Plastid Genome Evolution in the Early-Diverging Legume Subfamily Cercidoideae (Fabaceae)

The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 9; p. 138
Main Authors Wang, Yin-Huan, Wicke, Susann, Wang, Hong, Jin, Jian-Jun, Chen, Si-Yun, Zhang, Shu-Dong, Li, De-Zhu, Yi, Ting-Shuang
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 08.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome (plastome) diversification across the subfamily unaddressed, and phylogenetic relationships within this clade remained unresolved. Here, we assembled eight plastomes from seven Cercidoideae genera and conducted phylogenomic-comparative analyses in a broad evolutionary framework across legumes. The plastomes of Cercidoideae all exhibited a typical quadripartite structure with a conserved gene content typical of most angiosperm plastomes. Plastome size ranged from 151,705 to 165,416 bp, mainly due to the expansion and contraction of inverted repeat (IR) regions. The order of genes varied due to the occurrence of several inversions. In species, a plastome with a 29-bp IR-mediated inversion was found to coexist with a canonical-type plastome, and the abundance of the two arrangements of isomeric molecules differed between individuals. Complete plastome data were much more efficient at resolving intergeneric relationships of Cercidoideae than the previously used selection of only a few plastid or nuclear loci. In sum, our study revealed novel insights into the structural diversification of plastomes in an early-branching legume lineage, and, thus, into the evolutionary trajectories of legume plastomes in general.
AbstractList The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome (plastome) diversification across the subfamily unaddressed, and phylogenetic relationships within this clade remained unresolved. Here, we assembled eight plastomes from seven Cercidoideae genera and conducted phylogenomic-comparative analyses in a broad evolutionary framework across legumes. The plastomes of Cercidoideae all exhibited a typical quadripartite structure with a conserved gene content typical of most angiosperm plastomes. Plastome size ranged from 151,705 to 165,416 bp, mainly due to the expansion and contraction of inverted repeat (IR) regions. The order of genes varied due to the occurrence of several inversions. In Tylosema species, a plastome with a 29-bp IR-mediated inversion was found to coexist with a canonical-type plastome, and the abundance of the two arrangements of isomeric molecules differed between individuals. Complete plastome data were much more efficient at resolving intergeneric relationships of Cercidoideae than the previously used selection of only a few plastid or nuclear loci. In sum, our study revealed novel insights into the structural diversification of plastomes in an early-branching legume lineage, and, thus, into the evolutionary trajectories of legume plastomes in general.
The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome (plastome) diversification across the subfamily unaddressed, and phylogenetic relationships within this clade remained unresolved. Here, we assembled eight plastomes from seven Cercidoideae genera and conducted phylogenomic-comparative analyses in a broad evolutionary framework across legumes. The plastomes of Cercidoideae all exhibited a typical quadripartite structure with a conserved gene content typical of most angiosperm plastomes. Plastome size ranged from 151,705 to 165,416 bp, mainly due to the expansion and contraction of inverted repeat (IR) regions. The order of genes varied due to the occurrence of several inversions. In Tylosema species, a plastome with a 29-bp IR-mediated inversion was found to coexist with a canonical-type plastome, and the abundance of the two arrangements of isomeric molecules differed between individuals. Complete plastome data were much more efficient at resolving intergeneric relationships of Cercidoideae than the previously used selection of only a few plastid or nuclear loci. In sum, our study revealed novel insights into the structural diversification of plastomes in an early-branching legume lineage, and, thus, into the evolutionary trajectories of legume plastomes in general.The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome (plastome) diversification across the subfamily unaddressed, and phylogenetic relationships within this clade remained unresolved. Here, we assembled eight plastomes from seven Cercidoideae genera and conducted phylogenomic-comparative analyses in a broad evolutionary framework across legumes. The plastomes of Cercidoideae all exhibited a typical quadripartite structure with a conserved gene content typical of most angiosperm plastomes. Plastome size ranged from 151,705 to 165,416 bp, mainly due to the expansion and contraction of inverted repeat (IR) regions. The order of genes varied due to the occurrence of several inversions. In Tylosema species, a plastome with a 29-bp IR-mediated inversion was found to coexist with a canonical-type plastome, and the abundance of the two arrangements of isomeric molecules differed between individuals. Complete plastome data were much more efficient at resolving intergeneric relationships of Cercidoideae than the previously used selection of only a few plastid or nuclear loci. In sum, our study revealed novel insights into the structural diversification of plastomes in an early-branching legume lineage, and, thus, into the evolutionary trajectories of legume plastomes in general.
The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome (plastome) diversification across the subfamily unaddressed, and phylogenetic relationships within this clade remained unresolved. Here, we assembled eight plastomes from seven Cercidoideae genera and conducted phylogenomic-comparative analyses in a broad evolutionary framework across legumes. The plastomes of Cercidoideae all exhibited a typical quadripartite structure with a conserved gene content typical of most angiosperm plastomes. Plastome size ranged from 151,705 to 165,416 bp, mainly due to the expansion and contraction of inverted repeat (IR) regions. The order of genes varied due to the occurrence of several inversions. In species, a plastome with a 29-bp IR-mediated inversion was found to coexist with a canonical-type plastome, and the abundance of the two arrangements of isomeric molecules differed between individuals. Complete plastome data were much more efficient at resolving intergeneric relationships of Cercidoideae than the previously used selection of only a few plastid or nuclear loci. In sum, our study revealed novel insights into the structural diversification of plastomes in an early-branching legume lineage, and, thus, into the evolutionary trajectories of legume plastomes in general.
The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome (plastome) diversification across the subfamily unaddressed, and phylogenetic relationships within this clade remained unresolved. Here, we assembled eight plastomes from seven Cercidoideae genera and conducted phylogenomic-comparative analyses in a broad evolutionary framework across legumes. The plastomes of Cercidoideae all exhibited a typical quadripartite structure with a conserved gene content typical of most angiosperm plastomes. Plastome size ranged from 151,705 to 165,416 bp, mainly due to the expansion and contraction of inverted repeat (IR) regions. The order of genes varied due to the occurrence of several inversions. In Tylosema species, a plastome with a 29-bp IR-mediated inversion was found to coexist with a canonical-type plastome, and the abundance of the two arrangements of isomeric molecules differed between individuals. Complete plastome data were much more efficient at resolving intergeneric relationships of Cercidoideae than the previously used selection of only a few plastid or nuclear loci. In sum, our study revealed novel insights into the structural diversification of plastomes in an early-branching legume lineage, and, thus, into the evolutionary trajectories of legume plastomes in general.
Author Wang, Yin-Huan
Wicke, Susann
Li, De-Zhu
Zhang, Shu-Dong
Wang, Hong
Jin, Jian-Jun
Yi, Ting-Shuang
Chen, Si-Yun
AuthorAffiliation 2 Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences , Yunnan , China
4 Institute for Evolution and Biodiversity, University of Münster , Münster , Germany
1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences , Yunnan , China
3 Kunming College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
AuthorAffiliation_xml – name: 3 Kunming College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
– name: 4 Institute for Evolution and Biodiversity, University of Münster , Münster , Germany
– name: 2 Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences , Yunnan , China
– name: 1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences , Yunnan , China
Author_xml – sequence: 1
  givenname: Yin-Huan
  surname: Wang
  fullname: Wang, Yin-Huan
– sequence: 2
  givenname: Susann
  surname: Wicke
  fullname: Wicke, Susann
– sequence: 3
  givenname: Hong
  surname: Wang
  fullname: Wang, Hong
– sequence: 4
  givenname: Jian-Jun
  surname: Jin
  fullname: Jin, Jian-Jun
– sequence: 5
  givenname: Si-Yun
  surname: Chen
  fullname: Chen, Si-Yun
– sequence: 6
  givenname: Shu-Dong
  surname: Zhang
  fullname: Zhang, Shu-Dong
– sequence: 7
  givenname: De-Zhu
  surname: Li
  fullname: Li, De-Zhu
– sequence: 8
  givenname: Ting-Shuang
  surname: Yi
  fullname: Yi, Ting-Shuang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29479365$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1r3DAQxUVJadI0596Kj-lhN_q0rUuhbJM0sNBCW8hNyNLIUZCtrWQv7H9fbTYNSaG6aJh57zcD7y06GuMICL0neMlYKy_cJuQlxaRdYkxY-wqdkLrmC17T26Nn9TE6y_kelycwlrJ5g46p5I1ktThBt9-DzpO31TWMcYDqchvDPPk4Vn6sprvS0CnsFl_8FlLvx75aQz8X3Y-5c3rwYVetIBlvo7egoTq_0p02pfr4Dr12OmQ4e_xP0a-ry5-rr4v1t-ub1ef1wnAhp0XHKfC6I4JwXm6TxHIsBRGudrhpoWUNs5xhYShQLDTVwtTG2tY1rYXaOXaKbg5cG_W92iQ_6LRTUXv10IipVzpN3gRQ2DaNwIQKLCQ3ttGOMO6sow2lmDJZWJ8OrM3cDWANjFPS4QX05WT0d6qPWyVaQpnABXD-CEjx9wx5UoPPBkLQI8Q5K4pxy2rGGlKkH57velryN5oiuDgITIo5J3BPEoLVPn-1z1_t81cP-ReH-Mdh_KT3YZZjffiv7w81TbPz
CitedBy_id crossref_primary_10_1186_s12870_020_02779_5
crossref_primary_10_3390_genes14101914
crossref_primary_10_3390_plants9020199
crossref_primary_10_3390_ijms19051286
crossref_primary_10_1038_s41598_021_99178_z
crossref_primary_10_7717_peerj_7260
crossref_primary_10_3390_plants8100386
crossref_primary_10_3390_plants9091116
crossref_primary_10_1007_s00606_019_01578_2
crossref_primary_10_1007_s00606_020_01690_8
crossref_primary_10_1080_23802359_2019_1674218
crossref_primary_10_1016_j_gene_2019_144154
crossref_primary_10_1186_s12864_021_07769_x
crossref_primary_10_3390_su16146046
crossref_primary_10_3390_plants11233275
crossref_primary_10_7717_peerj_7787
crossref_primary_10_1071_SB19019
crossref_primary_10_1038_s41598_020_66024_7
crossref_primary_10_1186_s12864_023_09195_7
crossref_primary_10_3389_fpls_2022_1025408
crossref_primary_10_7717_peerj_14293
crossref_primary_10_1080_23802359_2021_1989333
crossref_primary_10_1186_s12870_025_06138_0
crossref_primary_10_1093_gbe_evab215
crossref_primary_10_1093_sysbio_syaa013
crossref_primary_10_3389_fpls_2020_00151
crossref_primary_10_1016_j_pld_2018_04_003
crossref_primary_10_3389_fpls_2021_778933
crossref_primary_10_3389_fpls_2019_00345
crossref_primary_10_1080_26895293_2021_1926341
crossref_primary_10_3389_fpls_2022_888049
crossref_primary_10_3389_fpls_2023_1066708
crossref_primary_10_1016_j_pld_2022_06_002
crossref_primary_10_3389_fpls_2021_638650
crossref_primary_10_35535_pfsyst_2021_0014
crossref_primary_10_1002_ece3_9821
crossref_primary_10_1080_23802359_2024_2420846
crossref_primary_10_3389_fpls_2022_891783
crossref_primary_10_3389_fpls_2022_895543
crossref_primary_10_1002_tax_13177
crossref_primary_10_1016_j_ejbt_2022_09_005
crossref_primary_10_3390_biology12091244
crossref_primary_10_1007_s11738_023_03628_2
crossref_primary_10_1016_j_xplc_2024_100891
crossref_primary_10_1080_23802359_2024_2305712
crossref_primary_10_1002_tax_12207
crossref_primary_10_1016_j_pld_2020_06_008
crossref_primary_10_1186_s13059_020_02154_5
crossref_primary_10_3389_fpls_2020_00942
crossref_primary_10_1080_23802359_2023_2259041
crossref_primary_10_3389_fpls_2024_1415253
crossref_primary_10_1016_j_molp_2021_02_006
crossref_primary_10_3390_ijms26010397
crossref_primary_10_1371_journal_pone_0218743
crossref_primary_10_3389_fgene_2021_772415
crossref_primary_10_1038_s41598_019_56727_x
crossref_primary_10_1080_23802359_2020_1749168
crossref_primary_10_3389_fgene_2020_00073
crossref_primary_10_3390_ijms21093280
crossref_primary_10_1080_23802359_2024_2324928
Cites_doi 10.1093/molbev/msl089
10.7717/peerj.2699
10.1186/s12862-014-0228-6
10.12705/622.8
10.1600/036364415X686620
10.1007/s00239-008-9086-4
10.1186/1471-2148-4-27
10.1016/j.ympev.2016.11.004
10.1111/jse.12197
10.1038/301092a0
10.1007/BF00418530
10.1105/tpc.113.113373
10.1016/0092-8674(82)90170-2
10.1111/1755-0998.12251
10.2307/2419496
10.1186/1471-2164-8-228
10.1093/gbe/evx071
10.1093/bioinformatics/btv383
10.1093/dnares/dsu007
10.1139/B09-065
10.1371/journal.pone.0011147
10.1093/molbev/mst010
10.1093/jxb/erw500
10.1371/journal.pone.0173766
10.1038/srep16958
10.1093/gbe/evw109
10.1016/S0022-2836(05)80360-2
10.1093/molbev/msq229
10.1093/gbe/evu046
10.1007/BF02173220
10.2307/2419825
10.1111/jse.12179
10.1093/dnares/7.6.323
10.1111/nph.14461
10.1111/j.1558-5646.1991.tb04390.x
10.3732/ajb.89.10.1651
10.1007/s00239-008-9180-7
10.1002/j.1460-2075.1991.tb07859.x
10.1093/gbe/evt042
10.1101/gr.111955.110
10.1371/journal.pone.0030619
10.1371/journal.pone.0150752
10.1093/nar/gkt289
10.12705/661.3
10.1371/journal.pone.0125768
10.5852/ejt.2017.360
10.1093/molbev/mst257
10.1007/s11103-005-8882-0
10.1007/s11295-017-1124-1
10.1007/978-1-62703-995-6_1
10.1371/journal.pone.0051687
10.1007/s12686-017-0747-8
10.1007/978-94-007-2920-9_5
10.1093/bioinformatics/btu033
10.1007/s12686-017-0744-y
10.1038/nmeth.1923
10.1073/pnas.0909400107
10.1093/aob/mcu050
10.1093/oxfordjournals.molbev.a026334
10.1007/BF00355401
10.1093/gbe/evr026
10.1093/bioinformatics/bth352
10.1016/j.ympev.2008.06.013
10.1093/sysbio/syu054
10.1038/srep21669
10.1006/mpev.1996.0038
10.2307/2419351
10.1073/pnas.89.22.10648
10.1007/s11103-011-9762-4
10.1093/dnares/dsx006
10.1080/10635150701472164
10.1093/aob/mcw065
10.1139/B08-058
10.1111/pbi.12179
10.1038/srep41005
10.1093/nar/gki366
10.1098/rspb.2015.1553
10.1093/molbev/msm036
10.1093/oxfordjournals.molbev.a026414
ContentType Journal Article
Copyright Copyright © 2018 Wang, Wicke, Wang, Jin, Chen, Zhang, Li and Yi. 2018 Wang, Wicke, Wang, Jin, Chen, Zhang, Li and Yi
Copyright_xml – notice: Copyright © 2018 Wang, Wicke, Wang, Jin, Chen, Zhang, Li and Yi. 2018 Wang, Wicke, Wang, Jin, Chen, Zhang, Li and Yi
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2018.00138
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_0d77501250594cd7af134fdf27220239
PMC5812350
29479365
10_3389_fpls_2018_00138
Genre Journal Article
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IGS
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c459t-b42e46b1514499791d409515f6f078e8373d4305c2e205a2a5c6cdd8f78de6ff3
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:30:52 EDT 2025
Thu Aug 21 18:30:35 EDT 2025
Fri Jul 11 09:34:22 EDT 2025
Wed Feb 19 02:43:55 EST 2025
Tue Jul 01 00:52:21 EDT 2025
Thu Apr 24 22:56:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cercidoideae
inversion
isomeric plastomes
plastome
IR expansion/contraction
variation
Fabaceae
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-b42e46b1514499791d409515f6f078e8373d4305c2e205a2a5c6cdd8f78de6ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Evolutionary and Population Genetics, a section of the journal Frontiers in Plant Science
Edited by: Federico Luebert, University of Bonn, Germany
Reviewed by: Anne Bruneau, Université de Montréal, Canada; Martin F. Wojciechowski, Arizona State University, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2018.00138
PMID 29479365
PQID 2008363371
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0d77501250594cd7af134fdf27220239
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5812350
proquest_miscellaneous_2008363371
pubmed_primary_29479365
crossref_primary_10_3389_fpls_2018_00138
crossref_citationtrail_10_3389_fpls_2018_00138
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-08
PublicationDateYYYYMMDD 2018-02-08
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-08
  day: 08
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Tsumura (B69) 2000; 17
Wolfe (B79) 1992; 89
Magee (B50) 2010; 20
Downie (B15) 2015; 40
Jansen (B32) 2012
Jansen (B33) 2008; 48
Zhang (B85) 2016; 54
Palmer (B53) 1983; 301
Altschul (B1) 1990; 215
Stamatakis (B65) 2014; 30
Wang (B70); 13
Zhang (B84) 2017; 214
Gurdon (B28) 2014; 21
Milligan (B52) 1989; 6
Bruneau (B5) 2008; 86
Feng (B20) 2017; 9
Chumley (B9) 2006; 23
Saski (B61) 2005; 59
Hsu (B31) 2016; 8
Palmer (B54) 1987; 11
Choi (B8) 2017; 12
Dong (B13) 2016; 4
Doyle (B17) 1996; 5
Downie (B16) 1991; 45
(B48) 2017; 66
Martin (B51) 2014; 113
Ruhlman (B59) 2014
Wicke (B75) 2015
Lohse (B46) 2013; 41
Sveinsson (B67) 2014; 14
Keller (B39) 2017; 24
Palmer (B55) 1982; 29
Darling (B12) 2010; 5
Judd (B34) 2008
(B47) 2013; 62
Schattner (B62) 2005; 33
Talavera (B68) 2007; 56
Wicke (B74) 2013; 25
Gu (B24) 2016; 11
Sinou (B64) 2009; 87
Haberle (B29) 2008; 66
Wojciechowski (B78) 2000
Langmead (B42) 2012; 9
Lewis (B45) 2005
Ma (B49) 2014; 63
Blazier (B2) 2016; 117
Castresana (B7) 2000; 17
Gantt (B21) 1991; 10
Katoh (B36) 2013; 30
Bruneau (B3) 1990; 15
Weng (B72) 2014; 31
Bruneau (B4) 2001; 26
Herendeen (B30) 2003
Zoschke (B86) 2010; 107
Wick (B73) 2015; 31
Williams (B77) 2015; 10
Cai (B6) 2008; 67
Sabir (B60) 2014; 12
Kelchner (B38) 2002; 89
Lee (B43) 2007; 24
Lei (B44) 2016; 6
Donkpegan (B14) 2017; 107
Doyle (B18) 1995; 20
Cosner (B11) 2004; 4
Dugas (B19) 2015; 5
Guo (B26) 2014; 6
Kim (B40) 2017; 68
Kazakoff (B37) 2012; 7
Lai (B41) 1997; 22
Schwarz (B63) 2015; 53
Stein (B66) 1986; 10
Clark (B10) 2017; 360
Guo (B27) 2007; 8
Wu (B80) 2011; 3
Qu (B57); 7
Wyman (B81) 2004; 20
Guisinger (B25) 2011; 28
Yang (B82) 2014; 14
Yi (B83) 2013; 5
Goulding (B23) 1996; 252
Wicke (B76) 2011; 76
Qu (B58); 9
Givnish (B22) 2015; 282
Wang (B71); 9
Kato (B35) 2000; 7
Patel (B56) 2012; 7
17654362 - Syst Biol. 2007 Aug;56(4):564-77
15180927 - Bioinformatics. 2004 Nov 22;20(17):3252-5
2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
15980563 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W686-9
1915281 - EMBO J. 1991 Oct;10(10):3073-8
21402866 - Genome Biol Evol. 2011;3:309-19
25955637 - PLoS One. 2015 May 08;10(5):e0125768
27192713 - Ann Bot. 2016 Jun;117(7):1209-20
6288261 - Cell. 1982 Jun;29(2):537-50
11214967 - DNA Res. 2000 Dec 31;7(6):323-30
8728401 - Mol Phylogenet Evol. 1996 Apr;5(2):429-38
24586030 - Genome Biol Evol. 2014 Mar;6(3):580-90
28431152 - Genome Biol Evol. 2017 Apr 14;:null
28564183 - Evolution. 1991 Aug;45(5):1245-1259
26950701 - PLoS One. 2016 Mar 07;11(3):e0150752
16916942 - Mol Biol Evol. 2006 Nov;23(11):2175-90
15324459 - BMC Evol Biol. 2004 Aug 23;4:27
17623083 - BMC Genomics. 2007 Jul 10;8:228
22388286 - Nat Methods. 2012 Mar 04;9(4):357-9
21665593 - Am J Bot. 2002 Oct;89(10):1651-69
18638561 - Mol Phylogenet Evol. 2008 Sep;48(3):1204-17
18330485 - J Mol Evol. 2008 Apr;66(4):350-61
8804393 - Mol Gen Genet. 1996 Aug 27;252(1-2):195-206
27269365 - Genome Biol Evol. 2016 Jun 27;8(6):1776-84
25403617 - BMC Evol Biol. 2014 Nov 18;14:228
20133623 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3245-50
24336877 - Mol Biol Evol. 2014 Mar;31(3):645-59
20593022 - PLoS One. 2010 Jun 25;5(6):e11147
16247559 - Plant Mol Biol. 2005 Sep;59(2):309-22
23329690 - Mol Biol Evol. 2013 Apr;30(4):772-80
10958847 - Mol Biol Evol. 2000 Sep;17(9):1302-12
24644300 - DNA Res. 2014 Aug;21(4):417-27
20805190 - Mol Biol Evol. 2011 Jan;28(1):583-600
28338826 - DNA Res. 2017 Aug 1;24(4):343-358
27867769 - PeerJ. 2016 Nov 10;4:e2699
17329229 - Mol Biol Evol. 2007 May;24(5):1161-80
26099265 - Bioinformatics. 2015 Oct 15;31(20):3350-2
1332054 - Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10648-52
28120880 - Sci Rep. 2017 Jan 25;7:41005
23538991 - Genome Biol Evol. 2013;5(4):688-98
26311671 - Proc Biol Sci. 2015 Sep 7;282(1814):null
27825871 - Mol Phylogenet Evol. 2017 Feb;107:270-281
22312429 - PLoS One. 2012;7(2):e30619
28399123 - PLoS One. 2017 Apr 11;12 (4):e0173766
28186635 - New Phytol. 2017 May;214(3):1355-1367
19018585 - J Mol Evol. 2008 Dec;67(6):696-704
20978141 - Genome Res. 2010 Dec;20(12):1700-10
24620934 - Mol Ecol Resour. 2014 Sep;14(5):1024-31
24143802 - Plant Cell. 2013 Oct;25(10):3711-25
25092479 - Syst Biol. 2014 Nov;63(6):933-50
26592928 - Sci Rep. 2015 Nov 23;5:16958
24769537 - Ann Bot. 2014 Jun;113(7):1197-210
21424877 - Plant Mol Biol. 2011 Jul;76(3-5):273-97
26899134 - Sci Rep. 2016 Feb 22;6:21669
23272141 - PLoS One. 2012;7(12):e51687
10742046 - Mol Biol Evol. 2000 Apr;17(4):540-52
23609545 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W575-81
24451623 - Bioinformatics. 2014 May 1;30(9):1312-3
28158587 - J Exp Bot. 2017 Apr 1;68(8):2065-2072
24618204 - Plant Biotechnol J. 2014 Aug;12(6):743-54
2615639 - Mol Biol Evol. 1989 Jul;6(4):355-68
References_xml – volume: 23
  start-page: 2175
  year: 2006
  ident: B9
  article-title: The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msl089
– volume: 4
  year: 2016
  ident: B13
  article-title: Comparative analysis of the complete chloroplast genome sequences in psammophytic Haloxylon species (Amaranthaceae).
  publication-title: PeerJ
  doi: 10.7717/peerj.2699
– volume: 14
  year: 2014
  ident: B67
  article-title: Evolutionary origin of highly repetitive plastid genomes within the clover genus (Trifolium).
  publication-title: BMC Evol. Biol.
  doi: 10.1186/s12862-014-0228-6
– volume: 62
  start-page: 217
  year: 2013
  ident: B47
  article-title: Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades.
  publication-title: Taxon
  doi: 10.12705/622.8
– volume: 40
  start-page: 336
  year: 2015
  ident: B15
  article-title: A comparative analysis of whole plastid genomes from the Apiales: expansion and contraction of the inverted repeat, mitochondrial to plastid transfer of DNA, and identification of highly divergent noncoding regions.
  publication-title: Syst. Bot.
  doi: 10.1600/036364415X686620
– volume: 66
  start-page: 350
  year: 2008
  ident: B29
  article-title: Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes.
  publication-title: J. Mol. Evol.
  doi: 10.1007/s00239-008-9086-4
– volume: 4
  year: 2004
  ident: B11
  article-title: Chloroplast DNA rearrangements in Campanulaceae: Phylogenetic utility of highly rearranged genomes.
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-4-27
– volume: 107
  start-page: 270
  year: 2017
  ident: B14
  article-title: Evolution in African tropical trees displaying ploidy-habitat association: The genus Afzelia (Leguminosae).
  publication-title: Mol. Phylogenet. Evol
  doi: 10.1016/j.ympev.2016.11.004
– volume: 54
  start-page: 219
  year: 2016
  ident: B85
  article-title: Fifteen novel universal primer pairs for sequencing whole chloroplast genomes and a primer pair for nuclear ribosomal DNAs.
  publication-title: J. Syst. Evol.
  doi: 10.1111/jse.12197
– volume: 301
  start-page: 92
  year: 1983
  ident: B53
  article-title: Chloroplast DNA exists in two orientations.
  publication-title: Nature
  doi: 10.1038/301092a0
– volume: 10
  start-page: 835
  year: 1986
  ident: B66
  article-title: Structural evolution and flip-flop recombination of chloroplast DNA in the fern genus Osmunda.
  publication-title: Curr. Genet.
  doi: 10.1007/BF00418530
– volume: 25
  start-page: 3711
  year: 2013
  ident: B74
  article-title: Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family.
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.113373
– volume: 29
  start-page: 537
  year: 1982
  ident: B55
  article-title: Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost.
  publication-title: Cell
  doi: 10.1016/0092-8674(82)90170-2
– start-page: 9
  year: 2015
  ident: B75
  article-title: “Next-generation organellar genomics: potentials and pitfalls of high-throughput technologies for molecular evolutionary studies and plant systematics,” in
  publication-title: Next-Generation Sequencing in Plant Systematics
– volume: 14
  start-page: 1024
  year: 2014
  ident: B82
  article-title: Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs.
  publication-title: Mol. Ecol. Resour.
  doi: 10.1111/1755-0998.12251
– volume: 20
  start-page: 272
  year: 1995
  ident: B18
  article-title: Multiple independent losses of two genes and one intron from legume.
  publication-title: Syst. Bot.
  doi: 10.2307/2419496
– volume: 26
  start-page: 487
  year: 2001
  ident: B4
  article-title: Phylogenetic relationships in the Caesalpinioideae (Leguminosae) as inferred from chloroplast trnL intron sequences.
  publication-title: Syst. Bot.
– volume: 8
  year: 2007
  ident: B27
  article-title: Rapid evolutionary change of common bean (Phaseolus vulgaris L.) plastome, and the genomic diversification of legume chloroplasts.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-8-228
– volume: 9
  start-page: 1110
  ident: B58
  article-title: Insights into the existence of isomeric plastomes in Cupressoideae (Cupressaceae).
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evx071
– volume: 31
  start-page: 3350
  year: 2015
  ident: B73
  article-title: Bandage: interactive visualization of de novo genome assemblies.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv383
– volume: 21
  start-page: 417
  year: 2014
  ident: B28
  article-title: Two distinct plastid genome configurations and unprecedented intraspecies length variation in the accD coding region in Medicago truncatula.
  publication-title: DNA Res.
  doi: 10.1093/dnares/dsu007
– year: 2008
  ident: B34
  publication-title: Plant Systematics: A Phylogenetic Approach
– volume: 87
  start-page: 947
  year: 2009
  ident: B64
  article-title: The genus Bauhinia s.l. (Leguminosae): a phylogeny based on the plastid trnL–trnF region.
  publication-title: Botany
  doi: 10.1139/B09-065
– start-page: 277
  year: 2000
  ident: B78
  article-title: “Molecular phylogeny of the “Temperate Herbaceous Tribes” of papilionoid legumes: a supertree approach,” in
  publication-title: Advances in Legume Systematics
– volume: 5
  year: 2010
  ident: B12
  article-title: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement.
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0011147
– volume: 30
  start-page: 772
  year: 2013
  ident: B36
  article-title: MAFFT multiple sequence alignment software version 7: Improvements in performance and usability.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mst010
– volume: 68
  start-page: 2065
  year: 2017
  ident: B40
  article-title: A novel inversion in the chloroplast genome of marama (Tylosema esculentum).
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw500
– volume: 12
  year: 2017
  ident: B8
  article-title: The distinct plastid genome structure of Maackia fauriei (Fabaceae: Papilionoideae) and its systematic implications for genistoids and tribe Sophoreae.
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0173766
– volume: 5
  year: 2015
  ident: B19
  article-title: Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP.
  publication-title: Sci. Rep.
  doi: 10.1038/srep16958
– volume: 8
  start-page: 1776
  year: 2016
  ident: B31
  article-title: Birth of four chimeric plastid gene clusters in Japanese umbrella pine.
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evw109
– volume: 215
  start-page: 403
  year: 1990
  ident: B1
  article-title: Basic local alignment search tool.
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(05)80360-2
– volume: 28
  start-page: 583
  year: 2011
  ident: B25
  article-title: Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: Rearrangements, repeats, and codon usage.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msq229
– volume: 6
  start-page: 580
  year: 2014
  ident: B26
  article-title: Predominant and substoichiometric isomers of the plastid genome coexist within Juniperus plants and have shifted multiple times during cupressophyte evolution.
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evu046
– volume: 6
  start-page: 355
  year: 1989
  ident: B52
  article-title: Dispersed repeats and structural reorganization in subclover chloroplast DNA.
  publication-title: Mol. Biol. Evol.
– volume: 252
  start-page: 195
  year: 1996
  ident: B23
  article-title: Ebb and flow of the chloroplast inverted repeat.
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/BF02173220
– volume: 22
  start-page: 519
  year: 1997
  ident: B41
  article-title: Polymorphism for the presence of the rpL2 intron in chloroplast genomes of Bauhinia (Leguminosae).
  publication-title: Syst. Bot.
  doi: 10.2307/2419825
– volume: 53
  start-page: 458
  year: 2015
  ident: B63
  article-title: Plastid genome sequences of legumes reveal parallel inversions and multiple losses of rps16 in papilionoids.
  publication-title: J. Syst. Evol.
  doi: 10.1111/jse.12179
– volume: 7
  start-page: 323
  year: 2000
  ident: B35
  article-title: Complete structure of the chloroplast genome of a legume, Lotus japonicus.
  publication-title: DNA Res.
  doi: 10.1093/dnares/7.6.323
– volume: 214
  start-page: 1355
  year: 2017
  ident: B84
  article-title: Diversification of Rosaceae since the late cretaceous based on plastid phylogenomics.
  publication-title: New Phytol.
  doi: 10.1111/nph.14461
– volume: 45
  start-page: 1245
  year: 1991
  ident: B16
  article-title: Six independent losses of the chloroplast DNA rpl2 intron in dicotyledons: molecular and phylogenetic implications.
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1991.tb04390.x
– volume: 89
  start-page: 1651
  year: 2002
  ident: B38
  article-title: Group II introns as phylogenetic tools: structure function, and evolutionary constraints.
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.89.10.1651
– volume: 67
  start-page: 696
  year: 2008
  ident: B6
  article-title: Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions.
  publication-title: J. Mol. Evol.
  doi: 10.1007/s00239-008-9180-7
– volume: 10
  start-page: 3073
  year: 1991
  ident: B21
  article-title: Transfer of rpl22 to the nucleus greatly preceded its loss from the chloroplast and involved the gain of an intron.
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1991.tb07859.x
– volume: 5
  start-page: 688
  year: 2013
  ident: B83
  article-title: The complete chloroplast genome sequence of Cephalotaxus oliveri (Cephalotaxaceae): evolutionary comparison of Cephalotaxus chloroplast DNAs and insights into the loss of inverted repeat copies in Gymnosperms.
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evt042
– volume: 20
  start-page: 1700
  year: 2010
  ident: B50
  article-title: Localized hypermutation and associated gene losses in legume chloroplast genomes.
  publication-title: Genome Res.
  doi: 10.1101/gr.111955.110
– volume: 7
  year: 2012
  ident: B56
  article-title: NGS QC toolkit: a toolkit for quality control of next generation sequencing data.
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0030619
– start-page: 37
  year: 2003
  ident: B30
  article-title: “Phylogenetic relationships in caesalpinioid legumes: a preliminary analysis based on morphological and molecular data,” in
  publication-title: Advances in Legume Systematics, part 10 Higher Level Systematics
– volume: 11
  year: 2016
  ident: B24
  article-title: The complete plastid genome of Lagerstroemia fauriei and loss of rpl2 intron from Lagerstroemia (Lythraceae).
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0150752
– volume: 41
  start-page: W575
  year: 2013
  ident: B46
  article-title: OrganellarGenomeDRAW-a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt289
– volume: 66
  start-page: 44
  year: 2017
  ident: B48
  article-title: A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny.
  publication-title: Taxon
  doi: 10.12705/661.3
– volume: 10
  year: 2015
  ident: B77
  article-title: The complete sequence of the Acacia ligulata chloroplast genome reveals a highly divergent clpP1 gene.
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0125768
– year: 2005
  ident: B45
  publication-title: Legumes of the World.
– volume: 360
  start-page: 1
  year: 2017
  ident: B10
  article-title: Cheniella gen. nov. (Leguminosae: Cercidoideae) from southern China, Indochina and Malesia.
  publication-title: Eur. J. Taxon.
  doi: 10.5852/ejt.2017.360
– volume: 31
  start-page: 645
  year: 2014
  ident: B72
  article-title: Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mst257
– volume: 59
  start-page: 309
  year: 2005
  ident: B61
  article-title: Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes.
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-005-8882-0
– volume: 13
  ident: B70
  article-title: Plastomes of Mimosoideae: structural and size variation, sequence divergence, and phylogenetic implication.
  publication-title: Tree Genet. Genomes
  doi: 10.1007/s11295-017-1124-1
– start-page: 3
  year: 2014
  ident: B59
  article-title: “The plastid genomes of flowering plants,” in
  publication-title: Chloroplast Biotechnology: Methods and Protocols
  doi: 10.1007/978-1-62703-995-6_1
– volume: 7
  year: 2012
  ident: B37
  article-title: Capturing the biofuel wellhead and powerhouse: the chloroplast and mitochondrial genomes of the leguminous feedstock tree Pongamia pinnata.
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0051687
– volume: 9
  start-page: 647
  year: 2017
  ident: B20
  article-title: Complete plastid genomes of the genus Ammopiptanthus and identification of a novel 23-kb rearrangement.
  publication-title: Conserv. Genet. Resour.
  doi: 10.1007/s12686-017-0747-8
– start-page: 103
  year: 2012
  ident: B32
  article-title: “Plastid genomes of seed plants,” in
  publication-title: Genomics of Chloroplasts and Mitochondria
  doi: 10.1007/978-94-007-2920-9_5
– volume: 30
  start-page: 1312
  year: 2014
  ident: B65
  article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu033
– volume: 9
  start-page: 635
  ident: B71
  article-title: The complete chloroplast genomes of Adenolobus garipensis and Cercis glabra (Cercidoideae, Fabaceae).
  publication-title: Conserv. Genet. Resour.
  doi: 10.1007/s12686-017-0744-y
– volume: 9
  start-page: 357
  year: 2012
  ident: B42
  article-title: Fast gapped-read alignment with Bowtie 2.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– volume: 107
  start-page: 3245
  year: 2010
  ident: B86
  article-title: An organellar maturase associates with multiple group II introns.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0909400107
– volume: 113
  start-page: 1197
  year: 2014
  ident: B51
  article-title: The first complete chloroplast genome of the Genistoid legume Lupinus luteus: evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family.
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcu050
– volume: 17
  start-page: 540
  year: 2000
  ident: B7
  article-title: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a026334
– volume: 11
  start-page: 275
  year: 1987
  ident: B54
  article-title: Chloroplast DNA evolution among legumes - loss of a large inverted repeat occurred prior to other sequence rearrangements.
  publication-title: Curr. Genet.
  doi: 10.1007/BF00355401
– volume: 3
  start-page: 309
  year: 2011
  ident: B80
  article-title: Comparative chloroplast genomes of Pinaceae: insights into the mechanism of diversified genomic organizations.
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evr026
– volume: 20
  start-page: 3252
  year: 2004
  ident: B81
  article-title: Automatic annotation of organellar genomes with DOGMA.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth352
– volume: 48
  start-page: 1204
  year: 2008
  ident: B33
  article-title: Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae).
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2008.06.013
– volume: 63
  start-page: 933
  year: 2014
  ident: B49
  article-title: Chloroplast phylogenomic analyses resolve deep-level relationships of an intractable bamboo tribe Arundinarieae (poaceae).
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/syu054
– volume: 6
  year: 2016
  ident: B44
  article-title: Intraspecific and heteroplasmic variations, gene losses and inversions in the chloroplast genome of Astragalus membranaceus.
  publication-title: Sci. Rep.
  doi: 10.1038/srep21669
– volume: 5
  start-page: 429
  year: 1996
  ident: B17
  article-title: The distribution and phylogenetic significance of a 50-kb chloroplast DNA inversion in the flowering plant family Leguminosae.
  publication-title: Mol. Phylogen. Evol.
  doi: 10.1006/mpev.1996.0038
– volume: 15
  start-page: 378
  year: 1990
  ident: B3
  article-title: A chloroplast DNA inversion as a subtribal character in the Phaseoleae (Leguminosae).
  publication-title: Syst. Bot.
  doi: 10.2307/2419351
– volume: 89
  start-page: 10648
  year: 1992
  ident: B79
  article-title: Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.89.22.10648
– volume: 76
  start-page: 273
  year: 2011
  ident: B76
  article-title: The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function.
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-011-9762-4
– volume: 24
  start-page: 343
  year: 2017
  ident: B39
  article-title: The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus.
  publication-title: DNA Res.
  doi: 10.1093/dnares/dsx006
– volume: 56
  start-page: 564
  year: 2007
  ident: B68
  article-title: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.
  publication-title: Syst. Biol.
  doi: 10.1080/10635150701472164
– volume: 117
  start-page: 1209
  year: 2016
  ident: B2
  article-title: Variable presence of the inverted repeat and plastome stability in Erodium.
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcw065
– volume: 86
  start-page: 697
  year: 2008
  ident: B5
  article-title: Phylogenetic patterns and diversification in the caesalpinioid legumes.
  publication-title: Botany
  doi: 10.1139/B08-058
– volume: 12
  start-page: 743
  year: 2014
  ident: B60
  article-title: Evolutionary and biotechnology implications of plastid genome variation in the inverted-repeat-lacking clade of legumes.
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12179
– volume: 7
  ident: B57
  article-title: Multiple measures could alleviate long-branch attraction in phylogenomic reconstruction of Cupressoideae (Cupressaceae).
  publication-title: Sci. Rep.
  doi: 10.1038/srep41005
– volume: 33
  start-page: W686
  year: 2005
  ident: B62
  article-title: The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki366
– volume: 282
  start-page: 1
  year: 2015
  ident: B22
  article-title: Orchid phylogenomics and multiple drivers of their extraordinary diversification.
  publication-title: Proc. R. Soc. B.
  doi: 10.1098/rspb.2015.1553
– volume: 24
  start-page: 1161
  year: 2007
  ident: B43
  article-title: Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msm036
– volume: 17
  start-page: 1302
  year: 2000
  ident: B69
  article-title: Chloroplast DNA inversion polymorphism in populations of Abies and Tsuga.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a026414
– reference: 2615639 - Mol Biol Evol. 1989 Jul;6(4):355-68
– reference: 15324459 - BMC Evol Biol. 2004 Aug 23;4:27
– reference: 18638561 - Mol Phylogenet Evol. 2008 Sep;48(3):1204-17
– reference: 25092479 - Syst Biol. 2014 Nov;63(6):933-50
– reference: 24336877 - Mol Biol Evol. 2014 Mar;31(3):645-59
– reference: 18330485 - J Mol Evol. 2008 Apr;66(4):350-61
– reference: 27867769 - PeerJ. 2016 Nov 10;4:e2699
– reference: 26950701 - PLoS One. 2016 Mar 07;11(3):e0150752
– reference: 27825871 - Mol Phylogenet Evol. 2017 Feb;107:270-281
– reference: 27192713 - Ann Bot. 2016 Jun;117(7):1209-20
– reference: 16247559 - Plant Mol Biol. 2005 Sep;59(2):309-22
– reference: 21665593 - Am J Bot. 2002 Oct;89(10):1651-69
– reference: 20133623 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3245-50
– reference: 20593022 - PLoS One. 2010 Jun 25;5(6):e11147
– reference: 10742046 - Mol Biol Evol. 2000 Apr;17(4):540-52
– reference: 17623083 - BMC Genomics. 2007 Jul 10;8:228
– reference: 22312429 - PLoS One. 2012;7(2):e30619
– reference: 28338826 - DNA Res. 2017 Aug 1;24(4):343-358
– reference: 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9
– reference: 27269365 - Genome Biol Evol. 2016 Jun 27;8(6):1776-84
– reference: 24644300 - DNA Res. 2014 Aug;21(4):417-27
– reference: 24620934 - Mol Ecol Resour. 2014 Sep;14(5):1024-31
– reference: 8804393 - Mol Gen Genet. 1996 Aug 27;252(1-2):195-206
– reference: 28186635 - New Phytol. 2017 May;214(3):1355-1367
– reference: 10958847 - Mol Biol Evol. 2000 Sep;17(9):1302-12
– reference: 26592928 - Sci Rep. 2015 Nov 23;5:16958
– reference: 23609545 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W575-81
– reference: 17329229 - Mol Biol Evol. 2007 May;24(5):1161-80
– reference: 19018585 - J Mol Evol. 2008 Dec;67(6):696-704
– reference: 28564183 - Evolution. 1991 Aug;45(5):1245-1259
– reference: 26311671 - Proc Biol Sci. 2015 Sep 7;282(1814):null
– reference: 26899134 - Sci Rep. 2016 Feb 22;6:21669
– reference: 21424877 - Plant Mol Biol. 2011 Jul;76(3-5):273-97
– reference: 1915281 - EMBO J. 1991 Oct;10(10):3073-8
– reference: 25955637 - PLoS One. 2015 May 08;10(5):e0125768
– reference: 6288261 - Cell. 1982 Jun;29(2):537-50
– reference: 16916942 - Mol Biol Evol. 2006 Nov;23(11):2175-90
– reference: 28120880 - Sci Rep. 2017 Jan 25;7:41005
– reference: 1332054 - Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10648-52
– reference: 25403617 - BMC Evol Biol. 2014 Nov 18;14:228
– reference: 28431152 - Genome Biol Evol. 2017 Apr 14;:null
– reference: 11214967 - DNA Res. 2000 Dec 31;7(6):323-30
– reference: 15980563 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W686-9
– reference: 24769537 - Ann Bot. 2014 Jun;113(7):1197-210
– reference: 20805190 - Mol Biol Evol. 2011 Jan;28(1):583-600
– reference: 24143802 - Plant Cell. 2013 Oct;25(10):3711-25
– reference: 20978141 - Genome Res. 2010 Dec;20(12):1700-10
– reference: 23272141 - PLoS One. 2012;7(12):e51687
– reference: 26099265 - Bioinformatics. 2015 Oct 15;31(20):3350-2
– reference: 8728401 - Mol Phylogenet Evol. 1996 Apr;5(2):429-38
– reference: 17654362 - Syst Biol. 2007 Aug;56(4):564-77
– reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
– reference: 28399123 - PLoS One. 2017 Apr 11;12 (4):e0173766
– reference: 24451623 - Bioinformatics. 2014 May 1;30(9):1312-3
– reference: 21402866 - Genome Biol Evol. 2011;3:309-19
– reference: 24586030 - Genome Biol Evol. 2014 Mar;6(3):580-90
– reference: 28158587 - J Exp Bot. 2017 Apr 1;68(8):2065-2072
– reference: 23538991 - Genome Biol Evol. 2013;5(4):688-98
– reference: 15180927 - Bioinformatics. 2004 Nov 22;20(17):3252-5
– reference: 23329690 - Mol Biol Evol. 2013 Apr;30(4):772-80
– reference: 24618204 - Plant Biotechnol J. 2014 Aug;12(6):743-54
SSID ssj0000500997
Score 2.4445174
Snippet The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 138
SubjectTerms Cercidoideae
inversion
IR expansion/contraction
isomeric plastomes
Plant Science
plastome
variation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EPHgR38YXK3jQQzSPzW726KsWUfGg0FvY7EMLNS3aCv57ZzZpaUXx4i3kQZaZycw3m5lvCDm0uYq0koDcYgUJiuFRKFkShzopIyzTtSbDBue7e95-YjedrDM16gtrwmp64Fpwp5ERENRijNSSaSOUi1PmjEtEgpO_fesexLypZKpm9UboI2ouH8jC5Kkb9JCdO8bSyRi7UabCkGfr_wlifq-UnAo9rWWy1GBGelavdYXM2WqVLJz3Add9rpHOAwDgYdfQa1v1Xy29-misiXYrCvCOeg7j8BILMHAiEb21z-CQKLiMeneDXuDUJfBtxipLj1qqVBqOjtfJU-vq8aIdNvMSQs0yOQxLlljGS4jhDPIYIWPDEEBljjsAAhZS0dQgwxdoIIkylahMc21M7kRuLHcu3SDzVb-yW4TaKDeAbMATqohpwaRhHCTPlGYyVYIF5GQsvkI3ZOI406JXQFKB8i5Q3gXKu_DyDsjR5IFBzaPx-63nqI_JbUiA7U-AWRSNWRR_mUVADsbaLOCDwb8gqrL90bufu5nyNBVxQDZr7U5elUjcaORZQMSM3mfWMnul6r54Uu4sx67jaPs_Fr9DFlEcvjg83yXzw7eR3QPsMyz3vZl_AX6G_zU
  priority: 102
  providerName: Directory of Open Access Journals
Title Plastid Genome Evolution in the Early-Diverging Legume Subfamily Cercidoideae (Fabaceae)
URI https://www.ncbi.nlm.nih.gov/pubmed/29479365
https://www.proquest.com/docview/2008363371
https://pubmed.ncbi.nlm.nih.gov/PMC5812350
https://doaj.org/article/0d77501250594cd7af134fdf27220239
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKy4EL4k1KqVyJQzmkxI5jxwdU0ce2QhRxYKXcIsePstKStNstov-eGSddumiReomivDNje75xJt9HyDtfmswaDciNGUhQnMxSLThLLW8yLNP1rsAfnM--ytOx-FwV1V85oMGAVytTO9STGs-me78vb_ahw3_EjBPi7YdwMUXibYZVkSwvH5ANCEsK5QzOBqzfE30jGopiK1KKVEhe9VQ_q66xFKUimf8qBPpvIeWdyDR6Qh4PkJJ-6tvAU7Lm22fk4UEHsO_mOam-AT6eTxw98W3309PjX0Njo5OWAvqjkeI4PcL6DBQsol_8OYxXFEaUfvKDHqIoE1jCeePp7sg0xsLa-xdkPDr-fniaDnIKqRWFnqeN4F7IBkK8gDRHaeYE4qsiyAA4wUOmmjskAAMH8aww3BRWWufKoErnZQj5S7Ledq1_TajPSgfABwZKkwmrhHZCmsCEsULnRomE7N2ar7YD1zhKXkxryDnQ3jXau0Z719HeCdldnHDR02z8_9AD9MfiMOTHjhu62Xk9dLc6cwqgEEN8p4V1Ch4uF8EFrjjqxeuE7Nx6s4b-hB9JTOu766soy5nLPFcsIa967y5uxTXOQ8oiIWrJ70vPsrynnfyInN1FiT8lZ5v3uO8b8gjfNpaGl1tkfT679m8B-cyb7ThjAMuTim3H1v0HjEIBZw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plastid+Genome+Evolution+in+the+Early-Diverging+Legume+Subfamily+Cercidoideae+%28Fabaceae%29&rft.jtitle=Frontiers+in+plant+science&rft.au=Wang%2C+Yin-Huan&rft.au=Wicke%2C+Susann&rft.au=Wang%2C+Hong&rft.au=Jin%2C+Jian-Jun&rft.date=2018-02-08&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=9&rft.spage=138&rft_id=info:doi/10.3389%2Ffpls.2018.00138&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon