Plastid Genome Evolution in the Early-Diverging Legume Subfamily Cercidoideae (Fabaceae)
The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome...
Saved in:
Published in | Frontiers in plant science Vol. 9; p. 138 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
08.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome (plastome) diversification across the subfamily unaddressed, and phylogenetic relationships within this clade remained unresolved. Here, we assembled eight plastomes from seven Cercidoideae genera and conducted phylogenomic-comparative analyses in a broad evolutionary framework across legumes. The plastomes of Cercidoideae all exhibited a typical quadripartite structure with a conserved gene content typical of most angiosperm plastomes. Plastome size ranged from 151,705 to 165,416 bp, mainly due to the expansion and contraction of inverted repeat (IR) regions. The order of genes varied due to the occurrence of several inversions. In
species, a plastome with a 29-bp IR-mediated inversion was found to coexist with a canonical-type plastome, and the abundance of the two arrangements of isomeric molecules differed between individuals. Complete plastome data were much more efficient at resolving intergeneric relationships of Cercidoideae than the previously used selection of only a few plastid or nuclear loci. In sum, our study revealed novel insights into the structural diversification of plastomes in an early-branching legume lineage, and, thus, into the evolutionary trajectories of legume plastomes in general. |
---|---|
AbstractList | The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome (plastome) diversification across the subfamily unaddressed, and phylogenetic relationships within this clade remained unresolved. Here, we assembled eight plastomes from seven Cercidoideae genera and conducted phylogenomic-comparative analyses in a broad evolutionary framework across legumes. The plastomes of Cercidoideae all exhibited a typical quadripartite structure with a conserved gene content typical of most angiosperm plastomes. Plastome size ranged from 151,705 to 165,416 bp, mainly due to the expansion and contraction of inverted repeat (IR) regions. The order of genes varied due to the occurrence of several inversions. In
Tylosema
species, a plastome with a 29-bp IR-mediated inversion was found to coexist with a canonical-type plastome, and the abundance of the two arrangements of isomeric molecules differed between individuals. Complete plastome data were much more efficient at resolving intergeneric relationships of Cercidoideae than the previously used selection of only a few plastid or nuclear loci. In sum, our study revealed novel insights into the structural diversification of plastomes in an early-branching legume lineage, and, thus, into the evolutionary trajectories of legume plastomes in general. The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome (plastome) diversification across the subfamily unaddressed, and phylogenetic relationships within this clade remained unresolved. Here, we assembled eight plastomes from seven Cercidoideae genera and conducted phylogenomic-comparative analyses in a broad evolutionary framework across legumes. The plastomes of Cercidoideae all exhibited a typical quadripartite structure with a conserved gene content typical of most angiosperm plastomes. Plastome size ranged from 151,705 to 165,416 bp, mainly due to the expansion and contraction of inverted repeat (IR) regions. The order of genes varied due to the occurrence of several inversions. In Tylosema species, a plastome with a 29-bp IR-mediated inversion was found to coexist with a canonical-type plastome, and the abundance of the two arrangements of isomeric molecules differed between individuals. Complete plastome data were much more efficient at resolving intergeneric relationships of Cercidoideae than the previously used selection of only a few plastid or nuclear loci. In sum, our study revealed novel insights into the structural diversification of plastomes in an early-branching legume lineage, and, thus, into the evolutionary trajectories of legume plastomes in general.The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome (plastome) diversification across the subfamily unaddressed, and phylogenetic relationships within this clade remained unresolved. Here, we assembled eight plastomes from seven Cercidoideae genera and conducted phylogenomic-comparative analyses in a broad evolutionary framework across legumes. The plastomes of Cercidoideae all exhibited a typical quadripartite structure with a conserved gene content typical of most angiosperm plastomes. Plastome size ranged from 151,705 to 165,416 bp, mainly due to the expansion and contraction of inverted repeat (IR) regions. The order of genes varied due to the occurrence of several inversions. In Tylosema species, a plastome with a 29-bp IR-mediated inversion was found to coexist with a canonical-type plastome, and the abundance of the two arrangements of isomeric molecules differed between individuals. Complete plastome data were much more efficient at resolving intergeneric relationships of Cercidoideae than the previously used selection of only a few plastid or nuclear loci. In sum, our study revealed novel insights into the structural diversification of plastomes in an early-branching legume lineage, and, thus, into the evolutionary trajectories of legume plastomes in general. The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome (plastome) diversification across the subfamily unaddressed, and phylogenetic relationships within this clade remained unresolved. Here, we assembled eight plastomes from seven Cercidoideae genera and conducted phylogenomic-comparative analyses in a broad evolutionary framework across legumes. The plastomes of Cercidoideae all exhibited a typical quadripartite structure with a conserved gene content typical of most angiosperm plastomes. Plastome size ranged from 151,705 to 165,416 bp, mainly due to the expansion and contraction of inverted repeat (IR) regions. The order of genes varied due to the occurrence of several inversions. In species, a plastome with a 29-bp IR-mediated inversion was found to coexist with a canonical-type plastome, and the abundance of the two arrangements of isomeric molecules differed between individuals. Complete plastome data were much more efficient at resolving intergeneric relationships of Cercidoideae than the previously used selection of only a few plastid or nuclear loci. In sum, our study revealed novel insights into the structural diversification of plastomes in an early-branching legume lineage, and, thus, into the evolutionary trajectories of legume plastomes in general. The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome (plastome) diversification across the subfamily unaddressed, and phylogenetic relationships within this clade remained unresolved. Here, we assembled eight plastomes from seven Cercidoideae genera and conducted phylogenomic-comparative analyses in a broad evolutionary framework across legumes. The plastomes of Cercidoideae all exhibited a typical quadripartite structure with a conserved gene content typical of most angiosperm plastomes. Plastome size ranged from 151,705 to 165,416 bp, mainly due to the expansion and contraction of inverted repeat (IR) regions. The order of genes varied due to the occurrence of several inversions. In Tylosema species, a plastome with a 29-bp IR-mediated inversion was found to coexist with a canonical-type plastome, and the abundance of the two arrangements of isomeric molecules differed between individuals. Complete plastome data were much more efficient at resolving intergeneric relationships of Cercidoideae than the previously used selection of only a few plastid or nuclear loci. In sum, our study revealed novel insights into the structural diversification of plastomes in an early-branching legume lineage, and, thus, into the evolutionary trajectories of legume plastomes in general. |
Author | Wang, Yin-Huan Wicke, Susann Li, De-Zhu Zhang, Shu-Dong Wang, Hong Jin, Jian-Jun Yi, Ting-Shuang Chen, Si-Yun |
AuthorAffiliation | 2 Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences , Yunnan , China 4 Institute for Evolution and Biodiversity, University of Münster , Münster , Germany 1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences , Yunnan , China 3 Kunming College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China |
AuthorAffiliation_xml | – name: 3 Kunming College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China – name: 4 Institute for Evolution and Biodiversity, University of Münster , Münster , Germany – name: 2 Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences , Yunnan , China – name: 1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences , Yunnan , China |
Author_xml | – sequence: 1 givenname: Yin-Huan surname: Wang fullname: Wang, Yin-Huan – sequence: 2 givenname: Susann surname: Wicke fullname: Wicke, Susann – sequence: 3 givenname: Hong surname: Wang fullname: Wang, Hong – sequence: 4 givenname: Jian-Jun surname: Jin fullname: Jin, Jian-Jun – sequence: 5 givenname: Si-Yun surname: Chen fullname: Chen, Si-Yun – sequence: 6 givenname: Shu-Dong surname: Zhang fullname: Zhang, Shu-Dong – sequence: 7 givenname: De-Zhu surname: Li fullname: Li, De-Zhu – sequence: 8 givenname: Ting-Shuang surname: Yi fullname: Yi, Ting-Shuang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29479365$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1r3DAQxUVJadI0596Kj-lhN_q0rUuhbJM0sNBCW8hNyNLIUZCtrWQv7H9fbTYNSaG6aJh57zcD7y06GuMICL0neMlYKy_cJuQlxaRdYkxY-wqdkLrmC17T26Nn9TE6y_kelycwlrJ5g46p5I1ktThBt9-DzpO31TWMcYDqchvDPPk4Vn6sprvS0CnsFl_8FlLvx75aQz8X3Y-5c3rwYVetIBlvo7egoTq_0p02pfr4Dr12OmQ4e_xP0a-ry5-rr4v1t-ub1ef1wnAhp0XHKfC6I4JwXm6TxHIsBRGudrhpoWUNs5xhYShQLDTVwtTG2tY1rYXaOXaKbg5cG_W92iQ_6LRTUXv10IipVzpN3gRQ2DaNwIQKLCQ3ttGOMO6sow2lmDJZWJ8OrM3cDWANjFPS4QX05WT0d6qPWyVaQpnABXD-CEjx9wx5UoPPBkLQI8Q5K4pxy2rGGlKkH57velryN5oiuDgITIo5J3BPEoLVPn-1z1_t81cP-ReH-Mdh_KT3YZZjffiv7w81TbPz |
CitedBy_id | crossref_primary_10_1186_s12870_020_02779_5 crossref_primary_10_3390_genes14101914 crossref_primary_10_3390_plants9020199 crossref_primary_10_3390_ijms19051286 crossref_primary_10_1038_s41598_021_99178_z crossref_primary_10_7717_peerj_7260 crossref_primary_10_3390_plants8100386 crossref_primary_10_3390_plants9091116 crossref_primary_10_1007_s00606_019_01578_2 crossref_primary_10_1007_s00606_020_01690_8 crossref_primary_10_1080_23802359_2019_1674218 crossref_primary_10_1016_j_gene_2019_144154 crossref_primary_10_1186_s12864_021_07769_x crossref_primary_10_3390_su16146046 crossref_primary_10_3390_plants11233275 crossref_primary_10_7717_peerj_7787 crossref_primary_10_1071_SB19019 crossref_primary_10_1038_s41598_020_66024_7 crossref_primary_10_1186_s12864_023_09195_7 crossref_primary_10_3389_fpls_2022_1025408 crossref_primary_10_7717_peerj_14293 crossref_primary_10_1080_23802359_2021_1989333 crossref_primary_10_1186_s12870_025_06138_0 crossref_primary_10_1093_gbe_evab215 crossref_primary_10_1093_sysbio_syaa013 crossref_primary_10_3389_fpls_2020_00151 crossref_primary_10_1016_j_pld_2018_04_003 crossref_primary_10_3389_fpls_2021_778933 crossref_primary_10_3389_fpls_2019_00345 crossref_primary_10_1080_26895293_2021_1926341 crossref_primary_10_3389_fpls_2022_888049 crossref_primary_10_3389_fpls_2023_1066708 crossref_primary_10_1016_j_pld_2022_06_002 crossref_primary_10_3389_fpls_2021_638650 crossref_primary_10_35535_pfsyst_2021_0014 crossref_primary_10_1002_ece3_9821 crossref_primary_10_1080_23802359_2024_2420846 crossref_primary_10_3389_fpls_2022_891783 crossref_primary_10_3389_fpls_2022_895543 crossref_primary_10_1002_tax_13177 crossref_primary_10_1016_j_ejbt_2022_09_005 crossref_primary_10_3390_biology12091244 crossref_primary_10_1007_s11738_023_03628_2 crossref_primary_10_1016_j_xplc_2024_100891 crossref_primary_10_1080_23802359_2024_2305712 crossref_primary_10_1002_tax_12207 crossref_primary_10_1016_j_pld_2020_06_008 crossref_primary_10_1186_s13059_020_02154_5 crossref_primary_10_3389_fpls_2020_00942 crossref_primary_10_1080_23802359_2023_2259041 crossref_primary_10_3389_fpls_2024_1415253 crossref_primary_10_1016_j_molp_2021_02_006 crossref_primary_10_3390_ijms26010397 crossref_primary_10_1371_journal_pone_0218743 crossref_primary_10_3389_fgene_2021_772415 crossref_primary_10_1038_s41598_019_56727_x crossref_primary_10_1080_23802359_2020_1749168 crossref_primary_10_3389_fgene_2020_00073 crossref_primary_10_3390_ijms21093280 crossref_primary_10_1080_23802359_2024_2324928 |
Cites_doi | 10.1093/molbev/msl089 10.7717/peerj.2699 10.1186/s12862-014-0228-6 10.12705/622.8 10.1600/036364415X686620 10.1007/s00239-008-9086-4 10.1186/1471-2148-4-27 10.1016/j.ympev.2016.11.004 10.1111/jse.12197 10.1038/301092a0 10.1007/BF00418530 10.1105/tpc.113.113373 10.1016/0092-8674(82)90170-2 10.1111/1755-0998.12251 10.2307/2419496 10.1186/1471-2164-8-228 10.1093/gbe/evx071 10.1093/bioinformatics/btv383 10.1093/dnares/dsu007 10.1139/B09-065 10.1371/journal.pone.0011147 10.1093/molbev/mst010 10.1093/jxb/erw500 10.1371/journal.pone.0173766 10.1038/srep16958 10.1093/gbe/evw109 10.1016/S0022-2836(05)80360-2 10.1093/molbev/msq229 10.1093/gbe/evu046 10.1007/BF02173220 10.2307/2419825 10.1111/jse.12179 10.1093/dnares/7.6.323 10.1111/nph.14461 10.1111/j.1558-5646.1991.tb04390.x 10.3732/ajb.89.10.1651 10.1007/s00239-008-9180-7 10.1002/j.1460-2075.1991.tb07859.x 10.1093/gbe/evt042 10.1101/gr.111955.110 10.1371/journal.pone.0030619 10.1371/journal.pone.0150752 10.1093/nar/gkt289 10.12705/661.3 10.1371/journal.pone.0125768 10.5852/ejt.2017.360 10.1093/molbev/mst257 10.1007/s11103-005-8882-0 10.1007/s11295-017-1124-1 10.1007/978-1-62703-995-6_1 10.1371/journal.pone.0051687 10.1007/s12686-017-0747-8 10.1007/978-94-007-2920-9_5 10.1093/bioinformatics/btu033 10.1007/s12686-017-0744-y 10.1038/nmeth.1923 10.1073/pnas.0909400107 10.1093/aob/mcu050 10.1093/oxfordjournals.molbev.a026334 10.1007/BF00355401 10.1093/gbe/evr026 10.1093/bioinformatics/bth352 10.1016/j.ympev.2008.06.013 10.1093/sysbio/syu054 10.1038/srep21669 10.1006/mpev.1996.0038 10.2307/2419351 10.1073/pnas.89.22.10648 10.1007/s11103-011-9762-4 10.1093/dnares/dsx006 10.1080/10635150701472164 10.1093/aob/mcw065 10.1139/B08-058 10.1111/pbi.12179 10.1038/srep41005 10.1093/nar/gki366 10.1098/rspb.2015.1553 10.1093/molbev/msm036 10.1093/oxfordjournals.molbev.a026414 |
ContentType | Journal Article |
Copyright | Copyright © 2018 Wang, Wicke, Wang, Jin, Chen, Zhang, Li and Yi. 2018 Wang, Wicke, Wang, Jin, Chen, Zhang, Li and Yi |
Copyright_xml | – notice: Copyright © 2018 Wang, Wicke, Wang, Jin, Chen, Zhang, Li and Yi. 2018 Wang, Wicke, Wang, Jin, Chen, Zhang, Li and Yi |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2018.00138 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_0d77501250594cd7af134fdf27220239 PMC5812350 29479365 10_3389_fpls_2018_00138 |
Genre | Journal Article |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IAO IEA IGS IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c459t-b42e46b1514499791d409515f6f078e8373d4305c2e205a2a5c6cdd8f78de6ff3 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:30:52 EDT 2025 Thu Aug 21 18:30:35 EDT 2025 Fri Jul 11 09:34:22 EDT 2025 Wed Feb 19 02:43:55 EST 2025 Tue Jul 01 00:52:21 EDT 2025 Thu Apr 24 22:56:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cercidoideae inversion isomeric plastomes plastome IR expansion/contraction variation Fabaceae |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-b42e46b1514499791d409515f6f078e8373d4305c2e205a2a5c6cdd8f78de6ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Evolutionary and Population Genetics, a section of the journal Frontiers in Plant Science Edited by: Federico Luebert, University of Bonn, Germany Reviewed by: Anne Bruneau, Université de Montréal, Canada; Martin F. Wojciechowski, Arizona State University, United States |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2018.00138 |
PMID | 29479365 |
PQID | 2008363371 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0d77501250594cd7af134fdf27220239 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5812350 proquest_miscellaneous_2008363371 pubmed_primary_29479365 crossref_primary_10_3389_fpls_2018_00138 crossref_citationtrail_10_3389_fpls_2018_00138 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-08 |
PublicationDateYYYYMMDD | 2018-02-08 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2018 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Tsumura (B69) 2000; 17 Wolfe (B79) 1992; 89 Magee (B50) 2010; 20 Downie (B15) 2015; 40 Jansen (B32) 2012 Jansen (B33) 2008; 48 Zhang (B85) 2016; 54 Palmer (B53) 1983; 301 Altschul (B1) 1990; 215 Stamatakis (B65) 2014; 30 Wang (B70); 13 Zhang (B84) 2017; 214 Gurdon (B28) 2014; 21 Milligan (B52) 1989; 6 Bruneau (B5) 2008; 86 Feng (B20) 2017; 9 Chumley (B9) 2006; 23 Saski (B61) 2005; 59 Hsu (B31) 2016; 8 Palmer (B54) 1987; 11 Choi (B8) 2017; 12 Dong (B13) 2016; 4 Doyle (B17) 1996; 5 Downie (B16) 1991; 45 (B48) 2017; 66 Martin (B51) 2014; 113 Ruhlman (B59) 2014 Wicke (B75) 2015 Lohse (B46) 2013; 41 Sveinsson (B67) 2014; 14 Keller (B39) 2017; 24 Palmer (B55) 1982; 29 Darling (B12) 2010; 5 Judd (B34) 2008 (B47) 2013; 62 Schattner (B62) 2005; 33 Talavera (B68) 2007; 56 Wicke (B74) 2013; 25 Gu (B24) 2016; 11 Sinou (B64) 2009; 87 Haberle (B29) 2008; 66 Wojciechowski (B78) 2000 Langmead (B42) 2012; 9 Lewis (B45) 2005 Ma (B49) 2014; 63 Blazier (B2) 2016; 117 Castresana (B7) 2000; 17 Gantt (B21) 1991; 10 Katoh (B36) 2013; 30 Bruneau (B3) 1990; 15 Weng (B72) 2014; 31 Bruneau (B4) 2001; 26 Herendeen (B30) 2003 Zoschke (B86) 2010; 107 Wick (B73) 2015; 31 Williams (B77) 2015; 10 Cai (B6) 2008; 67 Sabir (B60) 2014; 12 Kelchner (B38) 2002; 89 Lee (B43) 2007; 24 Lei (B44) 2016; 6 Donkpegan (B14) 2017; 107 Doyle (B18) 1995; 20 Cosner (B11) 2004; 4 Dugas (B19) 2015; 5 Guo (B26) 2014; 6 Kim (B40) 2017; 68 Kazakoff (B37) 2012; 7 Lai (B41) 1997; 22 Schwarz (B63) 2015; 53 Stein (B66) 1986; 10 Clark (B10) 2017; 360 Guo (B27) 2007; 8 Wu (B80) 2011; 3 Qu (B57); 7 Wyman (B81) 2004; 20 Guisinger (B25) 2011; 28 Yang (B82) 2014; 14 Yi (B83) 2013; 5 Goulding (B23) 1996; 252 Wicke (B76) 2011; 76 Qu (B58); 9 Givnish (B22) 2015; 282 Wang (B71); 9 Kato (B35) 2000; 7 Patel (B56) 2012; 7 17654362 - Syst Biol. 2007 Aug;56(4):564-77 15180927 - Bioinformatics. 2004 Nov 22;20(17):3252-5 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 15980563 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W686-9 1915281 - EMBO J. 1991 Oct;10(10):3073-8 21402866 - Genome Biol Evol. 2011;3:309-19 25955637 - PLoS One. 2015 May 08;10(5):e0125768 27192713 - Ann Bot. 2016 Jun;117(7):1209-20 6288261 - Cell. 1982 Jun;29(2):537-50 11214967 - DNA Res. 2000 Dec 31;7(6):323-30 8728401 - Mol Phylogenet Evol. 1996 Apr;5(2):429-38 24586030 - Genome Biol Evol. 2014 Mar;6(3):580-90 28431152 - Genome Biol Evol. 2017 Apr 14;:null 28564183 - Evolution. 1991 Aug;45(5):1245-1259 26950701 - PLoS One. 2016 Mar 07;11(3):e0150752 16916942 - Mol Biol Evol. 2006 Nov;23(11):2175-90 15324459 - BMC Evol Biol. 2004 Aug 23;4:27 17623083 - BMC Genomics. 2007 Jul 10;8:228 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9 21665593 - Am J Bot. 2002 Oct;89(10):1651-69 18638561 - Mol Phylogenet Evol. 2008 Sep;48(3):1204-17 18330485 - J Mol Evol. 2008 Apr;66(4):350-61 8804393 - Mol Gen Genet. 1996 Aug 27;252(1-2):195-206 27269365 - Genome Biol Evol. 2016 Jun 27;8(6):1776-84 25403617 - BMC Evol Biol. 2014 Nov 18;14:228 20133623 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3245-50 24336877 - Mol Biol Evol. 2014 Mar;31(3):645-59 20593022 - PLoS One. 2010 Jun 25;5(6):e11147 16247559 - Plant Mol Biol. 2005 Sep;59(2):309-22 23329690 - Mol Biol Evol. 2013 Apr;30(4):772-80 10958847 - Mol Biol Evol. 2000 Sep;17(9):1302-12 24644300 - DNA Res. 2014 Aug;21(4):417-27 20805190 - Mol Biol Evol. 2011 Jan;28(1):583-600 28338826 - DNA Res. 2017 Aug 1;24(4):343-358 27867769 - PeerJ. 2016 Nov 10;4:e2699 17329229 - Mol Biol Evol. 2007 May;24(5):1161-80 26099265 - Bioinformatics. 2015 Oct 15;31(20):3350-2 1332054 - Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10648-52 28120880 - Sci Rep. 2017 Jan 25;7:41005 23538991 - Genome Biol Evol. 2013;5(4):688-98 26311671 - Proc Biol Sci. 2015 Sep 7;282(1814):null 27825871 - Mol Phylogenet Evol. 2017 Feb;107:270-281 22312429 - PLoS One. 2012;7(2):e30619 28399123 - PLoS One. 2017 Apr 11;12 (4):e0173766 28186635 - New Phytol. 2017 May;214(3):1355-1367 19018585 - J Mol Evol. 2008 Dec;67(6):696-704 20978141 - Genome Res. 2010 Dec;20(12):1700-10 24620934 - Mol Ecol Resour. 2014 Sep;14(5):1024-31 24143802 - Plant Cell. 2013 Oct;25(10):3711-25 25092479 - Syst Biol. 2014 Nov;63(6):933-50 26592928 - Sci Rep. 2015 Nov 23;5:16958 24769537 - Ann Bot. 2014 Jun;113(7):1197-210 21424877 - Plant Mol Biol. 2011 Jul;76(3-5):273-97 26899134 - Sci Rep. 2016 Feb 22;6:21669 23272141 - PLoS One. 2012;7(12):e51687 10742046 - Mol Biol Evol. 2000 Apr;17(4):540-52 23609545 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W575-81 24451623 - Bioinformatics. 2014 May 1;30(9):1312-3 28158587 - J Exp Bot. 2017 Apr 1;68(8):2065-2072 24618204 - Plant Biotechnol J. 2014 Aug;12(6):743-54 2615639 - Mol Biol Evol. 1989 Jul;6(4):355-68 |
References_xml | – volume: 23 start-page: 2175 year: 2006 ident: B9 article-title: The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msl089 – volume: 4 year: 2016 ident: B13 article-title: Comparative analysis of the complete chloroplast genome sequences in psammophytic Haloxylon species (Amaranthaceae). publication-title: PeerJ doi: 10.7717/peerj.2699 – volume: 14 year: 2014 ident: B67 article-title: Evolutionary origin of highly repetitive plastid genomes within the clover genus (Trifolium). publication-title: BMC Evol. Biol. doi: 10.1186/s12862-014-0228-6 – volume: 62 start-page: 217 year: 2013 ident: B47 article-title: Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades. publication-title: Taxon doi: 10.12705/622.8 – volume: 40 start-page: 336 year: 2015 ident: B15 article-title: A comparative analysis of whole plastid genomes from the Apiales: expansion and contraction of the inverted repeat, mitochondrial to plastid transfer of DNA, and identification of highly divergent noncoding regions. publication-title: Syst. Bot. doi: 10.1600/036364415X686620 – volume: 66 start-page: 350 year: 2008 ident: B29 article-title: Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes. publication-title: J. Mol. Evol. doi: 10.1007/s00239-008-9086-4 – volume: 4 year: 2004 ident: B11 article-title: Chloroplast DNA rearrangements in Campanulaceae: Phylogenetic utility of highly rearranged genomes. publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-4-27 – volume: 107 start-page: 270 year: 2017 ident: B14 article-title: Evolution in African tropical trees displaying ploidy-habitat association: The genus Afzelia (Leguminosae). publication-title: Mol. Phylogenet. Evol doi: 10.1016/j.ympev.2016.11.004 – volume: 54 start-page: 219 year: 2016 ident: B85 article-title: Fifteen novel universal primer pairs for sequencing whole chloroplast genomes and a primer pair for nuclear ribosomal DNAs. publication-title: J. Syst. Evol. doi: 10.1111/jse.12197 – volume: 301 start-page: 92 year: 1983 ident: B53 article-title: Chloroplast DNA exists in two orientations. publication-title: Nature doi: 10.1038/301092a0 – volume: 10 start-page: 835 year: 1986 ident: B66 article-title: Structural evolution and flip-flop recombination of chloroplast DNA in the fern genus Osmunda. publication-title: Curr. Genet. doi: 10.1007/BF00418530 – volume: 25 start-page: 3711 year: 2013 ident: B74 article-title: Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. publication-title: Plant Cell doi: 10.1105/tpc.113.113373 – volume: 29 start-page: 537 year: 1982 ident: B55 article-title: Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. publication-title: Cell doi: 10.1016/0092-8674(82)90170-2 – start-page: 9 year: 2015 ident: B75 article-title: “Next-generation organellar genomics: potentials and pitfalls of high-throughput technologies for molecular evolutionary studies and plant systematics,” in publication-title: Next-Generation Sequencing in Plant Systematics – volume: 14 start-page: 1024 year: 2014 ident: B82 article-title: Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. publication-title: Mol. Ecol. Resour. doi: 10.1111/1755-0998.12251 – volume: 20 start-page: 272 year: 1995 ident: B18 article-title: Multiple independent losses of two genes and one intron from legume. publication-title: Syst. Bot. doi: 10.2307/2419496 – volume: 26 start-page: 487 year: 2001 ident: B4 article-title: Phylogenetic relationships in the Caesalpinioideae (Leguminosae) as inferred from chloroplast trnL intron sequences. publication-title: Syst. Bot. – volume: 8 year: 2007 ident: B27 article-title: Rapid evolutionary change of common bean (Phaseolus vulgaris L.) plastome, and the genomic diversification of legume chloroplasts. publication-title: BMC Genomics doi: 10.1186/1471-2164-8-228 – volume: 9 start-page: 1110 ident: B58 article-title: Insights into the existence of isomeric plastomes in Cupressoideae (Cupressaceae). publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evx071 – volume: 31 start-page: 3350 year: 2015 ident: B73 article-title: Bandage: interactive visualization of de novo genome assemblies. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv383 – volume: 21 start-page: 417 year: 2014 ident: B28 article-title: Two distinct plastid genome configurations and unprecedented intraspecies length variation in the accD coding region in Medicago truncatula. publication-title: DNA Res. doi: 10.1093/dnares/dsu007 – year: 2008 ident: B34 publication-title: Plant Systematics: A Phylogenetic Approach – volume: 87 start-page: 947 year: 2009 ident: B64 article-title: The genus Bauhinia s.l. (Leguminosae): a phylogeny based on the plastid trnL–trnF region. publication-title: Botany doi: 10.1139/B09-065 – start-page: 277 year: 2000 ident: B78 article-title: “Molecular phylogeny of the “Temperate Herbaceous Tribes” of papilionoid legumes: a supertree approach,” in publication-title: Advances in Legume Systematics – volume: 5 year: 2010 ident: B12 article-title: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. publication-title: PLOS ONE doi: 10.1371/journal.pone.0011147 – volume: 30 start-page: 772 year: 2013 ident: B36 article-title: MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst010 – volume: 68 start-page: 2065 year: 2017 ident: B40 article-title: A novel inversion in the chloroplast genome of marama (Tylosema esculentum). publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw500 – volume: 12 year: 2017 ident: B8 article-title: The distinct plastid genome structure of Maackia fauriei (Fabaceae: Papilionoideae) and its systematic implications for genistoids and tribe Sophoreae. publication-title: PLOS ONE doi: 10.1371/journal.pone.0173766 – volume: 5 year: 2015 ident: B19 article-title: Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP. publication-title: Sci. Rep. doi: 10.1038/srep16958 – volume: 8 start-page: 1776 year: 2016 ident: B31 article-title: Birth of four chimeric plastid gene clusters in Japanese umbrella pine. publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evw109 – volume: 215 start-page: 403 year: 1990 ident: B1 article-title: Basic local alignment search tool. publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(05)80360-2 – volume: 28 start-page: 583 year: 2011 ident: B25 article-title: Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: Rearrangements, repeats, and codon usage. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msq229 – volume: 6 start-page: 580 year: 2014 ident: B26 article-title: Predominant and substoichiometric isomers of the plastid genome coexist within Juniperus plants and have shifted multiple times during cupressophyte evolution. publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evu046 – volume: 6 start-page: 355 year: 1989 ident: B52 article-title: Dispersed repeats and structural reorganization in subclover chloroplast DNA. publication-title: Mol. Biol. Evol. – volume: 252 start-page: 195 year: 1996 ident: B23 article-title: Ebb and flow of the chloroplast inverted repeat. publication-title: Mol. Gen. Genet. doi: 10.1007/BF02173220 – volume: 22 start-page: 519 year: 1997 ident: B41 article-title: Polymorphism for the presence of the rpL2 intron in chloroplast genomes of Bauhinia (Leguminosae). publication-title: Syst. Bot. doi: 10.2307/2419825 – volume: 53 start-page: 458 year: 2015 ident: B63 article-title: Plastid genome sequences of legumes reveal parallel inversions and multiple losses of rps16 in papilionoids. publication-title: J. Syst. Evol. doi: 10.1111/jse.12179 – volume: 7 start-page: 323 year: 2000 ident: B35 article-title: Complete structure of the chloroplast genome of a legume, Lotus japonicus. publication-title: DNA Res. doi: 10.1093/dnares/7.6.323 – volume: 214 start-page: 1355 year: 2017 ident: B84 article-title: Diversification of Rosaceae since the late cretaceous based on plastid phylogenomics. publication-title: New Phytol. doi: 10.1111/nph.14461 – volume: 45 start-page: 1245 year: 1991 ident: B16 article-title: Six independent losses of the chloroplast DNA rpl2 intron in dicotyledons: molecular and phylogenetic implications. publication-title: Evolution doi: 10.1111/j.1558-5646.1991.tb04390.x – volume: 89 start-page: 1651 year: 2002 ident: B38 article-title: Group II introns as phylogenetic tools: structure function, and evolutionary constraints. publication-title: Am. J. Bot. doi: 10.3732/ajb.89.10.1651 – volume: 67 start-page: 696 year: 2008 ident: B6 article-title: Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions. publication-title: J. Mol. Evol. doi: 10.1007/s00239-008-9180-7 – volume: 10 start-page: 3073 year: 1991 ident: B21 article-title: Transfer of rpl22 to the nucleus greatly preceded its loss from the chloroplast and involved the gain of an intron. publication-title: EMBO J. doi: 10.1002/j.1460-2075.1991.tb07859.x – volume: 5 start-page: 688 year: 2013 ident: B83 article-title: The complete chloroplast genome sequence of Cephalotaxus oliveri (Cephalotaxaceae): evolutionary comparison of Cephalotaxus chloroplast DNAs and insights into the loss of inverted repeat copies in Gymnosperms. publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evt042 – volume: 20 start-page: 1700 year: 2010 ident: B50 article-title: Localized hypermutation and associated gene losses in legume chloroplast genomes. publication-title: Genome Res. doi: 10.1101/gr.111955.110 – volume: 7 year: 2012 ident: B56 article-title: NGS QC toolkit: a toolkit for quality control of next generation sequencing data. publication-title: PLOS ONE doi: 10.1371/journal.pone.0030619 – start-page: 37 year: 2003 ident: B30 article-title: “Phylogenetic relationships in caesalpinioid legumes: a preliminary analysis based on morphological and molecular data,” in publication-title: Advances in Legume Systematics, part 10 Higher Level Systematics – volume: 11 year: 2016 ident: B24 article-title: The complete plastid genome of Lagerstroemia fauriei and loss of rpl2 intron from Lagerstroemia (Lythraceae). publication-title: PLOS ONE doi: 10.1371/journal.pone.0150752 – volume: 41 start-page: W575 year: 2013 ident: B46 article-title: OrganellarGenomeDRAW-a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt289 – volume: 66 start-page: 44 year: 2017 ident: B48 article-title: A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. publication-title: Taxon doi: 10.12705/661.3 – volume: 10 year: 2015 ident: B77 article-title: The complete sequence of the Acacia ligulata chloroplast genome reveals a highly divergent clpP1 gene. publication-title: PLOS ONE doi: 10.1371/journal.pone.0125768 – year: 2005 ident: B45 publication-title: Legumes of the World. – volume: 360 start-page: 1 year: 2017 ident: B10 article-title: Cheniella gen. nov. (Leguminosae: Cercidoideae) from southern China, Indochina and Malesia. publication-title: Eur. J. Taxon. doi: 10.5852/ejt.2017.360 – volume: 31 start-page: 645 year: 2014 ident: B72 article-title: Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst257 – volume: 59 start-page: 309 year: 2005 ident: B61 article-title: Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes. publication-title: Plant Mol. Biol. doi: 10.1007/s11103-005-8882-0 – volume: 13 ident: B70 article-title: Plastomes of Mimosoideae: structural and size variation, sequence divergence, and phylogenetic implication. publication-title: Tree Genet. Genomes doi: 10.1007/s11295-017-1124-1 – start-page: 3 year: 2014 ident: B59 article-title: “The plastid genomes of flowering plants,” in publication-title: Chloroplast Biotechnology: Methods and Protocols doi: 10.1007/978-1-62703-995-6_1 – volume: 7 year: 2012 ident: B37 article-title: Capturing the biofuel wellhead and powerhouse: the chloroplast and mitochondrial genomes of the leguminous feedstock tree Pongamia pinnata. publication-title: PLOS ONE doi: 10.1371/journal.pone.0051687 – volume: 9 start-page: 647 year: 2017 ident: B20 article-title: Complete plastid genomes of the genus Ammopiptanthus and identification of a novel 23-kb rearrangement. publication-title: Conserv. Genet. Resour. doi: 10.1007/s12686-017-0747-8 – start-page: 103 year: 2012 ident: B32 article-title: “Plastid genomes of seed plants,” in publication-title: Genomics of Chloroplasts and Mitochondria doi: 10.1007/978-94-007-2920-9_5 – volume: 30 start-page: 1312 year: 2014 ident: B65 article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu033 – volume: 9 start-page: 635 ident: B71 article-title: The complete chloroplast genomes of Adenolobus garipensis and Cercis glabra (Cercidoideae, Fabaceae). publication-title: Conserv. Genet. Resour. doi: 10.1007/s12686-017-0744-y – volume: 9 start-page: 357 year: 2012 ident: B42 article-title: Fast gapped-read alignment with Bowtie 2. publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 107 start-page: 3245 year: 2010 ident: B86 article-title: An organellar maturase associates with multiple group II introns. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0909400107 – volume: 113 start-page: 1197 year: 2014 ident: B51 article-title: The first complete chloroplast genome of the Genistoid legume Lupinus luteus: evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family. publication-title: Ann. Bot. doi: 10.1093/aob/mcu050 – volume: 17 start-page: 540 year: 2000 ident: B7 article-title: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a026334 – volume: 11 start-page: 275 year: 1987 ident: B54 article-title: Chloroplast DNA evolution among legumes - loss of a large inverted repeat occurred prior to other sequence rearrangements. publication-title: Curr. Genet. doi: 10.1007/BF00355401 – volume: 3 start-page: 309 year: 2011 ident: B80 article-title: Comparative chloroplast genomes of Pinaceae: insights into the mechanism of diversified genomic organizations. publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evr026 – volume: 20 start-page: 3252 year: 2004 ident: B81 article-title: Automatic annotation of organellar genomes with DOGMA. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth352 – volume: 48 start-page: 1204 year: 2008 ident: B33 article-title: Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2008.06.013 – volume: 63 start-page: 933 year: 2014 ident: B49 article-title: Chloroplast phylogenomic analyses resolve deep-level relationships of an intractable bamboo tribe Arundinarieae (poaceae). publication-title: Syst. Biol. doi: 10.1093/sysbio/syu054 – volume: 6 year: 2016 ident: B44 article-title: Intraspecific and heteroplasmic variations, gene losses and inversions in the chloroplast genome of Astragalus membranaceus. publication-title: Sci. Rep. doi: 10.1038/srep21669 – volume: 5 start-page: 429 year: 1996 ident: B17 article-title: The distribution and phylogenetic significance of a 50-kb chloroplast DNA inversion in the flowering plant family Leguminosae. publication-title: Mol. Phylogen. Evol. doi: 10.1006/mpev.1996.0038 – volume: 15 start-page: 378 year: 1990 ident: B3 article-title: A chloroplast DNA inversion as a subtribal character in the Phaseoleae (Leguminosae). publication-title: Syst. Bot. doi: 10.2307/2419351 – volume: 89 start-page: 10648 year: 1992 ident: B79 article-title: Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.89.22.10648 – volume: 76 start-page: 273 year: 2011 ident: B76 article-title: The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. publication-title: Plant Mol. Biol. doi: 10.1007/s11103-011-9762-4 – volume: 24 start-page: 343 year: 2017 ident: B39 article-title: The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus. publication-title: DNA Res. doi: 10.1093/dnares/dsx006 – volume: 56 start-page: 564 year: 2007 ident: B68 article-title: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. publication-title: Syst. Biol. doi: 10.1080/10635150701472164 – volume: 117 start-page: 1209 year: 2016 ident: B2 article-title: Variable presence of the inverted repeat and plastome stability in Erodium. publication-title: Ann. Bot. doi: 10.1093/aob/mcw065 – volume: 86 start-page: 697 year: 2008 ident: B5 article-title: Phylogenetic patterns and diversification in the caesalpinioid legumes. publication-title: Botany doi: 10.1139/B08-058 – volume: 12 start-page: 743 year: 2014 ident: B60 article-title: Evolutionary and biotechnology implications of plastid genome variation in the inverted-repeat-lacking clade of legumes. publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12179 – volume: 7 ident: B57 article-title: Multiple measures could alleviate long-branch attraction in phylogenomic reconstruction of Cupressoideae (Cupressaceae). publication-title: Sci. Rep. doi: 10.1038/srep41005 – volume: 33 start-page: W686 year: 2005 ident: B62 article-title: The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki366 – volume: 282 start-page: 1 year: 2015 ident: B22 article-title: Orchid phylogenomics and multiple drivers of their extraordinary diversification. publication-title: Proc. R. Soc. B. doi: 10.1098/rspb.2015.1553 – volume: 24 start-page: 1161 year: 2007 ident: B43 article-title: Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msm036 – volume: 17 start-page: 1302 year: 2000 ident: B69 article-title: Chloroplast DNA inversion polymorphism in populations of Abies and Tsuga. publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a026414 – reference: 2615639 - Mol Biol Evol. 1989 Jul;6(4):355-68 – reference: 15324459 - BMC Evol Biol. 2004 Aug 23;4:27 – reference: 18638561 - Mol Phylogenet Evol. 2008 Sep;48(3):1204-17 – reference: 25092479 - Syst Biol. 2014 Nov;63(6):933-50 – reference: 24336877 - Mol Biol Evol. 2014 Mar;31(3):645-59 – reference: 18330485 - J Mol Evol. 2008 Apr;66(4):350-61 – reference: 27867769 - PeerJ. 2016 Nov 10;4:e2699 – reference: 26950701 - PLoS One. 2016 Mar 07;11(3):e0150752 – reference: 27825871 - Mol Phylogenet Evol. 2017 Feb;107:270-281 – reference: 27192713 - Ann Bot. 2016 Jun;117(7):1209-20 – reference: 16247559 - Plant Mol Biol. 2005 Sep;59(2):309-22 – reference: 21665593 - Am J Bot. 2002 Oct;89(10):1651-69 – reference: 20133623 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3245-50 – reference: 20593022 - PLoS One. 2010 Jun 25;5(6):e11147 – reference: 10742046 - Mol Biol Evol. 2000 Apr;17(4):540-52 – reference: 17623083 - BMC Genomics. 2007 Jul 10;8:228 – reference: 22312429 - PLoS One. 2012;7(2):e30619 – reference: 28338826 - DNA Res. 2017 Aug 1;24(4):343-358 – reference: 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9 – reference: 27269365 - Genome Biol Evol. 2016 Jun 27;8(6):1776-84 – reference: 24644300 - DNA Res. 2014 Aug;21(4):417-27 – reference: 24620934 - Mol Ecol Resour. 2014 Sep;14(5):1024-31 – reference: 8804393 - Mol Gen Genet. 1996 Aug 27;252(1-2):195-206 – reference: 28186635 - New Phytol. 2017 May;214(3):1355-1367 – reference: 10958847 - Mol Biol Evol. 2000 Sep;17(9):1302-12 – reference: 26592928 - Sci Rep. 2015 Nov 23;5:16958 – reference: 23609545 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W575-81 – reference: 17329229 - Mol Biol Evol. 2007 May;24(5):1161-80 – reference: 19018585 - J Mol Evol. 2008 Dec;67(6):696-704 – reference: 28564183 - Evolution. 1991 Aug;45(5):1245-1259 – reference: 26311671 - Proc Biol Sci. 2015 Sep 7;282(1814):null – reference: 26899134 - Sci Rep. 2016 Feb 22;6:21669 – reference: 21424877 - Plant Mol Biol. 2011 Jul;76(3-5):273-97 – reference: 1915281 - EMBO J. 1991 Oct;10(10):3073-8 – reference: 25955637 - PLoS One. 2015 May 08;10(5):e0125768 – reference: 6288261 - Cell. 1982 Jun;29(2):537-50 – reference: 16916942 - Mol Biol Evol. 2006 Nov;23(11):2175-90 – reference: 28120880 - Sci Rep. 2017 Jan 25;7:41005 – reference: 1332054 - Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10648-52 – reference: 25403617 - BMC Evol Biol. 2014 Nov 18;14:228 – reference: 28431152 - Genome Biol Evol. 2017 Apr 14;:null – reference: 11214967 - DNA Res. 2000 Dec 31;7(6):323-30 – reference: 15980563 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W686-9 – reference: 24769537 - Ann Bot. 2014 Jun;113(7):1197-210 – reference: 20805190 - Mol Biol Evol. 2011 Jan;28(1):583-600 – reference: 24143802 - Plant Cell. 2013 Oct;25(10):3711-25 – reference: 20978141 - Genome Res. 2010 Dec;20(12):1700-10 – reference: 23272141 - PLoS One. 2012;7(12):e51687 – reference: 26099265 - Bioinformatics. 2015 Oct 15;31(20):3350-2 – reference: 8728401 - Mol Phylogenet Evol. 1996 Apr;5(2):429-38 – reference: 17654362 - Syst Biol. 2007 Aug;56(4):564-77 – reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 – reference: 28399123 - PLoS One. 2017 Apr 11;12 (4):e0173766 – reference: 24451623 - Bioinformatics. 2014 May 1;30(9):1312-3 – reference: 21402866 - Genome Biol Evol. 2011;3:309-19 – reference: 24586030 - Genome Biol Evol. 2014 Mar;6(3):580-90 – reference: 28158587 - J Exp Bot. 2017 Apr 1;68(8):2065-2072 – reference: 23538991 - Genome Biol Evol. 2013;5(4):688-98 – reference: 15180927 - Bioinformatics. 2004 Nov 22;20(17):3252-5 – reference: 23329690 - Mol Biol Evol. 2013 Apr;30(4):772-80 – reference: 24618204 - Plant Biotechnol J. 2014 Aug;12(6):743-54 |
SSID | ssj0000500997 |
Score | 2.4445174 |
Snippet | The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 138 |
SubjectTerms | Cercidoideae inversion IR expansion/contraction isomeric plastomes Plant Science plastome variation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EPHgR38YXK3jQQzSPzW726KsWUfGg0FvY7EMLNS3aCv57ZzZpaUXx4i3kQZaZycw3m5lvCDm0uYq0koDcYgUJiuFRKFkShzopIyzTtSbDBue7e95-YjedrDM16gtrwmp64Fpwp5ERENRijNSSaSOUi1PmjEtEgpO_fesexLypZKpm9UboI2ouH8jC5Kkb9JCdO8bSyRi7UabCkGfr_wlifq-UnAo9rWWy1GBGelavdYXM2WqVLJz3Add9rpHOAwDgYdfQa1v1Xy29-misiXYrCvCOeg7j8BILMHAiEb21z-CQKLiMeneDXuDUJfBtxipLj1qqVBqOjtfJU-vq8aIdNvMSQs0yOQxLlljGS4jhDPIYIWPDEEBljjsAAhZS0dQgwxdoIIkylahMc21M7kRuLHcu3SDzVb-yW4TaKDeAbMATqohpwaRhHCTPlGYyVYIF5GQsvkI3ZOI406JXQFKB8i5Q3gXKu_DyDsjR5IFBzaPx-63nqI_JbUiA7U-AWRSNWRR_mUVADsbaLOCDwb8gqrL90bufu5nyNBVxQDZr7U5elUjcaORZQMSM3mfWMnul6r54Uu4sx67jaPs_Fr9DFlEcvjg83yXzw7eR3QPsMyz3vZl_AX6G_zU priority: 102 providerName: Directory of Open Access Journals |
Title | Plastid Genome Evolution in the Early-Diverging Legume Subfamily Cercidoideae (Fabaceae) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29479365 https://www.proquest.com/docview/2008363371 https://pubmed.ncbi.nlm.nih.gov/PMC5812350 https://doaj.org/article/0d77501250594cd7af134fdf27220239 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKy4EL4k1KqVyJQzmkxI5jxwdU0ce2QhRxYKXcIsePstKStNstov-eGSddumiReomivDNje75xJt9HyDtfmswaDciNGUhQnMxSLThLLW8yLNP1rsAfnM--ytOx-FwV1V85oMGAVytTO9STGs-me78vb_ahw3_EjBPi7YdwMUXibYZVkSwvH5ANCEsK5QzOBqzfE30jGopiK1KKVEhe9VQ_q66xFKUimf8qBPpvIeWdyDR6Qh4PkJJ-6tvAU7Lm22fk4UEHsO_mOam-AT6eTxw98W3309PjX0Njo5OWAvqjkeI4PcL6DBQsol_8OYxXFEaUfvKDHqIoE1jCeePp7sg0xsLa-xdkPDr-fniaDnIKqRWFnqeN4F7IBkK8gDRHaeYE4qsiyAA4wUOmmjskAAMH8aww3BRWWufKoErnZQj5S7Ledq1_TajPSgfABwZKkwmrhHZCmsCEsULnRomE7N2ar7YD1zhKXkxryDnQ3jXau0Z719HeCdldnHDR02z8_9AD9MfiMOTHjhu62Xk9dLc6cwqgEEN8p4V1Ch4uF8EFrjjqxeuE7Nx6s4b-hB9JTOu766soy5nLPFcsIa967y5uxTXOQ8oiIWrJ70vPsrynnfyInN1FiT8lZ5v3uO8b8gjfNpaGl1tkfT679m8B-cyb7ThjAMuTim3H1v0HjEIBZw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plastid+Genome+Evolution+in+the+Early-Diverging+Legume+Subfamily+Cercidoideae+%28Fabaceae%29&rft.jtitle=Frontiers+in+plant+science&rft.au=Wang%2C+Yin-Huan&rft.au=Wicke%2C+Susann&rft.au=Wang%2C+Hong&rft.au=Jin%2C+Jian-Jun&rft.date=2018-02-08&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=9&rft.spage=138&rft_id=info:doi/10.3389%2Ffpls.2018.00138&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |