Automated Delineation of Dermal–Epidermal Junction in Reflectance Confocal Microscopy Image Stacks of Human Skin

Reflectance confocal microscopy (RCM) images skin noninvasively, with optical sectioning and nuclear-level resolution comparable with that of pathology. On the basis of the assessment of the dermal–epidermal junction (DEJ) and morphologic features in its vicinity, skin cancer can be diagnosed in viv...

Full description

Saved in:
Bibliographic Details
Published inJournal of investigative dermatology Vol. 135; no. 3; pp. 710 - 717
Main Authors Kurugol, Sila, Kose, Kivanc, Park, Brian, Dy, Jennifer G., Brooks, Dana H., Rajadhyaksha, Milind
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2015
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0022-202X
1523-1747
1523-1747
DOI10.1038/jid.2014.379

Cover

Loading…
Abstract Reflectance confocal microscopy (RCM) images skin noninvasively, with optical sectioning and nuclear-level resolution comparable with that of pathology. On the basis of the assessment of the dermal–epidermal junction (DEJ) and morphologic features in its vicinity, skin cancer can be diagnosed in vivo with high sensitivity and specificity. However, the current visual, qualitative approach for reading images leads to subjective variability in diagnosis. We hypothesize that machine learning–based algorithms may enable a more quantitative, objective approach. Testing and validation were performed with two algorithms that can automatically delineate the DEJ in RCM stacks of normal human skin. The test set was composed of 15 fair- and 15 dark-skin stacks (30 subjects) with expert labelings. In dark skin, in which the contrast is high owing to melanin, the algorithm produced an average error of 7.9±6.4 μm. In fair skin, the algorithm delineated the DEJ as a transition zone, with average error of 8.3±5.8 μm for the epidermis-to-transition zone boundary and 7.6±5.6 μm for the transition zone-to-dermis. Our results suggest that automated algorithms may quantitatively guide the delineation of the DEJ, to assist in objective reading of RCM images. Further development of such algorithms may guide assessment of abnormal morphological features at the DEJ.
AbstractList Reflectance confocal microscopy (RCM) images skin noninvasively, with optical sectioning and nuclear-level resolution comparable with that of pathology. On the basis of the assessment of the dermal-epidermal junction (DEJ) and morphologic features in its vicinity, skin cancer can be diagnosed in vivo with high sensitivity and specificity. However, the current visual, qualitative approach for reading images leads to subjective variability in diagnosis. We hypothesize that machine learning-based algorithms may enable a more quantitative, objective approach. Testing and validation were performed with two algorithms that can automatically delineate the DEJ in RCM stacks of normal human skin. The test set was composed of 15 fair- and 15 dark-skin stacks (30 subjects) with expert labelings. In dark skin, in which the contrast is high owing to melanin, the algorithm produced an average error of 7.9±6.4 μm. In fair skin, the algorithm delineated the DEJ as a transition zone, with average error of 8.3±5.8 μm for the epidermis-to-transition zone boundary and 7.6±5.6 μm for the transition zone-to-dermis. Our results suggest that automated algorithms may quantitatively guide the delineation of the DEJ, to assist in objective reading of RCM images. Further development of such algorithms may guide assessment of abnormal morphological features at the DEJ.
Reflectance confocal microscopy (RCM) images skin non-invasively, with optical sectioning and nuclear-level resolution comparable to that of pathology. Based on assessment of the dermal-epidermal junction (DEJ) and morphologic features in its vicinity, skin cancer can be diagnosed in vivo with high sensitivity and specificity. However, the current visual, qualitative approach for reading images leads to subjective variability in diagnosis. We hypothesize that machine learning-based algorithms may enable a more quantitative, objective approach. Testing and validation was performed with two algorithms that can automatically delineate the DEJ in RCM stacks of normal human skin. The test set was composed of 15 fair and 15 dark skin stacks (30 subjects) with expert labellings. In dark skin, in which the contrast is high due to melanin, the algorithm produced an average error of 7.9±6.4μ m . In fair skin, the algorithm delineated the DEJ as a transition zone, with average error of 8.3±5.8μ m for the epidermis-to-transition zone boundary and 7.6±5.6μ m for the transition zone-to-dermis. Our results suggest that automated algorithms may quantitatively guide the delineation of the DEJ, to assist in objective reading of RCM images. Further development of such algorithms may guide assessment of abnormal morphological features at the DEJ.
Reflectance confocal microscopy (RCM) images skin noninvasively, with optical sectioning and nuclear-level resolution comparable with that of pathology. On the basis of the assessment of the dermal-epidermal junction (DEJ) and morphologic features in its vicinity, skin cancer can be diagnosed in vivo with high sensitivity and specificity. However, the current visual, qualitative approach for reading images leads to subjective variability in diagnosis. We hypothesize that machine learning-based algorithms may enable a more quantitative, objective approach. Testing and validation were performed with two algorithms that can automatically delineate the DEJ in RCM stacks of normal human skin. The test set was composed of 15 fair- and 15 dark-skin stacks (30 subjects) with expert labelings. In dark skin, in which the contrast is high owing to melanin, the algorithm produced an average error of 7.9±6.4 μm. In fair skin, the algorithm delineated the DEJ as a transition zone, with average error of 8.3±5.8 μm for the epidermis-to-transition zone boundary and 7.6±5.6 μm for the transition zone-to-dermis. Our results suggest that automated algorithms may quantitatively guide the delineation of the DEJ, to assist in objective reading of RCM images. Further development of such algorithms may guide assessment of abnormal morphological features at the DEJ.Reflectance confocal microscopy (RCM) images skin noninvasively, with optical sectioning and nuclear-level resolution comparable with that of pathology. On the basis of the assessment of the dermal-epidermal junction (DEJ) and morphologic features in its vicinity, skin cancer can be diagnosed in vivo with high sensitivity and specificity. However, the current visual, qualitative approach for reading images leads to subjective variability in diagnosis. We hypothesize that machine learning-based algorithms may enable a more quantitative, objective approach. Testing and validation were performed with two algorithms that can automatically delineate the DEJ in RCM stacks of normal human skin. The test set was composed of 15 fair- and 15 dark-skin stacks (30 subjects) with expert labelings. In dark skin, in which the contrast is high owing to melanin, the algorithm produced an average error of 7.9±6.4 μm. In fair skin, the algorithm delineated the DEJ as a transition zone, with average error of 8.3±5.8 μm for the epidermis-to-transition zone boundary and 7.6±5.6 μm for the transition zone-to-dermis. Our results suggest that automated algorithms may quantitatively guide the delineation of the DEJ, to assist in objective reading of RCM images. Further development of such algorithms may guide assessment of abnormal morphological features at the DEJ.
Author Kurugol, Sila
Brooks, Dana H.
Rajadhyaksha, Milind
Dy, Jennifer G.
Kose, Kivanc
Park, Brian
AuthorAffiliation b Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY
c NYU School of Medicine and NYU Department of Radiology, New York, NY
a Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA
d Department of Electrical and Computer Engineering, Northeastern University, Boston, MA
AuthorAffiliation_xml – name: b Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY
– name: c NYU School of Medicine and NYU Department of Radiology, New York, NY
– name: d Department of Electrical and Computer Engineering, Northeastern University, Boston, MA
– name: a Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA
Author_xml – sequence: 1
  givenname: Sila
  surname: Kurugol
  fullname: Kurugol, Sila
  organization: Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
– sequence: 2
  givenname: Kivanc
  surname: Kose
  fullname: Kose, Kivanc
  email: kosek@mskcc.org
  organization: Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
– sequence: 3
  givenname: Brian
  surname: Park
  fullname: Park, Brian
  organization: NYU School of Medicine and NYU Department of Radiology, New York, New York, USA
– sequence: 4
  givenname: Jennifer G.
  surname: Dy
  fullname: Dy, Jennifer G.
  organization: Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts, USA
– sequence: 5
  givenname: Dana H.
  surname: Brooks
  fullname: Brooks, Dana H.
  organization: Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts, USA
– sequence: 6
  givenname: Milind
  surname: Rajadhyaksha
  fullname: Rajadhyaksha, Milind
  organization: Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25184959$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9u1DAQhy1URLeFG2cUiQsHsvhvEl-QqqXQoiIkChI3y7EnxdvE3tpJpd54B96QJ8HZLRVUcLKt-eanGX8HaM8HDwg9JXhJMGterZ1dUkz4ktXyAVoQQVlJal7voQXGlJYU06_76CClNcak4qJ5hPapIA2XQi5QPJrGMOgRbPEGeudBjy74InT5GQfd__z-43jj7PZevJ-82ZadLz5B14MZtTdQrILvgsnAB2diSCZsborTQV9AcT5qc5nmuJNp0L44v3T-MXrY6T7Bk9vzEH15e_x5dVKefXx3ujo6Kw0XciwNMCtbahltBK07SwC0IFVVN23btaxmknJJhDGYgqzbRuuO6q7CBteEWeDsEL3e5W6mdgBrwI9R92oT3aDjjQraqb8r3n1TF-FacUZZXYkc8OI2IIarCdKoBpcM9L32EKakSCV4JRtJaUaf30PXYYo-rzdTjDDCm3miZ39OdDfKbx0ZeLkD5m9MEbo7hGA121bZtpptq2w74_Qebty4FZj3cf3_mqpdE-S_v3YQVTIOskbrYhaqbHD_bvwF1I3CZw
CitedBy_id crossref_primary_10_1111_ics_12720
crossref_primary_10_1158_0008_5472_CAN_16_0252
crossref_primary_10_3390_jcm11020429
crossref_primary_10_1016_j_jmbbm_2019_103552
crossref_primary_10_1093_oncolo_oyac106
crossref_primary_10_1111_srt_12316
crossref_primary_10_1016_j_jdcr_2018_09_019
crossref_primary_10_1002_lsm_23376
crossref_primary_10_1111_vde_13071
crossref_primary_10_1002_cyto_a_23963
crossref_primary_10_1038_s41598_021_90328_x
crossref_primary_10_1364_BOE_9_001906
crossref_primary_10_1002_lsm_22600
crossref_primary_10_1016_j_jid_2019_10_018
crossref_primary_10_1117_1_JMI_6_2_024003
crossref_primary_10_1142_S1793545821400058
crossref_primary_10_1038_s42255_024_01016_9
crossref_primary_10_3390_bioengineering8110148
crossref_primary_10_1109_TIP_2016_2615291
crossref_primary_10_1364_BOE_9_002240
crossref_primary_10_1002_jbio_202100236
crossref_primary_10_1016_j_compbiomed_2023_107413
crossref_primary_10_1364_AO_392004
crossref_primary_10_1016_j_jaad_2023_09_086
crossref_primary_10_1016_j_compmedimag_2020_101833
crossref_primary_10_1007_s13671_019_00267_0
Cites_doi 10.1111/bjd.12678
10.1007/BF00994018
10.1364/JOSAA.4.002379
10.1117/1.3524301
10.3414/ME0463
10.1111/j.1468-3083.2010.03834.x
10.1109/34.244679
10.1016/j.jaad.2004.06.028
10.1111/bjd.13148
10.1109/34.761261
10.1109/PROC.1979.11328
10.1117/1.3549740
10.1111/jdv.12285
10.1038/jid.2012.172
10.1038/sj.jid.5700993
ContentType Journal Article
Copyright 2015 The Society for Investigative Dermatology, Inc
Copyright Nature Publishing Group Mar 2015
Copyright_xml – notice: 2015 The Society for Investigative Dermatology, Inc
– notice: Copyright Nature Publishing Group Mar 2015
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7X7
7XB
88E
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FR3
FYUFA
GHDGH
H94
K9.
M0S
M1P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1038/jid.2014.379
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Proquest Medical Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Technology Research Database


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1523-1747
EndPage 717
ExternalDocumentID PMC4323765
3586490131
25184959
10_1038_jid_2014_379
S0022202X15371645
Genre Evaluation Studies
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P41 GM103545
– fundername: NIBIB NIH HHS
  grantid: R01EB012466
– fundername: NCI NIH HHS
  grantid: R01CA156773
– fundername: NIGMS NIH HHS
  grantid: P41GM103545
– fundername: NIBIB NIH HHS
  grantid: R01 EB012466
– fundername: NCI NIH HHS
  grantid: R01 CA156773
– fundername: NCI NIH HHS
  grantid: P30 CA008748
GroupedDBID ---
--K
.55
.GJ
0R~
1B1
29K
2WC
36B
3O-
4.4
457
53G
5GY
5RE
5VS
6I.
7X7
88E
8AO
8FI
8FJ
8R4
8R5
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABAWZ
ABJNI
ABLJU
ABMAC
ABUWG
ACGFO
ACGFS
ACPRK
ADBBV
ADEZE
ADFRT
ADVLN
AENEX
AEXQZ
AFEBI
AFETI
AFFNX
AFJKZ
AFKRA
AFTJW
AGHFR
AHMBA
AI.
AITUG
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BAWUL
BENPR
BFHJK
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
D-I
DIK
E3Z
EBS
EJD
F5P
FDB
FRP
FYUFA
GX1
HMCUK
HZ~
IH2
IHE
J5H
JSO
KQ8
L7B
LH4
LW6
M1P
M41
MVM
NQ-
O9-
OK1
P2P
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
R9-
RIG
RNS
ROL
RPZ
SSZ
TR2
UKHRP
VH1
W2D
X7M
Y6R
YFH
YOC
YUY
ZGI
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AIGII
AKBMS
AKYEP
CITATION
PHGZM
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
PJZUB
PPXIY
3V.
7T5
7XB
8FD
8FK
FR3
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c459t-ce3d9b2d328527fd1eea516678bbfb373924915cc02e97b8aaf2af60c0713de43
IEDL.DBID 7X7
ISSN 0022-202X
1523-1747
IngestDate Thu Aug 21 18:41:46 EDT 2025
Fri Jul 11 16:45:51 EDT 2025
Fri Jul 25 05:18:06 EDT 2025
Mon Jul 21 05:38:25 EDT 2025
Thu Apr 24 22:58:35 EDT 2025
Tue Jul 01 05:13:20 EDT 2025
Sat Apr 12 15:21:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-ce3d9b2d328527fd1eea516678bbfb373924915cc02e97b8aaf2af60c0713de43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://dx.doi.org/10.1038/jid.2014.379
PMID 25184959
PQID 1653131484
PQPubID 46127
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4323765
proquest_miscellaneous_1654698922
proquest_journals_1653131484
pubmed_primary_25184959
crossref_primary_10_1038_jid_2014_379
crossref_citationtrail_10_1038_jid_2014_379
elsevier_sciencedirect_doi_10_1038_jid_2014_379
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: London
PublicationTitle Journal of investigative dermatology
PublicationTitleAlternate J Invest Dermatol
PublicationYear 2015
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Alarcon, Carrera, Palou (bb0010) 2014; 170
Randen, Husoy (bb0090) 1999; 21
Koller, Wiltgen, Ahlgrimm-Siess (bb0060) 2011; 25
Haralic (bb0055) 1979; 67
Wiltgen, Gerger, Wagner (bb0100) 2008; 47
Pellacani, Guitera, Longo (bb0080) 2007; 127
Gareau, Hennessy, Wan (bb0035) 2010; 15
Kurugol, Dy, Brooks (bb0065) 2011; 16
Gonzales, Wood (bb0045) 2002
Field (bb0030) 1987; 4
(bb0015) 2013
Guitera, Menzies, Longo (bb0050) 2012; 132
Vural, Fung, Krishnapuram (bb0095) 2009; 10
Yu, Liu (bb0105) 2004; 5
Gill, Longo, Farnetani (bb0040) 2013; 28
Cormen, Stein, Rivest (bb0020) 2001
Cortes, Vapnik (bb0025) 1995; 20
Laine, Fan (bb0070) 1993; 15
Pellacani, Pepe, Casari (bb0085) 2014
Nori, Rius-Diaz, Cuevas (bb0075) 2004; 51
Haralic (10.1038/jid.2014.379_bb0055) 1979; 67
Gonzales (10.1038/jid.2014.379_bb0045) 2002
Laine (10.1038/jid.2014.379_bb0070) 1993; 15
Randen (10.1038/jid.2014.379_bb0090) 1999; 21
Cormen (10.1038/jid.2014.379_bb0020) 2001
Gareau (10.1038/jid.2014.379_bb0035) 2010; 15
(10.1038/jid.2014.379_bb0015) 2013
Pellacani (10.1038/jid.2014.379_bb0080) 2007; 127
Gill (10.1038/jid.2014.379_bb0040) 2013; 28
Wiltgen (10.1038/jid.2014.379_bb0100) 2008; 47
Koller (10.1038/jid.2014.379_bb0060) 2011; 25
Pellacani (10.1038/jid.2014.379_bb0085) 2014
Field (10.1038/jid.2014.379_bb0030) 1987; 4
Nori (10.1038/jid.2014.379_bb0075) 2004; 51
Kurugol (10.1038/jid.2014.379_bb0065) 2011; 16
Vural (10.1038/jid.2014.379_bb0095) 2009; 10
Cortes (10.1038/jid.2014.379_bb0025) 1995; 20
Guitera (10.1038/jid.2014.379_bb0050) 2012; 132
Alarcon (10.1038/jid.2014.379_bb0010) 2014; 170
Yu (10.1038/jid.2014.379_bb0105) 2004; 5
22718115 - J Invest Dermatol. 2012 Oct;132(10):2386-94
21198161 - J Biomed Opt. 2010 Nov-Dec;15(6):061713
20735518 - J Eur Acad Dermatol Venereol. 2011 May;25(5):554-8
24124911 - Br J Dermatol. 2014 Apr;170(4):802-8
15583584 - J Am Acad Dermatol. 2004 Dec;51(6):923-30
21456869 - J Biomed Opt. 2011 Mar;16(3):036005
24891083 - Br J Dermatol. 2014 Nov;171(5):1044-51
18213424 - Methods Inf Med. 2008;47(1):14-25
3430225 - J Opt Soc Am A. 1987 Dec;4(12):2379-94
24147614 - J Eur Acad Dermatol Venereol. 2014 Aug;28(8):1069-78
17657243 - J Invest Dermatol. 2007 Dec;127(12):2759-65
References_xml – year: 2002
  ident: bb0045
  article-title: Digital Image Processing
– volume: 67
  start-page: 786
  year: 1979
  end-page: 804
  ident: bb0055
  article-title: Statistical and structural approaches to texture
  publication-title: Proc IEEE
– volume: 28
  start-page: 1069
  year: 2013
  end-page: 1078
  ident: bb0040
  article-title: Non-invasive
  publication-title: J Eur Acad Dermatol Venereol
– volume: 16
  start-page: 036005
  year: 2011
  ident: bb0065
  article-title: Pilot study of semiautomated localization of the dermal/epidermal junction in reflectance confocal microscopy images of skin
  publication-title: J Biomed Opt
– year: 2014
  ident: bb0085
  article-title: Reflectance confocal microscopy as a second-level examination in skin oncology improves diagnostic accuracy and saves unnecessary excisions: a longitudinal prospective study
  publication-title: Br J Dermatol
– volume: 47
  start-page: 14
  year: 2008
  end-page: 25
  ident: bb0100
  article-title: Automatic identification of diagnostic significant regions in confocal laser scanning microscopy of melanocytic skin tumors
  publication-title: Methods Inf Med
– volume: 15
  start-page: 1186
  year: 1993
  end-page: 1191
  ident: bb0070
  article-title: Texture classification by wavelet packet signatures
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 51
  start-page: 923
  year: 2004
  end-page: 930
  ident: bb0075
  article-title: Sensitivity and specificity of reflectance-mode confocal microscopy for
  publication-title: J Am Acad Dermatol
– volume: 127
  start-page: 2759
  year: 2007
  end-page: 2765
  ident: bb0080
  article-title: The impact of
  publication-title: J Invest Dermatol
– volume: 25
  start-page: 554
  year: 2011
  end-page: 558
  ident: bb0060
  article-title: reflectance confocal microscopy: automated diagnostic image analysis of melanocytic skin tumours
  publication-title: J Eur Acad Dermatol Venereol
– volume: 170
  start-page: 802
  year: 2014
  end-page: 808
  ident: bb0010
  article-title: Impact of
  publication-title: Br J Dermatol
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bb0025
  article-title: Support-vector networks
  publication-title: Mach Learn
– volume: 132
  start-page: 2386
  year: 2012
  end-page: 2394
  ident: bb0050
  article-title: confocal microscopy for diagnosis of melanoma and basal cell carcinoma using a two-step method: Analysis of 710 consecutive clinically equivocal cases
  publication-title: J Invest Dermatol
– volume: 10
  start-page: 183
  year: 2009
  end-page: 206
  ident: bb0095
  article-title: Using local dependencies within batches to improve large margin classifiers
  publication-title: J Mach Learn Res
– volume: 5
  start-page: 1205
  year: 2004
  end-page: 1224
  ident: bb0105
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J Mach Learn Res
– year: 2013
  ident: bb0015
  article-title: Seg3D: Volumetric Image Segmentation and Visualization
  publication-title: Scientific Computing and Imaging Institute (SCI)
– year: 2001
  ident: bb0020
  article-title: Introduction to Algorithms
  publication-title: McGraw-Hill Higher Education
– volume: 21
  start-page: 291
  year: 1999
  end-page: 300
  ident: bb0090
  article-title: Filtering for texture classification: a comparative study
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 15
  start-page: 061713
  year: 2010
  ident: bb0035
  article-title: Automated detection of malignant features in confocal microscopy on superficial spreading melanoma versus nevi
  publication-title: J Biomed Opt
– volume: 4
  start-page: 2379
  year: 1987
  end-page: 2394
  ident: bb0030
  article-title: Relations between the statistics of natural images and the response properties of cortical cells
  publication-title: J Opt Soc Am
– volume: 170
  start-page: 802
  year: 2014
  ident: 10.1038/jid.2014.379_bb0010
  article-title: Impact of in vivo reflectance confocal microscopy on the number needed to treat melanoma in doubtful lesions
  publication-title: Br J Dermatol
  doi: 10.1111/bjd.12678
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1038/jid.2014.379_bb0025
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 4
  start-page: 2379
  year: 1987
  ident: 10.1038/jid.2014.379_bb0030
  article-title: Relations between the statistics of natural images and the response properties of cortical cells
  publication-title: J Opt Soc Am
  doi: 10.1364/JOSAA.4.002379
– volume: 15
  start-page: 061713
  year: 2010
  ident: 10.1038/jid.2014.379_bb0035
  article-title: Automated detection of malignant features in confocal microscopy on superficial spreading melanoma versus nevi
  publication-title: J Biomed Opt
  doi: 10.1117/1.3524301
– volume: 47
  start-page: 14
  year: 2008
  ident: 10.1038/jid.2014.379_bb0100
  article-title: Automatic identification of diagnostic significant regions in confocal laser scanning microscopy of melanocytic skin tumors
  publication-title: Methods Inf Med
  doi: 10.3414/ME0463
– volume: 25
  start-page: 554
  year: 2011
  ident: 10.1038/jid.2014.379_bb0060
  article-title: In vivo reflectance confocal microscopy: automated diagnostic image analysis of melanocytic skin tumours
  publication-title: J Eur Acad Dermatol Venereol
  doi: 10.1111/j.1468-3083.2010.03834.x
– volume: 15
  start-page: 1186
  year: 1993
  ident: 10.1038/jid.2014.379_bb0070
  article-title: Texture classification by wavelet packet signatures
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.244679
– year: 2001
  ident: 10.1038/jid.2014.379_bb0020
  article-title: Introduction to Algorithms
– volume: 51
  start-page: 923
  year: 2004
  ident: 10.1038/jid.2014.379_bb0075
  article-title: Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study
  publication-title: J Am Acad Dermatol
  doi: 10.1016/j.jaad.2004.06.028
– year: 2014
  ident: 10.1038/jid.2014.379_bb0085
  article-title: Reflectance confocal microscopy as a second-level examination in skin oncology improves diagnostic accuracy and saves unnecessary excisions: a longitudinal prospective study
  publication-title: Br J Dermatol
  doi: 10.1111/bjd.13148
– volume: 5
  start-page: 1205
  year: 2004
  ident: 10.1038/jid.2014.379_bb0105
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J Mach Learn Res
– volume: 21
  start-page: 291
  year: 1999
  ident: 10.1038/jid.2014.379_bb0090
  article-title: Filtering for texture classification: a comparative study
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.761261
– volume: 67
  start-page: 786
  year: 1979
  ident: 10.1038/jid.2014.379_bb0055
  article-title: Statistical and structural approaches to texture
  publication-title: Proc IEEE
  doi: 10.1109/PROC.1979.11328
– volume: 16
  start-page: 036005
  year: 2011
  ident: 10.1038/jid.2014.379_bb0065
  article-title: Pilot study of semiautomated localization of the dermal/epidermal junction in reflectance confocal microscopy images of skin
  publication-title: J Biomed Opt
  doi: 10.1117/1.3549740
– volume: 28
  start-page: 1069
  year: 2013
  ident: 10.1038/jid.2014.379_bb0040
  article-title: Non-invasive in vivo dermatopathology: identification of reflectance confocal microscopic correlates to specific histological features seen in melanocytic neoplasms
  publication-title: J Eur Acad Dermatol Venereol
  doi: 10.1111/jdv.12285
– year: 2002
  ident: 10.1038/jid.2014.379_bb0045
– volume: 132
  start-page: 2386
  year: 2012
  ident: 10.1038/jid.2014.379_bb0050
  article-title: In vivo confocal microscopy for diagnosis of melanoma and basal cell carcinoma using a two-step method: Analysis of 710 consecutive clinically equivocal cases
  publication-title: J Invest Dermatol
  doi: 10.1038/jid.2012.172
– year: 2013
  ident: 10.1038/jid.2014.379_bb0015
  article-title: Seg3D: Volumetric Image Segmentation and Visualization
– volume: 127
  start-page: 2759
  year: 2007
  ident: 10.1038/jid.2014.379_bb0080
  article-title: The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions
  publication-title: J Invest Dermatol
  doi: 10.1038/sj.jid.5700993
– volume: 10
  start-page: 183
  year: 2009
  ident: 10.1038/jid.2014.379_bb0095
  article-title: Using local dependencies within batches to improve large margin classifiers
  publication-title: J Mach Learn Res
– reference: 24147614 - J Eur Acad Dermatol Venereol. 2014 Aug;28(8):1069-78
– reference: 21198161 - J Biomed Opt. 2010 Nov-Dec;15(6):061713
– reference: 22718115 - J Invest Dermatol. 2012 Oct;132(10):2386-94
– reference: 24891083 - Br J Dermatol. 2014 Nov;171(5):1044-51
– reference: 24124911 - Br J Dermatol. 2014 Apr;170(4):802-8
– reference: 3430225 - J Opt Soc Am A. 1987 Dec;4(12):2379-94
– reference: 21456869 - J Biomed Opt. 2011 Mar;16(3):036005
– reference: 15583584 - J Am Acad Dermatol. 2004 Dec;51(6):923-30
– reference: 20735518 - J Eur Acad Dermatol Venereol. 2011 May;25(5):554-8
– reference: 17657243 - J Invest Dermatol. 2007 Dec;127(12):2759-65
– reference: 18213424 - Methods Inf Med. 2008;47(1):14-25
SSID ssj0016458
Score 2.3467355
Snippet Reflectance confocal microscopy (RCM) images skin noninvasively, with optical sectioning and nuclear-level resolution comparable with that of pathology. On the...
Reflectance confocal microscopy (RCM) images skin non-invasively, with optical sectioning and nuclear-level resolution comparable to that of pathology. Based...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 710
SubjectTerms Algorithms
Dermis - metabolism
Dermis - pathology
Epidermis - metabolism
Epidermis - pathology
Humans
Intercellular Junctions - pathology
Melanins - metabolism
Microscopy, Confocal - methods
Reproducibility of Results
Sensitivity and Specificity
Skin - metabolism
Skin - pathology
Skin Neoplasms - diagnosis
Skin Neoplasms - pathology
Title Automated Delineation of Dermal–Epidermal Junction in Reflectance Confocal Microscopy Image Stacks of Human Skin
URI https://dx.doi.org/10.1038/jid.2014.379
https://www.ncbi.nlm.nih.gov/pubmed/25184959
https://www.proquest.com/docview/1653131484
https://www.proquest.com/docview/1654698922
https://pubmed.ncbi.nlm.nih.gov/PMC4323765
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaglRAXRHl1oVRGghMKu37lcUKlbFUqbYUqKu3N8lMsLcm2u3vg3zOTOIEC5ZbIDzmZsef77PEMIa95YMyaicpMJYGgeOsyU8B8DJHFykUfQpu1ZHaaH5_Lk7mapw23VXKr7NfEdqH2jcM98jHLQVsEgHf5fnmVYdYoPF1NKTTukm0MXYbkq5gPhAuYgCr7aOFA8ufJ8X0iyvG3BYYJZfKdQCeuf5ukvyHnn56Tv5mio4fkQcKQ9KAT-g65E-pH5N4snZI_JsuDzboBJBo8_YjXzTtYSJsIr7AOX2ZTTAuLT_QEzFpbuKjpWYi4h49qQPEiIFo5OkOHPby68oN--g5rDwV06i5W2Fm7_08xe9cTcn40_XJ4nKXMCpmTqlpnLghfWe4FLxUvomchGMVyMFzWRisKgayMKecmPFSFLY2J3MR84pDT-iDFU7JVN3XYJZRJZgoXjeAWuKKC1hjTK-Sld15IEUfkbf9ztUthxzH7xaVuj79FqUEUGkWhQRQj8maovezCbdxSb9zLSSeo0EEADZbglhZ7vTh1mqYr_UupRuTVUAwTDE9NTB2aTVunzbLJ-Yg866Q_DA3AYQkMEzovbujFUAGDd98sqRdf2yDeUqA_knr-_2G9IPfhA1Tn9LZHttbXm_ASUNDa7reqvk-2P0xPP5_9BLSgCkI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKgEXxJtAASPRE1qyfu3jgFChqZK2iVDVSrm5Xq8tAmU3kESof4rfyMy-oEC59bYrP-T1jGe-2RnPEPKSO8YyE6rApBIMlDyzgYnhPDrPfGp97lxVtWQyjUYncn-mZhvkR3sXBsMqW5lYCeq8tPiPfMAi4BYB4F2-XXwNsGoUelfbEho1Wxy48-9gsi3fjHeBvtuc7w2P34-CpqpAYKVKV4F1Ik8zngueKB77nDlnFItAaGeZz0Qs0CJhytqQuzTOEmM8Nz4KLdpzuZMC5r1GNqUAqNAjm--G0w9Hnd8ikipp85PzkM-aUPtQJINPc0xMyuRrgWFj_1aCf4PcP2M1f1N-e7fJrQa10p2aze6QDVfcJdcnjV_-HlnsrFclYF-X01284F4DUVp6eAXJfxYMsRAtPtF9UKRV47ygR86j1wAZj-LVQ9SrdIIhgnhZ5pyOv4C0o4CH7eclTlZ5HCjWC7tPTq5k1x-QXlEW7hGhTDITW28Ez8A6VTAas4i5KMltLqTwffKq3Vxtm0TnWG_jTFcOd5FoIIVGUmggRZ9sd70XdYKPS_oNWjrpBpzUoEOD7rlkxFZLTt0IhqX-xcZ98qJrhiONfhpTuHJd9anqenLeJw9r6ndLAziagE0Lk8cX-KLrgOnCL7YU849V2nApMAJKPf7_sp6TG6PjyaE-HE8PnpCb8DGqDrnbIr3Vt7V7ChhslT1rGJ-S06s-az8BOIhHcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+delineation+of+dermal-epidermal+junction+in+reflectance+confocal+microscopy+image+stacks+of+human+skin&rft.jtitle=Journal+of+investigative+dermatology&rft.au=Kurugol%2C+Sila&rft.au=Kose%2C+Kivanc&rft.au=Park%2C+Brian&rft.au=Dy%2C+Jennifer+G&rft.date=2015-03-01&rft.eissn=1523-1747&rft.volume=135&rft.issue=3&rft.spage=710&rft_id=info:doi/10.1038%2Fjid.2014.379&rft_id=info%3Apmid%2F25184959&rft.externalDocID=25184959
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-202X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-202X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-202X&client=summon