Survival analysis in the presence of competing risks

Survival analysis in the presence of competing risks imposes additional challenges for clinical investigators in that hazard function (the rate) has no one-to-one link to the cumulative incidence function (CIF, the risk). CIF is of particular interest and can be estimated non-parametrically with the...

Full description

Saved in:
Bibliographic Details
Published inAnnals of translational medicine Vol. 5; no. 3; p. 47
Main Author Zhang, Zhongheng
Format Journal Article
LanguageEnglish
Published China AME Publishing Company 01.02.2017
Subjects
Online AccessGet full text
ISSN2305-5839
2305-5839
DOI10.21037/atm.2016.08.62

Cover

Loading…
Abstract Survival analysis in the presence of competing risks imposes additional challenges for clinical investigators in that hazard function (the rate) has no one-to-one link to the cumulative incidence function (CIF, the risk). CIF is of particular interest and can be estimated non-parametrically with the use cuminc() function. This function also allows for group comparison and visualization of estimated CIF. The effect of covariates on cause-specific hazard can be explored using conventional Cox proportional hazard model by treating competing events as censoring. However, the effect on hazard cannot be directly linked to the effect on CIF because there is no one-to-one correspondence between hazard and cumulative incidence. Fine-Gray model directly models the covariate effect on CIF and it reports subdistribution hazard ratio (SHR). However, SHR only provide information on the ordering of CIF curves at different levels of covariates, it has no practical interpretation as HR in the absence of competing risks. Fine-Gray model can be fit with crr() function shipped with the package. Time-varying covariates are allowed in the crr() function, which is specified by and arguments. Predictions and visualization of CIF for subjects with given covariate values are allowed for object. Alternatively, competing risk models can be fit with package by employing different link functions between covariates and outcomes. The assumption of proportionality can be checked by testing statistical significance of interaction terms involving failure time. Schoenfeld residuals provide another way to check model assumption.
AbstractList Survival analysis in the presence of competing risks imposes additional challenges for clinical investigators in that hazard function (the rate) has no one-to-one link to the cumulative incidence function (CIF, the risk). CIF is of particular interest and can be estimated non-parametrically with the use cuminc() function. This function also allows for group comparison and visualization of estimated CIF. The effect of covariates on cause-specific hazard can be explored using conventional Cox proportional hazard model by treating competing events as censoring. However, the effect on hazard cannot be directly linked to the effect on CIF because there is no one-to-one correspondence between hazard and cumulative incidence. Fine-Gray model directly models the covariate effect on CIF and it reports subdistribution hazard ratio (SHR). However, SHR only provide information on the ordering of CIF curves at different levels of covariates, it has no practical interpretation as HR in the absence of competing risks. Fine-Gray model can be fit with crr() function shipped with the package. Time-varying covariates are allowed in the crr() function, which is specified by and arguments. Predictions and visualization of CIF for subjects with given covariate values are allowed for object. Alternatively, competing risk models can be fit with package by employing different link functions between covariates and outcomes. The assumption of proportionality can be checked by testing statistical significance of interaction terms involving failure time. Schoenfeld residuals provide another way to check model assumption.
Survival analysis in the presence of competing risks imposes additional challenges for clinical investigators in that hazard function (the rate) has no one-to-one link to the cumulative incidence function (CIF, the risk). CIF is of particular interest and can be estimated non-parametrically with the use cuminc() function. This function also allows for group comparison and visualization of estimated CIF. The effect of covariates on cause-specific hazard can be explored using conventional Cox proportional hazard model by treating competing events as censoring. However, the effect on hazard cannot be directly linked to the effect on CIF because there is no one-to-one correspondence between hazard and cumulative incidence. Fine-Gray model directly models the covariate effect on CIF and it reports subdistribution hazard ratio (SHR). However, SHR only provide information on the ordering of CIF curves at different levels of covariates, it has no practical interpretation as HR in the absence of competing risks. Fine-Gray model can be fit with crr() function shipped with the cmprsk package. Time-varying covariates are allowed in the crr() function, which is specified by cov2 and tf arguments. Predictions and visualization of CIF for subjects with given covariate values are allowed for crr object. Alternatively, competing risk models can be fit with riskRegression package by employing different link functions between covariates and outcomes. The assumption of proportionality can be checked by testing statistical significance of interaction terms involving failure time. Schoenfeld residuals provide another way to check model assumption.Survival analysis in the presence of competing risks imposes additional challenges for clinical investigators in that hazard function (the rate) has no one-to-one link to the cumulative incidence function (CIF, the risk). CIF is of particular interest and can be estimated non-parametrically with the use cuminc() function. This function also allows for group comparison and visualization of estimated CIF. The effect of covariates on cause-specific hazard can be explored using conventional Cox proportional hazard model by treating competing events as censoring. However, the effect on hazard cannot be directly linked to the effect on CIF because there is no one-to-one correspondence between hazard and cumulative incidence. Fine-Gray model directly models the covariate effect on CIF and it reports subdistribution hazard ratio (SHR). However, SHR only provide information on the ordering of CIF curves at different levels of covariates, it has no practical interpretation as HR in the absence of competing risks. Fine-Gray model can be fit with crr() function shipped with the cmprsk package. Time-varying covariates are allowed in the crr() function, which is specified by cov2 and tf arguments. Predictions and visualization of CIF for subjects with given covariate values are allowed for crr object. Alternatively, competing risk models can be fit with riskRegression package by employing different link functions between covariates and outcomes. The assumption of proportionality can be checked by testing statistical significance of interaction terms involving failure time. Schoenfeld residuals provide another way to check model assumption.
Survival analysis in the presence of competing risks imposes additional challenges for clinical investigators in that hazard function (the rate) has no one-to-one link to the cumulative incidence function (CIF, the risk). CIF is of particular interest and can be estimated non-parametrically with the use cuminc() function. This function also allows for group comparison and visualization of estimated CIF. The effect of covariates on cause-specific hazard can be explored using conventional Cox proportional hazard model by treating competing events as censoring. However, the effect on hazard cannot be directly linked to the effect on CIF because there is no one-to-one correspondence between hazard and cumulative incidence. Fine-Gray model directly models the covariate effect on CIF and it reports subdistribution hazard ratio (SHR). However, SHR only provide information on the ordering of CIF curves at different levels of covariates, it has no practical interpretation as HR in the absence of competing risks. Fine-Gray model can be fit with crr() function shipped with the cmprsk package. Time-varying covariates are allowed in the crr() function, which is specified by cov2 and tf arguments. Predictions and visualization of CIF for subjects with given covariate values are allowed for crr object. Alternatively, competing risk models can be fit with riskRegression package by employing different link functions between covariates and outcomes. The assumption of proportionality can be checked by testing statistical significance of interaction terms involving failure time. Schoenfeld residuals provide another way to check model assumption.
Author Zhang, Zhongheng
Author_xml – sequence: 1
  givenname: Zhongheng
  surname: Zhang
  fullname: Zhang, Zhongheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28251126$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1LAzEQxYNUbK09e5M9emmb7929CFL8goIH9RzSbNJGd5M12S30v3dra6mCpxmY33szzDsHPeedBuASwQlGkKRT2VQTDBGfwGzC8QkYYALZmGUk7x31fTCK8R1CiDDKCYRnoI8zzBDCfADoSxvWdi3LRDpZbqKNiXVJs9JJHXTUTunEm0T5qtaNdcsk2PgRL8CpkWXUo30dgrf7u9fZ43j-_PA0u52PFWV5M1YQFrk0iJqsoIUuGKWEUpkqwyjhhhtI0wWiOVnwgjGpoEqJYkrnRhMkeUaG4GbnW7eLShdKuybIUtTBVjJshJdW_J44uxJLvxaMYM4J7Qyu9wbBf7Y6NqKyUemylE77NgqUpSTFmOC0Q6-Odx2W_LyqA6Y7QAUfY9DmgCAovvMQXR5im4eAmeC4U7A_CmUb2Vi_PdaW_-q-AL-5j6k
CitedBy_id crossref_primary_10_2478_foli_2020_0027
crossref_primary_10_1080_09699260_2021_1890914
crossref_primary_10_3390_v14112579
crossref_primary_10_12998_wjcc_v8_i9_1600
crossref_primary_10_1038_s41598_023_40570_2
crossref_primary_10_1161_CIRCULATIONAHA_117_031560
crossref_primary_10_1007_s10238_024_01535_5
crossref_primary_10_1016_j_jamda_2021_06_027
crossref_primary_10_1186_s13195_024_01512_w
crossref_primary_10_1186_s40001_023_01569_7
crossref_primary_10_1038_s41416_021_01430_w
crossref_primary_10_1177_09731296241281438
crossref_primary_10_1016_j_gie_2019_06_008
crossref_primary_10_1038_s41467_023_41819_0
crossref_primary_10_1016_j_compbiomed_2018_08_002
crossref_primary_10_1111_sifp_12135
crossref_primary_10_1371_journal_pone_0231511
crossref_primary_10_1016_j_eclinm_2020_100351
crossref_primary_10_1016_j_clgc_2019_08_009
crossref_primary_10_1093_gerona_glab155
crossref_primary_10_1007_s11357_024_01203_2
crossref_primary_10_31083_j_rcm2509333
crossref_primary_10_6004_jnccn_2018_7111
crossref_primary_10_1002_cso2_1006
crossref_primary_10_1093_aje_kwab292
crossref_primary_10_1177_13872877241303934
crossref_primary_10_1016_j_drugpo_2021_103195
crossref_primary_10_1016_j_euf_2018_01_007
crossref_primary_10_1186_s13690_024_01373_7
crossref_primary_10_1016_j_ijcard_2018_07_117
crossref_primary_10_3389_fcvm_2022_862382
crossref_primary_10_1016_j_eclinm_2021_101133
crossref_primary_10_2147_IJGM_S327555
crossref_primary_10_7717_peerj_9149
crossref_primary_10_1007_s12325_022_02297_w
crossref_primary_10_1371_journal_pone_0231510
crossref_primary_10_3390_cancers13236141
crossref_primary_10_1186_s13054_019_2535_1
crossref_primary_10_1186_s12885_022_10121_5
crossref_primary_10_1186_s12890_022_01823_4
crossref_primary_10_1093_ckj_sfad088
crossref_primary_10_1136_openhrt_2023_002295
crossref_primary_10_1016_j_ebiom_2020_103151
crossref_primary_10_1016_j_fertnstert_2020_09_162
crossref_primary_10_1161_CIRCHEARTFAILURE_120_007054
crossref_primary_10_1136_heartjnl_2020_318054
crossref_primary_10_1016_j_euf_2017_11_012
crossref_primary_10_3389_fendo_2023_1061187
crossref_primary_10_3390_ijerph20247164
crossref_primary_10_1007_s00134_018_5351_1
crossref_primary_10_1016_j_euo_2020_11_008
crossref_primary_10_1016_j_lana_2024_100826
crossref_primary_10_1016_j_jrras_2024_101107
crossref_primary_10_1002_edm2_459
crossref_primary_10_1016_j_jvir_2020_11_022
crossref_primary_10_3390_informatics10020046
crossref_primary_10_1016_j_critrevonc_2023_104199
crossref_primary_10_1097_TXD_0000000000001558
crossref_primary_10_1097_CCM_0000000000003499
crossref_primary_10_1186_s12884_019_2529_7
crossref_primary_10_1186_s13195_021_00871_y
crossref_primary_10_1016_j_canep_2018_08_006
crossref_primary_10_1016_j_ebiom_2024_105223
crossref_primary_10_1016_j_cgh_2023_05_019
crossref_primary_10_1007_s11255_017_1703_y
crossref_primary_10_1097_HJH_0000000000003154
crossref_primary_10_1111_bju_14697
crossref_primary_10_1038_s41416_021_01496_6
crossref_primary_10_1186_s12889_023_16935_7
crossref_primary_10_1007_s00701_019_03858_9
crossref_primary_10_1371_journal_pone_0255313
crossref_primary_10_1038_s41467_024_48713_3
crossref_primary_10_1186_s12889_023_17589_1
crossref_primary_10_1016_j_scitotenv_2021_151634
crossref_primary_10_1007_s12103_024_09784_6
crossref_primary_10_1016_j_euf_2018_09_007
crossref_primary_10_1007_s12020_021_02717_x
crossref_primary_10_3389_fonc_2021_690658
crossref_primary_10_1186_s12879_024_10280_9
crossref_primary_10_3389_fmed_2024_1362192
crossref_primary_10_1097_TP_0000000000005191
crossref_primary_10_1186_s12916_021_02192_1
crossref_primary_10_1016_j_canep_2018_04_006
crossref_primary_10_1002_pds_5069
crossref_primary_10_1097_MD_0000000000015465
crossref_primary_10_3389_fonc_2020_545078
crossref_primary_10_1088_1742_6596_1375_1_012072
crossref_primary_10_1016_j_bbe_2019_05_001
crossref_primary_10_1007_s00432_023_05571_8
crossref_primary_10_1186_s12874_023_01866_z
crossref_primary_10_1245_s10434_020_09003_6
crossref_primary_10_1097_CCM_0000000000003414
crossref_primary_10_1007_s11060_019_03343_4
crossref_primary_10_1038_s41379_021_00931_6
crossref_primary_10_1111_1740_9713_01467
crossref_primary_10_3747_pdi_2017_00207
crossref_primary_10_1111_jebm_12529
crossref_primary_10_1080_24709360_2022_2084704
crossref_primary_10_1016_j_ijcard_2018_10_079
crossref_primary_10_1093_eurjpc_zwad283
crossref_primary_10_1186_s12885_023_10556_4
crossref_primary_10_1016_j_chest_2020_04_058
crossref_primary_10_1016_j_chest_2020_06_041
crossref_primary_10_3892_ol_2024_14523
ContentType Journal Article
Copyright 2017 Annals of Translational Medicine. All rights reserved. 2017 Annals of Translational Medicine.
Copyright_xml – notice: 2017 Annals of Translational Medicine. All rights reserved. 2017 Annals of Translational Medicine.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.21037/atm.2016.08.62
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2305-5839
EndPage 47
ExternalDocumentID PMC5326634
28251126
10_21037_atm_2016_08_62
Genre Editorial
Commentary
GroupedDBID 53G
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
DIK
HYE
OK1
RPM
M~E
NPM
7X8
5PM
ID FETCH-LOGICAL-c459t-c00d9af14f8d4ded544344a7cf5436f6f047b1493b6d55ac0c73c5ce9fe31a683
ISSN 2305-5839
IngestDate Thu Aug 21 14:00:20 EDT 2025
Fri Jul 11 07:55:01 EDT 2025
Thu Jan 02 22:21:20 EST 2025
Tue Jul 01 04:31:29 EDT 2025
Thu Apr 24 23:06:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords hazard function
cumulative incidence
Fine-Gary model
Competing risk
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-c00d9af14f8d4ded544344a7cf5436f6f047b1493b6d55ac0c73c5ce9fe31a683
Notes SourceType-Scholarly Journals-1
content type line 23
ObjectType-Editorial-2
ObjectType-Commentary-1
OpenAccessLink https://atm.amegroups.com/article/viewFile/11637/pdf
PMID 28251126
PQID 1873722327
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5326634
proquest_miscellaneous_1873722327
pubmed_primary_28251126
crossref_primary_10_21037_atm_2016_08_62
crossref_citationtrail_10_21037_atm_2016_08_62
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-00
2017-Feb
20170201
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-00
PublicationDecade 2010
PublicationPlace China
PublicationPlace_xml – name: China
PublicationTitle Annals of translational medicine
PublicationTitleAlternate Ann Transl Med
PublicationYear 2017
Publisher AME Publishing Company
Publisher_xml – name: AME Publishing Company
References 15305188 - Br J Cancer. 2004 Oct 4;91(7):1229-35
23080458 - Crit Care Med. 2012 Nov;40(11):3108; author reply 3108-9
22488006 - Crit Care Med. 2012 Jun;40(6):1820-6
22253319 - Int J Epidemiol. 2012 Jun;41(3):861-70
22865706 - Stat Med. 2012 Dec 20;31(29):3921-30
20062101 - Bone Marrow Transplant. 2010 Sep;45(9):1388-95
22081496 - Stat Med. 2012 May 20;31(11-12):1074-88
21216803 - Stat Methods Med Res. 2012 Jun;21(3):257-72
23415868 - J Clin Epidemiol. 2013 Jun;66(6):648-53
23010807 - Lifetime Data Anal. 2013 Jan;19(1):33-58
References_xml – reference: 20062101 - Bone Marrow Transplant. 2010 Sep;45(9):1388-95
– reference: 21216803 - Stat Methods Med Res. 2012 Jun;21(3):257-72
– reference: 23010807 - Lifetime Data Anal. 2013 Jan;19(1):33-58
– reference: 22253319 - Int J Epidemiol. 2012 Jun;41(3):861-70
– reference: 22488006 - Crit Care Med. 2012 Jun;40(6):1820-6
– reference: 23080458 - Crit Care Med. 2012 Nov;40(11):3108; author reply 3108-9
– reference: 23415868 - J Clin Epidemiol. 2013 Jun;66(6):648-53
– reference: 22865706 - Stat Med. 2012 Dec 20;31(29):3921-30
– reference: 22081496 - Stat Med. 2012 May 20;31(11-12):1074-88
– reference: 15305188 - Br J Cancer. 2004 Oct 4;91(7):1229-35
SSID ssj0001219300
Score 2.3991804
Snippet Survival analysis in the presence of competing risks imposes additional challenges for clinical investigators in that hazard function (the rate) has no...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 47
SubjectTerms Big-data Clinical Trial Column
Title Survival analysis in the presence of competing risks
URI https://www.ncbi.nlm.nih.gov/pubmed/28251126
https://www.proquest.com/docview/1873722327
https://pubmed.ncbi.nlm.nih.gov/PMC5326634
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEF6sgvSltFbrqS0r9KEv0exld5M8FlFEuCKoIH0J-9MTNHdorg_-9c5uNrnkPMH6EsImm4T5ZmdnJvvNIvRT5rkV4NZGIuMsokTTKIeJJ5LMMk04EzV9bPSHn17Rs2t2Pd-f0LNLKnmgnpbySt6DKrQBro4l-x_Itg-FBjgHfOEICMPxTRhfzGCg__Ns_1BaJKxanHpSkTLNonHPa_bLyB-73ui8enLlpqy7JjG4-MO9zSr_HU_Km7EJs11IFsAEFPcXXoyOu-mtFyYH4hHmeFi1ETNL2oLNZB3VSJZZ4mEg84vK0f0Jd3VSa7PbwWV674Hx9FkyXKiI7efY89ERAweTJ_QDWhtCJEA6CZk6jQYeqCcatd9ZF3DyH3DYf72r_Bze1XdDXsQWi0tkOz7H5Wf0KQQL-HeN_Be0YsoNtD4K6HxFtFEA3CgAvi0xKABuFABPLG4VAHsF2ERXJ8eXR6dR2AYjUpTlVaTiWOfCEmozTbXRrmIhpSJVltGEW25jmkoIdBPJNWNCxSpNFFMmtyYhgmfJFlotJ6XZRljDuKQkk-ATamqUlTbnw5wrmXKuwZMboINGKoUKNeLdViV3BcSKXqIFSLRwEi3irODQ4VfbYVqXR3n91v1GzAWYMPdfSpRmMnssSOb2SgLXPh2gb7XY24c1eA1Q2gOkvcGVR-9fKW_Hvkx6UJydd_fcRR_nY2gPrVYPM_MdXNBK_vBK-AychIee
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survival+analysis+in+the+presence+of+competing+risks&rft.jtitle=Annals+of+translational+medicine&rft.au=Zhang%2C+Zhongheng&rft.date=2017-02-01&rft.pub=AME+Publishing+Company&rft.issn=2305-5839&rft.eissn=2305-5839&rft.volume=5&rft.issue=3&rft_id=info:doi/10.21037%2Fatm.2016.08.62&rft_id=info%3Apmid%2F28251126&rft.externalDocID=PMC5326634
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2305-5839&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2305-5839&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2305-5839&client=summon