Survival analysis in the presence of competing risks
Survival analysis in the presence of competing risks imposes additional challenges for clinical investigators in that hazard function (the rate) has no one-to-one link to the cumulative incidence function (CIF, the risk). CIF is of particular interest and can be estimated non-parametrically with the...
Saved in:
Published in | Annals of translational medicine Vol. 5; no. 3; p. 47 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
China
AME Publishing Company
01.02.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2305-5839 2305-5839 |
DOI | 10.21037/atm.2016.08.62 |
Cover
Loading…
Abstract | Survival analysis in the presence of competing risks imposes additional challenges for clinical investigators in that hazard function (the rate) has no one-to-one link to the cumulative incidence function (CIF, the risk). CIF is of particular interest and can be estimated non-parametrically with the use cuminc() function. This function also allows for group comparison and visualization of estimated CIF. The effect of covariates on cause-specific hazard can be explored using conventional Cox proportional hazard model by treating competing events as censoring. However, the effect on hazard cannot be directly linked to the effect on CIF because there is no one-to-one correspondence between hazard and cumulative incidence. Fine-Gray model directly models the covariate effect on CIF and it reports subdistribution hazard ratio (SHR). However, SHR only provide information on the ordering of CIF curves at different levels of covariates, it has no practical interpretation as HR in the absence of competing risks. Fine-Gray model can be fit with crr() function shipped with the
package. Time-varying covariates are allowed in the crr() function, which is specified by
and
arguments. Predictions and visualization of CIF for subjects with given covariate values are allowed for
object. Alternatively, competing risk models can be fit with
package by employing different link functions between covariates and outcomes. The assumption of proportionality can be checked by testing statistical significance of interaction terms involving failure time. Schoenfeld residuals provide another way to check model assumption. |
---|---|
AbstractList | Survival analysis in the presence of competing risks imposes additional challenges for clinical investigators in that hazard function (the rate) has no one-to-one link to the cumulative incidence function (CIF, the risk). CIF is of particular interest and can be estimated non-parametrically with the use cuminc() function. This function also allows for group comparison and visualization of estimated CIF. The effect of covariates on cause-specific hazard can be explored using conventional Cox proportional hazard model by treating competing events as censoring. However, the effect on hazard cannot be directly linked to the effect on CIF because there is no one-to-one correspondence between hazard and cumulative incidence. Fine-Gray model directly models the covariate effect on CIF and it reports subdistribution hazard ratio (SHR). However, SHR only provide information on the ordering of CIF curves at different levels of covariates, it has no practical interpretation as HR in the absence of competing risks. Fine-Gray model can be fit with crr() function shipped with the
package. Time-varying covariates are allowed in the crr() function, which is specified by
and
arguments. Predictions and visualization of CIF for subjects with given covariate values are allowed for
object. Alternatively, competing risk models can be fit with
package by employing different link functions between covariates and outcomes. The assumption of proportionality can be checked by testing statistical significance of interaction terms involving failure time. Schoenfeld residuals provide another way to check model assumption. Survival analysis in the presence of competing risks imposes additional challenges for clinical investigators in that hazard function (the rate) has no one-to-one link to the cumulative incidence function (CIF, the risk). CIF is of particular interest and can be estimated non-parametrically with the use cuminc() function. This function also allows for group comparison and visualization of estimated CIF. The effect of covariates on cause-specific hazard can be explored using conventional Cox proportional hazard model by treating competing events as censoring. However, the effect on hazard cannot be directly linked to the effect on CIF because there is no one-to-one correspondence between hazard and cumulative incidence. Fine-Gray model directly models the covariate effect on CIF and it reports subdistribution hazard ratio (SHR). However, SHR only provide information on the ordering of CIF curves at different levels of covariates, it has no practical interpretation as HR in the absence of competing risks. Fine-Gray model can be fit with crr() function shipped with the cmprsk package. Time-varying covariates are allowed in the crr() function, which is specified by cov2 and tf arguments. Predictions and visualization of CIF for subjects with given covariate values are allowed for crr object. Alternatively, competing risk models can be fit with riskRegression package by employing different link functions between covariates and outcomes. The assumption of proportionality can be checked by testing statistical significance of interaction terms involving failure time. Schoenfeld residuals provide another way to check model assumption.Survival analysis in the presence of competing risks imposes additional challenges for clinical investigators in that hazard function (the rate) has no one-to-one link to the cumulative incidence function (CIF, the risk). CIF is of particular interest and can be estimated non-parametrically with the use cuminc() function. This function also allows for group comparison and visualization of estimated CIF. The effect of covariates on cause-specific hazard can be explored using conventional Cox proportional hazard model by treating competing events as censoring. However, the effect on hazard cannot be directly linked to the effect on CIF because there is no one-to-one correspondence between hazard and cumulative incidence. Fine-Gray model directly models the covariate effect on CIF and it reports subdistribution hazard ratio (SHR). However, SHR only provide information on the ordering of CIF curves at different levels of covariates, it has no practical interpretation as HR in the absence of competing risks. Fine-Gray model can be fit with crr() function shipped with the cmprsk package. Time-varying covariates are allowed in the crr() function, which is specified by cov2 and tf arguments. Predictions and visualization of CIF for subjects with given covariate values are allowed for crr object. Alternatively, competing risk models can be fit with riskRegression package by employing different link functions between covariates and outcomes. The assumption of proportionality can be checked by testing statistical significance of interaction terms involving failure time. Schoenfeld residuals provide another way to check model assumption. Survival analysis in the presence of competing risks imposes additional challenges for clinical investigators in that hazard function (the rate) has no one-to-one link to the cumulative incidence function (CIF, the risk). CIF is of particular interest and can be estimated non-parametrically with the use cuminc() function. This function also allows for group comparison and visualization of estimated CIF. The effect of covariates on cause-specific hazard can be explored using conventional Cox proportional hazard model by treating competing events as censoring. However, the effect on hazard cannot be directly linked to the effect on CIF because there is no one-to-one correspondence between hazard and cumulative incidence. Fine-Gray model directly models the covariate effect on CIF and it reports subdistribution hazard ratio (SHR). However, SHR only provide information on the ordering of CIF curves at different levels of covariates, it has no practical interpretation as HR in the absence of competing risks. Fine-Gray model can be fit with crr() function shipped with the cmprsk package. Time-varying covariates are allowed in the crr() function, which is specified by cov2 and tf arguments. Predictions and visualization of CIF for subjects with given covariate values are allowed for crr object. Alternatively, competing risk models can be fit with riskRegression package by employing different link functions between covariates and outcomes. The assumption of proportionality can be checked by testing statistical significance of interaction terms involving failure time. Schoenfeld residuals provide another way to check model assumption. |
Author | Zhang, Zhongheng |
Author_xml | – sequence: 1 givenname: Zhongheng surname: Zhang fullname: Zhang, Zhongheng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28251126$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1LAzEQxYNUbK09e5M9emmb7929CFL8goIH9RzSbNJGd5M12S30v3dra6mCpxmY33szzDsHPeedBuASwQlGkKRT2VQTDBGfwGzC8QkYYALZmGUk7x31fTCK8R1CiDDKCYRnoI8zzBDCfADoSxvWdi3LRDpZbqKNiXVJs9JJHXTUTunEm0T5qtaNdcsk2PgRL8CpkWXUo30dgrf7u9fZ43j-_PA0u52PFWV5M1YQFrk0iJqsoIUuGKWEUpkqwyjhhhtI0wWiOVnwgjGpoEqJYkrnRhMkeUaG4GbnW7eLShdKuybIUtTBVjJshJdW_J44uxJLvxaMYM4J7Qyu9wbBf7Y6NqKyUemylE77NgqUpSTFmOC0Q6-Odx2W_LyqA6Y7QAUfY9DmgCAovvMQXR5im4eAmeC4U7A_CmUb2Vi_PdaW_-q-AL-5j6k |
CitedBy_id | crossref_primary_10_2478_foli_2020_0027 crossref_primary_10_1080_09699260_2021_1890914 crossref_primary_10_3390_v14112579 crossref_primary_10_12998_wjcc_v8_i9_1600 crossref_primary_10_1038_s41598_023_40570_2 crossref_primary_10_1161_CIRCULATIONAHA_117_031560 crossref_primary_10_1007_s10238_024_01535_5 crossref_primary_10_1016_j_jamda_2021_06_027 crossref_primary_10_1186_s13195_024_01512_w crossref_primary_10_1186_s40001_023_01569_7 crossref_primary_10_1038_s41416_021_01430_w crossref_primary_10_1177_09731296241281438 crossref_primary_10_1016_j_gie_2019_06_008 crossref_primary_10_1038_s41467_023_41819_0 crossref_primary_10_1016_j_compbiomed_2018_08_002 crossref_primary_10_1111_sifp_12135 crossref_primary_10_1371_journal_pone_0231511 crossref_primary_10_1016_j_eclinm_2020_100351 crossref_primary_10_1016_j_clgc_2019_08_009 crossref_primary_10_1093_gerona_glab155 crossref_primary_10_1007_s11357_024_01203_2 crossref_primary_10_31083_j_rcm2509333 crossref_primary_10_6004_jnccn_2018_7111 crossref_primary_10_1002_cso2_1006 crossref_primary_10_1093_aje_kwab292 crossref_primary_10_1177_13872877241303934 crossref_primary_10_1016_j_drugpo_2021_103195 crossref_primary_10_1016_j_euf_2018_01_007 crossref_primary_10_1186_s13690_024_01373_7 crossref_primary_10_1016_j_ijcard_2018_07_117 crossref_primary_10_3389_fcvm_2022_862382 crossref_primary_10_1016_j_eclinm_2021_101133 crossref_primary_10_2147_IJGM_S327555 crossref_primary_10_7717_peerj_9149 crossref_primary_10_1007_s12325_022_02297_w crossref_primary_10_1371_journal_pone_0231510 crossref_primary_10_3390_cancers13236141 crossref_primary_10_1186_s13054_019_2535_1 crossref_primary_10_1186_s12885_022_10121_5 crossref_primary_10_1186_s12890_022_01823_4 crossref_primary_10_1093_ckj_sfad088 crossref_primary_10_1136_openhrt_2023_002295 crossref_primary_10_1016_j_ebiom_2020_103151 crossref_primary_10_1016_j_fertnstert_2020_09_162 crossref_primary_10_1161_CIRCHEARTFAILURE_120_007054 crossref_primary_10_1136_heartjnl_2020_318054 crossref_primary_10_1016_j_euf_2017_11_012 crossref_primary_10_3389_fendo_2023_1061187 crossref_primary_10_3390_ijerph20247164 crossref_primary_10_1007_s00134_018_5351_1 crossref_primary_10_1016_j_euo_2020_11_008 crossref_primary_10_1016_j_lana_2024_100826 crossref_primary_10_1016_j_jrras_2024_101107 crossref_primary_10_1002_edm2_459 crossref_primary_10_1016_j_jvir_2020_11_022 crossref_primary_10_3390_informatics10020046 crossref_primary_10_1016_j_critrevonc_2023_104199 crossref_primary_10_1097_TXD_0000000000001558 crossref_primary_10_1097_CCM_0000000000003499 crossref_primary_10_1186_s12884_019_2529_7 crossref_primary_10_1186_s13195_021_00871_y crossref_primary_10_1016_j_canep_2018_08_006 crossref_primary_10_1016_j_ebiom_2024_105223 crossref_primary_10_1016_j_cgh_2023_05_019 crossref_primary_10_1007_s11255_017_1703_y crossref_primary_10_1097_HJH_0000000000003154 crossref_primary_10_1111_bju_14697 crossref_primary_10_1038_s41416_021_01496_6 crossref_primary_10_1186_s12889_023_16935_7 crossref_primary_10_1007_s00701_019_03858_9 crossref_primary_10_1371_journal_pone_0255313 crossref_primary_10_1038_s41467_024_48713_3 crossref_primary_10_1186_s12889_023_17589_1 crossref_primary_10_1016_j_scitotenv_2021_151634 crossref_primary_10_1007_s12103_024_09784_6 crossref_primary_10_1016_j_euf_2018_09_007 crossref_primary_10_1007_s12020_021_02717_x crossref_primary_10_3389_fonc_2021_690658 crossref_primary_10_1186_s12879_024_10280_9 crossref_primary_10_3389_fmed_2024_1362192 crossref_primary_10_1097_TP_0000000000005191 crossref_primary_10_1186_s12916_021_02192_1 crossref_primary_10_1016_j_canep_2018_04_006 crossref_primary_10_1002_pds_5069 crossref_primary_10_1097_MD_0000000000015465 crossref_primary_10_3389_fonc_2020_545078 crossref_primary_10_1088_1742_6596_1375_1_012072 crossref_primary_10_1016_j_bbe_2019_05_001 crossref_primary_10_1007_s00432_023_05571_8 crossref_primary_10_1186_s12874_023_01866_z crossref_primary_10_1245_s10434_020_09003_6 crossref_primary_10_1097_CCM_0000000000003414 crossref_primary_10_1007_s11060_019_03343_4 crossref_primary_10_1038_s41379_021_00931_6 crossref_primary_10_1111_1740_9713_01467 crossref_primary_10_3747_pdi_2017_00207 crossref_primary_10_1111_jebm_12529 crossref_primary_10_1080_24709360_2022_2084704 crossref_primary_10_1016_j_ijcard_2018_10_079 crossref_primary_10_1093_eurjpc_zwad283 crossref_primary_10_1186_s12885_023_10556_4 crossref_primary_10_1016_j_chest_2020_04_058 crossref_primary_10_1016_j_chest_2020_06_041 crossref_primary_10_3892_ol_2024_14523 |
ContentType | Journal Article |
Copyright | 2017 Annals of Translational Medicine. All rights reserved. 2017 Annals of Translational Medicine. |
Copyright_xml | – notice: 2017 Annals of Translational Medicine. All rights reserved. 2017 Annals of Translational Medicine. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.21037/atm.2016.08.62 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2305-5839 |
EndPage | 47 |
ExternalDocumentID | PMC5326634 28251126 10_21037_atm_2016_08_62 |
Genre | Editorial Commentary |
GroupedDBID | 53G AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION DIK HYE OK1 RPM M~E NPM 7X8 5PM |
ID | FETCH-LOGICAL-c459t-c00d9af14f8d4ded544344a7cf5436f6f047b1493b6d55ac0c73c5ce9fe31a683 |
ISSN | 2305-5839 |
IngestDate | Thu Aug 21 14:00:20 EDT 2025 Fri Jul 11 07:55:01 EDT 2025 Thu Jan 02 22:21:20 EST 2025 Tue Jul 01 04:31:29 EDT 2025 Thu Apr 24 23:06:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | hazard function cumulative incidence Fine-Gary model Competing risk |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c459t-c00d9af14f8d4ded544344a7cf5436f6f047b1493b6d55ac0c73c5ce9fe31a683 |
Notes | SourceType-Scholarly Journals-1 content type line 23 ObjectType-Editorial-2 ObjectType-Commentary-1 |
OpenAccessLink | https://atm.amegroups.com/article/viewFile/11637/pdf |
PMID | 28251126 |
PQID | 1873722327 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5326634 proquest_miscellaneous_1873722327 pubmed_primary_28251126 crossref_primary_10_21037_atm_2016_08_62 crossref_citationtrail_10_21037_atm_2016_08_62 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-00 2017-Feb 20170201 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-00 |
PublicationDecade | 2010 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | Annals of translational medicine |
PublicationTitleAlternate | Ann Transl Med |
PublicationYear | 2017 |
Publisher | AME Publishing Company |
Publisher_xml | – name: AME Publishing Company |
References | 15305188 - Br J Cancer. 2004 Oct 4;91(7):1229-35 23080458 - Crit Care Med. 2012 Nov;40(11):3108; author reply 3108-9 22488006 - Crit Care Med. 2012 Jun;40(6):1820-6 22253319 - Int J Epidemiol. 2012 Jun;41(3):861-70 22865706 - Stat Med. 2012 Dec 20;31(29):3921-30 20062101 - Bone Marrow Transplant. 2010 Sep;45(9):1388-95 22081496 - Stat Med. 2012 May 20;31(11-12):1074-88 21216803 - Stat Methods Med Res. 2012 Jun;21(3):257-72 23415868 - J Clin Epidemiol. 2013 Jun;66(6):648-53 23010807 - Lifetime Data Anal. 2013 Jan;19(1):33-58 |
References_xml | – reference: 20062101 - Bone Marrow Transplant. 2010 Sep;45(9):1388-95 – reference: 21216803 - Stat Methods Med Res. 2012 Jun;21(3):257-72 – reference: 23010807 - Lifetime Data Anal. 2013 Jan;19(1):33-58 – reference: 22253319 - Int J Epidemiol. 2012 Jun;41(3):861-70 – reference: 22488006 - Crit Care Med. 2012 Jun;40(6):1820-6 – reference: 23080458 - Crit Care Med. 2012 Nov;40(11):3108; author reply 3108-9 – reference: 23415868 - J Clin Epidemiol. 2013 Jun;66(6):648-53 – reference: 22865706 - Stat Med. 2012 Dec 20;31(29):3921-30 – reference: 22081496 - Stat Med. 2012 May 20;31(11-12):1074-88 – reference: 15305188 - Br J Cancer. 2004 Oct 4;91(7):1229-35 |
SSID | ssj0001219300 |
Score | 2.3991804 |
Snippet | Survival analysis in the presence of competing risks imposes additional challenges for clinical investigators in that hazard function (the rate) has no... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 47 |
SubjectTerms | Big-data Clinical Trial Column |
Title | Survival analysis in the presence of competing risks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28251126 https://www.proquest.com/docview/1873722327 https://pubmed.ncbi.nlm.nih.gov/PMC5326634 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEF6sgvSltFbrqS0r9KEv0exld5M8FlFEuCKoIH0J-9MTNHdorg_-9c5uNrnkPMH6EsImm4T5ZmdnJvvNIvRT5rkV4NZGIuMsokTTKIeJJ5LMMk04EzV9bPSHn17Rs2t2Pd-f0LNLKnmgnpbySt6DKrQBro4l-x_Itg-FBjgHfOEICMPxTRhfzGCg__Ns_1BaJKxanHpSkTLNonHPa_bLyB-73ui8enLlpqy7JjG4-MO9zSr_HU_Km7EJs11IFsAEFPcXXoyOu-mtFyYH4hHmeFi1ETNL2oLNZB3VSJZZ4mEg84vK0f0Jd3VSa7PbwWV674Hx9FkyXKiI7efY89ERAweTJ_QDWhtCJEA6CZk6jQYeqCcatd9ZF3DyH3DYf72r_Bze1XdDXsQWi0tkOz7H5Wf0KQQL-HeN_Be0YsoNtD4K6HxFtFEA3CgAvi0xKABuFABPLG4VAHsF2ERXJ8eXR6dR2AYjUpTlVaTiWOfCEmozTbXRrmIhpSJVltGEW25jmkoIdBPJNWNCxSpNFFMmtyYhgmfJFlotJ6XZRljDuKQkk-ATamqUlTbnw5wrmXKuwZMboINGKoUKNeLdViV3BcSKXqIFSLRwEi3irODQ4VfbYVqXR3n91v1GzAWYMPdfSpRmMnssSOb2SgLXPh2gb7XY24c1eA1Q2gOkvcGVR-9fKW_Hvkx6UJydd_fcRR_nY2gPrVYPM_MdXNBK_vBK-AychIee |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survival+analysis+in+the+presence+of+competing+risks&rft.jtitle=Annals+of+translational+medicine&rft.au=Zhang%2C+Zhongheng&rft.date=2017-02-01&rft.pub=AME+Publishing+Company&rft.issn=2305-5839&rft.eissn=2305-5839&rft.volume=5&rft.issue=3&rft_id=info:doi/10.21037%2Fatm.2016.08.62&rft_id=info%3Apmid%2F28251126&rft.externalDocID=PMC5326634 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2305-5839&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2305-5839&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2305-5839&client=summon |