Tobacco Transcription Factor NtbHLH123 Confers Tolerance to Cold Stress by Regulating the NtCBF Pathway and Reactive Oxygen Species Homeostasis
Cold stress is a major environmental factor that impairs plant growth and development, geographic distribution, and crop productivity. The C-repeat binding factor (CBF) regulatory pathway has an essential role in response to cold stress. Here, we characterized a bHLH transcription factor from , , in...
Saved in:
Published in | Frontiers in plant science Vol. 9; p. 381 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
28.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cold stress is a major environmental factor that impairs plant growth and development, geographic distribution, and crop productivity. The C-repeat binding factor (CBF) regulatory pathway has an essential role in response to cold stress. Here, we characterized a bHLH transcription factor from
,
, in response to cold stress (4°C). Overexpression of
enhanced cold tolerance in transgenic tobacco plants. Based on yeast one-hybrid, chromatin immunoprecipitation PCR, and transient expression analysis assays,
binds directly to the G-box/E-box motifs in the promoter of the
genes and positively regulates their expression. Furthermore,
-overexpressing plants showed lower electrolyte leakage, reduced malondialdehyde contents, H
O
and reactive oxygen species (ROS) accumulation under cold stress, which contributed to alleviating oxidative damage to the cell membrane after cold stress treatment. And
increased stress tolerance by improving the expression of a number of abiotic stress-responsive genes to mediate the ROS scavenging ability and other stress tolerance pathways. Taken together, we present a model suggesting that
is a transcriptional activator that functions as a positive regulator of cold tolerance by activating
, ROS scavenging-related, and stress-responsive genes. |
---|---|
AbstractList | Cold stress is a major environmental factor that impairs plant growth and development, geographic distribution, and crop productivity. The C-repeat binding factor (CBF) regulatory pathway has an essential role in response to cold stress. Here, we characterized a bHLH transcription factor from Nicotiana tabacum, NtbHLH123, in response to cold stress (4°C). Overexpression of NtbHLH123 enhanced cold tolerance in transgenic tobacco plants. Based on yeast one-hybrid, chromatin immunoprecipitation PCR, and transient expression analysis assays, NtbHLH123 binds directly to the G-box/E-box motifs in the promoter of the NtCBF genes and positively regulates their expression. Furthermore, NtbHLH123-overexpressing plants showed lower electrolyte leakage, reduced malondialdehyde contents, H2O2 and reactive oxygen species (ROS) accumulation under cold stress, which contributed to alleviating oxidative damage to the cell membrane after cold stress treatment. And NtbHLH123 increased stress tolerance by improving the expression of a number of abiotic stress-responsive genes to mediate the ROS scavenging ability and other stress tolerance pathways. Taken together, we present a model suggesting that NtbHLH123 is a transcriptional activator that functions as a positive regulator of cold tolerance by activating NtCBF, ROS scavenging-related, and stress-responsive genes. Cold stress is a major environmental factor that impairs plant growth and development, geographic distribution, and crop productivity. The C-repeat binding factor (CBF) regulatory pathway has an essential role in response to cold stress. Here, we characterized a bHLH transcription factor from Nicotiana tabacum, NtbHLH123, in response to cold stress (4°C). Overexpression of NtbHLH123 enhanced cold tolerance in transgenic tobacco plants. Based on yeast one-hybrid, chromatin immunoprecipitation PCR, and transient expression analysis assays, NtbHLH123 binds directly to the G-box/E-box motifs in the promoter of the NtCBF genes and positively regulates their expression. Furthermore, NtbHLH123-overexpressing plants showed lower electrolyte leakage, reduced malondialdehyde contents, H2O2 and reactive oxygen species (ROS) accumulation under cold stress, which contributed to alleviating oxidative damage to the cell membrane after cold stress treatment. And NtbHLH123 increased stress tolerance by improving the expression of a number of abiotic stress-responsive genes to mediate the ROS scavenging ability and other stress tolerance pathways. Taken together, we present a model suggesting that NtbHLH123 is a transcriptional activator that functions as a positive regulator of cold tolerance by activating NtCBF, ROS scavenging-related, and stress-responsive genes.Cold stress is a major environmental factor that impairs plant growth and development, geographic distribution, and crop productivity. The C-repeat binding factor (CBF) regulatory pathway has an essential role in response to cold stress. Here, we characterized a bHLH transcription factor from Nicotiana tabacum, NtbHLH123, in response to cold stress (4°C). Overexpression of NtbHLH123 enhanced cold tolerance in transgenic tobacco plants. Based on yeast one-hybrid, chromatin immunoprecipitation PCR, and transient expression analysis assays, NtbHLH123 binds directly to the G-box/E-box motifs in the promoter of the NtCBF genes and positively regulates their expression. Furthermore, NtbHLH123-overexpressing plants showed lower electrolyte leakage, reduced malondialdehyde contents, H2O2 and reactive oxygen species (ROS) accumulation under cold stress, which contributed to alleviating oxidative damage to the cell membrane after cold stress treatment. And NtbHLH123 increased stress tolerance by improving the expression of a number of abiotic stress-responsive genes to mediate the ROS scavenging ability and other stress tolerance pathways. Taken together, we present a model suggesting that NtbHLH123 is a transcriptional activator that functions as a positive regulator of cold tolerance by activating NtCBF, ROS scavenging-related, and stress-responsive genes. Cold stress is a major environmental factor that impairs plant growth and development, geographic distribution, and crop productivity. The C-repeat binding factor (CBF) regulatory pathway has an essential role in response to cold stress. Here, we characterized a bHLH transcription factor from , , in response to cold stress (4°C). Overexpression of enhanced cold tolerance in transgenic tobacco plants. Based on yeast one-hybrid, chromatin immunoprecipitation PCR, and transient expression analysis assays, binds directly to the G-box/E-box motifs in the promoter of the genes and positively regulates their expression. Furthermore, -overexpressing plants showed lower electrolyte leakage, reduced malondialdehyde contents, H O and reactive oxygen species (ROS) accumulation under cold stress, which contributed to alleviating oxidative damage to the cell membrane after cold stress treatment. And increased stress tolerance by improving the expression of a number of abiotic stress-responsive genes to mediate the ROS scavenging ability and other stress tolerance pathways. Taken together, we present a model suggesting that is a transcriptional activator that functions as a positive regulator of cold tolerance by activating , ROS scavenging-related, and stress-responsive genes. Cold stress is a major environmental factor that impairs plant growth and development, geographic distribution, and crop productivity. The C-repeat binding factor (CBF) regulatory pathway has an essential role in response to cold stress. Here, we characterized a bHLH transcription factor from Nicotiana tabacum , NtbHLH123 , in response to cold stress (4°C). Overexpression of NtbHLH123 enhanced cold tolerance in transgenic tobacco plants. Based on yeast one-hybrid, chromatin immunoprecipitation PCR, and transient expression analysis assays, NtbHLH123 binds directly to the G-box/E-box motifs in the promoter of the NtCBF genes and positively regulates their expression. Furthermore, NtbHLH123 -overexpressing plants showed lower electrolyte leakage, reduced malondialdehyde contents, H 2 O 2 and reactive oxygen species (ROS) accumulation under cold stress, which contributed to alleviating oxidative damage to the cell membrane after cold stress treatment. And NtbHLH123 increased stress tolerance by improving the expression of a number of abiotic stress-responsive genes to mediate the ROS scavenging ability and other stress tolerance pathways. Taken together, we present a model suggesting that NtbHLH123 is a transcriptional activator that functions as a positive regulator of cold tolerance by activating NtCBF , ROS scavenging-related, and stress-responsive genes. |
Author | Wang, Yuanying Xiang, Xiaohua Zhao, Qiang Yang, Aiguo Liu, Dan |
AuthorAffiliation | 2 Hainan Cigar Institution , Haikou , China 1 Tobacco Research Institute, Chinese Academy of Agricultural Sciences , Qingdao , China |
AuthorAffiliation_xml | – name: 1 Tobacco Research Institute, Chinese Academy of Agricultural Sciences , Qingdao , China – name: 2 Hainan Cigar Institution , Haikou , China |
Author_xml | – sequence: 1 givenname: Qiang surname: Zhao fullname: Zhao, Qiang – sequence: 2 givenname: Xiaohua surname: Xiang fullname: Xiang, Xiaohua – sequence: 3 givenname: Dan surname: Liu fullname: Liu, Dan – sequence: 4 givenname: Aiguo surname: Yang fullname: Yang, Aiguo – sequence: 5 givenname: Yuanying surname: Wang fullname: Wang, Yuanying |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29643858$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktvEzEUhUeoiD7omh3ykk1Sj-2Z8WyQICKkUkQRDRI7y4_rxNXEDrZTyK_oX8ZpStUi4YVtXZ_z3Sv5nFZHPnioqjc1HlPK-wu7GdKY4JqPMaa8flGd1G3LRqwlP46e3I-r85RucFkNxn3fvaqOSd8yyht-Ut0tgpJaB7SI0icd3Sa74NFU6hwi-pLVbD6rCUWT4C3EhBZhgKLUgHIoxcGg6xwhJaR26Bsst4PMzi9RXkExTz5O0VeZV7_kDklviqBg3S2gq9-7JXh0vQHtIKFZWENIWSaXXlcvrRwSnD-cZ9X36afFZDaaX32-nHyYjzRr-jxSsrGt4ZjjzgIosJb2mFAwGivgXau05doYApICBtoT1bUWW4ZNpzQ1hJ5VlweuCfJGbKJby7gTQTpxXwhxKWTMTg8gOku0UbSXkmDGKOMN62rLgFje8x5MYb0_sDZbtS4jgM9RDs-gz1-8W4lluBUN56TjbQG8ewDE8HMLKYu1SxqGQXoI2yQIJox1bdmL9O3TXo9N_v5oEVwcBDqGlCLYR0mNxT42Yh8bsY-NuI9NcTT_OLTLch-DMqwb_uv7A51jyqQ |
CitedBy_id | crossref_primary_10_1016_j_indcrop_2024_119593 crossref_primary_10_1093_plphys_kiae483 crossref_primary_10_3390_ijms22116124 crossref_primary_10_3389_fgene_2021_638683 crossref_primary_10_3389_fpls_2022_850216 crossref_primary_10_1093_plphys_kiab176 crossref_primary_10_3390_horticulturae8010080 crossref_primary_10_1186_s12870_022_03767_7 crossref_primary_10_1016_j_envexpbot_2022_104904 crossref_primary_10_3390_f15020380 crossref_primary_10_1016_j_plaphy_2023_02_049 crossref_primary_10_1371_journal_pone_0236588 crossref_primary_10_1016_j_pld_2020_10_004 crossref_primary_10_1016_j_foodchem_2022_134661 crossref_primary_10_3389_fpls_2020_00163 crossref_primary_10_3390_ijms232315214 crossref_primary_10_3390_genes14020275 crossref_primary_10_3389_fmicb_2022_869596 crossref_primary_10_3389_fpls_2022_944269 crossref_primary_10_1186_s12870_022_03718_2 crossref_primary_10_1007_s12042_024_09354_4 crossref_primary_10_3390_ijms23052537 crossref_primary_10_1016_j_postharvbio_2021_111645 crossref_primary_10_1093_aobpla_plz045 crossref_primary_10_3390_genes13020329 crossref_primary_10_1016_j_plaphy_2024_109334 crossref_primary_10_3390_ijms252413526 crossref_primary_10_3390_plants13162315 crossref_primary_10_1021_acs_jafc_3c09665 crossref_primary_10_1016_j_jplph_2024_154415 crossref_primary_10_1071_FP19163 crossref_primary_10_1080_17429145_2023_2172226 crossref_primary_10_1016_j_scienta_2021_110728 crossref_primary_10_1016_j_bbrc_2019_11_063 crossref_primary_10_1186_s12864_021_07652_9 crossref_primary_10_1111_plb_13201 crossref_primary_10_17221_115_2021_CJGPB crossref_primary_10_3389_fpls_2020_543696 crossref_primary_10_3389_fpls_2022_978941 crossref_primary_10_1111_tpj_17060 crossref_primary_10_1007_s00122_025_04823_0 crossref_primary_10_1111_ppl_14213 crossref_primary_10_48130_FR_2023_0016 crossref_primary_10_1016_j_envexpbot_2020_104226 crossref_primary_10_1016_j_envexpbot_2021_104523 crossref_primary_10_1016_j_fbio_2025_106109 crossref_primary_10_1016_j_bbrc_2018_07_123 crossref_primary_10_1016_j_scienta_2024_113556 crossref_primary_10_1016_j_envexpbot_2022_104920 crossref_primary_10_3390_plants12112113 crossref_primary_10_1016_j_gene_2022_146690 crossref_primary_10_3390_cimb45020075 crossref_primary_10_3389_fpls_2021_766130 crossref_primary_10_1080_15226514_2020_1786795 crossref_primary_10_1093_hr_uhad185 crossref_primary_10_1016_j_plaphy_2022_12_023 crossref_primary_10_1016_j_postharvbio_2024_112956 crossref_primary_10_3390_ijms241914563 crossref_primary_10_1016_j_hpj_2023_03_007 crossref_primary_10_1016_j_jplph_2022_153737 crossref_primary_10_3389_fpls_2021_756338 crossref_primary_10_3390_ijms23031897 crossref_primary_10_1016_j_plaphy_2024_108663 crossref_primary_10_3389_fpls_2024_1445488 crossref_primary_10_1186_s12864_024_10939_2 crossref_primary_10_1016_j_plantsci_2023_111604 crossref_primary_10_1016_j_scienta_2024_112993 crossref_primary_10_1590_01047760202329013147 crossref_primary_10_48130_frures_0024_0032 crossref_primary_10_3390_horticulturae9060648 crossref_primary_10_1016_j_plantsci_2019_110219 crossref_primary_10_1111_ppl_12812 crossref_primary_10_1186_s12864_020_6491_6 crossref_primary_10_3389_fpls_2021_677611 crossref_primary_10_7717_peerj_7153 crossref_primary_10_1016_j_jhazmat_2023_132553 crossref_primary_10_1016_j_plaphy_2023_01_026 crossref_primary_10_3390_ijms241411590 crossref_primary_10_3390_ijms19061634 crossref_primary_10_1016_j_scienta_2019_108775 crossref_primary_10_3390_ijms24033030 |
Cites_doi | 10.1007/s13562-015-0340-8 10.1104/pp.16.01323 10.3389/fpls.2016.00441 10.1101/gr.177001 10.1105/tpc.109.070441 10.1093/treephys/tpv139 10.1016/S1360-1385(02)02312-9 10.1146/annurev.arplant.57.032905.105444 10.1074/jbc.M605895200 10.1104/pp.110.153593 10.1111/j.1365-313X.2010.04477.x 10.1104/pp.110.161794 10.1111/j.1365-3040.2011.02336.x 10.1146/annurev.arplant.50.1.571 10.1104/pp.105.063743 10.1111/pbi.12526 10.1105/tpc.013839 10.1111/j.1399-3054.1962.tb08052.x 10.1007/s00122-003-1378-x 10.1023/A:1006291330661 10.1093/molbev/msg088 10.1105/tpc.113.120857 10.1007/s00425-010-1279-6 10.1111/tpj.13299 10.1002/bies.950131002 10.1093/pcp/pcu115 10.1104/pp.112.210740 10.1016/j.cell.2016.08.029 10.1016/j.cell.2015.12.018 10.1186/1471-2229-12-22 10.1105/tpc.000596 10.1104/pp.124.4.1854 10.1016/S1369-5266(00)00067-4 10.1105/tpc.105.035568 10.1111/nph.13387 10.3389/fpls.2017.00480 10.1111/j.0031-9317.2005.00582.x 10.1016/j.tplants.2016.08.002 10.1111/j.1365-313X.2004.02288.x 10.1146/annurev-arplant-043014-115555 10.2174/138920211794520178 10.1093/pcp/pci230 10.1016/j.gene.2008.10.016 10.1073/pnas.0303029101 10.1016/j.tplants.2014.12.001 10.1016/j.tplants.2012.02.004 10.1186/s12864-017-3871-7 10.1016/j.pbi.2015.08.005 10.1105/tpc.112.098640 10.1111/j.1365-313X.2010.04459.x 10.1186/1471-2164-9-118 10.1038/srep06694 10.1105/tpc.114.132704 10.1016/j.tplants.2004.08.009 10.1111/j.1365-313X.2009.04100.x 10.1104/pp.006783 10.1101/gad.1077503 10.1016/j.pbi.2006.05.014 10.1016/j.jplph.2009.02.007 10.1016/j.tplants.2007.07.002 10.1007/s00299-010-0883-z |
ContentType | Journal Article |
Copyright | Copyright © 2018 Zhao, Xiang, Liu, Yang and Wang. 2018 Zhao, Xiang, Liu, Yang and Wang |
Copyright_xml | – notice: Copyright © 2018 Zhao, Xiang, Liu, Yang and Wang. 2018 Zhao, Xiang, Liu, Yang and Wang |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2018.00381 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_7f2cdb39aa20443485471f4e2f8989ed PMC5882786 29643858 10_3389_fpls_2018_00381 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Shandong Province grantid: ZR2016CB07 – fundername: China Postdoctoral Science Foundation grantid: 2016M602214 |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IAO IEA IGS IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c459t-ba5f6d80807feebeff39023edc0be876bcf8cdd2ea3e0e392b76f0f40d7bc3d23 |
IEDL.DBID | DOA |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:14:29 EDT 2025 Thu Aug 21 18:18:18 EDT 2025 Fri Jul 11 13:32:03 EDT 2025 Wed Feb 19 02:43:07 EST 2025 Thu Apr 24 23:02:47 EDT 2025 Tue Jul 01 00:52:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | NtbHLH123 cold stress reactive oxygen species (ROS) Nicotiana tabacum transcriptional regulation NtCBF pathway |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-ba5f6d80807feebeff39023edc0be876bcf8cdd2ea3e0e392b76f0f40d7bc3d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Omar Borsani, University of the Republic, Uruguay Reviewed by: Santiago Signorelli, Universidad de la República, Uruguay; Renu Deswal, University of Delhi, India; Ana Jiménez, Consejo Superior de Investigaciones Científicas (CSIC), Spain This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science |
OpenAccessLink | https://doaj.org/article/7f2cdb39aa20443485471f4e2f8989ed |
PMID | 29643858 |
PQID | 2024476024 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7f2cdb39aa20443485471f4e2f8989ed pubmedcentral_primary_oai_pubmedcentral_nih_gov_5882786 proquest_miscellaneous_2024476024 pubmed_primary_29643858 crossref_primary_10_3389_fpls_2018_00381 crossref_citationtrail_10_3389_fpls_2018_00381 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-28 |
PublicationDateYYYYMMDD | 2018-03-28 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2018 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Agarwal (B1) 2006; 281 Thomashow (B45) 2010; 154 Jin (B21) 2017; 18 Garrell (B12) 1991; 13 Gilmour (B13) 2000; 124 Fujita (B10) 2006; 9 Ledent (B22) 2001; 11 Suzuki (B42) 2012; 35 Novillo (B32) 2004; 101 Song (B41) 2015; 66 Carretero-Paulet (B3) 2010; 153 Zhao (B58); 172 Sanghera (B36) 2011; 12 Czechowski (B7) 2005; 139 Zhou (B60) 2009; 166 Mittler (B30) 2004; 9 Ito (B18) 2006; 47 Xiong (B51) 2002; 14 Fursova (B11) 2009; 429 Mao (B27) 2017; 8 Zhao (B57) 2014; 4 Seo (B37) 2011; 65 Lee (B23) 2005; 17 Liu (B26) 2015; 207 Mittler (B29) 2017; 22 Pearce (B33) 1999; 29 Li (B25) 2010; 29 Wang (B49) 2010; 61 Budhagatapalli (B2) 2016; 25 Pedmale (B34) 2016; 164 Hundertmark (B17) 2008; 9 Zhao (B59); 14 Feng (B9) 2012; 12 Heim (B14) 2003; 20 Toledo-Ortiz (B46) 2003; 15 Chinnusamy (B4) 2003; 17 Ji (B19) 2016; 36 Feller (B8) 2011; 66 Huang (B16) 2013; 162 Murashige (B31) 1962; 15 Xu (B52) 2015; 20 Zhang (B56) 2009; 21 Leivar (B24) 2014; 26 Jin (B20) 2016; 7 Yang (B54) 2011; 233 Zhu (B61) 2016; 167 Choudhury (B6) 2017; 90 Shinozaki (B40) 2000; 3 Torii (B47) 2015; 28 Puranik (B35) 2012; 17 Shi (B38) 2015; 56 Chinnusamy (B5) 2007; 12 Wang (B50) 2003; 107 Mittler (B28) 2002; 7 Shi (B39) 2012; 24 Suzuki (B43) 2006; 126 Yamaguchi-Shinozaki (B53) 2006; 57 Vogel (B48) 2005; 41 Zhang (B55) 2015; 27 Hsieh (B15) 2002; 130 Thomashow (B44) 1999; 50 |
References_xml | – volume: 25 start-page: 285 year: 2016 ident: B2 article-title: Ectopic expression of AtICE1. publication-title: J. Plant Biochem. Biotehnol. doi: 10.1007/s13562-015-0340-8 – volume: 172 start-page: 1973 ident: B58 article-title: Ubiquitination-related MdBT scaffold Proteins Target a bHLH transcription factor for Iron Homeostasis. publication-title: Plant Physiol. doi: 10.1104/pp.16.01323 – volume: 7 year: 2016 ident: B20 article-title: Overexpression of a bHLH1 transcription factor of Pyrus ussuriensis confers enhanced Cold tolerance and increases expression of stress-responsive genes. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00441 – volume: 11 start-page: 754 year: 2001 ident: B22 article-title: The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. publication-title: Genome Res. doi: 10.1101/gr.177001 – volume: 21 start-page: 3767 year: 2009 ident: B56 article-title: Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. publication-title: Plant Cell doi: 10.1105/tpc.109.070441 – volume: 36 start-page: 193 year: 2016 ident: B19 article-title: A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation. publication-title: Tree Physiol. doi: 10.1093/treephys/tpv139 – volume: 7 start-page: 405 year: 2002 ident: B28 article-title: Oxidative stress, antioxidants and stress tolerance. publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(02)02312-9 – volume: 57 start-page: 781 year: 2006 ident: B53 article-title: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105444 – volume: 281 start-page: 37636 year: 2006 ident: B1 article-title: A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M605895200 – volume: 153 start-page: 1398 year: 2010 ident: B3 article-title: Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. publication-title: Plant Physiol. doi: 10.1104/pp.110.153593 – volume: 65 start-page: 907 year: 2011 ident: B37 article-title: OsbHLH48, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04477.x – volume: 154 start-page: 571 year: 2010 ident: B45 article-title: Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. publication-title: Plant Physiol. doi: 10.1104/pp.110.161794 – volume: 35 start-page: 259 year: 2012 ident: B42 article-title: ROS and redox signalling in the response of plants to abiotic stress. publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2011.02336.x – volume: 50 start-page: 571 year: 1999 ident: B44 article-title: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.50.1.571 – volume: 139 start-page: 5 year: 2005 ident: B7 article-title: Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. publication-title: Plant Physiol. doi: 10.1104/pp.105.063743 – volume: 14 start-page: 1633 ident: B59 article-title: Overexpression of MdbHLH104 gene enhances the tolerance to iron deficiency in apple. publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12526 – volume: 15 start-page: 1749 year: 2003 ident: B46 article-title: The Arabidopsis basic/helixloop-helix transcription factor family. publication-title: Plant Cell doi: 10.1105/tpc.013839 – volume: 15 start-page: 473 year: 1962 ident: B31 article-title: A revised medium for rapid growth and bio assays with tobacco tissue cultures. publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1962.tb08052.x – volume: 107 start-page: 1402 year: 2003 ident: B50 article-title: A rice transcription factor OsbHLH1 is involved in cold stress response. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-003-1378-x – volume: 29 start-page: 47 year: 1999 ident: B33 article-title: Molecular analysis of acclimation to cold. publication-title: Plant Growth Regul. doi: 10.1023/A:1006291330661 – volume: 20 start-page: 735 year: 2003 ident: B14 article-title: The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msg088 – volume: 26 start-page: 56 year: 2014 ident: B24 article-title: PIFs: systems integrators in plant development. publication-title: Plant Cell doi: 10.1105/tpc.113.120857 – volume: 233 start-page: 219 year: 2011 ident: B54 article-title: Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. publication-title: Planta doi: 10.1007/s00425-010-1279-6 – volume: 90 start-page: 856 year: 2017 ident: B6 article-title: Reactive oxygen species, abiotic stress and stress combination. publication-title: Plant J. doi: 10.1111/tpj.13299 – volume: 13 start-page: 493 year: 1991 ident: B12 article-title: The helix-loop-helix domain: a common motif for bristles, muscles and sex. publication-title: Bioessays doi: 10.1002/bies.950131002 – volume: 56 start-page: 7 year: 2015 ident: B38 article-title: Cold signal transduction and its interplay with phytohormones during cold acclimation. publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcu115 – volume: 162 start-page: 1178 year: 2013 ident: B16 article-title: A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. publication-title: Plant Physiol. doi: 10.1104/pp.112.210740 – volume: 167 start-page: 313 year: 2016 ident: B61 article-title: Abiotic stress signaling and responses in plants. publication-title: Cell doi: 10.1016/j.cell.2016.08.029 – volume: 164 start-page: 233 year: 2016 ident: B34 article-title: Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. publication-title: Cell doi: 10.1016/j.cell.2015.12.018 – volume: 12 year: 2012 ident: B9 article-title: The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-12-22 – volume: 14 start-page: S165 year: 2002 ident: B51 article-title: Cell signaling during cold, drought, and salt stress. publication-title: Plant Cell doi: 10.1105/tpc.000596 – volume: 124 start-page: 1854 year: 2000 ident: B13 article-title: Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. publication-title: Plant Physiol. doi: 10.1104/pp.124.4.1854 – volume: 3 start-page: 217 year: 2000 ident: B40 article-title: Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. publication-title: Curr. Opin. Plant. Biol. doi: 10.1016/S1369-5266(00)00067-4 – volume: 17 start-page: 3155 year: 2005 ident: B23 article-title: The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. publication-title: Plant Cell doi: 10.1105/tpc.105.035568 – volume: 207 start-page: 692 year: 2015 ident: B26 article-title: Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. publication-title: New Phytol. doi: 10.1111/nph.13387 – volume: 8 year: 2017 ident: B27 article-title: Genome wide identification and characterization of apple bHLH transcription factors and expression analysis in response to drought and salt stress. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00480 – volume: 126 start-page: 45 year: 2006 ident: B43 article-title: Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. publication-title: Physiol. Plant. doi: 10.1111/j.0031-9317.2005.00582.x – volume: 22 start-page: 11 year: 2017 ident: B29 article-title: ROS are good. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.08.002 – volume: 41 start-page: 195 year: 2005 ident: B48 article-title: Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02288.x – volume: 66 start-page: 441 year: 2015 ident: B41 article-title: Photoperiodic flowering: time measurement mechanisms in leaves. publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-043014-115555 – volume: 12 start-page: 30 year: 2011 ident: B36 article-title: Engineering cold stress tolerance in crop plants. publication-title: Curr. Genomics doi: 10.2174/138920211794520178 – volume: 47 start-page: 141 year: 2006 ident: B18 article-title: Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pci230 – volume: 429 start-page: 98 year: 2009 ident: B11 article-title: Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. publication-title: Gene doi: 10.1016/j.gene.2008.10.016 – volume: 101 start-page: 3985 year: 2004 ident: B32 article-title: CBF2/DREB1C is a negative regulator of CBF1/DREB1and CBF3/DREB1expression and plays a central role in stress tolerance in Arabidopsis. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0303029101 – volume: 20 start-page: 176 year: 2015 ident: B52 article-title: Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2014.12.001 – volume: 17 start-page: 369 year: 2012 ident: B35 article-title: NAC proteins: regulation and role in stress tolerance. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2012.02.004 – volume: 18 year: 2017 ident: B21 article-title: Integrated transcriptomics and metabolomics analysis to characterize cold stress responses in Nicotiana tabacum. publication-title: BMC Genomics doi: 10.1186/s12864-017-3871-7 – volume: 28 start-page: 16 year: 2015 ident: B47 article-title: Stomatal differentiation: the beginning and the end. publication-title: Curr. Opin. Plant. Biol. doi: 10.1016/j.pbi.2015.08.005 – volume: 24 start-page: 2578 year: 2012 ident: B39 article-title: Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. publication-title: Plant Cell doi: 10.1105/tpc.112.098640 – volume: 66 start-page: 94 year: 2011 ident: B8 article-title: Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04459.x – volume: 9 year: 2008 ident: B17 article-title: LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. publication-title: BMC Genomics doi: 10.1186/1471-2164-9-118 – volume: 4 year: 2014 ident: B57 article-title: A bHLH transcription factor regulates iron intake under Fe deficiency in chrysanthemum. publication-title: Sci. Rep. doi: 10.1038/srep06694 – volume: 27 start-page: 787 year: 2015 ident: B55 article-title: The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis. publication-title: Plant Cell doi: 10.1105/tpc.114.132704 – volume: 9 start-page: 490 year: 2004 ident: B30 article-title: Reactive oxygen gene network of plants. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2004.08.009 – volume: 61 start-page: 752 year: 2010 ident: B49 article-title: A dynamic gene expression atlas covering the entire life cycle of rice. publication-title: Plant J. doi: 10.1111/j.1365-313X.2009.04100.x – volume: 130 start-page: 618 year: 2002 ident: B15 article-title: Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. publication-title: Plant Physiol. doi: 10.1104/pp.006783 – volume: 17 start-page: 1043 year: 2003 ident: B4 article-title: ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. publication-title: Genes Dev. doi: 10.1101/gad.1077503 – volume: 9 start-page: 436 year: 2006 ident: B10 article-title: Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2006.05.014 – volume: 166 start-page: 1296 year: 2009 ident: B60 article-title: Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt-and osmotic stress in Arabidopsis. publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2009.02.007 – volume: 12 start-page: 444 year: 2007 ident: B5 article-title: Cold stress regulation of gene expression in plants. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2007.07.002 – volume: 29 start-page: 977 year: 2010 ident: B25 article-title: Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang Wild Rice confers freezing and salt tolerance in transgenic Arabidopsis. publication-title: Plant Cell Rep. doi: 10.1007/s00299-010-0883-z |
SSID | ssj0000500997 |
Score | 2.467974 |
Snippet | Cold stress is a major environmental factor that impairs plant growth and development, geographic distribution, and crop productivity. The C-repeat binding... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 381 |
SubjectTerms | cold stress Nicotiana tabacum NtbHLH123 NtCBF pathway Plant Science reactive oxygen species (ROS) transcriptional regulation |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQ4cAFQfkKFGQkDlxSsrYTJ4cKsVVXK0QLgl2pt8ifpVKUlE0qml_BX2bGyS4sWm5ccnBsJfHMeJ5j-z1CXnONnuCzWNvCxsKwNFZ5msdp4YzjFjBD-Kd7epbNl-LDeXr-Ww5o7MB259QO9aSWq-rw5nv_DgL-CGeckG_f-qsKibcnuCuS4zHs25CWJEbp6Yj1B6JvRENyoPfZ1W4rMwUC_12o8-_Nk39ko9l9cm-EkfT9YPcH5Jar98mdaQNQr39Ifi4gSo1paMhE63GBzoK2Dj3r9PzjHHIJHY77tXTRVA4FNhztGiisLP0ajpBQ3dMvg1g9ZDgKWBEaH09n9DPgxh-qp6q2UEGFMZN-uunBG2lQtHctRQH2BrBne9k-IsvZyeJ4Ho_KC7ERadHFWoH5LFJOSu_AzN7zApI7fHSiHYyf2vjcWMuc4i5xALG0zHziRWKlNtwy_pjs1U3tnhLKmOcaacH0RAnFJsqkhU5yJ5TDDRo8IofrXi_NSEuO6hhVCdMTNFOJZirRTGUwU0TebBpcDYwc_646RTNuqiGVdihoVhflGJml9MxYzQulWCIEF3kK-doLxzwqazobkVdrJygh9HA9RdWuucYHATaSGVwj8mRwis2jcDUb11wjIrfcZetdtu_Ul98CvXcKkx6ZZ8_-x8s_J3exO3DTHMsPyF63unYvAEV1-mWIjl_cSR7n priority: 102 providerName: Scholars Portal |
Title | Tobacco Transcription Factor NtbHLH123 Confers Tolerance to Cold Stress by Regulating the NtCBF Pathway and Reactive Oxygen Species Homeostasis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29643858 https://www.proquest.com/docview/2024476024 https://pubmed.ncbi.nlm.nih.gov/PMC5882786 https://doaj.org/article/7f2cdb39aa20443485471f4e2f8989ed |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQigMXxJssDxmJA5ewie0kzpGuKBViFwRdqbfIj7FYqUpWNCvor-AvM2O3VYtAXLj4kDqK6xnPfI4n38fYS2nJE0KdW9_6XDlR5UZXOq9acCA9Yob4TvfsvJ5dqPeLarEn9UU1YYkeOE3cSROE81a2xohCKal0heE0KBCBhA_BU_TFnLe3mUqs3gR9msTlg7uw9iRcLYmdu6TSSanLgzQU2fr_BDF_r5TcSz3TO-z2BjPyN2msd9kN6O-xm5MBcd36Pvs5xyXp3MBj2tkGAT6NQjr8fLSzDzNMHDx927fi82EJpKYBfBzw4tLzL_F7EW7X_HNSpsd0xhEY4s2nkyn_hCDxu1lz03vsYGKA5B9_rNH1eJSvhxUntfUBgebqcvWAXUzfzk9n-UZmIXeqasfcGrSVJ37JJgDaNATZYibHP11YwGBpXdDOewFGQgGIp2xThyKowjfWSS_kQ3bUDz08ZlyIIC1xgNnSKCNK46rWFhqUAarGkBl7vZ31zm04yEkKY9nhXoTM1JGZOjJTF82UsVe7G64S_cbfu07IjLtuxJsdL6A3dRtv6v7lTRl7sXWCDtcZHZ6YHoZrehACoabGNmOPklPsHkVH13TAmrHmwF0OxnL4S3_5NXJ5V7jDaXR9_D8G_4TdoumgCjmhn7Kj8ds1PEPINNrncXVg-25RYnum9C_KoBjd |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tobacco+Transcription+Factor+NtbHLH123+Confers+Tolerance+to+Cold+Stress+by+Regulating+the+NtCBF+Pathway+and+Reactive+Oxygen+Species+Homeostasis&rft.jtitle=Frontiers+in+plant+science&rft.au=Qiang+Zhao&rft.au=Xiaohua+Xiang&rft.au=Dan+Liu&rft.au=Aiguo+Yang&rft.date=2018-03-28&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=9&rft_id=info:doi/10.3389%2Ffpls.2018.00381&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7f2cdb39aa20443485471f4e2f8989ed |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |