Tobacco Transcription Factor NtbHLH123 Confers Tolerance to Cold Stress by Regulating the NtCBF Pathway and Reactive Oxygen Species Homeostasis

Cold stress is a major environmental factor that impairs plant growth and development, geographic distribution, and crop productivity. The C-repeat binding factor (CBF) regulatory pathway has an essential role in response to cold stress. Here, we characterized a bHLH transcription factor from , , in...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 9; p. 381
Main Authors Zhao, Qiang, Xiang, Xiaohua, Liu, Dan, Yang, Aiguo, Wang, Yuanying
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 28.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cold stress is a major environmental factor that impairs plant growth and development, geographic distribution, and crop productivity. The C-repeat binding factor (CBF) regulatory pathway has an essential role in response to cold stress. Here, we characterized a bHLH transcription factor from , , in response to cold stress (4°C). Overexpression of enhanced cold tolerance in transgenic tobacco plants. Based on yeast one-hybrid, chromatin immunoprecipitation PCR, and transient expression analysis assays, binds directly to the G-box/E-box motifs in the promoter of the genes and positively regulates their expression. Furthermore, -overexpressing plants showed lower electrolyte leakage, reduced malondialdehyde contents, H O and reactive oxygen species (ROS) accumulation under cold stress, which contributed to alleviating oxidative damage to the cell membrane after cold stress treatment. And increased stress tolerance by improving the expression of a number of abiotic stress-responsive genes to mediate the ROS scavenging ability and other stress tolerance pathways. Taken together, we present a model suggesting that is a transcriptional activator that functions as a positive regulator of cold tolerance by activating , ROS scavenging-related, and stress-responsive genes.
AbstractList Cold stress is a major environmental factor that impairs plant growth and development, geographic distribution, and crop productivity. The C-repeat binding factor (CBF) regulatory pathway has an essential role in response to cold stress. Here, we characterized a bHLH transcription factor from Nicotiana tabacum, NtbHLH123, in response to cold stress (4°C). Overexpression of NtbHLH123 enhanced cold tolerance in transgenic tobacco plants. Based on yeast one-hybrid, chromatin immunoprecipitation PCR, and transient expression analysis assays, NtbHLH123 binds directly to the G-box/E-box motifs in the promoter of the NtCBF genes and positively regulates their expression. Furthermore, NtbHLH123-overexpressing plants showed lower electrolyte leakage, reduced malondialdehyde contents, H2O2 and reactive oxygen species (ROS) accumulation under cold stress, which contributed to alleviating oxidative damage to the cell membrane after cold stress treatment. And NtbHLH123 increased stress tolerance by improving the expression of a number of abiotic stress-responsive genes to mediate the ROS scavenging ability and other stress tolerance pathways. Taken together, we present a model suggesting that NtbHLH123 is a transcriptional activator that functions as a positive regulator of cold tolerance by activating NtCBF, ROS scavenging-related, and stress-responsive genes.
Cold stress is a major environmental factor that impairs plant growth and development, geographic distribution, and crop productivity. The C-repeat binding factor (CBF) regulatory pathway has an essential role in response to cold stress. Here, we characterized a bHLH transcription factor from Nicotiana tabacum, NtbHLH123, in response to cold stress (4°C). Overexpression of NtbHLH123 enhanced cold tolerance in transgenic tobacco plants. Based on yeast one-hybrid, chromatin immunoprecipitation PCR, and transient expression analysis assays, NtbHLH123 binds directly to the G-box/E-box motifs in the promoter of the NtCBF genes and positively regulates their expression. Furthermore, NtbHLH123-overexpressing plants showed lower electrolyte leakage, reduced malondialdehyde contents, H2O2 and reactive oxygen species (ROS) accumulation under cold stress, which contributed to alleviating oxidative damage to the cell membrane after cold stress treatment. And NtbHLH123 increased stress tolerance by improving the expression of a number of abiotic stress-responsive genes to mediate the ROS scavenging ability and other stress tolerance pathways. Taken together, we present a model suggesting that NtbHLH123 is a transcriptional activator that functions as a positive regulator of cold tolerance by activating NtCBF, ROS scavenging-related, and stress-responsive genes.Cold stress is a major environmental factor that impairs plant growth and development, geographic distribution, and crop productivity. The C-repeat binding factor (CBF) regulatory pathway has an essential role in response to cold stress. Here, we characterized a bHLH transcription factor from Nicotiana tabacum, NtbHLH123, in response to cold stress (4°C). Overexpression of NtbHLH123 enhanced cold tolerance in transgenic tobacco plants. Based on yeast one-hybrid, chromatin immunoprecipitation PCR, and transient expression analysis assays, NtbHLH123 binds directly to the G-box/E-box motifs in the promoter of the NtCBF genes and positively regulates their expression. Furthermore, NtbHLH123-overexpressing plants showed lower electrolyte leakage, reduced malondialdehyde contents, H2O2 and reactive oxygen species (ROS) accumulation under cold stress, which contributed to alleviating oxidative damage to the cell membrane after cold stress treatment. And NtbHLH123 increased stress tolerance by improving the expression of a number of abiotic stress-responsive genes to mediate the ROS scavenging ability and other stress tolerance pathways. Taken together, we present a model suggesting that NtbHLH123 is a transcriptional activator that functions as a positive regulator of cold tolerance by activating NtCBF, ROS scavenging-related, and stress-responsive genes.
Cold stress is a major environmental factor that impairs plant growth and development, geographic distribution, and crop productivity. The C-repeat binding factor (CBF) regulatory pathway has an essential role in response to cold stress. Here, we characterized a bHLH transcription factor from , , in response to cold stress (4°C). Overexpression of enhanced cold tolerance in transgenic tobacco plants. Based on yeast one-hybrid, chromatin immunoprecipitation PCR, and transient expression analysis assays, binds directly to the G-box/E-box motifs in the promoter of the genes and positively regulates their expression. Furthermore, -overexpressing plants showed lower electrolyte leakage, reduced malondialdehyde contents, H O and reactive oxygen species (ROS) accumulation under cold stress, which contributed to alleviating oxidative damage to the cell membrane after cold stress treatment. And increased stress tolerance by improving the expression of a number of abiotic stress-responsive genes to mediate the ROS scavenging ability and other stress tolerance pathways. Taken together, we present a model suggesting that is a transcriptional activator that functions as a positive regulator of cold tolerance by activating , ROS scavenging-related, and stress-responsive genes.
Cold stress is a major environmental factor that impairs plant growth and development, geographic distribution, and crop productivity. The C-repeat binding factor (CBF) regulatory pathway has an essential role in response to cold stress. Here, we characterized a bHLH transcription factor from Nicotiana tabacum , NtbHLH123 , in response to cold stress (4°C). Overexpression of NtbHLH123 enhanced cold tolerance in transgenic tobacco plants. Based on yeast one-hybrid, chromatin immunoprecipitation PCR, and transient expression analysis assays, NtbHLH123 binds directly to the G-box/E-box motifs in the promoter of the NtCBF genes and positively regulates their expression. Furthermore, NtbHLH123 -overexpressing plants showed lower electrolyte leakage, reduced malondialdehyde contents, H 2 O 2 and reactive oxygen species (ROS) accumulation under cold stress, which contributed to alleviating oxidative damage to the cell membrane after cold stress treatment. And NtbHLH123 increased stress tolerance by improving the expression of a number of abiotic stress-responsive genes to mediate the ROS scavenging ability and other stress tolerance pathways. Taken together, we present a model suggesting that NtbHLH123 is a transcriptional activator that functions as a positive regulator of cold tolerance by activating NtCBF , ROS scavenging-related, and stress-responsive genes.
Author Wang, Yuanying
Xiang, Xiaohua
Zhao, Qiang
Yang, Aiguo
Liu, Dan
AuthorAffiliation 2 Hainan Cigar Institution , Haikou , China
1 Tobacco Research Institute, Chinese Academy of Agricultural Sciences , Qingdao , China
AuthorAffiliation_xml – name: 1 Tobacco Research Institute, Chinese Academy of Agricultural Sciences , Qingdao , China
– name: 2 Hainan Cigar Institution , Haikou , China
Author_xml – sequence: 1
  givenname: Qiang
  surname: Zhao
  fullname: Zhao, Qiang
– sequence: 2
  givenname: Xiaohua
  surname: Xiang
  fullname: Xiang, Xiaohua
– sequence: 3
  givenname: Dan
  surname: Liu
  fullname: Liu, Dan
– sequence: 4
  givenname: Aiguo
  surname: Yang
  fullname: Yang, Aiguo
– sequence: 5
  givenname: Yuanying
  surname: Wang
  fullname: Wang, Yuanying
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29643858$$D View this record in MEDLINE/PubMed
BookMark eNp1kktvEzEUhUeoiD7omh3ykk1Sj-2Z8WyQICKkUkQRDRI7y4_rxNXEDrZTyK_oX8ZpStUi4YVtXZ_z3Sv5nFZHPnioqjc1HlPK-wu7GdKY4JqPMaa8flGd1G3LRqwlP46e3I-r85RucFkNxn3fvaqOSd8yyht-Ut0tgpJaB7SI0icd3Sa74NFU6hwi-pLVbD6rCUWT4C3EhBZhgKLUgHIoxcGg6xwhJaR26Bsst4PMzi9RXkExTz5O0VeZV7_kDklviqBg3S2gq9-7JXh0vQHtIKFZWENIWSaXXlcvrRwSnD-cZ9X36afFZDaaX32-nHyYjzRr-jxSsrGt4ZjjzgIosJb2mFAwGivgXau05doYApICBtoT1bUWW4ZNpzQ1hJ5VlweuCfJGbKJby7gTQTpxXwhxKWTMTg8gOku0UbSXkmDGKOMN62rLgFje8x5MYb0_sDZbtS4jgM9RDs-gz1-8W4lluBUN56TjbQG8ewDE8HMLKYu1SxqGQXoI2yQIJox1bdmL9O3TXo9N_v5oEVwcBDqGlCLYR0mNxT42Yh8bsY-NuI9NcTT_OLTLch-DMqwb_uv7A51jyqQ
CitedBy_id crossref_primary_10_1016_j_indcrop_2024_119593
crossref_primary_10_1093_plphys_kiae483
crossref_primary_10_3390_ijms22116124
crossref_primary_10_3389_fgene_2021_638683
crossref_primary_10_3389_fpls_2022_850216
crossref_primary_10_1093_plphys_kiab176
crossref_primary_10_3390_horticulturae8010080
crossref_primary_10_1186_s12870_022_03767_7
crossref_primary_10_1016_j_envexpbot_2022_104904
crossref_primary_10_3390_f15020380
crossref_primary_10_1016_j_plaphy_2023_02_049
crossref_primary_10_1371_journal_pone_0236588
crossref_primary_10_1016_j_pld_2020_10_004
crossref_primary_10_1016_j_foodchem_2022_134661
crossref_primary_10_3389_fpls_2020_00163
crossref_primary_10_3390_ijms232315214
crossref_primary_10_3390_genes14020275
crossref_primary_10_3389_fmicb_2022_869596
crossref_primary_10_3389_fpls_2022_944269
crossref_primary_10_1186_s12870_022_03718_2
crossref_primary_10_1007_s12042_024_09354_4
crossref_primary_10_3390_ijms23052537
crossref_primary_10_1016_j_postharvbio_2021_111645
crossref_primary_10_1093_aobpla_plz045
crossref_primary_10_3390_genes13020329
crossref_primary_10_1016_j_plaphy_2024_109334
crossref_primary_10_3390_ijms252413526
crossref_primary_10_3390_plants13162315
crossref_primary_10_1021_acs_jafc_3c09665
crossref_primary_10_1016_j_jplph_2024_154415
crossref_primary_10_1071_FP19163
crossref_primary_10_1080_17429145_2023_2172226
crossref_primary_10_1016_j_scienta_2021_110728
crossref_primary_10_1016_j_bbrc_2019_11_063
crossref_primary_10_1186_s12864_021_07652_9
crossref_primary_10_1111_plb_13201
crossref_primary_10_17221_115_2021_CJGPB
crossref_primary_10_3389_fpls_2020_543696
crossref_primary_10_3389_fpls_2022_978941
crossref_primary_10_1111_tpj_17060
crossref_primary_10_1007_s00122_025_04823_0
crossref_primary_10_1111_ppl_14213
crossref_primary_10_48130_FR_2023_0016
crossref_primary_10_1016_j_envexpbot_2020_104226
crossref_primary_10_1016_j_envexpbot_2021_104523
crossref_primary_10_1016_j_fbio_2025_106109
crossref_primary_10_1016_j_bbrc_2018_07_123
crossref_primary_10_1016_j_scienta_2024_113556
crossref_primary_10_1016_j_envexpbot_2022_104920
crossref_primary_10_3390_plants12112113
crossref_primary_10_1016_j_gene_2022_146690
crossref_primary_10_3390_cimb45020075
crossref_primary_10_3389_fpls_2021_766130
crossref_primary_10_1080_15226514_2020_1786795
crossref_primary_10_1093_hr_uhad185
crossref_primary_10_1016_j_plaphy_2022_12_023
crossref_primary_10_1016_j_postharvbio_2024_112956
crossref_primary_10_3390_ijms241914563
crossref_primary_10_1016_j_hpj_2023_03_007
crossref_primary_10_1016_j_jplph_2022_153737
crossref_primary_10_3389_fpls_2021_756338
crossref_primary_10_3390_ijms23031897
crossref_primary_10_1016_j_plaphy_2024_108663
crossref_primary_10_3389_fpls_2024_1445488
crossref_primary_10_1186_s12864_024_10939_2
crossref_primary_10_1016_j_plantsci_2023_111604
crossref_primary_10_1016_j_scienta_2024_112993
crossref_primary_10_1590_01047760202329013147
crossref_primary_10_48130_frures_0024_0032
crossref_primary_10_3390_horticulturae9060648
crossref_primary_10_1016_j_plantsci_2019_110219
crossref_primary_10_1111_ppl_12812
crossref_primary_10_1186_s12864_020_6491_6
crossref_primary_10_3389_fpls_2021_677611
crossref_primary_10_7717_peerj_7153
crossref_primary_10_1016_j_jhazmat_2023_132553
crossref_primary_10_1016_j_plaphy_2023_01_026
crossref_primary_10_3390_ijms241411590
crossref_primary_10_3390_ijms19061634
crossref_primary_10_1016_j_scienta_2019_108775
crossref_primary_10_3390_ijms24033030
Cites_doi 10.1007/s13562-015-0340-8
10.1104/pp.16.01323
10.3389/fpls.2016.00441
10.1101/gr.177001
10.1105/tpc.109.070441
10.1093/treephys/tpv139
10.1016/S1360-1385(02)02312-9
10.1146/annurev.arplant.57.032905.105444
10.1074/jbc.M605895200
10.1104/pp.110.153593
10.1111/j.1365-313X.2010.04477.x
10.1104/pp.110.161794
10.1111/j.1365-3040.2011.02336.x
10.1146/annurev.arplant.50.1.571
10.1104/pp.105.063743
10.1111/pbi.12526
10.1105/tpc.013839
10.1111/j.1399-3054.1962.tb08052.x
10.1007/s00122-003-1378-x
10.1023/A:1006291330661
10.1093/molbev/msg088
10.1105/tpc.113.120857
10.1007/s00425-010-1279-6
10.1111/tpj.13299
10.1002/bies.950131002
10.1093/pcp/pcu115
10.1104/pp.112.210740
10.1016/j.cell.2016.08.029
10.1016/j.cell.2015.12.018
10.1186/1471-2229-12-22
10.1105/tpc.000596
10.1104/pp.124.4.1854
10.1016/S1369-5266(00)00067-4
10.1105/tpc.105.035568
10.1111/nph.13387
10.3389/fpls.2017.00480
10.1111/j.0031-9317.2005.00582.x
10.1016/j.tplants.2016.08.002
10.1111/j.1365-313X.2004.02288.x
10.1146/annurev-arplant-043014-115555
10.2174/138920211794520178
10.1093/pcp/pci230
10.1016/j.gene.2008.10.016
10.1073/pnas.0303029101
10.1016/j.tplants.2014.12.001
10.1016/j.tplants.2012.02.004
10.1186/s12864-017-3871-7
10.1016/j.pbi.2015.08.005
10.1105/tpc.112.098640
10.1111/j.1365-313X.2010.04459.x
10.1186/1471-2164-9-118
10.1038/srep06694
10.1105/tpc.114.132704
10.1016/j.tplants.2004.08.009
10.1111/j.1365-313X.2009.04100.x
10.1104/pp.006783
10.1101/gad.1077503
10.1016/j.pbi.2006.05.014
10.1016/j.jplph.2009.02.007
10.1016/j.tplants.2007.07.002
10.1007/s00299-010-0883-z
ContentType Journal Article
Copyright Copyright © 2018 Zhao, Xiang, Liu, Yang and Wang. 2018 Zhao, Xiang, Liu, Yang and Wang
Copyright_xml – notice: Copyright © 2018 Zhao, Xiang, Liu, Yang and Wang. 2018 Zhao, Xiang, Liu, Yang and Wang
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2018.00381
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_7f2cdb39aa20443485471f4e2f8989ed
PMC5882786
29643858
10_3389_fpls_2018_00381
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2016CB07
– fundername: China Postdoctoral Science Foundation
  grantid: 2016M602214
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IGS
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c459t-ba5f6d80807feebeff39023edc0be876bcf8cdd2ea3e0e392b76f0f40d7bc3d23
IEDL.DBID DOA
ISSN 1664-462X
IngestDate Wed Aug 27 01:14:29 EDT 2025
Thu Aug 21 18:18:18 EDT 2025
Fri Jul 11 13:32:03 EDT 2025
Wed Feb 19 02:43:07 EST 2025
Thu Apr 24 23:02:47 EDT 2025
Tue Jul 01 00:52:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords NtbHLH123
cold stress
reactive oxygen species (ROS)
Nicotiana tabacum
transcriptional regulation
NtCBF pathway
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-ba5f6d80807feebeff39023edc0be876bcf8cdd2ea3e0e392b76f0f40d7bc3d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Omar Borsani, University of the Republic, Uruguay
Reviewed by: Santiago Signorelli, Universidad de la República, Uruguay; Renu Deswal, University of Delhi, India; Ana Jiménez, Consejo Superior de Investigaciones Científicas (CSIC), Spain
This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science
OpenAccessLink https://doaj.org/article/7f2cdb39aa20443485471f4e2f8989ed
PMID 29643858
PQID 2024476024
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_7f2cdb39aa20443485471f4e2f8989ed
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5882786
proquest_miscellaneous_2024476024
pubmed_primary_29643858
crossref_primary_10_3389_fpls_2018_00381
crossref_citationtrail_10_3389_fpls_2018_00381
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-28
PublicationDateYYYYMMDD 2018-03-28
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-28
  day: 28
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Agarwal (B1) 2006; 281
Thomashow (B45) 2010; 154
Jin (B21) 2017; 18
Garrell (B12) 1991; 13
Gilmour (B13) 2000; 124
Fujita (B10) 2006; 9
Ledent (B22) 2001; 11
Suzuki (B42) 2012; 35
Novillo (B32) 2004; 101
Song (B41) 2015; 66
Carretero-Paulet (B3) 2010; 153
Zhao (B58); 172
Sanghera (B36) 2011; 12
Czechowski (B7) 2005; 139
Zhou (B60) 2009; 166
Mittler (B30) 2004; 9
Ito (B18) 2006; 47
Xiong (B51) 2002; 14
Fursova (B11) 2009; 429
Mao (B27) 2017; 8
Zhao (B57) 2014; 4
Seo (B37) 2011; 65
Lee (B23) 2005; 17
Liu (B26) 2015; 207
Mittler (B29) 2017; 22
Pearce (B33) 1999; 29
Li (B25) 2010; 29
Wang (B49) 2010; 61
Budhagatapalli (B2) 2016; 25
Pedmale (B34) 2016; 164
Hundertmark (B17) 2008; 9
Zhao (B59); 14
Feng (B9) 2012; 12
Heim (B14) 2003; 20
Toledo-Ortiz (B46) 2003; 15
Chinnusamy (B4) 2003; 17
Ji (B19) 2016; 36
Feller (B8) 2011; 66
Huang (B16) 2013; 162
Murashige (B31) 1962; 15
Xu (B52) 2015; 20
Zhang (B56) 2009; 21
Leivar (B24) 2014; 26
Jin (B20) 2016; 7
Yang (B54) 2011; 233
Zhu (B61) 2016; 167
Choudhury (B6) 2017; 90
Shinozaki (B40) 2000; 3
Torii (B47) 2015; 28
Puranik (B35) 2012; 17
Shi (B38) 2015; 56
Chinnusamy (B5) 2007; 12
Wang (B50) 2003; 107
Mittler (B28) 2002; 7
Shi (B39) 2012; 24
Suzuki (B43) 2006; 126
Yamaguchi-Shinozaki (B53) 2006; 57
Vogel (B48) 2005; 41
Zhang (B55) 2015; 27
Hsieh (B15) 2002; 130
Thomashow (B44) 1999; 50
References_xml – volume: 25
  start-page: 285
  year: 2016
  ident: B2
  article-title: Ectopic expression of AtICE1.
  publication-title: J. Plant Biochem. Biotehnol.
  doi: 10.1007/s13562-015-0340-8
– volume: 172
  start-page: 1973
  ident: B58
  article-title: Ubiquitination-related MdBT scaffold Proteins Target a bHLH transcription factor for Iron Homeostasis.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01323
– volume: 7
  year: 2016
  ident: B20
  article-title: Overexpression of a bHLH1 transcription factor of Pyrus ussuriensis confers enhanced Cold tolerance and increases expression of stress-responsive genes.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00441
– volume: 11
  start-page: 754
  year: 2001
  ident: B22
  article-title: The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis.
  publication-title: Genome Res.
  doi: 10.1101/gr.177001
– volume: 21
  start-page: 3767
  year: 2009
  ident: B56
  article-title: Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis.
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.070441
– volume: 36
  start-page: 193
  year: 2016
  ident: B19
  article-title: A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation.
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/tpv139
– volume: 7
  start-page: 405
  year: 2002
  ident: B28
  article-title: Oxidative stress, antioxidants and stress tolerance.
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(02)02312-9
– volume: 57
  start-page: 781
  year: 2006
  ident: B53
  article-title: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses.
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.57.032905.105444
– volume: 281
  start-page: 37636
  year: 2006
  ident: B1
  article-title: A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M605895200
– volume: 153
  start-page: 1398
  year: 2010
  ident: B3
  article-title: Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.153593
– volume: 65
  start-page: 907
  year: 2011
  ident: B37
  article-title: OsbHLH48, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2010.04477.x
– volume: 154
  start-page: 571
  year: 2010
  ident: B45
  article-title: Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.161794
– volume: 35
  start-page: 259
  year: 2012
  ident: B42
  article-title: ROS and redox signalling in the response of plants to abiotic stress.
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2011.02336.x
– volume: 50
  start-page: 571
  year: 1999
  ident: B44
  article-title: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms.
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.50.1.571
– volume: 139
  start-page: 5
  year: 2005
  ident: B7
  article-title: Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.105.063743
– volume: 14
  start-page: 1633
  ident: B59
  article-title: Overexpression of MdbHLH104 gene enhances the tolerance to iron deficiency in apple.
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12526
– volume: 15
  start-page: 1749
  year: 2003
  ident: B46
  article-title: The Arabidopsis basic/helixloop-helix transcription factor family.
  publication-title: Plant Cell
  doi: 10.1105/tpc.013839
– volume: 15
  start-page: 473
  year: 1962
  ident: B31
  article-title: A revised medium for rapid growth and bio assays with tobacco tissue cultures.
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1962.tb08052.x
– volume: 107
  start-page: 1402
  year: 2003
  ident: B50
  article-title: A rice transcription factor OsbHLH1 is involved in cold stress response.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-003-1378-x
– volume: 29
  start-page: 47
  year: 1999
  ident: B33
  article-title: Molecular analysis of acclimation to cold.
  publication-title: Plant Growth Regul.
  doi: 10.1023/A:1006291330661
– volume: 20
  start-page: 735
  year: 2003
  ident: B14
  article-title: The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msg088
– volume: 26
  start-page: 56
  year: 2014
  ident: B24
  article-title: PIFs: systems integrators in plant development.
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.120857
– volume: 233
  start-page: 219
  year: 2011
  ident: B54
  article-title: Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways.
  publication-title: Planta
  doi: 10.1007/s00425-010-1279-6
– volume: 90
  start-page: 856
  year: 2017
  ident: B6
  article-title: Reactive oxygen species, abiotic stress and stress combination.
  publication-title: Plant J.
  doi: 10.1111/tpj.13299
– volume: 13
  start-page: 493
  year: 1991
  ident: B12
  article-title: The helix-loop-helix domain: a common motif for bristles, muscles and sex.
  publication-title: Bioessays
  doi: 10.1002/bies.950131002
– volume: 56
  start-page: 7
  year: 2015
  ident: B38
  article-title: Cold signal transduction and its interplay with phytohormones during cold acclimation.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcu115
– volume: 162
  start-page: 1178
  year: 2013
  ident: B16
  article-title: A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.210740
– volume: 167
  start-page: 313
  year: 2016
  ident: B61
  article-title: Abiotic stress signaling and responses in plants.
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.029
– volume: 164
  start-page: 233
  year: 2016
  ident: B34
  article-title: Cryptochromes interact directly with PIFs to control plant growth in limiting blue light.
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.018
– volume: 12
  year: 2012
  ident: B9
  article-title: The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple.
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-12-22
– volume: 14
  start-page: S165
  year: 2002
  ident: B51
  article-title: Cell signaling during cold, drought, and salt stress.
  publication-title: Plant Cell
  doi: 10.1105/tpc.000596
– volume: 124
  start-page: 1854
  year: 2000
  ident: B13
  article-title: Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.124.4.1854
– volume: 3
  start-page: 217
  year: 2000
  ident: B40
  article-title: Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways.
  publication-title: Curr. Opin. Plant. Biol.
  doi: 10.1016/S1369-5266(00)00067-4
– volume: 17
  start-page: 3155
  year: 2005
  ident: B23
  article-title: The Arabidopsis cold-responsive transcriptome and its regulation by ICE1.
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.035568
– volume: 207
  start-page: 692
  year: 2015
  ident: B26
  article-title: Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs.
  publication-title: New Phytol.
  doi: 10.1111/nph.13387
– volume: 8
  year: 2017
  ident: B27
  article-title: Genome wide identification and characterization of apple bHLH transcription factors and expression analysis in response to drought and salt stress.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00480
– volume: 126
  start-page: 45
  year: 2006
  ident: B43
  article-title: Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction.
  publication-title: Physiol. Plant.
  doi: 10.1111/j.0031-9317.2005.00582.x
– volume: 22
  start-page: 11
  year: 2017
  ident: B29
  article-title: ROS are good.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.08.002
– volume: 41
  start-page: 195
  year: 2005
  ident: B48
  article-title: Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02288.x
– volume: 66
  start-page: 441
  year: 2015
  ident: B41
  article-title: Photoperiodic flowering: time measurement mechanisms in leaves.
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-043014-115555
– volume: 12
  start-page: 30
  year: 2011
  ident: B36
  article-title: Engineering cold stress tolerance in crop plants.
  publication-title: Curr. Genomics
  doi: 10.2174/138920211794520178
– volume: 47
  start-page: 141
  year: 2006
  ident: B18
  article-title: Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pci230
– volume: 429
  start-page: 98
  year: 2009
  ident: B11
  article-title: Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana.
  publication-title: Gene
  doi: 10.1016/j.gene.2008.10.016
– volume: 101
  start-page: 3985
  year: 2004
  ident: B32
  article-title: CBF2/DREB1C is a negative regulator of CBF1/DREB1and CBF3/DREB1expression and plays a central role in stress tolerance in Arabidopsis.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0303029101
– volume: 20
  start-page: 176
  year: 2015
  ident: B52
  article-title: Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2014.12.001
– volume: 17
  start-page: 369
  year: 2012
  ident: B35
  article-title: NAC proteins: regulation and role in stress tolerance.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2012.02.004
– volume: 18
  year: 2017
  ident: B21
  article-title: Integrated transcriptomics and metabolomics analysis to characterize cold stress responses in Nicotiana tabacum.
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-3871-7
– volume: 28
  start-page: 16
  year: 2015
  ident: B47
  article-title: Stomatal differentiation: the beginning and the end.
  publication-title: Curr. Opin. Plant. Biol.
  doi: 10.1016/j.pbi.2015.08.005
– volume: 24
  start-page: 2578
  year: 2012
  ident: B39
  article-title: Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis.
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.098640
– volume: 66
  start-page: 94
  year: 2011
  ident: B8
  article-title: Evolutionary and comparative analysis of MYB and bHLH plant transcription factors.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2010.04459.x
– volume: 9
  year: 2008
  ident: B17
  article-title: LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-118
– volume: 4
  year: 2014
  ident: B57
  article-title: A bHLH transcription factor regulates iron intake under Fe deficiency in chrysanthemum.
  publication-title: Sci. Rep.
  doi: 10.1038/srep06694
– volume: 27
  start-page: 787
  year: 2015
  ident: B55
  article-title: The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis.
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.132704
– volume: 9
  start-page: 490
  year: 2004
  ident: B30
  article-title: Reactive oxygen gene network of plants.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2004.08.009
– volume: 61
  start-page: 752
  year: 2010
  ident: B49
  article-title: A dynamic gene expression atlas covering the entire life cycle of rice.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2009.04100.x
– volume: 130
  start-page: 618
  year: 2002
  ident: B15
  article-title: Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.006783
– volume: 17
  start-page: 1043
  year: 2003
  ident: B4
  article-title: ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis.
  publication-title: Genes Dev.
  doi: 10.1101/gad.1077503
– volume: 9
  start-page: 436
  year: 2006
  ident: B10
  article-title: Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks.
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2006.05.014
– volume: 166
  start-page: 1296
  year: 2009
  ident: B60
  article-title: Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt-and osmotic stress in Arabidopsis.
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2009.02.007
– volume: 12
  start-page: 444
  year: 2007
  ident: B5
  article-title: Cold stress regulation of gene expression in plants.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2007.07.002
– volume: 29
  start-page: 977
  year: 2010
  ident: B25
  article-title: Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang Wild Rice confers freezing and salt tolerance in transgenic Arabidopsis.
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-010-0883-z
SSID ssj0000500997
Score 2.467974
Snippet Cold stress is a major environmental factor that impairs plant growth and development, geographic distribution, and crop productivity. The C-repeat binding...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 381
SubjectTerms cold stress
Nicotiana tabacum
NtbHLH123
NtCBF pathway
Plant Science
reactive oxygen species (ROS)
transcriptional regulation
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQ4cAFQfkKFGQkDlxSsrYTJ4cKsVVXK0QLgl2pt8ifpVKUlE0qml_BX2bGyS4sWm5ccnBsJfHMeJ5j-z1CXnONnuCzWNvCxsKwNFZ5msdp4YzjFjBD-Kd7epbNl-LDeXr-Ww5o7MB259QO9aSWq-rw5nv_DgL-CGeckG_f-qsKibcnuCuS4zHs25CWJEbp6Yj1B6JvRENyoPfZ1W4rMwUC_12o8-_Nk39ko9l9cm-EkfT9YPcH5Jar98mdaQNQr39Ifi4gSo1paMhE63GBzoK2Dj3r9PzjHHIJHY77tXTRVA4FNhztGiisLP0ajpBQ3dMvg1g9ZDgKWBEaH09n9DPgxh-qp6q2UEGFMZN-uunBG2lQtHctRQH2BrBne9k-IsvZyeJ4Ho_KC7ERadHFWoH5LFJOSu_AzN7zApI7fHSiHYyf2vjcWMuc4i5xALG0zHziRWKlNtwy_pjs1U3tnhLKmOcaacH0RAnFJsqkhU5yJ5TDDRo8IofrXi_NSEuO6hhVCdMTNFOJZirRTGUwU0TebBpcDYwc_646RTNuqiGVdihoVhflGJml9MxYzQulWCIEF3kK-doLxzwqazobkVdrJygh9HA9RdWuucYHATaSGVwj8mRwis2jcDUb11wjIrfcZetdtu_Ul98CvXcKkx6ZZ8_-x8s_J3exO3DTHMsPyF63unYvAEV1-mWIjl_cSR7n
  priority: 102
  providerName: Scholars Portal
Title Tobacco Transcription Factor NtbHLH123 Confers Tolerance to Cold Stress by Regulating the NtCBF Pathway and Reactive Oxygen Species Homeostasis
URI https://www.ncbi.nlm.nih.gov/pubmed/29643858
https://www.proquest.com/docview/2024476024
https://pubmed.ncbi.nlm.nih.gov/PMC5882786
https://doaj.org/article/7f2cdb39aa20443485471f4e2f8989ed
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQigMXxJssDxmJA5ewie0kzpGuKBViFwRdqbfIj7FYqUpWNCvor-AvM2O3VYtAXLj4kDqK6xnPfI4n38fYS2nJE0KdW9_6XDlR5UZXOq9acCA9Yob4TvfsvJ5dqPeLarEn9UU1YYkeOE3cSROE81a2xohCKal0heE0KBCBhA_BU_TFnLe3mUqs3gR9msTlg7uw9iRcLYmdu6TSSanLgzQU2fr_BDF_r5TcSz3TO-z2BjPyN2msd9kN6O-xm5MBcd36Pvs5xyXp3MBj2tkGAT6NQjr8fLSzDzNMHDx927fi82EJpKYBfBzw4tLzL_F7EW7X_HNSpsd0xhEY4s2nkyn_hCDxu1lz03vsYGKA5B9_rNH1eJSvhxUntfUBgebqcvWAXUzfzk9n-UZmIXeqasfcGrSVJ37JJgDaNATZYibHP11YwGBpXdDOewFGQgGIp2xThyKowjfWSS_kQ3bUDz08ZlyIIC1xgNnSKCNK46rWFhqUAarGkBl7vZ31zm04yEkKY9nhXoTM1JGZOjJTF82UsVe7G64S_cbfu07IjLtuxJsdL6A3dRtv6v7lTRl7sXWCDtcZHZ6YHoZrehACoabGNmOPklPsHkVH13TAmrHmwF0OxnL4S3_5NXJ5V7jDaXR9_D8G_4TdoumgCjmhn7Kj8ds1PEPINNrncXVg-25RYnum9C_KoBjd
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tobacco+Transcription+Factor+NtbHLH123+Confers+Tolerance+to+Cold+Stress+by+Regulating+the+NtCBF+Pathway+and+Reactive+Oxygen+Species+Homeostasis&rft.jtitle=Frontiers+in+plant+science&rft.au=Qiang+Zhao&rft.au=Xiaohua+Xiang&rft.au=Dan+Liu&rft.au=Aiguo+Yang&rft.date=2018-03-28&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=9&rft_id=info:doi/10.3389%2Ffpls.2018.00381&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7f2cdb39aa20443485471f4e2f8989ed
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon