Automated Delineation of Dermal–Epidermal Junction in Reflectance Confocal Microscopy Image Stacks of Human Skin
Reflectance confocal microscopy (RCM) images skin noninvasively, with optical sectioning and nuclear-level resolution comparable with that of pathology. On the basis of the assessment of the dermal–epidermal junction (DEJ) and morphologic features in its vicinity, skin cancer can be diagnosed in viv...
Saved in:
Published in | Journal of investigative dermatology Vol. 135; no. 3; pp. 710 - 717 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.03.2015
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0022-202X 1523-1747 1523-1747 |
DOI | 10.1038/jid.2014.379 |
Cover
Loading…
Abstract | Reflectance confocal microscopy (RCM) images skin noninvasively, with optical sectioning and nuclear-level resolution comparable with that of pathology. On the basis of the assessment of the dermal–epidermal junction (DEJ) and morphologic features in its vicinity, skin cancer can be diagnosed in vivo with high sensitivity and specificity. However, the current visual, qualitative approach for reading images leads to subjective variability in diagnosis. We hypothesize that machine learning–based algorithms may enable a more quantitative, objective approach. Testing and validation were performed with two algorithms that can automatically delineate the DEJ in RCM stacks of normal human skin. The test set was composed of 15 fair- and 15 dark-skin stacks (30 subjects) with expert labelings. In dark skin, in which the contrast is high owing to melanin, the algorithm produced an average error of 7.9±6.4 μm. In fair skin, the algorithm delineated the DEJ as a transition zone, with average error of 8.3±5.8 μm for the epidermis-to-transition zone boundary and 7.6±5.6 μm for the transition zone-to-dermis. Our results suggest that automated algorithms may quantitatively guide the delineation of the DEJ, to assist in objective reading of RCM images. Further development of such algorithms may guide assessment of abnormal morphological features at the DEJ. |
---|---|
AbstractList | Reflectance confocal microscopy (RCM) images skin noninvasively, with optical sectioning and nuclear-level resolution comparable with that of pathology. On the basis of the assessment of the dermal-epidermal junction (DEJ) and morphologic features in its vicinity, skin cancer can be diagnosed in vivo with high sensitivity and specificity. However, the current visual, qualitative approach for reading images leads to subjective variability in diagnosis. We hypothesize that machine learning-based algorithms may enable a more quantitative, objective approach. Testing and validation were performed with two algorithms that can automatically delineate the DEJ in RCM stacks of normal human skin. The test set was composed of 15 fair- and 15 dark-skin stacks (30 subjects) with expert labelings. In dark skin, in which the contrast is high owing to melanin, the algorithm produced an average error of 7.9±6.4 μm. In fair skin, the algorithm delineated the DEJ as a transition zone, with average error of 8.3±5.8 μm for the epidermis-to-transition zone boundary and 7.6±5.6 μm for the transition zone-to-dermis. Our results suggest that automated algorithms may quantitatively guide the delineation of the DEJ, to assist in objective reading of RCM images. Further development of such algorithms may guide assessment of abnormal morphological features at the DEJ. Reflectance confocal microscopy (RCM) images skin non-invasively, with optical sectioning and nuclear-level resolution comparable to that of pathology. Based on assessment of the dermal-epidermal junction (DEJ) and morphologic features in its vicinity, skin cancer can be diagnosed in vivo with high sensitivity and specificity. However, the current visual, qualitative approach for reading images leads to subjective variability in diagnosis. We hypothesize that machine learning-based algorithms may enable a more quantitative, objective approach. Testing and validation was performed with two algorithms that can automatically delineate the DEJ in RCM stacks of normal human skin. The test set was composed of 15 fair and 15 dark skin stacks (30 subjects) with expert labellings. In dark skin, in which the contrast is high due to melanin, the algorithm produced an average error of 7.9±6.4μ m . In fair skin, the algorithm delineated the DEJ as a transition zone, with average error of 8.3±5.8μ m for the epidermis-to-transition zone boundary and 7.6±5.6μ m for the transition zone-to-dermis. Our results suggest that automated algorithms may quantitatively guide the delineation of the DEJ, to assist in objective reading of RCM images. Further development of such algorithms may guide assessment of abnormal morphological features at the DEJ. Reflectance confocal microscopy (RCM) images skin noninvasively, with optical sectioning and nuclear-level resolution comparable with that of pathology. On the basis of the assessment of the dermal-epidermal junction (DEJ) and morphologic features in its vicinity, skin cancer can be diagnosed in vivo with high sensitivity and specificity. However, the current visual, qualitative approach for reading images leads to subjective variability in diagnosis. We hypothesize that machine learning-based algorithms may enable a more quantitative, objective approach. Testing and validation were performed with two algorithms that can automatically delineate the DEJ in RCM stacks of normal human skin. The test set was composed of 15 fair- and 15 dark-skin stacks (30 subjects) with expert labelings. In dark skin, in which the contrast is high owing to melanin, the algorithm produced an average error of 7.9±6.4 μm. In fair skin, the algorithm delineated the DEJ as a transition zone, with average error of 8.3±5.8 μm for the epidermis-to-transition zone boundary and 7.6±5.6 μm for the transition zone-to-dermis. Our results suggest that automated algorithms may quantitatively guide the delineation of the DEJ, to assist in objective reading of RCM images. Further development of such algorithms may guide assessment of abnormal morphological features at the DEJ.Reflectance confocal microscopy (RCM) images skin noninvasively, with optical sectioning and nuclear-level resolution comparable with that of pathology. On the basis of the assessment of the dermal-epidermal junction (DEJ) and morphologic features in its vicinity, skin cancer can be diagnosed in vivo with high sensitivity and specificity. However, the current visual, qualitative approach for reading images leads to subjective variability in diagnosis. We hypothesize that machine learning-based algorithms may enable a more quantitative, objective approach. Testing and validation were performed with two algorithms that can automatically delineate the DEJ in RCM stacks of normal human skin. The test set was composed of 15 fair- and 15 dark-skin stacks (30 subjects) with expert labelings. In dark skin, in which the contrast is high owing to melanin, the algorithm produced an average error of 7.9±6.4 μm. In fair skin, the algorithm delineated the DEJ as a transition zone, with average error of 8.3±5.8 μm for the epidermis-to-transition zone boundary and 7.6±5.6 μm for the transition zone-to-dermis. Our results suggest that automated algorithms may quantitatively guide the delineation of the DEJ, to assist in objective reading of RCM images. Further development of such algorithms may guide assessment of abnormal morphological features at the DEJ. |
Author | Kurugol, Sila Brooks, Dana H. Rajadhyaksha, Milind Dy, Jennifer G. Kose, Kivanc Park, Brian |
AuthorAffiliation | b Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY c NYU School of Medicine and NYU Department of Radiology, New York, NY a Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA d Department of Electrical and Computer Engineering, Northeastern University, Boston, MA |
AuthorAffiliation_xml | – name: b Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY – name: c NYU School of Medicine and NYU Department of Radiology, New York, NY – name: d Department of Electrical and Computer Engineering, Northeastern University, Boston, MA – name: a Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA |
Author_xml | – sequence: 1 givenname: Sila surname: Kurugol fullname: Kurugol, Sila organization: Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA – sequence: 2 givenname: Kivanc surname: Kose fullname: Kose, Kivanc email: kosek@mskcc.org organization: Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA – sequence: 3 givenname: Brian surname: Park fullname: Park, Brian organization: NYU School of Medicine and NYU Department of Radiology, New York, New York, USA – sequence: 4 givenname: Jennifer G. surname: Dy fullname: Dy, Jennifer G. organization: Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts, USA – sequence: 5 givenname: Dana H. surname: Brooks fullname: Brooks, Dana H. organization: Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts, USA – sequence: 6 givenname: Milind surname: Rajadhyaksha fullname: Rajadhyaksha, Milind organization: Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25184959$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9u1DAQhy1URLeFG2cUiQsHsvhvEl-QqqXQoiIkChI3y7EnxdvE3tpJpd54B96QJ8HZLRVUcLKt-eanGX8HaM8HDwg9JXhJMGterZ1dUkz4ktXyAVoQQVlJal7voQXGlJYU06_76CClNcak4qJ5hPapIA2XQi5QPJrGMOgRbPEGeudBjy74InT5GQfd__z-43jj7PZevJ-82ZadLz5B14MZtTdQrILvgsnAB2diSCZsborTQV9AcT5qc5nmuJNp0L44v3T-MXrY6T7Bk9vzEH15e_x5dVKefXx3ujo6Kw0XciwNMCtbahltBK07SwC0IFVVN23btaxmknJJhDGYgqzbRuuO6q7CBteEWeDsEL3e5W6mdgBrwI9R92oT3aDjjQraqb8r3n1TF-FacUZZXYkc8OI2IIarCdKoBpcM9L32EKakSCV4JRtJaUaf30PXYYo-rzdTjDDCm3miZ39OdDfKbx0ZeLkD5m9MEbo7hGA121bZtpptq2w74_Qebty4FZj3cf3_mqpdE-S_v3YQVTIOskbrYhaqbHD_bvwF1I3CZw |
CitedBy_id | crossref_primary_10_1111_ics_12720 crossref_primary_10_1158_0008_5472_CAN_16_0252 crossref_primary_10_3390_jcm11020429 crossref_primary_10_1016_j_jmbbm_2019_103552 crossref_primary_10_1093_oncolo_oyac106 crossref_primary_10_1111_srt_12316 crossref_primary_10_1016_j_jdcr_2018_09_019 crossref_primary_10_1002_lsm_23376 crossref_primary_10_1111_vde_13071 crossref_primary_10_1002_cyto_a_23963 crossref_primary_10_1038_s41598_021_90328_x crossref_primary_10_1364_BOE_9_001906 crossref_primary_10_1002_lsm_22600 crossref_primary_10_1016_j_jid_2019_10_018 crossref_primary_10_1117_1_JMI_6_2_024003 crossref_primary_10_1142_S1793545821400058 crossref_primary_10_1038_s42255_024_01016_9 crossref_primary_10_3390_bioengineering8110148 crossref_primary_10_1109_TIP_2016_2615291 crossref_primary_10_1364_BOE_9_002240 crossref_primary_10_1002_jbio_202100236 crossref_primary_10_1016_j_compbiomed_2023_107413 crossref_primary_10_1364_AO_392004 crossref_primary_10_1016_j_jaad_2023_09_086 crossref_primary_10_1016_j_compmedimag_2020_101833 crossref_primary_10_1007_s13671_019_00267_0 |
Cites_doi | 10.1111/bjd.12678 10.1007/BF00994018 10.1364/JOSAA.4.002379 10.1117/1.3524301 10.3414/ME0463 10.1111/j.1468-3083.2010.03834.x 10.1109/34.244679 10.1016/j.jaad.2004.06.028 10.1111/bjd.13148 10.1109/34.761261 10.1109/PROC.1979.11328 10.1117/1.3549740 10.1111/jdv.12285 10.1038/jid.2012.172 10.1038/sj.jid.5700993 |
ContentType | Journal Article |
Copyright | 2015 The Society for Investigative Dermatology, Inc Copyright Nature Publishing Group Mar 2015 |
Copyright_xml | – notice: 2015 The Society for Investigative Dermatology, Inc – notice: Copyright Nature Publishing Group Mar 2015 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7T5 7X7 7XB 88E 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FR3 FYUFA GHDGH H94 K9. M0S M1P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.1038/jid.2014.379 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Immunology Abstracts ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Proquest Medical Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1523-1747 |
EndPage | 717 |
ExternalDocumentID | PMC4323765 3586490131 25184959 10_1038_jid_2014_379 S0022202X15371645 |
Genre | Evaluation Studies Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P41 GM103545 – fundername: NIBIB NIH HHS grantid: R01EB012466 – fundername: NCI NIH HHS grantid: R01CA156773 – fundername: NIGMS NIH HHS grantid: P41GM103545 – fundername: NIBIB NIH HHS grantid: R01 EB012466 – fundername: NCI NIH HHS grantid: R01 CA156773 – fundername: NCI NIH HHS grantid: P30 CA008748 |
GroupedDBID | --- --K .55 .GJ 0R~ 1B1 29K 2WC 36B 3O- 4.4 457 53G 5GY 5RE 5VS 6I. 7X7 88E 8AO 8FI 8FJ 8R4 8R5 AACTN AAEDW AAFTH AALRI AAXUO ABAWZ ABJNI ABLJU ABMAC ABUWG ACGFO ACGFS ACPRK ADBBV ADEZE ADFRT ADVLN AENEX AEXQZ AFEBI AFETI AFFNX AFJKZ AFKRA AFTJW AGHFR AHMBA AI. AITUG AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BAWUL BENPR BFHJK BPHCQ BVXVI CAG CCPQU COF CS3 D-I DIK E3Z EBS EJD F5P FDB FRP FYUFA GX1 HMCUK HZ~ IH2 IHE J5H JSO KQ8 L7B LH4 LW6 M1P M41 MVM NQ- O9- OK1 P2P PHGZT PQQKQ PROAC PSQYO Q2X R9- RIG RNS ROL RPZ SSZ TR2 UKHRP VH1 W2D X7M Y6R YFH YOC YUY ZGI AAFWJ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AIGII AKBMS AKYEP CITATION PHGZM CGR CUY CVF ECM EFKBS EIF NPM PJZUB PPXIY 3V. 7T5 7XB 8FD 8FK FR3 H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM |
ID | FETCH-LOGICAL-c459t-ce3d9b2d328527fd1eea516678bbfb373924915cc02e97b8aaf2af60c0713de43 |
IEDL.DBID | 7X7 |
ISSN | 0022-202X 1523-1747 |
IngestDate | Thu Aug 21 18:41:46 EDT 2025 Fri Jul 11 16:45:51 EDT 2025 Fri Jul 25 05:18:06 EDT 2025 Mon Jul 21 05:38:25 EDT 2025 Thu Apr 24 22:58:35 EDT 2025 Tue Jul 01 05:13:20 EDT 2025 Sat Apr 12 15:21:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-ce3d9b2d328527fd1eea516678bbfb373924915cc02e97b8aaf2af60c0713de43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1038/jid.2014.379 |
PMID | 25184959 |
PQID | 1653131484 |
PQPubID | 46127 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4323765 proquest_miscellaneous_1654698922 proquest_journals_1653131484 pubmed_primary_25184959 crossref_primary_10_1038_jid_2014_379 crossref_citationtrail_10_1038_jid_2014_379 elsevier_sciencedirect_doi_10_1038_jid_2014_379 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-01 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: London |
PublicationTitle | Journal of investigative dermatology |
PublicationTitleAlternate | J Invest Dermatol |
PublicationYear | 2015 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Alarcon, Carrera, Palou (bb0010) 2014; 170 Randen, Husoy (bb0090) 1999; 21 Koller, Wiltgen, Ahlgrimm-Siess (bb0060) 2011; 25 Haralic (bb0055) 1979; 67 Wiltgen, Gerger, Wagner (bb0100) 2008; 47 Pellacani, Guitera, Longo (bb0080) 2007; 127 Gareau, Hennessy, Wan (bb0035) 2010; 15 Kurugol, Dy, Brooks (bb0065) 2011; 16 Gonzales, Wood (bb0045) 2002 Field (bb0030) 1987; 4 (bb0015) 2013 Guitera, Menzies, Longo (bb0050) 2012; 132 Vural, Fung, Krishnapuram (bb0095) 2009; 10 Yu, Liu (bb0105) 2004; 5 Gill, Longo, Farnetani (bb0040) 2013; 28 Cormen, Stein, Rivest (bb0020) 2001 Cortes, Vapnik (bb0025) 1995; 20 Laine, Fan (bb0070) 1993; 15 Pellacani, Pepe, Casari (bb0085) 2014 Nori, Rius-Diaz, Cuevas (bb0075) 2004; 51 Haralic (10.1038/jid.2014.379_bb0055) 1979; 67 Gonzales (10.1038/jid.2014.379_bb0045) 2002 Laine (10.1038/jid.2014.379_bb0070) 1993; 15 Randen (10.1038/jid.2014.379_bb0090) 1999; 21 Cormen (10.1038/jid.2014.379_bb0020) 2001 Gareau (10.1038/jid.2014.379_bb0035) 2010; 15 (10.1038/jid.2014.379_bb0015) 2013 Pellacani (10.1038/jid.2014.379_bb0080) 2007; 127 Gill (10.1038/jid.2014.379_bb0040) 2013; 28 Wiltgen (10.1038/jid.2014.379_bb0100) 2008; 47 Koller (10.1038/jid.2014.379_bb0060) 2011; 25 Pellacani (10.1038/jid.2014.379_bb0085) 2014 Field (10.1038/jid.2014.379_bb0030) 1987; 4 Nori (10.1038/jid.2014.379_bb0075) 2004; 51 Kurugol (10.1038/jid.2014.379_bb0065) 2011; 16 Vural (10.1038/jid.2014.379_bb0095) 2009; 10 Cortes (10.1038/jid.2014.379_bb0025) 1995; 20 Guitera (10.1038/jid.2014.379_bb0050) 2012; 132 Alarcon (10.1038/jid.2014.379_bb0010) 2014; 170 Yu (10.1038/jid.2014.379_bb0105) 2004; 5 22718115 - J Invest Dermatol. 2012 Oct;132(10):2386-94 21198161 - J Biomed Opt. 2010 Nov-Dec;15(6):061713 20735518 - J Eur Acad Dermatol Venereol. 2011 May;25(5):554-8 24124911 - Br J Dermatol. 2014 Apr;170(4):802-8 15583584 - J Am Acad Dermatol. 2004 Dec;51(6):923-30 21456869 - J Biomed Opt. 2011 Mar;16(3):036005 24891083 - Br J Dermatol. 2014 Nov;171(5):1044-51 18213424 - Methods Inf Med. 2008;47(1):14-25 3430225 - J Opt Soc Am A. 1987 Dec;4(12):2379-94 24147614 - J Eur Acad Dermatol Venereol. 2014 Aug;28(8):1069-78 17657243 - J Invest Dermatol. 2007 Dec;127(12):2759-65 |
References_xml | – year: 2002 ident: bb0045 article-title: Digital Image Processing – volume: 67 start-page: 786 year: 1979 end-page: 804 ident: bb0055 article-title: Statistical and structural approaches to texture publication-title: Proc IEEE – volume: 28 start-page: 1069 year: 2013 end-page: 1078 ident: bb0040 article-title: Non-invasive publication-title: J Eur Acad Dermatol Venereol – volume: 16 start-page: 036005 year: 2011 ident: bb0065 article-title: Pilot study of semiautomated localization of the dermal/epidermal junction in reflectance confocal microscopy images of skin publication-title: J Biomed Opt – year: 2014 ident: bb0085 article-title: Reflectance confocal microscopy as a second-level examination in skin oncology improves diagnostic accuracy and saves unnecessary excisions: a longitudinal prospective study publication-title: Br J Dermatol – volume: 47 start-page: 14 year: 2008 end-page: 25 ident: bb0100 article-title: Automatic identification of diagnostic significant regions in confocal laser scanning microscopy of melanocytic skin tumors publication-title: Methods Inf Med – volume: 15 start-page: 1186 year: 1993 end-page: 1191 ident: bb0070 article-title: Texture classification by wavelet packet signatures publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 51 start-page: 923 year: 2004 end-page: 930 ident: bb0075 article-title: Sensitivity and specificity of reflectance-mode confocal microscopy for publication-title: J Am Acad Dermatol – volume: 127 start-page: 2759 year: 2007 end-page: 2765 ident: bb0080 article-title: The impact of publication-title: J Invest Dermatol – volume: 25 start-page: 554 year: 2011 end-page: 558 ident: bb0060 article-title: reflectance confocal microscopy: automated diagnostic image analysis of melanocytic skin tumours publication-title: J Eur Acad Dermatol Venereol – volume: 170 start-page: 802 year: 2014 end-page: 808 ident: bb0010 article-title: Impact of publication-title: Br J Dermatol – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bb0025 article-title: Support-vector networks publication-title: Mach Learn – volume: 132 start-page: 2386 year: 2012 end-page: 2394 ident: bb0050 article-title: confocal microscopy for diagnosis of melanoma and basal cell carcinoma using a two-step method: Analysis of 710 consecutive clinically equivocal cases publication-title: J Invest Dermatol – volume: 10 start-page: 183 year: 2009 end-page: 206 ident: bb0095 article-title: Using local dependencies within batches to improve large margin classifiers publication-title: J Mach Learn Res – volume: 5 start-page: 1205 year: 2004 end-page: 1224 ident: bb0105 article-title: Efficient feature selection via analysis of relevance and redundancy publication-title: J Mach Learn Res – year: 2013 ident: bb0015 article-title: Seg3D: Volumetric Image Segmentation and Visualization publication-title: Scientific Computing and Imaging Institute (SCI) – year: 2001 ident: bb0020 article-title: Introduction to Algorithms publication-title: McGraw-Hill Higher Education – volume: 21 start-page: 291 year: 1999 end-page: 300 ident: bb0090 article-title: Filtering for texture classification: a comparative study publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 15 start-page: 061713 year: 2010 ident: bb0035 article-title: Automated detection of malignant features in confocal microscopy on superficial spreading melanoma versus nevi publication-title: J Biomed Opt – volume: 4 start-page: 2379 year: 1987 end-page: 2394 ident: bb0030 article-title: Relations between the statistics of natural images and the response properties of cortical cells publication-title: J Opt Soc Am – volume: 170 start-page: 802 year: 2014 ident: 10.1038/jid.2014.379_bb0010 article-title: Impact of in vivo reflectance confocal microscopy on the number needed to treat melanoma in doubtful lesions publication-title: Br J Dermatol doi: 10.1111/bjd.12678 – volume: 20 start-page: 273 year: 1995 ident: 10.1038/jid.2014.379_bb0025 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1007/BF00994018 – volume: 4 start-page: 2379 year: 1987 ident: 10.1038/jid.2014.379_bb0030 article-title: Relations between the statistics of natural images and the response properties of cortical cells publication-title: J Opt Soc Am doi: 10.1364/JOSAA.4.002379 – volume: 15 start-page: 061713 year: 2010 ident: 10.1038/jid.2014.379_bb0035 article-title: Automated detection of malignant features in confocal microscopy on superficial spreading melanoma versus nevi publication-title: J Biomed Opt doi: 10.1117/1.3524301 – volume: 47 start-page: 14 year: 2008 ident: 10.1038/jid.2014.379_bb0100 article-title: Automatic identification of diagnostic significant regions in confocal laser scanning microscopy of melanocytic skin tumors publication-title: Methods Inf Med doi: 10.3414/ME0463 – volume: 25 start-page: 554 year: 2011 ident: 10.1038/jid.2014.379_bb0060 article-title: In vivo reflectance confocal microscopy: automated diagnostic image analysis of melanocytic skin tumours publication-title: J Eur Acad Dermatol Venereol doi: 10.1111/j.1468-3083.2010.03834.x – volume: 15 start-page: 1186 year: 1993 ident: 10.1038/jid.2014.379_bb0070 article-title: Texture classification by wavelet packet signatures publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.244679 – year: 2001 ident: 10.1038/jid.2014.379_bb0020 article-title: Introduction to Algorithms – volume: 51 start-page: 923 year: 2004 ident: 10.1038/jid.2014.379_bb0075 article-title: Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study publication-title: J Am Acad Dermatol doi: 10.1016/j.jaad.2004.06.028 – year: 2014 ident: 10.1038/jid.2014.379_bb0085 article-title: Reflectance confocal microscopy as a second-level examination in skin oncology improves diagnostic accuracy and saves unnecessary excisions: a longitudinal prospective study publication-title: Br J Dermatol doi: 10.1111/bjd.13148 – volume: 5 start-page: 1205 year: 2004 ident: 10.1038/jid.2014.379_bb0105 article-title: Efficient feature selection via analysis of relevance and redundancy publication-title: J Mach Learn Res – volume: 21 start-page: 291 year: 1999 ident: 10.1038/jid.2014.379_bb0090 article-title: Filtering for texture classification: a comparative study publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.761261 – volume: 67 start-page: 786 year: 1979 ident: 10.1038/jid.2014.379_bb0055 article-title: Statistical and structural approaches to texture publication-title: Proc IEEE doi: 10.1109/PROC.1979.11328 – volume: 16 start-page: 036005 year: 2011 ident: 10.1038/jid.2014.379_bb0065 article-title: Pilot study of semiautomated localization of the dermal/epidermal junction in reflectance confocal microscopy images of skin publication-title: J Biomed Opt doi: 10.1117/1.3549740 – volume: 28 start-page: 1069 year: 2013 ident: 10.1038/jid.2014.379_bb0040 article-title: Non-invasive in vivo dermatopathology: identification of reflectance confocal microscopic correlates to specific histological features seen in melanocytic neoplasms publication-title: J Eur Acad Dermatol Venereol doi: 10.1111/jdv.12285 – year: 2002 ident: 10.1038/jid.2014.379_bb0045 – volume: 132 start-page: 2386 year: 2012 ident: 10.1038/jid.2014.379_bb0050 article-title: In vivo confocal microscopy for diagnosis of melanoma and basal cell carcinoma using a two-step method: Analysis of 710 consecutive clinically equivocal cases publication-title: J Invest Dermatol doi: 10.1038/jid.2012.172 – year: 2013 ident: 10.1038/jid.2014.379_bb0015 article-title: Seg3D: Volumetric Image Segmentation and Visualization – volume: 127 start-page: 2759 year: 2007 ident: 10.1038/jid.2014.379_bb0080 article-title: The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions publication-title: J Invest Dermatol doi: 10.1038/sj.jid.5700993 – volume: 10 start-page: 183 year: 2009 ident: 10.1038/jid.2014.379_bb0095 article-title: Using local dependencies within batches to improve large margin classifiers publication-title: J Mach Learn Res – reference: 24147614 - J Eur Acad Dermatol Venereol. 2014 Aug;28(8):1069-78 – reference: 21198161 - J Biomed Opt. 2010 Nov-Dec;15(6):061713 – reference: 22718115 - J Invest Dermatol. 2012 Oct;132(10):2386-94 – reference: 24891083 - Br J Dermatol. 2014 Nov;171(5):1044-51 – reference: 24124911 - Br J Dermatol. 2014 Apr;170(4):802-8 – reference: 3430225 - J Opt Soc Am A. 1987 Dec;4(12):2379-94 – reference: 21456869 - J Biomed Opt. 2011 Mar;16(3):036005 – reference: 15583584 - J Am Acad Dermatol. 2004 Dec;51(6):923-30 – reference: 20735518 - J Eur Acad Dermatol Venereol. 2011 May;25(5):554-8 – reference: 17657243 - J Invest Dermatol. 2007 Dec;127(12):2759-65 – reference: 18213424 - Methods Inf Med. 2008;47(1):14-25 |
SSID | ssj0016458 |
Score | 2.3467355 |
Snippet | Reflectance confocal microscopy (RCM) images skin noninvasively, with optical sectioning and nuclear-level resolution comparable with that of pathology. On the... Reflectance confocal microscopy (RCM) images skin non-invasively, with optical sectioning and nuclear-level resolution comparable to that of pathology. Based... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 710 |
SubjectTerms | Algorithms Dermis - metabolism Dermis - pathology Epidermis - metabolism Epidermis - pathology Humans Intercellular Junctions - pathology Melanins - metabolism Microscopy, Confocal - methods Reproducibility of Results Sensitivity and Specificity Skin - metabolism Skin - pathology Skin Neoplasms - diagnosis Skin Neoplasms - pathology |
Title | Automated Delineation of Dermal–Epidermal Junction in Reflectance Confocal Microscopy Image Stacks of Human Skin |
URI | https://dx.doi.org/10.1038/jid.2014.379 https://www.ncbi.nlm.nih.gov/pubmed/25184959 https://www.proquest.com/docview/1653131484 https://www.proquest.com/docview/1654698922 https://pubmed.ncbi.nlm.nih.gov/PMC4323765 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaglRAXRHl1oVRGghMKu37lcUKlbFUqbYUqKu3N8lMsLcm2u3vg3zOTOIEC5ZbIDzmZsef77PEMIa95YMyaicpMJYGgeOsyU8B8DJHFykUfQpu1ZHaaH5_Lk7mapw23VXKr7NfEdqH2jcM98jHLQVsEgHf5fnmVYdYoPF1NKTTukm0MXYbkq5gPhAuYgCr7aOFA8ufJ8X0iyvG3BYYJZfKdQCeuf5ukvyHnn56Tv5mio4fkQcKQ9KAT-g65E-pH5N4snZI_JsuDzboBJBo8_YjXzTtYSJsIr7AOX2ZTTAuLT_QEzFpbuKjpWYi4h49qQPEiIFo5OkOHPby68oN--g5rDwV06i5W2Fm7_08xe9cTcn40_XJ4nKXMCpmTqlpnLghfWe4FLxUvomchGMVyMFzWRisKgayMKecmPFSFLY2J3MR84pDT-iDFU7JVN3XYJZRJZgoXjeAWuKKC1hjTK-Sld15IEUfkbf9ztUthxzH7xaVuj79FqUEUGkWhQRQj8maovezCbdxSb9zLSSeo0EEADZbglhZ7vTh1mqYr_UupRuTVUAwTDE9NTB2aTVunzbLJ-Yg866Q_DA3AYQkMEzovbujFUAGDd98sqRdf2yDeUqA_knr-_2G9IPfhA1Tn9LZHttbXm_ASUNDa7reqvk-2P0xPP5_9BLSgCkI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKgEXxJtAASPRE1qyfu3jgFChqZK2iVDVSrm5Xq8tAmU3kESof4rfyMy-oEC59bYrP-T1jGe-2RnPEPKSO8YyE6rApBIMlDyzgYnhPDrPfGp97lxVtWQyjUYncn-mZhvkR3sXBsMqW5lYCeq8tPiPfMAi4BYB4F2-XXwNsGoUelfbEho1Wxy48-9gsi3fjHeBvtuc7w2P34-CpqpAYKVKV4F1Ik8zngueKB77nDlnFItAaGeZz0Qs0CJhytqQuzTOEmM8Nz4KLdpzuZMC5r1GNqUAqNAjm--G0w9Hnd8ikipp85PzkM-aUPtQJINPc0xMyuRrgWFj_1aCf4PcP2M1f1N-e7fJrQa10p2aze6QDVfcJdcnjV_-HlnsrFclYF-X01284F4DUVp6eAXJfxYMsRAtPtF9UKRV47ygR86j1wAZj-LVQ9SrdIIhgnhZ5pyOv4C0o4CH7eclTlZ5HCjWC7tPTq5k1x-QXlEW7hGhTDITW28Ez8A6VTAas4i5KMltLqTwffKq3Vxtm0TnWG_jTFcOd5FoIIVGUmggRZ9sd70XdYKPS_oNWjrpBpzUoEOD7rlkxFZLTt0IhqX-xcZ98qJrhiONfhpTuHJd9anqenLeJw9r6ndLAziagE0Lk8cX-KLrgOnCL7YU849V2nApMAJKPf7_sp6TG6PjyaE-HE8PnpCb8DGqDrnbIr3Vt7V7ChhslT1rGJ-S06s-az8BOIhHcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+delineation+of+dermal-epidermal+junction+in+reflectance+confocal+microscopy+image+stacks+of+human+skin&rft.jtitle=Journal+of+investigative+dermatology&rft.au=Kurugol%2C+Sila&rft.au=Kose%2C+Kivanc&rft.au=Park%2C+Brian&rft.au=Dy%2C+Jennifer+G&rft.date=2015-03-01&rft.eissn=1523-1747&rft.volume=135&rft.issue=3&rft.spage=710&rft_id=info:doi/10.1038%2Fjid.2014.379&rft_id=info%3Apmid%2F25184959&rft.externalDocID=25184959 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-202X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-202X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-202X&client=summon |