Crop plants as models for understanding plant adaptation and diversification

Since the time of Darwin, biologists have understood the promise of crop plants and their wild relatives for providing insight into the mechanisms of phenotypic evolution. The intense selection imposed by our ancestors during plant domestication and subsequent crop improvement has generated remarkab...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 4; p. 290
Main Authors Olsen, Kenneth M., Wendel, Jonathan F.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 01.08.2013
Subjects
Online AccessGet full text
ISSN1664-462X
1664-462X
DOI10.3389/fpls.2013.00290

Cover

Loading…
Abstract Since the time of Darwin, biologists have understood the promise of crop plants and their wild relatives for providing insight into the mechanisms of phenotypic evolution. The intense selection imposed by our ancestors during plant domestication and subsequent crop improvement has generated remarkable transformations of plant phenotypes. Unlike evolution in natural settings, descendent and antecedent conditions for crop plants are often both extant, providing opportunities for direct comparisons through crossing and other experimental approaches. Moreover, since domestication has repeatedly generated a suite of "domestication syndrome" traits that are shared among crops, opportunities exist for gaining insight into the genetic and developmental mechanisms that underlie parallel adaptive evolution. Advances in our understanding of the genetic architecture of domestication-related traits have emerged from combining powerful molecular technologies with advanced experimental designs, including nested association mapping, genome-wide association studies, population genetic screens for signatures of selection, and candidate gene approaches. These studies may be combined with high-throughput evaluations of the various "omics" involved in trait transformation, revealing a diversity of underlying causative mutations affecting phenotypes and their downstream propagation through biological networks. We summarize the state of our knowledge of the mutational spectrum that generates phenotypic novelty in domesticated plant species, and our current understanding of how domestication can reshape gene expression networks and emergent phenotypes. An exploration of traits that have been subject to similar selective pressures across crops (e.g., flowering time) suggests that a diversity of targeted genes and causative mutational changes can underlie parallel adaptation in the context of crop evolution.
AbstractList Since the time of Darwin, biologists have understood the promise of crop plants and their wild relatives for providing insight into the mechanisms of phenotypic evolution. The intense selection imposed by our ancestors during plant domestication and subsequent crop improvement has generated remarkable transformations of plant phenotypes. Unlike evolution in natural settings, descendent and antecedent conditions for crop plants are often both extant, providing opportunities for direct comparisons through crossing and other experimental approaches. Moreover, since domestication has repeatedly generated a suite of domestication syndrome traits that are shared among crops, opportunities exist for gaining insight into the genetic and developmental mechanisms that underlie parallel adaptive evolution. Advances in our understanding of the genetic architecture of domestication-related traits have emerged from combining powerful molecular technologies with advanced experimental designs, including nested association mapping, genome-wide association studies, population genetic screens for signatures of selection, and candidate gene approaches. These studies may be combined with high-throughput evaluations of the various omics involved in trait transformation, revealing a diversity of underlying causative mutations affecting phenotypes and their downstream propagation through biological networks. We summarize the state of our knowledge of the mutational spectrum that generates phenotypic novelty in domesticated plant species, and our current understanding of how domestication can reshape gene expression networks and emergent phenotypes. An exploration of traits that have been subject to similar selective pressures across crops (e.g., flowering time) suggests that a diversity of targeted genes and causative mutational changes can underlie parallel adaptation in the context of crop evolution.
Since the time of Darwin, biologists have understood the promise of crop plants and their wild relatives for providing insight into the mechanisms of phenotypic evolution. The intense selection imposed by our ancestors during plant domestication and subsequent crop improvement has generated remarkable transformations of plant phenotypes. Unlike evolution in natural settings, descendent and antecedent conditions for crop plants are often both extant, providing opportunities for direct comparisons through crossing and other experimental approaches. Moreover, since domestication has repeatedly generated a suite of "domestication syndrome" traits that are shared among crops, opportunities exist for gaining insight into the genetic and developmental mechanisms that underlie parallel adaptive evolution. Advances in our understanding of the genetic architecture of domestication-related traits have emerged from combining powerful molecular technologies with advanced experimental designs, including nested association mapping, genome-wide association studies, population genetic screens for signatures of selection, and candidate gene approaches. These studies may be combined with high-throughput evaluations of the various "omics" involved in trait transformation, revealing a diversity of underlying causative mutations affecting phenotypes and their downstream propagation through biological networks. We summarize the state of our knowledge of the mutational spectrum that generates phenotypic novelty in domesticated plant species, and our current understanding of how domestication can reshape gene expression networks and emergent phenotypes. An exploration of traits that have been subject to similar selective pressures across crops (e.g., flowering time) suggests that a diversity of targeted genes and causative mutational changes can underlie parallel adaptation in the context of crop evolution.Since the time of Darwin, biologists have understood the promise of crop plants and their wild relatives for providing insight into the mechanisms of phenotypic evolution. The intense selection imposed by our ancestors during plant domestication and subsequent crop improvement has generated remarkable transformations of plant phenotypes. Unlike evolution in natural settings, descendent and antecedent conditions for crop plants are often both extant, providing opportunities for direct comparisons through crossing and other experimental approaches. Moreover, since domestication has repeatedly generated a suite of "domestication syndrome" traits that are shared among crops, opportunities exist for gaining insight into the genetic and developmental mechanisms that underlie parallel adaptive evolution. Advances in our understanding of the genetic architecture of domestication-related traits have emerged from combining powerful molecular technologies with advanced experimental designs, including nested association mapping, genome-wide association studies, population genetic screens for signatures of selection, and candidate gene approaches. These studies may be combined with high-throughput evaluations of the various "omics" involved in trait transformation, revealing a diversity of underlying causative mutations affecting phenotypes and their downstream propagation through biological networks. We summarize the state of our knowledge of the mutational spectrum that generates phenotypic novelty in domesticated plant species, and our current understanding of how domestication can reshape gene expression networks and emergent phenotypes. An exploration of traits that have been subject to similar selective pressures across crops (e.g., flowering time) suggests that a diversity of targeted genes and causative mutational changes can underlie parallel adaptation in the context of crop evolution.
Author Olsen, Kenneth M.
Wendel, Jonathan F.
AuthorAffiliation 1 Biology Department, Washington University St. Louis, MO, USA
2 Ecology, Evolution, and Organismal Biology Department, Iowa State University Ames, IA, USA
AuthorAffiliation_xml – name: 1 Biology Department, Washington University St. Louis, MO, USA
– name: 2 Ecology, Evolution, and Organismal Biology Department, Iowa State University Ames, IA, USA
Author_xml – sequence: 1
  givenname: Kenneth M.
  surname: Olsen
  fullname: Olsen, Kenneth M.
– sequence: 2
  givenname: Jonathan F.
  surname: Wendel
  fullname: Wendel, Jonathan F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23914199$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rGzEQxUVJaNI0597KHnuxo0-vdCkU04-AoZcEchOz0shVWK-20jqQ_76yNw1JobpIPL15M9LvHTkZ0oCEfGB0KYQ2V2Hsy5JTJpaUckPfkHO2WsmFXPG7kxfnM3JZyj2tS1FqTPuWnHFhmGTGnJPNOqexGXsYptJAaXbJY1-akHKzHzzmMsHg47CdLQ14GCeYYhqaqjc-PlRLDNEdtffkNEBf8PJpvyC3377erH8sNj-_X6-_bBZOKjMtupWQFFvogEPLOipAexW0RE8FNar1SOt0iNA6b5jWrjOeBe6C6oD6DsUFuZ5zfYJ7O-a4g_xoE0R7FFLeWshTdD1awYIzHsChAsm501xpbbgyWgaUTNasz3PWuO926B0OU4b-VejrmyH-stv0YEXLjdG8Bnx6Csjp9x7LZHexOOzrf2HaF1ufopnUrdLV-vFlr-cmf3FUw9VscDmVkjE8Wxi1B-b2wNwemNsj81qh_qlwcQZUh439f-v-AARMsyw
CitedBy_id crossref_primary_10_1111_mec_13256
crossref_primary_10_3389_fpls_2022_1034952
crossref_primary_10_1038_s41467_022_33515_2
crossref_primary_10_1007_s12231_020_09494_0
crossref_primary_10_1093_jxb_eraa270
crossref_primary_10_3732_ajb_1400297
crossref_primary_10_1371_journal_pone_0195199
crossref_primary_10_1080_07352689_2021_1920731
crossref_primary_10_1002_pld3_173
crossref_primary_10_3389_fgene_2020_591194
crossref_primary_10_3389_fpls_2021_666075
crossref_primary_10_1038_ng_3825
crossref_primary_10_3389_fpls_2019_00454
crossref_primary_10_1093_jxb_erz340
crossref_primary_10_1093_molbev_msw050
crossref_primary_10_3835_plantgenome2015_09_0090
crossref_primary_10_1073_pnas_1308940110
crossref_primary_10_3390_agronomy12020505
crossref_primary_10_1186_s13059_017_1229_8
crossref_primary_10_1371_journal_pone_0183454
crossref_primary_10_3389_fpls_2016_01504
crossref_primary_10_1534_g3_119_400353
crossref_primary_10_7554_eLife_71572
crossref_primary_10_1111_pbi_13112
crossref_primary_10_1007_s11103_015_0307_0
crossref_primary_10_1371_journal_pone_0198593
crossref_primary_10_1186_s12284_020_00449_6
crossref_primary_10_1021_jf503651t
crossref_primary_10_1016_j_pbi_2018_02_003
crossref_primary_10_1007_s00425_014_2146_7
crossref_primary_10_1534_g3_119_400909
crossref_primary_10_1111_mec_12708
crossref_primary_10_3389_fpls_2020_00034
crossref_primary_10_3835_plantgenome2014_12_0098
crossref_primary_10_1111_tpj_14155
crossref_primary_10_1007_s00122_013_2177_7
crossref_primary_10_1371_journal_pone_0118669
crossref_primary_10_3732_ajb_1400154
crossref_primary_10_1111_tpj_15419
crossref_primary_10_1371_journal_pgen_1004073
crossref_primary_10_3732_ajb_1400084
crossref_primary_10_1016_j_molp_2015_03_003
crossref_primary_10_1111_plb_12640
crossref_primary_10_1002_prca_201600087
crossref_primary_10_1073_pnas_1308942110
crossref_primary_10_1007_s11738_019_2850_9
crossref_primary_10_1186_s12284_018_0247_9
crossref_primary_10_1111_eva_12434
crossref_primary_10_1007_s00438_021_01778_x
crossref_primary_10_3389_fgene_2022_932430
crossref_primary_10_1038_s41588_022_01172_2
crossref_primary_10_1007_s00122_022_04122_y
crossref_primary_10_3389_fpls_2014_00193
crossref_primary_10_1007_s12042_019_09229_z
crossref_primary_10_1080_00438243_2019_1610492
crossref_primary_10_3389_fevo_2018_00056
crossref_primary_10_3389_fmicb_2022_981987
crossref_primary_10_1111_nph_15731
crossref_primary_10_1111_nph_20084
crossref_primary_10_17660_ActaHortic_2018_1202_24
crossref_primary_10_3390_ijms241310607
crossref_primary_10_1016_j_bbagrm_2016_08_005
ContentType Journal Article
Copyright Copyright © 2013 Olsen and Wendel. 2013
Copyright_xml – notice: Copyright © 2013 Olsen and Wendel. 2013
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2013.00290
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_31fc9daace5a422c82588925984fe414
PMC3729982
23914199
10_3389_fpls_2013_00290
Genre Journal Article
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
IPNFZ
KQ8
M48
M~E
OK1
PGMZT
RIG
RNS
RPM
NPM
7X8
5PM
ID FETCH-LOGICAL-c459t-b6340e7aba2a71b03a8d5f84ed030957de0141eea7cd9188cb9d1f2cf5ba0dbe3
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:31:17 EDT 2025
Thu Aug 21 18:31:31 EDT 2025
Fri Jul 11 05:20:24 EDT 2025
Thu Apr 03 07:01:17 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
Tue Jul 01 02:44:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords evolutionary genomics
parallel evolution
association mapping
domestication syndrome
adaptation
crop improvement
artificial selection
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-b6340e7aba2a71b03a8d5f84ed030957de0141eea7cd9188cb9d1f2cf5ba0dbe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Clinton Whipple, Brigham Young University, USA; Benjamin K. Blackman, University of Virginia, USA
This article was submitted to Frontiers in Plant Evolution and Development, a specialty of Frontiers in Plant Science.
Edited by: Madelaine E. Bartlett, Brigham Young University, USA
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2013.00290
PMID 23914199
PQID 1418148758
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_31fc9daace5a422c82588925984fe414
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3729982
proquest_miscellaneous_1418148758
pubmed_primary_23914199
crossref_primary_10_3389_fpls_2013_00290
crossref_citationtrail_10_3389_fpls_2013_00290
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2013
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References 16924546 - Mol Genet Genomics. 2006 Nov;276(5):427-35
10094045 - Nature. 1999 Mar 18;398(6724):236-9
18820696 - Nat Genet. 2008 Nov;40(11):1365-9
19686594 - BMC Genomics. 2009 Aug 17;10:378
22936718 - Mol Biol Evol. 2013 Jan;30(1):109-22
19674331 - New Phytol. 2009 Dec;184(4):842-50
23535596 - Nature. 2013 Apr 4;496(7443):87-90
18316719 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4062-7
22711828 - Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):E1913-21
20944017 - Genetics. 2011 Jan;187(1):271-87
18803775 - Evol Dev. 2008 Sep-Oct;10(5):567-82
23388640 - Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):2775-80
18248099 - PLoS Genet. 2008 Feb;4(2):e25
21478875 - Nature. 2011 May 5;473(7345):97-100
16172507 - Genetics. 2006 Jan;172(1):547-55
23075845 - Nature. 2012 Nov 29;491(7426):711-6
22989156 - Plant J. 2013 Jan;73(1):166-78
23089365 - J Genet Genomics. 2012 Oct 20;39(10):551-60
22048662 - Nat Rev Genet. 2011 Nov 03;12(12):821-32
21329499 - Evodevo. 2011 Feb 17;2:4
21078138 - BMC Biol. 2010 Nov 15;8:139
23160098 - Nat Genet. 2012 Dec;44(12):1388-92
11416158 - Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7922-7
22580950 - Nat Biotechnol. 2012 May 13;30(6):549-54
21229229 - Theor Appl Genet. 2011 Apr;122(6):1199-210
21217757 - Nat Genet. 2011 Feb;43(2):163-8
22207165 - Nat Rev Genet. 2011 Dec 29;13(2):85-96
22399582 - Plant Cell Physiol. 2012 Apr;53(4):709-16
19005084 - Plant Physiol. 2009 Jan;149(1):245-57
23220350 - Genomics. 2013 Feb;101(2):157-62
22801500 - Nature. 2012 Aug 9;488(7410):213-7
18454147 - Nat Genet. 2008 Jun;40(6):761-7
18469814 - Nat Genet. 2008 Jun;40(6):800-4
20196812 - Mol Ecol. 2010 Apr;19(7):1296-311
20699006 - BMC Plant Biol. 2010 Aug 11;10:168
22057054 - Nat Biotechnol. 2011 Nov 06;30(1):83-9
17220272 - Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1424-9
9087405 - Nature. 1997 Apr 3;386(6624):485-8
20139147 - Mol Biol Evol. 2010 Jul;27(7):1478-94
19246394 - Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4555-60
21081278 - Trends Plant Sci. 2011 Feb;16(2):77-88
21808261 - Nat Rev Genet. 2011 Aug 02;12(9):591-602
23437002 - PLoS Genet. 2013;9(2):e1003246
15881691 - Genetica. 2005 Feb;123(1-2):191-6
18339939 - Science. 2008 Mar 14;319(5869):1527-30
22042872 - Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18737-42
21441384 - Plant Physiol. 2011 May;156(1):275-85
21673133 - Plant Physiol. 2011 Aug;156(4):2244-54
21309807 - Plant Cell Environ. 2011 Apr;34(4):535-53
22729225 - Nat Genet. 2012 Jun 24;44(8):950-4
23008422 - Plant Cell Physiol. 2012 Nov;53(11):1827-42
20421496 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8563-8
22820317 - Nat Biotechnol. 2012 Aug;30(8):798-802
19407983 - Theor Appl Genet. 2009 Jul;119(2):315-23
19706531 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14444-9
23630259 - Proc Natl Acad Sci U S A. 2013 May 14;110(20):8057-62
20007447 - Plant Physiol. 2010 Feb;152(2):808-20
19555435 - New Phytol. 2009 Aug;183(3):557-64
22698378 - Trends Plant Sci. 2012 Aug;17(8):441-7
22660326 - Nature. 2012 May 30;485(7400):635-41
19920856 - Heredity (Edinb). 2010 Apr;104(4):351-62
22699509 - Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10281-6
23179023 - Nat Genet. 2013 Jan;45(1):51-8
23671421 - PLoS Genet. 2013 May;9(5):e1003477
23236132 - Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21534-9
22427337 - Plant Cell. 2012 Mar;24(3):1242-55
21482771 - Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6893-8
22908034 - G3 (Bethesda). 2012 Aug;2(8):853-64
23535592 - Nature. 2013 Apr 4;496(7443):91-5
23257886 - Nature. 2012 Dec 20;492(7429):423-7
17190597 - Cell. 2006 Dec 29;127(7):1309-21
20607290 - Mol Genet Genomics. 2010 Aug;284(2):137-46
22581231 - Nat Genet. 2012 May 13;44(6):720-4
23435087 - Nat Genet. 2013 Apr;45(4):462-5, 465e1-2
19859548 - PLoS One. 2009 Oct 27;4(10):e7612
22914168 - Nature. 2012 Aug 23;488(7412):535-9
21729041 - Evolution. 2011 Jul;65(7):1827-40
23019270 - Ann Bot. 2012 Dec;110(8):1573-80
23213200 - Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):21158-63
19661427 - Science. 2009 Aug 7;325(5941):737-40
22138690 - Nat Genet. 2011 Dec 04;44(1):32-9
19661422 - Science. 2009 Aug 7;325(5941):714-8
19584810 - Nat Rev Genet. 2009 Aug;10(8):565-77
21681211 - Nat Rev Genet. 2011 Jun 17;12(7):499-510
21865506 - Am J Bot. 2011 Sep;98(9):1389-414
18604208 - Nat Genet. 2008 Aug;40(8):1023-8
23241244 - BMC Plant Biol. 2012 Dec 15;12:238
22160709 - Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21152-7
22615396 - Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):8872-7
22753482 - Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11878-83
21217756 - Nat Genet. 2011 Feb;43(2):159-62
23293955 - New Phytol. 2013 Feb;197(3):939-48
17316172 - Plant J. 2007 Mar;49(5):772-85
19506305 - Genetics. 2009 Aug;182(4):1323-34
20220098 - Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5792-7
18022278 - Trends Ecol Evol. 2008 Jan;23(1):26-32
19033526 - Plant Cell. 2008 Nov;20(11):2946-59
22019783 - Nat Genet. 2011 Oct 23;43(12):1266-9
15078816 - Genes Dev. 2004 Apr 15;18(8):926-36
16453132 - Theor Appl Genet. 2006 Apr;112(6):1164-71
23795774 - New Phytol. 2013 Oct;200(2):570-82
17821643 - Science. 1995 Sep 22;269(5231):1714-8
21946354 - Nat Genet. 2011 Sep 25;43(11):1160-3
21690125 - Philos Trans R Soc Lond B Biol Sci. 2011 Jul 27;366(1574):2069-75
11148291 - Plant Cell. 2000 Dec;12(12):2473-2484
23467094 - Nature. 2013 Mar 14;495(7440):246-50
23090144 - Theor Appl Genet. 2013 Mar;126(3):611-8
21263038 - Plant Physiol. 2011 Mar;155(3):1301-11
12730378 - Proc Natl Acad Sci U S A. 2003 May 13;100(10):6263-8
16284181 - Science. 2005 Nov 11;310(5750):1031-4
18820698 - Nat Genet. 2008 Nov;40(11):1370-4
22666315 - PLoS One. 2012;7(5):e34021
21646530 - Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11034-9
19581446 - Genetics. 2009 Sep;183(1):325-35
23377180 - Nat Genet. 2013 Mar;45(3):334-7
18820699 - Nat Genet. 2008 Nov;40(11):1360-4
20303265 - Curr Biol. 2010 Apr 13;20(7):629-35
22889076 - New Phytol. 2012 Oct;196(1):29-48
22331140 - Theor Appl Genet. 2012 May;124(8):1539-47
18726584 - Theor Appl Genet. 2008 Oct;117(6):935-45
21217754 - Nat Genet. 2011 Feb;43(2):169-72
15016992 - Science. 2004 Mar 12;303(5664):1640-4
21930910 - Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16469-74
22135431 - Plant Physiol. 2012 Feb;158(2):824-34
22619331 - Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):E2155-64
22898651 - Nat Rev Genet. 2012 Sep;13(9):627-39
17908158 - Plant J. 2007 Dec;52(5):891-8
21695282 - PLoS Genet. 2011 Jun;7(6):e1002100
18669581 - Mol Biol Evol. 2008 Oct;25(10):2211-9
17417637 - Nat Genet. 2007 May;39(5):623-30
17129318 - Plant Biotechnol J. 2005 May;3(3):363-70
21915109 - Nat Commun. 2011 Sep 13;2:467
22753475 - Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11872-7
23034647 - Nature. 2012 Oct 25;490(7421):497-501
21121088 - J Evol Biol. 2010 Dec;23(12):2747-53
22660546 - Nat Genet. 2012 Jun 03;44(7):808-11
20864385 - Curr Opin Plant Biol. 2011 Feb;14(1):45-52
15014981 - Mol Genet Genomics. 2004 May;271(4):377-86
References_xml – reference: 19005084 - Plant Physiol. 2009 Jan;149(1):245-57
– reference: 21646530 - Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11034-9
– reference: 21217754 - Nat Genet. 2011 Feb;43(2):169-72
– reference: 18803775 - Evol Dev. 2008 Sep-Oct;10(5):567-82
– reference: 23671421 - PLoS Genet. 2013 May;9(5):e1003477
– reference: 21865506 - Am J Bot. 2011 Sep;98(9):1389-414
– reference: 19033526 - Plant Cell. 2008 Nov;20(11):2946-59
– reference: 17129318 - Plant Biotechnol J. 2005 May;3(3):363-70
– reference: 18022278 - Trends Ecol Evol. 2008 Jan;23(1):26-32
– reference: 22048662 - Nat Rev Genet. 2011 Nov 03;12(12):821-32
– reference: 22615396 - Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):8872-7
– reference: 20944017 - Genetics. 2011 Jan;187(1):271-87
– reference: 20139147 - Mol Biol Evol. 2010 Jul;27(7):1478-94
– reference: 17417637 - Nat Genet. 2007 May;39(5):623-30
– reference: 23630259 - Proc Natl Acad Sci U S A. 2013 May 14;110(20):8057-62
– reference: 19706531 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14444-9
– reference: 22207165 - Nat Rev Genet. 2011 Dec 29;13(2):85-96
– reference: 23467094 - Nature. 2013 Mar 14;495(7440):246-50
– reference: 15078816 - Genes Dev. 2004 Apr 15;18(8):926-36
– reference: 22057054 - Nat Biotechnol. 2011 Nov 06;30(1):83-9
– reference: 23388640 - Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):2775-80
– reference: 20421496 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8563-8
– reference: 23241244 - BMC Plant Biol. 2012 Dec 15;12:238
– reference: 21309807 - Plant Cell Environ. 2011 Apr;34(4):535-53
– reference: 21217756 - Nat Genet. 2011 Feb;43(2):159-62
– reference: 23179023 - Nat Genet. 2013 Jan;45(1):51-8
– reference: 21729041 - Evolution. 2011 Jul;65(7):1827-40
– reference: 19555435 - New Phytol. 2009 Aug;183(3):557-64
– reference: 22019783 - Nat Genet. 2011 Oct 23;43(12):1266-9
– reference: 22908034 - G3 (Bethesda). 2012 Aug;2(8):853-64
– reference: 18339939 - Science. 2008 Mar 14;319(5869):1527-30
– reference: 15881691 - Genetica. 2005 Feb;123(1-2):191-6
– reference: 21915109 - Nat Commun. 2011 Sep 13;2:467
– reference: 16284181 - Science. 2005 Nov 11;310(5750):1031-4
– reference: 18669581 - Mol Biol Evol. 2008 Oct;25(10):2211-9
– reference: 23089365 - J Genet Genomics. 2012 Oct 20;39(10):551-60
– reference: 22801500 - Nature. 2012 Aug 9;488(7410):213-7
– reference: 22399582 - Plant Cell Physiol. 2012 Apr;53(4):709-16
– reference: 21690125 - Philos Trans R Soc Lond B Biol Sci. 2011 Jul 27;366(1574):2069-75
– reference: 22889076 - New Phytol. 2012 Oct;196(1):29-48
– reference: 22753475 - Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11872-7
– reference: 17821643 - Science. 1995 Sep 22;269(5231):1714-8
– reference: 20303265 - Curr Biol. 2010 Apr 13;20(7):629-35
– reference: 23236132 - Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21534-9
– reference: 12730378 - Proc Natl Acad Sci U S A. 2003 May 13;100(10):6263-8
– reference: 23019270 - Ann Bot. 2012 Dec;110(8):1573-80
– reference: 21078138 - BMC Biol. 2010 Nov 15;8:139
– reference: 18604208 - Nat Genet. 2008 Aug;40(8):1023-8
– reference: 16172507 - Genetics. 2006 Jan;172(1):547-55
– reference: 22936718 - Mol Biol Evol. 2013 Jan;30(1):109-22
– reference: 22160709 - Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21152-7
– reference: 23377180 - Nat Genet. 2013 Mar;45(3):334-7
– reference: 16453132 - Theor Appl Genet. 2006 Apr;112(6):1164-71
– reference: 23535592 - Nature. 2013 Apr 4;496(7443):91-5
– reference: 22135431 - Plant Physiol. 2012 Feb;158(2):824-34
– reference: 10094045 - Nature. 1999 Mar 18;398(6724):236-9
– reference: 18454147 - Nat Genet. 2008 Jun;40(6):761-7
– reference: 23075845 - Nature. 2012 Nov 29;491(7426):711-6
– reference: 17220272 - Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1424-9
– reference: 21217757 - Nat Genet. 2011 Feb;43(2):163-8
– reference: 9087405 - Nature. 1997 Apr 3;386(6624):485-8
– reference: 23535596 - Nature. 2013 Apr 4;496(7443):87-90
– reference: 21673133 - Plant Physiol. 2011 Aug;156(4):2244-54
– reference: 16924546 - Mol Genet Genomics. 2006 Nov;276(5):427-35
– reference: 11416158 - Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7922-7
– reference: 19246394 - Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4555-60
– reference: 18726584 - Theor Appl Genet. 2008 Oct;117(6):935-45
– reference: 19859548 - PLoS One. 2009 Oct 27;4(10):e7612
– reference: 22331140 - Theor Appl Genet. 2012 May;124(8):1539-47
– reference: 20220098 - Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5792-7
– reference: 22138690 - Nat Genet. 2011 Dec 04;44(1):32-9
– reference: 19584810 - Nat Rev Genet. 2009 Aug;10(8):565-77
– reference: 20699006 - BMC Plant Biol. 2010 Aug 11;10:168
– reference: 19661427 - Science. 2009 Aug 7;325(5941):737-40
– reference: 22427337 - Plant Cell. 2012 Mar;24(3):1242-55
– reference: 21482771 - Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6893-8
– reference: 18248099 - PLoS Genet. 2008 Feb;4(2):e25
– reference: 18820698 - Nat Genet. 2008 Nov;40(11):1370-4
– reference: 18820696 - Nat Genet. 2008 Nov;40(11):1365-9
– reference: 22619331 - Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):E2155-64
– reference: 15016992 - Science. 2004 Mar 12;303(5664):1640-4
– reference: 15014981 - Mol Genet Genomics. 2004 May;271(4):377-86
– reference: 18316719 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4062-7
– reference: 22666315 - PLoS One. 2012;7(5):e34021
– reference: 23090144 - Theor Appl Genet. 2013 Mar;126(3):611-8
– reference: 21808261 - Nat Rev Genet. 2011 Aug 02;12(9):591-602
– reference: 19674331 - New Phytol. 2009 Dec;184(4):842-50
– reference: 22581231 - Nat Genet. 2012 May 13;44(6):720-4
– reference: 17316172 - Plant J. 2007 Mar;49(5):772-85
– reference: 19686594 - BMC Genomics. 2009 Aug 17;10:378
– reference: 23008422 - Plant Cell Physiol. 2012 Nov;53(11):1827-42
– reference: 21263038 - Plant Physiol. 2011 Mar;155(3):1301-11
– reference: 23160098 - Nat Genet. 2012 Dec;44(12):1388-92
– reference: 19661422 - Science. 2009 Aug 7;325(5941):714-8
– reference: 20607290 - Mol Genet Genomics. 2010 Aug;284(2):137-46
– reference: 22729225 - Nat Genet. 2012 Jun 24;44(8):950-4
– reference: 22698378 - Trends Plant Sci. 2012 Aug;17(8):441-7
– reference: 21695282 - PLoS Genet. 2011 Jun;7(6):e1002100
– reference: 21229229 - Theor Appl Genet. 2011 Apr;122(6):1199-210
– reference: 18469814 - Nat Genet. 2008 Jun;40(6):800-4
– reference: 22660546 - Nat Genet. 2012 Jun 03;44(7):808-11
– reference: 19581446 - Genetics. 2009 Sep;183(1):325-35
– reference: 17190597 - Cell. 2006 Dec 29;127(7):1309-21
– reference: 21081278 - Trends Plant Sci. 2011 Feb;16(2):77-88
– reference: 23435087 - Nat Genet. 2013 Apr;45(4):462-5, 465e1-2
– reference: 23257886 - Nature. 2012 Dec 20;492(7429):423-7
– reference: 19407983 - Theor Appl Genet. 2009 Jul;119(2):315-23
– reference: 20007447 - Plant Physiol. 2010 Feb;152(2):808-20
– reference: 18820699 - Nat Genet. 2008 Nov;40(11):1360-4
– reference: 21946354 - Nat Genet. 2011 Sep 25;43(11):1160-3
– reference: 22753482 - Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11878-83
– reference: 20864385 - Curr Opin Plant Biol. 2011 Feb;14(1):45-52
– reference: 22580950 - Nat Biotechnol. 2012 May 13;30(6):549-54
– reference: 23034647 - Nature. 2012 Oct 25;490(7421):497-501
– reference: 11148291 - Plant Cell. 2000 Dec;12(12):2473-2484
– reference: 22989156 - Plant J. 2013 Jan;73(1):166-78
– reference: 19506305 - Genetics. 2009 Aug;182(4):1323-34
– reference: 22711828 - Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):E1913-21
– reference: 23220350 - Genomics. 2013 Feb;101(2):157-62
– reference: 17908158 - Plant J. 2007 Dec;52(5):891-8
– reference: 23795774 - New Phytol. 2013 Oct;200(2):570-82
– reference: 21478875 - Nature. 2011 May 5;473(7345):97-100
– reference: 21930910 - Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16469-74
– reference: 23293955 - New Phytol. 2013 Feb;197(3):939-48
– reference: 22898651 - Nat Rev Genet. 2012 Sep;13(9):627-39
– reference: 22660326 - Nature. 2012 May 30;485(7400):635-41
– reference: 21441384 - Plant Physiol. 2011 May;156(1):275-85
– reference: 23437002 - PLoS Genet. 2013;9(2):e1003246
– reference: 21121088 - J Evol Biol. 2010 Dec;23(12):2747-53
– reference: 20196812 - Mol Ecol. 2010 Apr;19(7):1296-311
– reference: 22042872 - Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18737-42
– reference: 23213200 - Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):21158-63
– reference: 22699509 - Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10281-6
– reference: 22820317 - Nat Biotechnol. 2012 Aug;30(8):798-802
– reference: 21681211 - Nat Rev Genet. 2011 Jun 17;12(7):499-510
– reference: 19920856 - Heredity (Edinb). 2010 Apr;104(4):351-62
– reference: 22914168 - Nature. 2012 Aug 23;488(7412):535-9
– reference: 21329499 - Evodevo. 2011 Feb 17;2:4
SSID ssj0000500997
Score 2.302549
SecondaryResourceType review_article
Snippet Since the time of Darwin, biologists have understood the promise of crop plants and their wild relatives for providing insight into the mechanisms of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 290
SubjectTerms adaptation
artificial selection
Association mapping
Crop Improvement
evolutionary genomics
parallel evolution
Plant Science
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ4sAFlT4ghVau1EMvgcR2YvsIqCtUVZxA4hb5KZBWScTuHvrvmYmzqywCceklB3uiWDPj-JvM5BtCfkZZe1P7mIvaabgURW417KuKhbK0AZzID2yfN_X1nfhzX91PWn1hTViiB06KO-dldNob40JlBGMOIhqlNIB2JWJILawZnHmTYCqxeiP0kYnLB6IwfR77ObJzl0hoyvANPDmGBrb-1yDmy0rJydEz-0AORsxIL9JaD8lOaD-SvcsOcN2_T-Tv1VPX036OBS3ULOjQ22ZBAYzS1fTPlSRCjTd9Sr9TGKc-1WXE8dPdZ3I3-317dZ2PPRJyJyq9zG3NRRGksYYZWdqCG-WrqETwmDuppA9YyRmCkc7rUilntS8jc7GypvA28C9kt-3acEyoA2PWtZSxsFEwaW0VYy1Z4FZw7iPPyNlaZY0bCcSxj8W8gUACddygjhvUcTPoOCO_Njf0iTvjbdFLtMFGDEmvhwFwhWZ0heY9V8jIj7UFG9gkmPkwbehWC4hvAMhgaKYycpQsunkU4xqmtc6I3LL11lq2Z9rHh4GIG1OeWrGv_2PxJ2SfDZ02sLbwlOwun1bhG-Cdpf0-uPYzLvIAcw
  priority: 102
  providerName: Directory of Open Access Journals
Title Crop plants as models for understanding plant adaptation and diversification
URI https://www.ncbi.nlm.nih.gov/pubmed/23914199
https://www.proquest.com/docview/1418148758
https://pubmed.ncbi.nlm.nih.gov/PMC3729982
https://doaj.org/article/31fc9daace5a422c82588925984fe414
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07j9QwELbQQUGDeBMeJyNR0OSIHSe2C4S4E8cJARUrbRf5CUirJOxD4v49M3Z27xYtDY0Lx1aiecjzeSbfEPIqytab1sdStE7DUFWl1eBXDQ-M2QBG5BPb59f2YiY-zZv5VTugSYCrg9AO-0nNlouT378u34HDv0XECeftmzgukHibIVcp14Dfb8KxJNFLv0yxfib6xmhIZnqfQ_uQF7jWTGQe2KtDKnH5HwpA_66jvHYwnd8ld6aIkr7PJnCP3Aj9fXLrdICo7_IB-Xy2HEY6LrDchZoVTZ1vVhRCVbq5_l9LXkKNN2NOzlOYpz5XbcTpYu8hmZ1_-HZ2UU4dFEonGr0ubVuLKkhjDTeS2ao2yjdRieAxs9JIH7DOMwQjnddMKWe1Z5G72FhTeRvqR-SoH_rwhFAHqm5bKWNlo-DS2ibGVvJQW1HXPtYFOdmKrHMTvTh2uVh0ADNQ3B2Ku0Nxd0ncBXm92zBmZo1_Lz1FHeyWISV2mhiW37vJw7qaRae9MS40RnDuAPoqpQHdKRGDYKIgL7ca7MCFMC9i-jBsVoB-IMxB4KYK8jhrdPeqrUUURO7peu9b9p_0P38kmm5MiGrFn_73zmfkNk_NN7Dc8Dk5Wi834QWEQGt7nK4OYPw4Z8fJzP8AS58KpA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+plants+as+models+for+understanding+plant+adaptation+and+diversification&rft.jtitle=Frontiers+in+plant+science&rft.au=Olsen%2C+Kenneth+M.&rft.au=Wendel%2C+Jonathan+F.&rft.date=2013-08-01&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=4&rft_id=info:doi/10.3389%2Ffpls.2013.00290&rft_id=info%3Apmid%2F23914199&rft.externalDocID=PMC3729982
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon