NtMYB4 and NtCHS1 Are Critical Factors in the Regulation of Flavonoid Biosynthesis and Are Involved in Salinity Responsiveness
High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS) scavenging. In the present study, the tobacco R2R3 MYB type repressor, NtMYB4, was isolated and characterized. The expression of was suppressed by sal...
Saved in:
Published in | Frontiers in plant science Vol. 10; p. 178 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
21.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS) scavenging. In the present study, the tobacco R2R3 MYB type repressor, NtMYB4, was isolated and characterized. The expression of
was suppressed by salinity. Overexpression of
reduced the salt tolerance in transgenic tobacco plants. NtMYB4 repressed the promoter activity of
and negatively regulated its expression. Rutin accumulation was significantly decreased in
overexpressing transgenic plants and
RNAi silenced transgenic plants. Moreover, high H
O
and
contents were detected in both types of rutin-reduced transgenic plants under high salt stress. In addition, exogenous rutin supplementation effectively scavenged ROS (H
O
and
) and improved the salt tolerance of the rutin-reduced transgenic plants. In contrast,
overexpressing plants had increased rutin accumulation, lower H
O
and
contents, and higher tolerance to salinity. These results suggested that tobacco NtMYB4 acts as a salinity response repressor and negatively regulates
expression, which results in the reduced flavonoid accumulation and weakened ROS-scavenging ability under salt stress. |
---|---|
AbstractList | High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS) scavenging. In the present study, the tobacco R2R3 MYB type repressor, NtMYB4, was isolated and characterized. The expression of NtMYB4 was suppressed by salinity. Overexpression of NtMYB4 reduced the salt tolerance in transgenic tobacco plants. NtMYB4 repressed the promoter activity of NtCHS1 and negatively regulated its expression. Rutin accumulation was significantly decreased in NtMYB4 overexpressing transgenic plants and NtCHS1 RNAi silenced transgenic plants. Moreover, high H2O2 and O 2 - contents were detected in both types of rutin-reduced transgenic plants under high salt stress. In addition, exogenous rutin supplementation effectively scavenged ROS (H2O2 and O 2 - ) and improved the salt tolerance of the rutin-reduced transgenic plants. In contrast, NtCHS1 overexpressing plants had increased rutin accumulation, lower H2O2 and O 2 - contents, and higher tolerance to salinity. These results suggested that tobacco NtMYB4 acts as a salinity response repressor and negatively regulates NtCHS1 expression, which results in the reduced flavonoid accumulation and weakened ROS-scavenging ability under salt stress.High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS) scavenging. In the present study, the tobacco R2R3 MYB type repressor, NtMYB4, was isolated and characterized. The expression of NtMYB4 was suppressed by salinity. Overexpression of NtMYB4 reduced the salt tolerance in transgenic tobacco plants. NtMYB4 repressed the promoter activity of NtCHS1 and negatively regulated its expression. Rutin accumulation was significantly decreased in NtMYB4 overexpressing transgenic plants and NtCHS1 RNAi silenced transgenic plants. Moreover, high H2O2 and O 2 - contents were detected in both types of rutin-reduced transgenic plants under high salt stress. In addition, exogenous rutin supplementation effectively scavenged ROS (H2O2 and O 2 - ) and improved the salt tolerance of the rutin-reduced transgenic plants. In contrast, NtCHS1 overexpressing plants had increased rutin accumulation, lower H2O2 and O 2 - contents, and higher tolerance to salinity. These results suggested that tobacco NtMYB4 acts as a salinity response repressor and negatively regulates NtCHS1 expression, which results in the reduced flavonoid accumulation and weakened ROS-scavenging ability under salt stress. High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS) scavenging. In the present study, the tobacco R2R3 MYB type repressor, NtMYB4, was isolated and characterized. The expression of NtMYB4 was suppressed by salinity. Overexpression of NtMYB4 reduced the salt tolerance in transgenic tobacco plants. NtMYB4 repressed the promoter activity of NtCHS1 and negatively regulated its expression. Rutin accumulation was significantly decreased in NtMYB4 overexpressing transgenic plants and NtCHS1 RNAi silenced transgenic plants. Moreover, high H2O2 and O2− contents were detected in both types of rutin-reduced transgenic plants under high salt stress. In addition, exogenous rutin supplementation effectively scavenged ROS (H2O2 and O2−) and improved the salt tolerance of the rutin-reduced transgenic plants. In contrast, NtCHS1 overexpressing plants had increased rutin accumulation, lower H2O2 and O2− contents, and higher tolerance to salinity. These results suggested that tobacco NtMYB4 acts as a salinity response repressor and negatively regulates NtCHS1 expression, which results in the reduced flavonoid accumulation and weakened ROS-scavenging ability under salt stress. High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS) scavenging. In the present study, the tobacco R2R3 MYB type repressor, NtMYB4, was isolated and characterized. The expression of NtMYB4 was suppressed by salinity. Overexpression of NtMYB4 reduced the salt tolerance in transgenic tobacco plants. NtMYB4 repressed the promoter activity of NtCHS1 and negatively regulated its expression. Rutin accumulation was significantly decreased in NtMYB4 overexpressing transgenic plants and NtCHS1 RNAi silenced transgenic plants. Moreover, high H 2 O 2 and O 2 − contents were detected in both types of rutin-reduced transgenic plants under high salt stress. In addition, exogenous rutin supplementation effectively scavenged ROS (H 2 O 2 and O 2 − ) and improved the salt tolerance of the rutin-reduced transgenic plants. In contrast, NtCHS1 overexpressing plants had increased rutin accumulation, lower H 2 O 2 and O 2 − contents, and higher tolerance to salinity. These results suggested that tobacco NtMYB4 acts as a salinity response repressor and negatively regulates NtCHS1 expression, which results in the reduced flavonoid accumulation and weakened ROS-scavenging ability under salt stress. High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS) scavenging. In the present study, the tobacco R2R3 MYB type repressor, NtMYB4, was isolated and characterized. The expression of was suppressed by salinity. Overexpression of reduced the salt tolerance in transgenic tobacco plants. NtMYB4 repressed the promoter activity of and negatively regulated its expression. Rutin accumulation was significantly decreased in overexpressing transgenic plants and RNAi silenced transgenic plants. Moreover, high H O and contents were detected in both types of rutin-reduced transgenic plants under high salt stress. In addition, exogenous rutin supplementation effectively scavenged ROS (H O and ) and improved the salt tolerance of the rutin-reduced transgenic plants. In contrast, overexpressing plants had increased rutin accumulation, lower H O and contents, and higher tolerance to salinity. These results suggested that tobacco NtMYB4 acts as a salinity response repressor and negatively regulates expression, which results in the reduced flavonoid accumulation and weakened ROS-scavenging ability under salt stress. |
Author | Wang, Yuanying Wu, Fengyan Qian, Yanli Pan, Xuhao Wu, Zhenying Fu, Chunxiang Chen, Shuai Li, Yiting Lin, Hao Yang, Aiguo Li, Fengxia |
AuthorAffiliation | 2 Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China 1 Tobacco Research Institute, Chinese Academy of Agricultural Sciences , Qingdao , China 3 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences , Beijing , China |
AuthorAffiliation_xml | – name: 2 Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China – name: 1 Tobacco Research Institute, Chinese Academy of Agricultural Sciences , Qingdao , China – name: 3 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences , Beijing , China |
Author_xml | – sequence: 1 givenname: Shuai surname: Chen fullname: Chen, Shuai – sequence: 2 givenname: Fengyan surname: Wu fullname: Wu, Fengyan – sequence: 3 givenname: Yiting surname: Li fullname: Li, Yiting – sequence: 4 givenname: Yanli surname: Qian fullname: Qian, Yanli – sequence: 5 givenname: Xuhao surname: Pan fullname: Pan, Xuhao – sequence: 6 givenname: Fengxia surname: Li fullname: Li, Fengxia – sequence: 7 givenname: Yuanying surname: Wang fullname: Wang, Yuanying – sequence: 8 givenname: Zhenying surname: Wu fullname: Wu, Zhenying – sequence: 9 givenname: Chunxiang surname: Fu fullname: Fu, Chunxiang – sequence: 10 givenname: Hao surname: Lin fullname: Lin, Hao – sequence: 11 givenname: Aiguo surname: Yang fullname: Yang, Aiguo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30846995$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kkFvEzEQhVeoiJbSMzfkI5ekttdery9IbURopFIkChKcLK93NnXl2MF2IuXCb8eblKpFwpexPG--8Wje6-rIBw9V9ZbgaV238nxYuzSlmMgpxkS0L6oT0jRswhr64-jJ_bg6S-kel8MxllK8qo5r3LJGSn5S_b7Jn39eMqR9j27y7OqWoIsIaBZttkY7NNcmh5iQ9SjfAfoKy43T2QaPwoDmTm-DD7ZHlzaknS-KZNOeNUIWfhvcFvqx-FY7623eFUJaB5_sFjyk9KZ6OWiX4Owhnlbf5x-_za4m118-LWYX1xPDuMwTDU0_AEjT465ECpJwYbRoSU0NaTWRDa9LVuC-xAaY7FjXccbLnFr0UJ9WiwO3D_peraNd6bhTQVu1fwhxqXQsEztQtCadFDWTlBLGGy1bwVqBCeYDBsxYYX04sNabbgW9AZ-jds-gzzPe3qll2KqmlnXhFsD7B0AMvzaQslrZZMA57SFskqKklZwJTmmRvnva67HJ3wUWwflBYGJIKcLwKCFYjS5Ro0vU6BK1d0mp4P9UGJv3Ky2fte6_dX8AtFrCDw |
CitedBy_id | crossref_primary_10_1016_j_jplph_2024_154320 crossref_primary_10_3390_antiox14010074 crossref_primary_10_1111_mpp_13255 crossref_primary_10_1016_j_cj_2023_11_006 crossref_primary_10_1016_j_scienta_2023_112044 crossref_primary_10_3390_ijms24065990 crossref_primary_10_1038_s41598_021_98907_8 crossref_primary_10_3390_cimb45040221 crossref_primary_10_3390_agronomy12123230 crossref_primary_10_1016_j_cpb_2023_100317 crossref_primary_10_3390_plants11223158 crossref_primary_10_1177_00368504241237610 crossref_primary_10_1007_s00299_023_03082_x crossref_primary_10_1007_s00344_024_11619_x crossref_primary_10_1016_j_jbiotec_2022_11_009 crossref_primary_10_1007_s10725_025_01298_3 crossref_primary_10_1007_s44372_024_00063_6 crossref_primary_10_1016_j_foreco_2021_119964 crossref_primary_10_1016_j_pmpp_2023_101975 crossref_primary_10_1016_j_cj_2025_01_019 crossref_primary_10_1007_s12010_023_04850_x crossref_primary_10_1016_j_plaphy_2025_109716 crossref_primary_10_3390_ijms25116050 crossref_primary_10_30616_ajb_1387695 crossref_primary_10_1007_s11816_023_00826_9 crossref_primary_10_1111_pbi_14534 crossref_primary_10_1016_j_sajb_2021_09_011 crossref_primary_10_3390_genes14122112 crossref_primary_10_3390_horticulturae10101084 crossref_primary_10_1016_j_stress_2023_100132 crossref_primary_10_1016_j_scienta_2023_112182 crossref_primary_10_3390_metabo11110724 crossref_primary_10_1016_j_indcrop_2025_120763 crossref_primary_10_1007_s42976_024_00539_x crossref_primary_10_1111_pce_15183 crossref_primary_10_1007_s11738_022_03470_y crossref_primary_10_1016_j_envexpbot_2023_105427 crossref_primary_10_3389_fpls_2023_1123856 crossref_primary_10_1016_j_jplph_2022_153862 crossref_primary_10_1007_s40415_023_00949_x crossref_primary_10_3390_plants12142639 crossref_primary_10_1007_s11356_019_06863_8 crossref_primary_10_1016_j_jprot_2021_104457 crossref_primary_10_3390_molecules24132452 crossref_primary_10_1016_j_plaphy_2025_109656 crossref_primary_10_3390_su132313226 crossref_primary_10_1016_j_jplph_2022_153791 crossref_primary_10_3390_plants12112135 crossref_primary_10_1080_11263504_2023_2234906 crossref_primary_10_1093_jxb_erae438 crossref_primary_10_3390_biology11081127 crossref_primary_10_3390_stresses3030040 crossref_primary_10_1016_j_postharvbio_2023_112259 crossref_primary_10_1111_jipb_13054 crossref_primary_10_1111_ppl_14328 crossref_primary_10_1111_ppl_13912 crossref_primary_10_1007_s11240_023_02455_0 crossref_primary_10_1007_s40502_024_00804_5 crossref_primary_10_3390_cells12101431 crossref_primary_10_1021_acsomega_4c04727 crossref_primary_10_1186_s12870_023_04208_9 crossref_primary_10_1016_j_pbi_2023_102353 crossref_primary_10_1016_j_plantsci_2022_111196 crossref_primary_10_3389_fpls_2021_771992 crossref_primary_10_61186_flowerjournal_8_1_183 crossref_primary_10_3390_metabo14090470 crossref_primary_10_1080_17429145_2021_2002444 crossref_primary_10_3389_fpls_2022_874579 crossref_primary_10_3390_agronomy10111703 crossref_primary_10_3389_fpls_2019_01683 crossref_primary_10_1016_j_ijbiomac_2024_132314 crossref_primary_10_1007_s00299_023_03087_6 crossref_primary_10_3390_ijms252413445 crossref_primary_10_3390_agriculture14030425 crossref_primary_10_1038_s41467_022_28189_9 crossref_primary_10_3389_fpls_2022_967537 crossref_primary_10_1016_j_envexpbot_2023_105252 crossref_primary_10_3390_plants11202788 crossref_primary_10_3390_plants12203542 crossref_primary_10_1007_s11274_023_03837_4 crossref_primary_10_3390_ijms22052399 crossref_primary_10_1016_j_plaphy_2021_08_043 crossref_primary_10_1016_j_scienta_2022_111095 crossref_primary_10_3389_fpls_2025_1529598 crossref_primary_10_3390_plants11131738 crossref_primary_10_1016_j_scienta_2021_110315 crossref_primary_10_3390_plants10051005 crossref_primary_10_36899_JAPS_2021_6_0369 crossref_primary_10_1093_hr_uhac058 crossref_primary_10_1111_ppl_13373 crossref_primary_10_1016_j_gene_2020_144990 crossref_primary_10_1016_j_apsb_2025_03_005 crossref_primary_10_1111_tpj_16152 crossref_primary_10_1007_s00709_022_01785_8 crossref_primary_10_1016_j_heliyon_2022_e09094 crossref_primary_10_3390_agronomy10081209 crossref_primary_10_3390_ijms21031011 crossref_primary_10_1007_s00284_023_03502_x crossref_primary_10_3390_genes14122208 crossref_primary_10_1007_s11104_020_04814_8 crossref_primary_10_1016_j_ecoenv_2022_114248 crossref_primary_10_1007_s00299_025_03438_5 crossref_primary_10_1016_j_foodchem_2024_141641 |
Cites_doi | 10.1007/s00299-015-1751-7 10.1016/j.gene.2014.03.026 10.3389/fpls.2016.00063 10.1016/j.gene.2009.02.010 10.1104/pp.17.00160 10.1007/s00438-016-1203-2 10.1093/pcp/pcu137 10.1021/pr200861w 10.1093/pcp/pct187 10.1016/j.biopha.2017.10.001 10.1016/j.foodchem.2014.03.005 10.1104/pp.114.240507 10.1038/srep23085 10.1016/j.plantsci.2012.07.014 10.1007/s11103-006-9058-2 10.1016/j.plaphy.2010.08.016 10.1002/jsfa.5861 10.1016/j.lfs.2016.02.080 10.1007/s00438-009-0481-3 10.3389/fpls.2017.00943 10.1016/j.febslet.2013.04.028 10.1016/S0076-6879(07)28024-3 10.3389/fpls.2016.01089 10.1016/j.tplants.2014.02.001 10.1104/pp.16.01323 10.1111/nph.14692 10.1007/s11101-011-9211-7 10.1016/j.tplants.2010.06.005 10.1016/j.foodchem.2012.05.068 10.1111/tpj.13008 10.1016/j.plaphy.2007.02.001 10.1007/s00011-013-0689-x 10.1111/tpj.13324 10.1038/srep12412 10.1002/jsfa.5740 10.1111/j.1469-8137.2010.03432.x 10.1007/s00425-010-1108-y 10.1016/j.plantsci.2003.10.024 10.1111/j.1365-313X.2009.04109.x 10.1186/1471-2229-6-26 10.1111/ppl.12798 10.2116/analsci.17.599 10.1042/BJ20040499 10.1126/science.227.4691.1229 10.1111/tpj.12388 10.1007/s11103-008-9408-3 10.1002/jssc.201400720 10.1104/pp.17.01010 10.1016/j.jgg.2014.08.009 10.1093/pcp/pcd017 10.1104/pp.126.2.485 10.1007/s00299-004-0886-8 10.1111/pce.12415 10.1093/bib/bbn017 10.1093/emboj/19.22.6150 10.1105/tpc.7.7.1085 10.1111/j.1365-313X.2008.03436.x 10.1093/jxb/err389 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Chen, Wu, Li, Qian, Pan, Li, Wang, Wu, Fu, Lin and Yang. 2019 Chen, Wu, Li, Qian, Pan, Li, Wang, Wu, Fu, Lin and Yang |
Copyright_xml | – notice: Copyright © 2019 Chen, Wu, Li, Qian, Pan, Li, Wang, Wu, Fu, Lin and Yang. 2019 Chen, Wu, Li, Qian, Pan, Li, Wang, Wu, Fu, Lin and Yang |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2019.00178 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_231b97349221456a9874870105f0e044 PMC6393349 30846995 10_3389_fpls_2019_00178 |
Genre | Journal Article |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IAO IEA IGS IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c459t-ae6dfee9cd0bfee2e9157ca78132c18a196539cd70d5396e49b4bb545084a7de3 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:30:55 EDT 2025 Thu Aug 21 18:05:27 EDT 2025 Fri Jul 11 13:24:58 EDT 2025 Thu Jan 02 23:01:11 EST 2025 Thu Apr 24 22:55:49 EDT 2025 Tue Jul 01 02:06:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ROS level flavonoid pathway salt stress NtMYB4 NtCHS1 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-ae6dfee9cd0bfee2e9157ca78132c18a196539cd70d5396e49b4bb545084a7de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Plant Metabolism and Chemodiversity, a section of the journal Frontiers in Plant Science Edited by: Francesco Paolocci, Institute of Bioscience and Bioresources, National Research Council, Italy Reviewed by: Pedro Carrasco, University of Valencia, Spain; Andrés Gárriz, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2019.00178 |
PMID | 30846995 |
PQID | 2189547522 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_231b97349221456a9874870105f0e044 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6393349 proquest_miscellaneous_2189547522 pubmed_primary_30846995 crossref_primary_10_3389_fpls_2019_00178 crossref_citationtrail_10_3389_fpls_2019_00178 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-21 |
PublicationDateYYYYMMDD | 2019-02-21 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Li (B30) 2017; 89 Liu (B36) 2014; 543 Libik (B33) 2005; 23 Legay (B28) 2010; 188 Jiang (B20) 2009; 69 Deinlein (B10) 2014; 19 Zhou (B59); 174 Kim (B25) 2015; 38 Fornalé (B13) 2014; 55 He (B17) 2012; 63 Lim (B34) 2012; 135 Kumar (B27) 2008; 9 Dubos (B12) 2010; 15 Yang (B50) 2009; 436 Fornalé (B14) 2006; 62 Horsch (B18) 1985; 227 Wang (B45) 2016; 291 Chen (B4) 2014; 41 Cui (B8) 2013; 587 Xu (B48) 2011; 27 Li (B29) 2017; 8 Jiang (B21) 2009; 282 Zhang (B55) 2014; 55 Zhang (B56) 2016; 6 Chen (B5) 2015; 34 Zhao (B57) 2016; 172 Watkins (B46) 2017; 175 Li (B32) 2014; 37 Yang (B49) 2001; 17 Kaur (B23) 2016; 150 Pattanaik (B41) 2010; 231 Liu (B35) 2010; 61 Yu (B52) 2008; 54 Ksouri (B26) 2007; 45 Baâtour (B3) 2013; 93 Kerdudo (B24) 2014; 159 Maloney (B37) 2014; 166 Pandey (B40) 2015; 5 Huang (B19) 2016; 7 Moore (B38) 2005; 385 Winkel-Shirley (B47) 2001; 126 Dao (B9) 2011; 10 Richard (B42) 2000; 41 Li (B31) 2015; 36 Agati (B1) 2012; 196 Zhou (B58); 216 Gill (B16) 2010; 48 Yoo (B51) 2014; 63 Colla (B7) 2013; 93 Ashraf (B2) 2004; 166 Ghorbani (B15) 2017; 96 Dixon (B11) 1995; 7 Jin (B22) 2000; 19 Zabala (B53) 2006; 6 Zhang (B54) 2012; 11 Tuteja (B44) 2007; 428 Zhou (B60) 2015; 84 Nakabayashi (B39) 2014; 77 Chen (B6) 2017; 36 Torun (B43) 2018 |
References_xml | – volume: 34 start-page: 885 year: 2015 ident: B5 article-title: Chalcone synthase EaCHS1 from Eupatorium adenophorum functions in salt stress tolerance in tobacco. publication-title: Plant Cell Rep. doi: 10.1007/s00299-015-1751-7 – volume: 543 start-page: 145 year: 2014 ident: B36 article-title: Identification of the flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes from Antarctic moss and their regulation during abiotic stress. publication-title: Gene doi: 10.1016/j.gene.2014.03.026 – volume: 7 year: 2016 ident: B19 article-title: Efficient rutin and quercetin biosynthesis through flavonoids-related gene expression in Fagopyrum tataricum Gaertn. Hairy root cultures with UV-B irradiation. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00063 – volume: 436 start-page: 45 year: 2009 ident: B50 article-title: The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. publication-title: Gene doi: 10.1016/j.gene.2009.02.010 – volume: 174 start-page: 1348 ident: B59 article-title: LNK1 and LNK2 corepressors interact with the MYB3 transcription factor in phenylpropanoid biosynthesis. publication-title: Plant Physiol. doi: 10.1104/pp.17.00160 – volume: 291 start-page: 1545 year: 2016 ident: B45 article-title: AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana. publication-title: Mol. Genet. Genomics doi: 10.1007/s00438-016-1203-2 – volume: 55 start-page: 2092 year: 2014 ident: B55 article-title: BrMYB4, a suppressor of genes for phenylpropanoid and anthocyanin biosynthesis, is down-regulated by UV-B but not by pigment-inducing sunlight in turnip cv. Tsuda. publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcu137 – volume: 11 start-page: 49 year: 2012 ident: B54 article-title: Mechanisms of plant salt response: insights from proteomics. publication-title: J. Proteome Res. doi: 10.1021/pr200861w – volume: 55 start-page: 507 year: 2014 ident: B13 article-title: AtMYB7, a new player in the regulation of UV-sunscreens in Arabidopsis thaliana. publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pct187 – volume: 96 start-page: 305 year: 2017 ident: B15 article-title: Mechanisms of antidiabetic effects of flavonoid rutin. publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2017.10.001 – volume: 159 start-page: 12 year: 2014 ident: B24 article-title: Encapsulation of rutin and naringenin in multilamellar vesicles for optimum antioxidant activity. publication-title: Food Chem. doi: 10.1016/j.foodchem.2014.03.005 – volume: 166 start-page: 614 year: 2014 ident: B37 article-title: The anthocyanin reduced tomato mutant demonstrates the role of flavonols in tomato lateral root and root hair development. publication-title: Plant Physiol. doi: 10.1104/pp.114.240507 – volume: 6 year: 2016 ident: B56 article-title: An ethylene-responsive factor BpERF11 negatively modulates salt and osmotic tolerance in Betula platyphylla. publication-title: Sci. Rep. doi: 10.1038/srep23085 – volume: 196 start-page: 67 year: 2012 ident: B1 article-title: Flavonoids as antioxidants in plants: location and functional significance. publication-title: Plant Sci. doi: 10.1016/j.plantsci.2012.07.014 – volume: 27 start-page: 144 year: 2011 ident: B48 article-title: Construction of LSV and LMoV binary virus resistant RNAi vector using gateway technology. publication-title: Chin. Agric. Sci. Bull. – volume: 62 start-page: 809 year: 2006 ident: B14 article-title: Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors. publication-title: Plant Mol. Biol. doi: 10.1007/s11103-006-9058-2 – volume: 48 start-page: 909 year: 2010 ident: B16 article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2010.08.016 – volume: 93 start-page: 1119 year: 2013 ident: B7 article-title: Effects of saline stress on mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon genotypes grown in floating system. publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.5861 – volume: 150 start-page: 89 year: 2016 ident: B23 article-title: Therapeutic evaluation of rutin in two-kidney one-clip model of renovascular hypertension in rat. publication-title: Life Sci. doi: 10.1016/j.lfs.2016.02.080 – volume: 282 start-page: 503 year: 2009 ident: B21 article-title: Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. publication-title: Mol. Genet. Genomics doi: 10.1007/s00438-009-0481-3 – volume: 8 year: 2017 ident: B29 article-title: Functional characterization of tea (Camellia sinensis) MYB4a transcription factor using an integrative approach. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00943 – volume: 587 start-page: 1773 year: 2013 ident: B8 article-title: An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. publication-title: FEBS Lett. doi: 10.1016/j.febslet.2013.04.028 – volume: 428 start-page: 419 year: 2007 ident: B44 article-title: Chapter twenty-four-mechanisms of high salinity tolerance in plants. publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(07)28024-3 – volume: 36 start-page: 374 year: 2017 ident: B6 article-title: Identification and characterization of chalcone synthase gene family members in Nicotiana tabacum. publication-title: J. Plant Growth Regul. doi: 10.3389/fpls.2016.01089 – volume: 19 start-page: 371 year: 2014 ident: B10 article-title: Plant salt-tolerance mechanisms. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2014.02.001 – volume: 172 start-page: 1973 year: 2016 ident: B57 article-title: Ubiquitination-related MdBT scaffold proteins target a bHLH transcription factor for iron homeostasis. publication-title: Plant Physiol. doi: 10.1104/pp.16.01323 – volume: 216 start-page: 814 ident: B58 article-title: FtSAD2 and FtJAZ1 regulate activity of the FtMYB11 transcription repressor of the phenylpropanoid pathway in Fagopyrum tataricum. publication-title: New Phytol. doi: 10.1111/nph.14692 – volume: 36 start-page: 1 year: 2015 ident: B31 article-title: Extracting chlorogenic acid, rutin, nicotine, and solanesol from tobacco. publication-title: Chin. Tobacco Sci. – volume: 10 start-page: 397 year: 2011 ident: B9 article-title: Chalcone synthase and its functions in plant resistance. publication-title: Phytochem. Rev. doi: 10.1007/s11101-011-9211-7 – volume: 15 start-page: 573 year: 2010 ident: B12 article-title: MYB transcription factors in Arabidopsis. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2010.06.005 – volume: 135 start-page: 1065 year: 2012 ident: B34 article-title: Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. publication-title: Food Chem. doi: 10.1016/j.foodchem.2012.05.068 – volume: 84 start-page: 395 year: 2015 ident: B60 article-title: Changing a conserved amino acid in R2R3-MYB transcription repressors results in their cytoplasmic accumulation and abolishes their repressive activity in Arabidopsis. publication-title: Plant J. doi: 10.1111/tpj.13008 – volume: 45 start-page: 244 year: 2007 ident: B26 article-title: Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2007.02.001 – volume: 63 start-page: 197 year: 2014 ident: B51 article-title: Anti-inflammatory effects of rutin on HMGB1-induced inflammatory responses in vitro and in vivo. publication-title: Inflamm. Res. doi: 10.1007/s00011-013-0689-x – volume: 89 start-page: 85 year: 2017 ident: B30 article-title: The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. publication-title: Plant J. doi: 10.1111/tpj.13324 – volume: 5 year: 2015 ident: B40 article-title: AtMYB12 expression in tomato leads to large scale differential modulation in transcriptome and flavonoid content in leaf and fruit tissues. publication-title: Sci. Rep. doi: 10.1038/srep12412 – volume: 93 start-page: 134 year: 2013 ident: B3 article-title: Salt effect on phenolics and antioxidant activities of Tunisian and Canadian sweet marjoram (Origanum majorana L.) shoots. publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.5740 – volume: 188 start-page: 774 year: 2010 ident: B28 article-title: EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03432.x – volume: 231 start-page: 1061 year: 2010 ident: B41 article-title: Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. publication-title: Planta doi: 10.1007/s00425-010-1108-y – volume: 166 start-page: 3 year: 2004 ident: B2 article-title: Potential biochemical indicators of salinity tolerance in plants. publication-title: Plant Sci. doi: 10.1016/j.plantsci.2003.10.024 – volume: 61 start-page: 893 year: 2010 ident: B35 article-title: An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana. publication-title: Plant J. doi: 10.1111/j.1365-313X.2009.04109.x – volume: 6 year: 2006 ident: B53 article-title: Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection. publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-6-26 – year: 2018 ident: B43 article-title: Time-course analysis of salicylic acid effects on ROS regulation and antioxidant defense in roots of hulled and hulless barley under combined stress of drought, heat and salinity. publication-title: Physiol. Plant. doi: 10.1111/ppl.12798 – volume: 17 start-page: 599 year: 2001 ident: B49 article-title: Estimation of the antioxidant activities of flavonoids from their oxidation potentials. publication-title: Anal. Sci. doi: 10.2116/analsci.17.599 – volume: 385 start-page: 301 year: 2005 ident: B38 article-title: The predominant polyphenol in the leaves of the resurrection plant Myrothamnus flabellifolius, 3,4,5 tri-O-galloylquinic acid, protects membranes against desiccation and free radical-induced oxidation. publication-title: Biochem. J. doi: 10.1042/BJ20040499 – volume: 227 start-page: 1229 year: 1985 ident: B18 article-title: A simple and general method for transferring genes into plants. publication-title: Science doi: 10.1126/science.227.4691.1229 – volume: 77 start-page: 367 year: 2014 ident: B39 article-title: Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. publication-title: Plant J. doi: 10.1111/tpj.12388 – volume: 69 start-page: 91 year: 2009 ident: B20 article-title: Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. publication-title: Plant Mol. Biol. doi: 10.1007/s11103-008-9408-3 – volume: 37 start-page: 3067 year: 2014 ident: B32 article-title: Liquid chromatography with mass spectrometry method based two-step precursor ion scanning for the structural elucidation of flavonoids. publication-title: J. Sep. Sci. doi: 10.1002/jssc.201400720 – volume: 175 start-page: 1807 year: 2017 ident: B46 article-title: Abscisic acid-induced reactive oxygen species are modulated by flavonols to control stomata aperture. publication-title: Plant Physiol. doi: 10.1104/pp.17.01010 – volume: 41 start-page: 617 year: 2014 ident: B4 article-title: SPOROCYTELESS is a novel embryophyte-specific transcription repressor that interacts with TPL and TCP proteins in Arabidopsis. publication-title: J. Genet. Genomics doi: 10.1016/j.jgg.2014.08.009 – volume: 41 start-page: 982 year: 2000 ident: B42 article-title: Induction of chalcone synthase expression in white spruce by wounding and jasmonate. publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcd017 – volume: 126 start-page: 485 year: 2001 ident: B47 article-title: Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. publication-title: Plant Physiol. doi: 10.1104/pp.126.2.485 – volume: 23 start-page: 834 year: 2005 ident: B33 article-title: Differences in the activities of some antioxidant enzymes and in H2O2 content during rhizogenesis and somatic embryogenesis in callus cultures of the ice plant. publication-title: Plant Cell Rep. doi: 10.1007/s00299-004-0886-8 – volume: 38 start-page: 559 year: 2015 ident: B25 article-title: AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5. publication-title: Plant Cell Environ. doi: 10.1111/pce.12415 – volume: 9 start-page: 299 year: 2008 ident: B27 article-title: MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. publication-title: Brief. Bioinform. doi: 10.1093/bib/bbn017 – volume: 19 start-page: 6150 year: 2000 ident: B22 article-title: Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. publication-title: EMBO J. doi: 10.1093/emboj/19.22.6150 – volume: 7 start-page: 1085 year: 1995 ident: B11 article-title: Stress-induced phenylpropanoid metabolism. publication-title: Plant Cell doi: 10.1105/tpc.7.7.1085 – volume: 54 start-page: 750 year: 2008 ident: B52 article-title: Nature’s assembly line: biosynthesis of simple phenylpropanoids and polyketides. publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03436.x – volume: 63 start-page: 1511 year: 2012 ident: B17 article-title: Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana. publication-title: J. Exp. Bot. doi: 10.1093/jxb/err389 |
SSID | ssj0000500997 |
Score | 2.5393174 |
Snippet | High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS)... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 178 |
SubjectTerms | flavonoid pathway NtCHS1 NtMYB4 Plant Science ROS level salt stress |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-QwFA4iHrws6rpr1V2ysAcv1WaaNs1xR3YYBefgD9BTSZoUC0M6OFWYi3-77yUzw8yi7MVToPlJvpfkezT5HiG_TU-LmhUqTiVT4KAwFislkphLpqsizyUv8IHz1Sgf3vHL--x-JdQX3gkL8sBh4s6Af2gpUEMPNbVzBT4ycGyM61gnNuFeCRTOvBVnKqh6I_URQcsHvDB5Vk_GqM7NvDwlBlVbOYa8Wv97FPPfm5IrR89gh3yZc0b6J4x1l2xYt0e2-i3wutlX8jrqrh76nCpn6Kg7H94wKGnpIoYBHYSIOrRxFMgevQ7B5wEO2tZ0MFYvrWsbQ_tNO505KDFtpr4tbOTCwe71Yg1WvlH4iLKbQQvhWm3YJvfJ3eDv7fkwnkdViCueyS5WNje1tbIyiYa0ZyXLRKVEAX5pBaihxGAKuSIxkOaWS821BqKVFFwJY9NvZNO1zh4QKo3qSQWQVBlsBODo1aonpNWFqZFWyYicLia5rOaS4xj5YlyC64GolIhKiaiUHpWInCwrTILaxsdF-4jashjKZPsPYDzl3HjK_xlPRH4tMC9hWeG_EuVs-wwdsUJmXAA7jcj3YAPLrlKYiVzKLCJizTrWxrKe45pHL90NfDCF4Rx-xuCPyDZOh39fz47JZvf0bH8AQ-r0T78Y3gD73Qu2 priority: 102 providerName: Directory of Open Access Journals |
Title | NtMYB4 and NtCHS1 Are Critical Factors in the Regulation of Flavonoid Biosynthesis and Are Involved in Salinity Responsiveness |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30846995 https://www.proquest.com/docview/2189547522 https://pubmed.ncbi.nlm.nih.gov/PMC6393349 https://doaj.org/article/231b97349221456a9874870105f0e044 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LjtMwFLVgYMEG8SY8RkZiwSZDnDh-LBCiI0pBahcMlcoqcmJniFQ5Q5sZ0Q3fzr1OWigqEptYih3b8fXj3MQ-h5CXNi1lzZSJM80MOCiMxcbIJOaalZUSQnOFB5ynMzGZ80-LfPFbDmhowPVB1w71pOar5cmP75u3MODfoMcJ6-3r-mKJxNssME9KdZ3cgGVJopzBdMD6PdE3oqEgtiIEj7lIFz3Vz6E89lapQOZ_CIH-vZHyj5VpfIfcHiAlfdf3gbvkmvP3yM1RC7Bvc5_8nHXTryNOjbd01p1OzhikdHQrcUDHveAObTwFLEg_99r0YC3a1nS8NFetbxtLR0273nhIsW7WIS_M5KOHye3KWXz4zOAZy24DOfS7bvtZ9AGZj99_OZ3Eg-hCXPFcd7FxwtbO6comJYSp0yyXlZEK3NYKjIoMhBnEysRCKBzXJS9LwGGJ4kZalz0kR7717jGh2ppUG6NVlcM8AX5gbVKpXalsjahLR-Rk28hFNTCSozDGsgDPBK1SoFUKtEoRrBKRV7sHLnoyjn8nHaHVdsmQRTvcaFfnxTAoC8C2pZbIz4h87QJqKsF_Q83QOnEJ5xF5sbV5AaMOf6UY79pLKIgpnXMJ4DUij_o-sCsqg5YQWucRkXu9Y68u-zG--RaYvQEuZlCdJ_9R7lNyC982nK5nz8hRt7p0zwEfdeVx-K4A1w8LdhzGwC_mdA9a |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NtMYB4+and+NtCHS1+Are+Critical+Factors+in+the+Regulation+of+Flavonoid+Biosynthesis+and+Are+Involved+in+Salinity+Responsiveness&rft.jtitle=Frontiers+in+plant+science&rft.au=Chen%2C+Shuai&rft.au=Wu%2C+Fengyan&rft.au=Li%2C+Yiting&rft.au=Qian%2C+Yanli&rft.date=2019-02-21&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=10&rft.spage=178&rft_id=info:doi/10.3389%2Ffpls.2019.00178&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |