 2015; 9 Fazli (10.1016/j.neuroimage.2019.06.021_bib23) 2012; 59 Boushel (10.1016/j.neuroimage.2019.06.021_bib12) 2001; 11 Bell (10.1016/j.neuroimage.2019.06.021_bib6) 1995; 7 Rodriguez (10.1016/j.neuroimage.2019.06.021_bib55) 2014; 62 Macchi (10.1016/j.neuroimage.2019.06.021_bib44) 1993 Adali (10.1016/j.neuroimage.2019.06.021_bib2) 2015; 103 Delpy (10.1016/j.neuroimage.2019.06.021_bib21) 1988; 33 Zhang (10.1016/j.neuroimage.2019.06.021_bib74) 2005; 10 Schelkanova (10.1016/j.neuroimage.2019.06.021_bib59) 2012; 3 Bertsekas (10.1016/j.neuroimage.2019.06.021_bib7) 1988; 14 Calhoun (10.1016/j.neuroimage.2019.06.021_bib15) 2001; 14 Caicedo (10.1016/j.neuroimage.2019.06.021_bib14) 2013 Comon (10.1016/j.neuroimage.2019.06.021_bib17) 2010 Parra (10.1016/j.neuroimage.2019.06.021_bib53) 2005; 28 Anderson (10.1016/j.neuroimage.2019.06.021_bib4) 1958; vol. 2 Bießmann (10.1016/j.neuroimage.2019.06.021_bib8) 2009; 79 Franceschini (10.1016/j.neuroimage.2019.06.021_bib26) 2006; 11 Parasuraman (10.1016/j.neuroimage.2019.06.021_bib52) 2003; 4 Eriksson (10.1016/j.neuroimage.2019.06.021_bib22) 2004 Shin (10.1016/j.neuroimage.2019.06.021_bib63) 2017; 25 Akgül (10.1016/j.neuroimage.2019.06.021_bib3) 2006; 44 Boukouvalas (10.1016/j.neuroimage.2019.06.021_bib10) 2018; 355 von Lühmann (10.1016/j.neuroimage.2019.06.021_bib70) 2017; 64 Hotelling (10.1016/j.neuroimage.2019.06.021_bib32) 1936; 28 Li (10.1016/j.neuroimage.2019.06.021_bib42) 2007; 28 Dähne (10.1016/j.neuroimage.2019.06.021_bib20) 2015; 103 Josephs (10.1016/j.neuroimage.2019.06.021_bib39) 1997; 5 Hyvärinen (10.1016/j.neuroimage.2019.06.021_bib36) 2004; vol. 46 Fu (10.1016/j.neuroimage.2019.06.021_bib27) 2014; 62 Huppert (10.1016/j.neuroimage.2019.06.021_bib33) 2016; 3 Markham (10.1016/j.neuroimage.2019.06.021_bib45) 2009; 30 Zheng (10.1016/j.neuroimage.2019.06.021_bib76) 2014; 61 Dähne (10.1016/j.neuroimage.2019.06.021_bib19) 2013; 15 Fazli (10.1016/j.neuroimage.2019.06.021_bib24) 2015; 103 10.1016/j.neuroimage.2019.06.021_bib54 Hoshi (10.1016/j.neuroimage.2019.06.021_bib31) 2007; 12 Izzetoglu (10.1016/j.neuroimage.2019.06.021_bib38) 2010; 9 Kohno (10.1016/j.neuroimage.2019.06.021_bib40) 2007; 12 Saager (10.1016/j.neuroimage.2019.06.021_bib56) 2005; 22 Samek (10.1016/j.neuroimage.2019.06.021_bib58) 2017; 14 Choi (10.1016/j.neuroimage.2019.06.021_bib16) 2003; 86 Metz (10.1016/j.neuroimage.2019.06.021_bib47) 2015; 8 Haufe (10.1016/j.neuroimage.2019.06.021_bib30) 2014; 87 Fu (10.1016/j.neuroimage.2019.06.021_bib28) 2014; 62 Li (10.1016/j.neuroimage.2019.06.021_bib41) 2010; 58 Ziehe (10.1016/j.neuroimage.2019.06.021_bib77) 1998 Boas (10.1016/j.neuroimage.2019.06.021_bib9) 2001; 18 Tachtsidis (10.1016/j.neuroimage.2019.06.021_bib65) 2016; 3 Cui (10.1016/j.neuroimage.2019.06.021_bib18) 2010; 49 Andreu-Perez (10.1016/j.neuroimage.2019.06.021_bib5) 2015; 62 Müller-Putz (10.1016/j.neuroimage.2019.06.021_bib51) 2015 Brigadoi (10.1016/j.neuroimage.2019.06.021_bib13) 2014; 85 Morren (10.1016/j.neuroimage.2019.06.021_bib49) 2004; 42 Scholkmann (10.1016/j.neuroimage.2019.06.021_bib60) 2010; 31 Scholkmann (10.1016/j.neuroimage.2019.06.021_bib61) 2014; 85 Virtanen (10.1016/j.neuroimage.2019.06.021_bib67) 2011; 16 Muehlemann (10.1016/j.neuroimage.2019.06.021_bib50) 2008; 16 Scholkmann (10.1016/j.neuroimage.2019.06.021_bib62) 2014; 35 Medvedev (10.1016/j.neuroimage.2019.06.021_bib46) 2008; 1236 Ye (10.1016/j.neuroimage.2019.06.021_bib73) 2009; 44 Wolf (10.1016/j.neuroimage.2019.06.021_bib71) 2007; 12 Huppert (10.1016/j.neuroimage.2019.06.021_bib34) 2009; 48 Shin (10.1016/j.neuroimage.2019.06.021_bib64) 2018; 5 Irani (10.1016/j.neuroimage.2019.06.021_bib37) 2007; 21 Hamaoka (10.1016/j.neuroimage.2019.06.021_bib29) 2007; 12 Ferrari (10.1016/j.neuroimage.2019.06.021_bib25) 2004; 29 Hyvärinen (10.1016/j.neuroimage.2019.06.021_bib35) 1999; 10 Long (10.1016/j.neuroimage.2019.06.021_bib43) 2018 Wyser (10.1016/j.neuroimage.2019.06.021_bib72) 2017; 4 Virtanen (10.1016/j.neuroimage.2019.06.021_bib66) 2009; 14 Safaie (10.1016/j.neuroimage.2019.06.021_bib57) 2013; 10 von Bünau (10.1016/j.neuroimage.2019.06.021_bib68) 2009; 103 |
References_xml | – start-page: 2581 year: 2018 end-page: 2585 ident: bib43 article-title: Consistent run selection for independent component analysis: application to fmri analysis publication-title: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 85 start-page: 6 year: 2014 end-page: 27 ident: bib61 article-title: A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology publication-title: Neuroimage – volume: 29 start-page: 463 year: 2004 end-page: 487 ident: bib25 article-title: Principles, techniques, and limitations of near infrared spectroscopy publication-title: Can. J. Appl. Physiol. – volume: 14 start-page: 1080 year: 2001 end-page: 1088 ident: bib15 article-title: Fmri activation in a visual-perception task: network of areas detected using the general linear model and independent components analysis publication-title: Neuroimage – volume: 79 start-page: 5—27 year: 2009 ident: bib8 article-title: Temporal kernel canonical correlation analysis and its application in multimodal neuronal data analysis publication-title: Mach. Learn. – volume: 62 start-page: 4237 year: 2014 end-page: 4244 ident: bib28 article-title: Likelihood estimators for dependent samples and their application to order detection publication-title: IEEE Trans. Signal Process. – start-page: 1 year: 2015 end-page: 18 ident: bib51 article-title: Towards noninvasive hybrid brain computer interfaces: framework, practice, clinical application, and beyond publication-title: Proc. IEEE – volume: 64 start-page: 1199 year: 2017 end-page: 1210 ident: bib70 article-title: M3BA: a mobile, modular, multimodal biosignal acquisition architecture for miniaturized EEG-NIRS-based hybrid bci and monitoring publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 4 start-page: 5 year: 2003 end-page: 20 ident: bib52 article-title: Neuroergonomics: research and practice publication-title: Theor. Issues Ergon. Sci. – volume: 48 start-page: D280 year: 2009 end-page: D298 ident: bib34 article-title: HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain publication-title: Appl. Opt. – volume: 28 start-page: 326 year: 2005 end-page: 341 ident: bib53 article-title: Recipes for the linear analysis of {EEG} publication-title: Neuroimage – volume: 85 start-page: 181 year: 2014 end-page: 191 ident: bib13 article-title: Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data publication-title: Neuroimage – volume: 10 year: 2013 ident: bib57 article-title: Toward a fully integrated wireless wearable EEG-nirs bimodal acquisition system publication-title: J. Neural Eng. – volume: 31 start-page: 18 year: 2014 end-page: 33 ident: bib1 article-title: Diversity in independent component and vector analyses: identifiability, algorithms, and applications in medical imaging, Signal Processing Magazine publication-title: IEEE – volume: 86 start-page: 198 year: 2003 end-page: 205 ident: bib16 article-title: Approximate maximum likelihood source separation using the natural gradient publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci. – volume: 59 start-page: 519 year: 2012 end-page: 529 ident: bib23 article-title: Enhanced performance by a hybrid NIRS-EEG brain computer interface publication-title: Neuroimage – volume: 4 year: 2017 ident: bib72 article-title: Wearable and modular functional near-infrared spectroscopy instrument with multidistance measurements at four wavelengths publication-title: Neurophotonics – volume: 103 start-page: 1494 year: 2015 end-page: 1506 ident: bib2 article-title: Multimodal data fusion using source separation: application to medical imaging publication-title: Proc. IEEE – volume: 14 start-page: 105 year: 1988 end-page: 123 ident: bib7 article-title: The auction algorithm: a distributed relaxation method for the assignment problem publication-title: Ann. Oper. Res. – volume: 16 year: 2011 ident: bib67 article-title: Accelerometer-based method for correcting signal baseline changes caused by motion artifacts in medical near-infrared spectroscopy publication-title: J. Biomed. Opt. – year: 2010 ident: bib17 article-title: Handbook of Blind Source Separation: Independent Component Analysis and Applications – volume: 87 start-page: 96 year: 2014 end-page: 110 ident: bib30 article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging publication-title: Neuroimage – volume: vol. 46 year: 2004 ident: bib36 publication-title: Independent Component Analysis – volume: 58 start-page: 5151 year: 2010 end-page: 5164 ident: bib41 article-title: Independent component analysis by entropy bound minimization publication-title: IEEE Trans. Signal Process. – volume: 33 start-page: 1433 year: 1988 ident: bib21 article-title: Estimation of optical pathlength through tissue from direct time of flight measurement publication-title: Phys. Med. Biol. – volume: 103 start-page: 1507 year: 2015 end-page: 1530 ident: bib20 article-title: Multivariate machine learning methods for fusing functional multimodal neuroimaging data publication-title: Proc. IEEE – volume: 15 start-page: 1001 year: 2013 end-page: 1013 ident: bib19 article-title: Integration of multivariate data streams with bandpower signals publication-title: IEEE Trans. Multimed. – volume: 12 year: 2007 ident: bib29 article-title: Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans publication-title: J. Biomed. Opt. – volume: 25 start-page: 1735 year: 2017 end-page: 1745 ident: bib63 article-title: Open access dataset for eeg+ nirs single-trial classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 14 year: 2009 ident: bib66 article-title: Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals publication-title: J. Biomed. Opt. – volume: 30 start-page: 2382 year: 2009 end-page: 2392 ident: bib45 article-title: Blind identification of evoked human brain activity with independent component analysis of optical data publication-title: Hum. Brain Mapp. – volume: 49 start-page: 3039 year: 2010 end-page: 3046 ident: bib18 article-title: Functional near infrared spectroscopy (nirs) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics publication-title: Neuroimage – volume: 11 year: 2006 ident: bib26 article-title: Diffuse optical imaging of the whole head publication-title: J. Biomed. Opt. – volume: 42 start-page: 92 year: 2004 end-page: 99 ident: bib49 article-title: Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis publication-title: Med. Biol. Eng. Comput. – volume: 31 start-page: 649 year: 2010 ident: bib60 article-title: How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation publication-title: Physiol. Meas. – start-page: 675 year: 1998 end-page: 680 ident: bib77 article-title: TDSEP – an efficient algorithm for blind separation using time structure publication-title: Proc. Of the 8 – volume: 9 year: 2015 ident: bib69 article-title: Towards a wireless open source instrument: functional near-infrared spectroscopy in mobile neuroergonomics and bci applications publication-title: Front. Hum. Neurosci. – volume: vol. 2018 start-page: 403 year: 2018 end-page: 407 ident: bib11 article-title: Independent component analysis using semi-parametric density estimation via entropy maximization publication-title: IEEE Statistical Signal Processing Workshop (SSP) – volume: 21 start-page: 9 year: 2007 end-page: 37 ident: bib37 article-title: Functional near infrared spectroscopy (fnirs): an emerging neuroimaging technology with important applications for the study of brain disorders publication-title: Clin. Neuropsychol. – volume: 61 start-page: 1538 year: 2014 end-page: 1554 ident: bib76 article-title: Unobtrusive sensing and wearable devices for health informatics publication-title: IEEE Trans. Biomed. Eng. – volume: 9 start-page: 16 year: 2010 ident: bib38 article-title: Motion artifact cancellation in nir spectroscopy using discrete kalman filtering publication-title: Biomed. Eng. Online – volume: 14 year: 2017 ident: bib58 article-title: On robust parameter estimation in brain–computer interfacing publication-title: J. Neural Eng. – volume: 28 start-page: 1251 year: 2007 end-page: 1266 ident: bib42 article-title: Estimating the number of independent components for functional magnetic resonance imaging data publication-title: Hum. Brain Mapp. – volume: vol. 2 year: 1958 ident: bib4 publication-title: An Introduction to Multivariate Statistical Analysis – volume: 8 start-page: 1052 year: 2015 end-page: 1075 ident: bib47 article-title: A new approach for automatic removal of movement artifacts in near-infrared spectroscopy time series by means of acceleration data publication-title: Algorithms – volume: 5 start-page: 243 year: 1997 end-page: 248 ident: bib39 article-title: Event-related fmri publication-title: Hum. Brain Mapp. – volume: 10 start-page: 626 year: 1999 end-page: 634 ident: bib35 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Trans. Neural Netw. – volume: 3 start-page: 64 year: 2012 end-page: 74 ident: bib59 article-title: Independent component analysis of broadband near-infrared spectroscopy data acquired on adult human head publication-title: Biomed. Opt. Express – volume: 22 start-page: 1874 year: 2005 end-page: 1882 ident: bib56 article-title: Direct characterization and removal of interfering absorption trends in two-layer turbid media publication-title: J. Opt. Soc. Am. – volume: 10 year: 2005 ident: bib74 article-title: Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging publication-title: J. Biomed. Opt. – start-page: 23 year: 2013 end-page: 29 ident: bib14 article-title: Canonical correlation analysis in the study of cerebral and peripheral haemodynamics interrelations with systemic variables in neonates supported on ecmo publication-title: Oxygen Transport to Tissue XXXIV – volume: 44 start-page: 428 year: 2009 end-page: 447 ident: bib73 article-title: Nirs-spm: statistical parametric mapping for near-infrared spectroscopy publication-title: Neuroimage – volume: 18 start-page: 57 year: 2001 end-page: 75 ident: bib9 article-title: Imaging the body with diffuse optical tomography, Signal Processing Magazine publication-title: IEEE – volume: 62 start-page: 2778 year: 2014 end-page: 2786 ident: bib55 article-title: General non-orthogonal constrained ica publication-title: IEEE Trans. Signal Process. – volume: 33 start-page: 259 year: 2012 ident: bib48 article-title: Wavelet-based motion artifact removal for functional near-infrared spectroscopy publication-title: Physiol. Meas. – volume: 355 start-page: 1873 year: 2018 end-page: 1887 ident: bib10 article-title: Sparsity and independence: balancing two objectives in optimization for source separation with application to fmri analysis publication-title: J. Frankl. Inst. – volume: 62 start-page: 2750 year: 2015 end-page: 2762 ident: bib5 article-title: From wearable sensors to smart implants - toward pervasive and personalized healthcare publication-title: IEEE Trans. Biomed. Eng. – volume: 45 start-page: 788 year: 2009 end-page: 794 ident: bib75 article-title: Adaptive filtering to reduce global interference in non-invasive nirs measures of brain activation: how well and when does it work? publication-title: Neuroimage – volume: 11 start-page: 213 year: 2001 end-page: 222 ident: bib12 article-title: Monitoring tissue oxygen availability with near infrared spectroscopy (nirs) in health and disease publication-title: Scand. J. Med. Sci. Sports – volume: 12 year: 2007 ident: bib40 article-title: Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis publication-title: J. Biomed. Opt. – volume: 35 start-page: 717 year: 2014 ident: bib62 article-title: Measuring tissue hemodynamics and oxygenation by continuous-wave functional near-infrared spectroscopyhow robust are the different calculation methods against movement artifacts? publication-title: Physiol. Meas. – volume: 7 start-page: 1129 year: 1995 end-page: 1159 ident: bib6 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. – start-page: 1154 year: 1993 end-page: 1159 ident: bib44 article-title: Self-adaptive source separation by direct and recursive networks publication-title: Proc. International Conference on Digital Signal Processing (DSP’93) Limasol – volume: 62 start-page: 4245 year: 2014 end-page: 4255 ident: bib27 article-title: Blind source separation by entropy rate minimization publication-title: IEEE Trans. Signal Process. – volume: 12 year: 2007 ident: bib31 article-title: Functional near-infrared spectroscopy: current status and future prospects publication-title: J. Biomed. Opt. – volume: 16 start-page: 10323 year: 2008 end-page: 10330 ident: bib50 article-title: Wireless miniaturized in-vivo near infrared imaging publication-title: Optic Express – volume: 44 start-page: 945 year: 2006 ident: bib3 article-title: Extraction of cognitive activity-related waveforms from functional near-infrared spectroscopy signals publication-title: Med. Biol. Eng. Comput. – volume: 3 year: 2016 ident: bib33 article-title: Commentary on the statistical properties of noise and its implication on general linear models in functional near-infrared spectroscopy publication-title: Neurophotonics – volume: 28 start-page: 321 year: 1936 end-page: 377 ident: bib32 article-title: Relations between two sets of variates publication-title: Biometrika – volume: 1236 start-page: 145 year: 2008 end-page: 158 ident: bib46 article-title: Event-related fast optical signal in a rapid object recognition task: improving detection by the independent component analysis publication-title: Brain Res. – volume: 3 year: 2016 ident: bib65 article-title: False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward publication-title: Neurophotonics – volume: 103 start-page: 214101 year: 2009 ident: bib68 article-title: Finding stationary subspaces in multivariate time series publication-title: Phys. Rev. Lett. – reference: G. Pfurtscheller, B. Z. Allison, G. Bauernfeind, C. Brunner, T. Solis Escalante, R. Scherer, T. O. Zander, G. Müller-Putz, C. Neuper, N. Birbaumer, The hybrid BCI, Front. Neurosci. 4 (3). doi:10.3389/fnpro.2010.00003. – start-page: 183 year: 2004 end-page: 192 ident: bib22 article-title: Complex-valued ica using second order statistics publication-title: Machine Learning for Signal Processing, 2004. Proceedings of the 2004 14th IEEE Signal Processing Society Workshop – volume: 5 start-page: 180003 year: 2018 ident: bib64 article-title: Simultaneous acquisition of eeg and nirs during cognitive tasks for an open access dataset publication-title: Nat. Sci. Data – volume: 12 year: 2007 ident: bib71 article-title: Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications publication-title: J. Biomed. Opt. – volume: 103 start-page: 891 year: 2015 end-page: 906 ident: bib24 article-title: Learning from more than one data source: data fusion techniques for sensorimotor rhythm-based Brain-Computer Interfaces publication-title: Proc. IEEE – volume: 59 start-page: 519 issue: 1 year: 2012 ident: 10.1016/j.neuroimage.2019.06.021_bib23 article-title: Enhanced performance by a hybrid NIRS-EEG brain computer interface publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.07.084 – start-page: 2581 year: 2018 ident: 10.1016/j.neuroimage.2019.06.021_bib43 article-title: Consistent run selection for independent component analysis: application to fmri analysis – volume: 49 start-page: 3039 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2019.06.021_bib18 article-title: Functional near infrared spectroscopy (nirs) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.050 – volume: 4 issue: 4 year: 2017 ident: 10.1016/j.neuroimage.2019.06.021_bib72 article-title: Wearable and modular functional near-infrared spectroscopy instrument with multidistance measurements at four wavelengths publication-title: Neurophotonics doi: 10.1117/1.NPh.4.4.041413 – volume: 9 start-page: 16 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2019.06.021_bib38 article-title: Motion artifact cancellation in nir spectroscopy using discrete kalman filtering publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-9-16 – volume: 14 start-page: 1080 issue: 5 year: 2001 ident: 10.1016/j.neuroimage.2019.06.021_bib15 article-title: Fmri activation in a visual-perception task: network of areas detected using the general linear model and independent components analysis publication-title: Neuroimage doi: 10.1006/nimg.2001.0921 – volume: 44 start-page: 945 issue: 11 year: 2006 ident: 10.1016/j.neuroimage.2019.06.021_bib3 article-title: Extraction of cognitive activity-related waveforms from functional near-infrared spectroscopy signals publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-006-0116-3 – volume: 12 issue: 6 year: 2007 ident: 10.1016/j.neuroimage.2019.06.021_bib29 article-title: Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans publication-title: J. Biomed. Opt. doi: 10.1117/1.2805437 – volume: 58 start-page: 5151 issue: 10 year: 2010 ident: 10.1016/j.neuroimage.2019.06.021_bib41 article-title: Independent component analysis by entropy bound minimization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2055859 – volume: 5 start-page: 180003 year: 2018 ident: 10.1016/j.neuroimage.2019.06.021_bib64 article-title: Simultaneous acquisition of eeg and nirs during cognitive tasks for an open access dataset publication-title: Nat. Sci. Data doi: 10.1038/sdata.2018.3 – volume: 45 start-page: 788 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2019.06.021_bib75 article-title: Adaptive filtering to reduce global interference in non-invasive nirs measures of brain activation: how well and when does it work? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.12.048 – volume: vol. 46 year: 2004 ident: 10.1016/j.neuroimage.2019.06.021_bib36 – volume: 9 issue: 617 year: 2015 ident: 10.1016/j.neuroimage.2019.06.021_bib69 article-title: Towards a wireless open source instrument: functional near-infrared spectroscopy in mobile neuroergonomics and bci applications publication-title: Front. Hum. Neurosci. – volume: 62 start-page: 4245 issue: 16 year: 2014 ident: 10.1016/j.neuroimage.2019.06.021_bib27 article-title: Blind source separation by entropy rate minimization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2333563 – volume: 64 start-page: 1199 issue: 6 year: 2017 ident: 10.1016/j.neuroimage.2019.06.021_bib70 article-title: M3BA: a mobile, modular, multimodal biosignal acquisition architecture for miniaturized EEG-NIRS-based hybrid bci and monitoring publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 62 start-page: 4237 issue: 16 year: 2014 ident: 10.1016/j.neuroimage.2019.06.021_bib28 article-title: Likelihood estimators for dependent samples and their application to order detection publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2333551 – volume: 103 start-page: 214101 year: 2009 ident: 10.1016/j.neuroimage.2019.06.021_bib68 article-title: Finding stationary subspaces in multivariate time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.214101 – volume: 3 issue: 3 year: 2016 ident: 10.1016/j.neuroimage.2019.06.021_bib65 article-title: False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward publication-title: Neurophotonics – volume: vol. 2018 start-page: 403 year: 2018 ident: 10.1016/j.neuroimage.2019.06.021_bib11 article-title: Independent component analysis using semi-parametric density estimation via entropy maximization – volume: 28 start-page: 326 issue: 2 year: 2005 ident: 10.1016/j.neuroimage.2019.06.021_bib53 article-title: Recipes for the linear analysis of {EEG} publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.05.032 – volume: vol. 2 year: 1958 ident: 10.1016/j.neuroimage.2019.06.021_bib4 – start-page: 23 year: 2013 ident: 10.1016/j.neuroimage.2019.06.021_bib14 article-title: Canonical correlation analysis in the study of cerebral and peripheral haemodynamics interrelations with systemic variables in neonates supported on ecmo – volume: 14 start-page: 105 issue: 1 year: 1988 ident: 10.1016/j.neuroimage.2019.06.021_bib7 article-title: The auction algorithm: a distributed relaxation method for the assignment problem publication-title: Ann. Oper. Res. doi: 10.1007/BF02186476 – volume: 31 start-page: 18 issue: 3 year: 2014 ident: 10.1016/j.neuroimage.2019.06.021_bib1 article-title: Diversity in independent component and vector analyses: identifiability, algorithms, and applications in medical imaging, Signal Processing Magazine publication-title: IEEE – volume: 7 start-page: 1129 issue: 6 year: 1995 ident: 10.1016/j.neuroimage.2019.06.021_bib6 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. doi: 10.1162/neco.1995.7.6.1129 – volume: 103 start-page: 1494 issue: 9 year: 2015 ident: 10.1016/j.neuroimage.2019.06.021_bib2 article-title: Multimodal data fusion using source separation: application to medical imaging publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2461601 – volume: 16 start-page: 10323 issue: 14 year: 2008 ident: 10.1016/j.neuroimage.2019.06.021_bib50 article-title: Wireless miniaturized in-vivo near infrared imaging publication-title: Optic Express doi: 10.1364/OE.16.010323 – volume: 4 start-page: 5 issue: 1–2 year: 2003 ident: 10.1016/j.neuroimage.2019.06.021_bib52 article-title: Neuroergonomics: research and practice publication-title: Theor. Issues Ergon. Sci. doi: 10.1080/14639220210199753 – volume: 29 start-page: 463 issue: 4 year: 2004 ident: 10.1016/j.neuroimage.2019.06.021_bib25 article-title: Principles, techniques, and limitations of near infrared spectroscopy publication-title: Can. J. Appl. Physiol. doi: 10.1139/h04-031 – volume: 10 start-page: 626 issue: 3 year: 1999 ident: 10.1016/j.neuroimage.2019.06.021_bib35 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.761722 – volume: 11 year: 2006 ident: 10.1016/j.neuroimage.2019.06.021_bib26 article-title: Diffuse optical imaging of the whole head publication-title: J. Biomed. Opt. doi: 10.1117/1.2363365 – volume: 61 start-page: 1538 issue: 5 year: 2014 ident: 10.1016/j.neuroimage.2019.06.021_bib76 article-title: Unobtrusive sensing and wearable devices for health informatics publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2309951 – volume: 14 issue: 6 year: 2017 ident: 10.1016/j.neuroimage.2019.06.021_bib58 article-title: On robust parameter estimation in brain–computer interfacing publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa8232 – volume: 15 start-page: 1001 issue: 5 year: 2013 ident: 10.1016/j.neuroimage.2019.06.021_bib19 article-title: Integration of multivariate data streams with bandpower signals publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2013.2250267 – start-page: 1154 year: 1993 ident: 10.1016/j.neuroimage.2019.06.021_bib44 article-title: Self-adaptive source separation by direct and recursive networks – volume: 28 start-page: 321 issue: 3/4 year: 1936 ident: 10.1016/j.neuroimage.2019.06.021_bib32 article-title: Relations between two sets of variates publication-title: Biometrika doi: 10.2307/2333955 – start-page: 675 year: 1998 ident: 10.1016/j.neuroimage.2019.06.021_bib77 article-title: TDSEP – an efficient algorithm for blind separation using time structure – volume: 79 start-page: 5—27 issue: 1–2 year: 2009 ident: 10.1016/j.neuroimage.2019.06.021_bib8 article-title: Temporal kernel canonical correlation analysis and its application in multimodal neuronal data analysis publication-title: Mach. Learn. – volume: 10 issue: 5 year: 2013 ident: 10.1016/j.neuroimage.2019.06.021_bib57 article-title: Toward a fully integrated wireless wearable EEG-nirs bimodal acquisition system publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/5/056001 – volume: 87 start-page: 96 year: 2014 ident: 10.1016/j.neuroimage.2019.06.021_bib30 article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.10.067 – volume: 5 start-page: 243 issue: 4 year: 1997 ident: 10.1016/j.neuroimage.2019.06.021_bib39 article-title: Event-related fmri publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1997)5:4<243::AID-HBM7>3.0.CO;2-3 – volume: 33 start-page: 1433 issue: 12 year: 1988 ident: 10.1016/j.neuroimage.2019.06.021_bib21 article-title: Estimation of optical pathlength through tissue from direct time of flight measurement publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/33/12/008 – volume: 33 start-page: 259 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2019.06.021_bib48 article-title: Wavelet-based motion artifact removal for functional near-infrared spectroscopy publication-title: Physiol. Meas. doi: 10.1088/0967-3334/33/2/259 – volume: 18 start-page: 57 issue: 6 year: 2001 ident: 10.1016/j.neuroimage.2019.06.021_bib9 article-title: Imaging the body with diffuse optical tomography, Signal Processing Magazine publication-title: IEEE – volume: 22 start-page: 1874 issue: 9 year: 2005 ident: 10.1016/j.neuroimage.2019.06.021_bib56 article-title: Direct characterization and removal of interfering absorption trends in two-layer turbid media publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSAA.22.001874 – volume: 85 start-page: 181 year: 2014 ident: 10.1016/j.neuroimage.2019.06.021_bib13 article-title: Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.082 – volume: 103 start-page: 891 issue: 6 year: 2015 ident: 10.1016/j.neuroimage.2019.06.021_bib24 article-title: Learning from more than one data source: data fusion techniques for sensorimotor rhythm-based Brain-Computer Interfaces publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2413993 – volume: 3 issue: 1 year: 2016 ident: 10.1016/j.neuroimage.2019.06.021_bib33 article-title: Commentary on the statistical properties of noise and its implication on general linear models in functional near-infrared spectroscopy publication-title: Neurophotonics doi: 10.1117/1.NPh.3.1.010401 – volume: 62 start-page: 2778 issue: 11 year: 2014 ident: 10.1016/j.neuroimage.2019.06.021_bib55 article-title: General non-orthogonal constrained ica publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2318136 – volume: 28 start-page: 1251 issue: 11 year: 2007 ident: 10.1016/j.neuroimage.2019.06.021_bib42 article-title: Estimating the number of independent components for functional magnetic resonance imaging data publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20359 – volume: 103 start-page: 1507 issue: 9 year: 2015 ident: 10.1016/j.neuroimage.2019.06.021_bib20 article-title: Multivariate machine learning methods for fusing functional multimodal neuroimaging data publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2425807 – volume: 30 start-page: 2382 issue: 8 year: 2009 ident: 10.1016/j.neuroimage.2019.06.021_bib45 article-title: Blind identification of evoked human brain activity with independent component analysis of optical data publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20678 – volume: 11 start-page: 213 issue: 4 year: 2001 ident: 10.1016/j.neuroimage.2019.06.021_bib12 article-title: Monitoring tissue oxygen availability with near infrared spectroscopy (nirs) in health and disease publication-title: Scand. J. Med. Sci. Sports doi: 10.1034/j.1600-0838.2001.110404.x – ident: 10.1016/j.neuroimage.2019.06.021_bib54 doi: 10.3389/fnpro.2010.00003 – volume: 31 start-page: 649 issue: 5 year: 2010 ident: 10.1016/j.neuroimage.2019.06.021_bib60 article-title: How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation publication-title: Physiol. Meas. doi: 10.1088/0967-3334/31/5/004 – volume: 25 start-page: 1735 issue: 10 year: 2017 ident: 10.1016/j.neuroimage.2019.06.021_bib63 article-title: Open access dataset for eeg+ nirs single-trial classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2628057 – volume: 12 issue: 6 year: 2007 ident: 10.1016/j.neuroimage.2019.06.021_bib71 article-title: Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications publication-title: J. Biomed. Opt. – volume: 10 issue: 1 year: 2005 ident: 10.1016/j.neuroimage.2019.06.021_bib74 article-title: Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging publication-title: J. Biomed. Opt. doi: 10.1117/1.1852552 – volume: 85 start-page: 6 year: 2014 ident: 10.1016/j.neuroimage.2019.06.021_bib61 article-title: A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.004 – volume: 48 start-page: D280 issue: 10 year: 2009 ident: 10.1016/j.neuroimage.2019.06.021_bib34 article-title: HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain publication-title: Appl. Opt. doi: 10.1364/AO.48.00D280 – volume: 14 issue: 5 year: 2009 ident: 10.1016/j.neuroimage.2019.06.021_bib66 article-title: Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals publication-title: J. Biomed. Opt. doi: 10.1117/1.3253323 – start-page: 1 issue: 99 year: 2015 ident: 10.1016/j.neuroimage.2019.06.021_bib51 article-title: Towards noninvasive hybrid brain computer interfaces: framework, practice, clinical application, and beyond publication-title: Proc. IEEE – volume: 355 start-page: 1873 issue: 4 year: 2018 ident: 10.1016/j.neuroimage.2019.06.021_bib10 article-title: Sparsity and independence: balancing two objectives in optimization for source separation with application to fmri analysis publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2017.07.003 – volume: 12 issue: 6 year: 2007 ident: 10.1016/j.neuroimage.2019.06.021_bib31 article-title: Functional near-infrared spectroscopy: current status and future prospects publication-title: J. Biomed. Opt. doi: 10.1117/1.2804911 – volume: 44 start-page: 428 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2019.06.021_bib73 article-title: Nirs-spm: statistical parametric mapping for near-infrared spectroscopy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.08.036 – volume: 12 issue: 6 year: 2007 ident: 10.1016/j.neuroimage.2019.06.021_bib40 article-title: Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis publication-title: J. Biomed. Opt. doi: 10.1117/1.2814249 – volume: 8 start-page: 1052 issue: 4 year: 2015 ident: 10.1016/j.neuroimage.2019.06.021_bib47 article-title: A new approach for automatic removal of movement artifacts in near-infrared spectroscopy time series by means of acceleration data publication-title: Algorithms doi: 10.3390/a8041052 – volume: 3 start-page: 64 issue: 1 year: 2012 ident: 10.1016/j.neuroimage.2019.06.021_bib59 article-title: Independent component analysis of broadband near-infrared spectroscopy data acquired on adult human head publication-title: Biomed. Opt. Express doi: 10.1364/BOE.3.000064 – volume: 16 issue: 8 year: 2011 ident: 10.1016/j.neuroimage.2019.06.021_bib67 article-title: Accelerometer-based method for correcting signal baseline changes caused by motion artifacts in medical near-infrared spectroscopy publication-title: J. Biomed. Opt. doi: 10.1117/1.3606576 – volume: 1236 start-page: 145 issue: 0 year: 2008 ident: 10.1016/j.neuroimage.2019.06.021_bib46 article-title: Event-related fast optical signal in a rapid object recognition task: improving detection by the independent component analysis publication-title: Brain Res. doi: 10.1016/j.brainres.2008.07.122 – volume: 42 start-page: 92 issue: 1 year: 2004 ident: 10.1016/j.neuroimage.2019.06.021_bib49 article-title: Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02351016 – volume: 35 start-page: 717 issue: 4 year: 2014 ident: 10.1016/j.neuroimage.2019.06.021_bib62 article-title: Measuring tissue hemodynamics and oxygenation by continuous-wave functional near-infrared spectroscopyhow robust are the different calculation methods against movement artifacts? publication-title: Physiol. Meas. doi: 10.1088/0967-3334/35/4/717 – volume: 62 start-page: 2750 issue: 12 year: 2015 ident: 10.1016/j.neuroimage.2019.06.021_bib5 article-title: From wearable sensors to smart implants - toward pervasive and personalized healthcare publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2422751 – start-page: 183 year: 2004 ident: 10.1016/j.neuroimage.2019.06.021_bib22 article-title: Complex-valued ica using second order statistics – year: 2010 ident: 10.1016/j.neuroimage.2019.06.021_bib17 – volume: 86 start-page: 198 issue: 1 year: 2003 ident: 10.1016/j.neuroimage.2019.06.021_bib16 article-title: Approximate maximum likelihood source separation using the natural gradient publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci. – volume: 21 start-page: 9 issue: 1 year: 2007 ident: 10.1016/j.neuroimage.2019.06.021_bib37 article-title: Functional near infrared spectroscopy (fnirs): an emerging neuroimaging technology with important applications for the study of brain disorders publication-title: Clin. Neuropsychol. doi: 10.1080/13854040600910018 |
SSID | ssj0009148 |
Score | 2.508865 |
Snippet | In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenarios, artifact rejection is essential. However, currently there... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 72 |
SubjectTerms | Accelerometers Adult Artifact removal Blind source separation Blood Brain research Cerebral Cortex - diagnostic imaging Cerebral Cortex - physiology Cognitive ability Correlation analysis Decomposition Embedding Entropy rate bound minimization fNIRS Functional Neuroimaging - methods Functional Neuroimaging - standards Humans I.R. radiation Infrared spectroscopy Machine Learning Medical imaging Models, Theoretical Multimodality Neuroimaging in motion Physiology Principal components analysis Signal Processing, Computer-Assisted Spectroscopy, Near-Infrared - methods Spectroscopy, Near-Infrared - standards Spectrum analysis Statistical analysis |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxsxEBatA6GX0rzdOEWFXkV2Je2uRQ_BlISkkJwa8E1o9QCHZNfx4xD65zuz0tqnFN8M3hH2SjPzSfPpG0J-iDD2sL8RrKikZ7JW2ObFZwyFWAIA6MBrvJx8_1DePsrf02KaDtyWiVbZx8QuULvW4hn5JeeY64QQ_Gr-yrBrFFZXUwuNj2QPpcuQ0lVNq63obi7jVbhCsDE8kJg8kd_V6UXOXsBrkeClOhVPnr-Xnt6Dn10auvlCPif8SCdxwg_IB98ckv37VCE_In8nFIAyrQE9OhpP5unSR4HvtqGh52JRAKsUyRswmEnCJPDBUVxKeNuBLvxTR9Nq6AzsIP3FU0P6AL7B7hoYaeEdxf71K1TEbOdvx-Tx5vrPr1uWGiwwKwu1YjZIJSvjxjJY4TAxGSzsubIM0laZqg03meWVr4vAwdEz2PtwF8DW-tIKL07IoGkbfwbvlZciN0oEZ3JpallnsO8TwUtvlHKFGZKqf6_aJvVxbILxrHua2ZPezojGGdHIuOP5kOQby3lU4NjBRvVTp_sbphATNaSJHWx_bmwTConoYkfrUb9SdIoGS71du0PyffM1-DEWZ0zj2zU-I2EvjlXUITmNK2zzd0XOIRZz-fX_g5-TT_hLMLPmxYgMVou1vwDItKq_dX7xD_VKF2I priority: 102 providerName: ProQuest |
Title | A new blind source separation framework for signal analysis and artifact rejection in functional Near-Infrared Spectroscopy |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919305129 https://dx.doi.org/10.1016/j.neuroimage.2019.06.021 https://www.ncbi.nlm.nih.gov/pubmed/31203024 https://www.proquest.com/docview/2274313332 https://www.proquest.com/docview/2242114372 |
Volume | 200 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIL6Id-eNCL7WtUnaGnyaokzFIV5gbyFtEphoN-Z8EMHf7jlNOvFBGPiyrVtP6ZJz-U7znRNCjrg7sZDf8CjNhY1EIXGbFxtH2IjFAYB2rMDi5Nte1n0S1_20P0fOm1oYpFUG3-99eu2twzftMJrt0WDQfgBkAOEG8g0JOgthCyvYRY5afvz1Q_OQifDlcCmP8OzA5vEcr7pn5OAVLBdJXrLu5MmSv0LUXxC0DkWXK2Q5YEja8be5SuZstUYWb8Mq-Tr57FAAy7QABGmofzpP36xv8j2sqGv4WBQAK0UCB1xMh-Yk8MFQHACseKBj-1xTtSo6ADkIgf7JIe2BfURXFVxpbA3FPewn2BVzOPrYIE-XF4_n3ShsshCVIpWTqHRCilybE-FKbjA4aVzcM1nmRJnHstBMxyXLbZE6BsYeQ_7DjAPZ0mYlt3yTzFfDym7DuLKMJ1pyZ3QidCGKGHI_7qywWkqT6hbJm3FVZehAjhthvKiGavasfmZE4YwoZN2xpEWSqeTId-GYQUY2U6eaKlPwiwpCxQyyp1PZX9o4o_ReoykqeIQ3xRhiNc45a5HD6c9gy7hAoys7fMdzBOTjuJLaIltew6Z_lycM_DETO_-6tV2yhEcYfJN0j8xPxu92H1DVpDiozQZe835-QBY6VzfdHryfXfTu7r8Bll4m7A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEN8UBhgJHiPijyS1EEIDNrVsrRBs0t48J7alTZCWthOa-J_4G7mLk_ZpqC97q5Se1drnu9_lfncH8FqGgcf4RiZZoXyiSk1jXnyaUCOWgAA6iJKKk8eTfHisvpxkJ1vwt6uFIVplZxMbQ-2mFb0jfysE-Toppfgw-5XQ1CjKrnYjNKJaHPjL3xiyLd6PPuP5vhFif-_o0zBppwoklcr0MqmC0qqwbqBCJR1ZY0vZLJfnQVVFqksrbFqJwpdZEKjdKQJ-4QLKVj6vpJe47g3YVhJDmR5sf9ybfP22bvPLVSy-y2Qy4Fy33KHIKGs6VJ79RDtBlDLd9A0V_CqHeBXgbRzf_l240yJWthtV7B5s-fo-3By3OfkH8GeXITRnJeJVx2IugC18bCk-rVno2F8M4TEjugguZttWKPjBMVJeqq9gc3_eEMNqdoZy6HDje0o2wW1PRjWuNPeOfZ81g3uonObyIRxfy-Y_gl49rf0T3FeRS261DM5yZUtVphhpyuCVt1q7zPah6PbVVG2_cxq78cN0xLZzsz4RQydiiOMneB_4SnIWe35sIKO7ozNdTStaYYOOaQPZdyvZFvdEPLOh9E6nKaa1Pwuzvi19eLV6jJaD0kG29tML-o7C6J_ytn14HDVs9XclF2j9hXr6_8Vfwq3h0fjQHI4mB8_gNv0q8us824Hecn7hnyNgW5Yv2lvC4PS6L-Y_LRdVdQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBZpCqGXkj7jJG1VaI9LVo9dWZQSQlMTN40ptAHfVO1KgoR27doOIfSf9ddlZqW1Tym-5GbwjrCleXza-WaGkHci9D3cb0RWKOkzWWkc8-LzDBuxBADQgVdYnHw2Kk_O5ZdxMd4g_7paGKRVdj6xddRuUuM78gPOMdYJIfhBSLSIb8eDw-mfDCdIYaa1G6cRVeTU31zD9W3-cXgMZ_2e88HnH59OsjRhIKtloRdZHaSWyrq-DLVw6JktZrZcWQZZq1xXltu85spXReCg6TmAf-4CyNa-rIUXsO4D8lCJgqGNqbFaNfxlMpbhFSLrM6YTiyhyy9pelRe_wWMguUy3HUQ5uys03gV92xA42CaPE3alR1HZnpAN3zwlW2cpO_-M_D2iANJpBcjV0ZgVoHMfm4tPGho6HhgFoEyROAKL2dQUBT44imqMlRZ05i9bilhDL0AOQm98Y0lHsOnZsIGVZt7R79N2hA8W1tw8J-f3svUvyGYzafwO7CsvBbNaBGeZtJWscrhziuClt1q7wvaI6vbV1KnzOQ7g-GU6itulWZ2IwRMxyPbjrEfYUnIau3-sIaO7ozNddSv4YwMhag3ZD0vZhIAisllTer_TFJM80dys7KZH3i6_Bh-CiSHb-MkVPiM53IuFgmdeRg1b_l3BOMQBLnf_v_gbsgXmaL4OR6d75BH-KAzwrNgnm4vZlX8FyG1RvW5NhJKf922TtyU5WEU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+blind+source+separation+framework+for+signal+analysis+and+artifact+rejection+in+functional+Near-Infrared+Spectroscopy&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=von+L%C3%BChmann%2C+Alexander&rft.au=Boukouvalas%2C+Zois&rft.au=M%C3%BCller%2C+Klaus-Robert&rft.au=Adal%C4%B1%2C+T%C3%BClay&rft.date=2019-10-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=200&rft.spage=72&rft.epage=88&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.06.021&rft.externalDocID=S1053811919305129 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |