NtMYB4 and NtCHS1 Are Critical Factors in the Regulation of Flavonoid Biosynthesis and Are Involved in Salinity Responsiveness

High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS) scavenging. In the present study, the tobacco R2R3 MYB type repressor, NtMYB4, was isolated and characterized. The expression of was suppressed by sal...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 10; p. 178
Main Authors Chen, Shuai, Wu, Fengyan, Li, Yiting, Qian, Yanli, Pan, Xuhao, Li, Fengxia, Wang, Yuanying, Wu, Zhenying, Fu, Chunxiang, Lin, Hao, Yang, Aiguo
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 21.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS) scavenging. In the present study, the tobacco R2R3 MYB type repressor, NtMYB4, was isolated and characterized. The expression of was suppressed by salinity. Overexpression of reduced the salt tolerance in transgenic tobacco plants. NtMYB4 repressed the promoter activity of and negatively regulated its expression. Rutin accumulation was significantly decreased in overexpressing transgenic plants and RNAi silenced transgenic plants. Moreover, high H O and contents were detected in both types of rutin-reduced transgenic plants under high salt stress. In addition, exogenous rutin supplementation effectively scavenged ROS (H O and ) and improved the salt tolerance of the rutin-reduced transgenic plants. In contrast, overexpressing plants had increased rutin accumulation, lower H O and contents, and higher tolerance to salinity. These results suggested that tobacco NtMYB4 acts as a salinity response repressor and negatively regulates expression, which results in the reduced flavonoid accumulation and weakened ROS-scavenging ability under salt stress.
AbstractList High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS) scavenging. In the present study, the tobacco R2R3 MYB type repressor, NtMYB4, was isolated and characterized. The expression of NtMYB4 was suppressed by salinity. Overexpression of NtMYB4 reduced the salt tolerance in transgenic tobacco plants. NtMYB4 repressed the promoter activity of NtCHS1 and negatively regulated its expression. Rutin accumulation was significantly decreased in NtMYB4 overexpressing transgenic plants and NtCHS1 RNAi silenced transgenic plants. Moreover, high H2O2 and O 2 - contents were detected in both types of rutin-reduced transgenic plants under high salt stress. In addition, exogenous rutin supplementation effectively scavenged ROS (H2O2 and O 2 - ) and improved the salt tolerance of the rutin-reduced transgenic plants. In contrast, NtCHS1 overexpressing plants had increased rutin accumulation, lower H2O2 and O 2 - contents, and higher tolerance to salinity. These results suggested that tobacco NtMYB4 acts as a salinity response repressor and negatively regulates NtCHS1 expression, which results in the reduced flavonoid accumulation and weakened ROS-scavenging ability under salt stress.High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS) scavenging. In the present study, the tobacco R2R3 MYB type repressor, NtMYB4, was isolated and characterized. The expression of NtMYB4 was suppressed by salinity. Overexpression of NtMYB4 reduced the salt tolerance in transgenic tobacco plants. NtMYB4 repressed the promoter activity of NtCHS1 and negatively regulated its expression. Rutin accumulation was significantly decreased in NtMYB4 overexpressing transgenic plants and NtCHS1 RNAi silenced transgenic plants. Moreover, high H2O2 and O 2 - contents were detected in both types of rutin-reduced transgenic plants under high salt stress. In addition, exogenous rutin supplementation effectively scavenged ROS (H2O2 and O 2 - ) and improved the salt tolerance of the rutin-reduced transgenic plants. In contrast, NtCHS1 overexpressing plants had increased rutin accumulation, lower H2O2 and O 2 - contents, and higher tolerance to salinity. These results suggested that tobacco NtMYB4 acts as a salinity response repressor and negatively regulates NtCHS1 expression, which results in the reduced flavonoid accumulation and weakened ROS-scavenging ability under salt stress.
High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS) scavenging. In the present study, the tobacco R2R3 MYB type repressor, NtMYB4, was isolated and characterized. The expression of NtMYB4 was suppressed by salinity. Overexpression of NtMYB4 reduced the salt tolerance in transgenic tobacco plants. NtMYB4 repressed the promoter activity of NtCHS1 and negatively regulated its expression. Rutin accumulation was significantly decreased in NtMYB4 overexpressing transgenic plants and NtCHS1 RNAi silenced transgenic plants. Moreover, high H2O2 and O2− contents were detected in both types of rutin-reduced transgenic plants under high salt stress. In addition, exogenous rutin supplementation effectively scavenged ROS (H2O2 and O2−) and improved the salt tolerance of the rutin-reduced transgenic plants. In contrast, NtCHS1 overexpressing plants had increased rutin accumulation, lower H2O2 and O2− contents, and higher tolerance to salinity. These results suggested that tobacco NtMYB4 acts as a salinity response repressor and negatively regulates NtCHS1 expression, which results in the reduced flavonoid accumulation and weakened ROS-scavenging ability under salt stress.
High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS) scavenging. In the present study, the tobacco R2R3 MYB type repressor, NtMYB4, was isolated and characterized. The expression of NtMYB4 was suppressed by salinity. Overexpression of NtMYB4 reduced the salt tolerance in transgenic tobacco plants. NtMYB4 repressed the promoter activity of NtCHS1 and negatively regulated its expression. Rutin accumulation was significantly decreased in NtMYB4 overexpressing transgenic plants and NtCHS1 RNAi silenced transgenic plants. Moreover, high H 2 O 2 and O 2 − contents were detected in both types of rutin-reduced transgenic plants under high salt stress. In addition, exogenous rutin supplementation effectively scavenged ROS (H 2 O 2 and O 2 − ) and improved the salt tolerance of the rutin-reduced transgenic plants. In contrast, NtCHS1 overexpressing plants had increased rutin accumulation, lower H 2 O 2 and O 2 − contents, and higher tolerance to salinity. These results suggested that tobacco NtMYB4 acts as a salinity response repressor and negatively regulates NtCHS1 expression, which results in the reduced flavonoid accumulation and weakened ROS-scavenging ability under salt stress.
High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS) scavenging. In the present study, the tobacco R2R3 MYB type repressor, NtMYB4, was isolated and characterized. The expression of was suppressed by salinity. Overexpression of reduced the salt tolerance in transgenic tobacco plants. NtMYB4 repressed the promoter activity of and negatively regulated its expression. Rutin accumulation was significantly decreased in overexpressing transgenic plants and RNAi silenced transgenic plants. Moreover, high H O and contents were detected in both types of rutin-reduced transgenic plants under high salt stress. In addition, exogenous rutin supplementation effectively scavenged ROS (H O and ) and improved the salt tolerance of the rutin-reduced transgenic plants. In contrast, overexpressing plants had increased rutin accumulation, lower H O and contents, and higher tolerance to salinity. These results suggested that tobacco NtMYB4 acts as a salinity response repressor and negatively regulates expression, which results in the reduced flavonoid accumulation and weakened ROS-scavenging ability under salt stress.
Author Wang, Yuanying
Wu, Fengyan
Qian, Yanli
Pan, Xuhao
Wu, Zhenying
Fu, Chunxiang
Chen, Shuai
Li, Yiting
Lin, Hao
Yang, Aiguo
Li, Fengxia
AuthorAffiliation 2 Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
1 Tobacco Research Institute, Chinese Academy of Agricultural Sciences , Qingdao , China
3 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences , Beijing , China
AuthorAffiliation_xml – name: 2 Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
– name: 1 Tobacco Research Institute, Chinese Academy of Agricultural Sciences , Qingdao , China
– name: 3 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences , Beijing , China
Author_xml – sequence: 1
  givenname: Shuai
  surname: Chen
  fullname: Chen, Shuai
– sequence: 2
  givenname: Fengyan
  surname: Wu
  fullname: Wu, Fengyan
– sequence: 3
  givenname: Yiting
  surname: Li
  fullname: Li, Yiting
– sequence: 4
  givenname: Yanli
  surname: Qian
  fullname: Qian, Yanli
– sequence: 5
  givenname: Xuhao
  surname: Pan
  fullname: Pan, Xuhao
– sequence: 6
  givenname: Fengxia
  surname: Li
  fullname: Li, Fengxia
– sequence: 7
  givenname: Yuanying
  surname: Wang
  fullname: Wang, Yuanying
– sequence: 8
  givenname: Zhenying
  surname: Wu
  fullname: Wu, Zhenying
– sequence: 9
  givenname: Chunxiang
  surname: Fu
  fullname: Fu, Chunxiang
– sequence: 10
  givenname: Hao
  surname: Lin
  fullname: Lin, Hao
– sequence: 11
  givenname: Aiguo
  surname: Yang
  fullname: Yang, Aiguo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30846995$$D View this record in MEDLINE/PubMed
BookMark eNp1kkFvEzEQhVeoiJbSMzfkI5ekttdery9IbURopFIkChKcLK93NnXl2MF2IuXCb8eblKpFwpexPG--8Wje6-rIBw9V9ZbgaV238nxYuzSlmMgpxkS0L6oT0jRswhr64-jJ_bg6S-kel8MxllK8qo5r3LJGSn5S_b7Jn39eMqR9j27y7OqWoIsIaBZttkY7NNcmh5iQ9SjfAfoKy43T2QaPwoDmTm-DD7ZHlzaknS-KZNOeNUIWfhvcFvqx-FY7623eFUJaB5_sFjyk9KZ6OWiX4Owhnlbf5x-_za4m118-LWYX1xPDuMwTDU0_AEjT465ECpJwYbRoSU0NaTWRDa9LVuC-xAaY7FjXccbLnFr0UJ9WiwO3D_peraNd6bhTQVu1fwhxqXQsEztQtCadFDWTlBLGGy1bwVqBCeYDBsxYYX04sNabbgW9AZ-jds-gzzPe3qll2KqmlnXhFsD7B0AMvzaQslrZZMA57SFskqKklZwJTmmRvnva67HJ3wUWwflBYGJIKcLwKCFYjS5Ro0vU6BK1d0mp4P9UGJv3Ky2fte6_dX8AtFrCDw
CitedBy_id crossref_primary_10_1016_j_jplph_2024_154320
crossref_primary_10_3390_antiox14010074
crossref_primary_10_1111_mpp_13255
crossref_primary_10_1016_j_cj_2023_11_006
crossref_primary_10_1016_j_scienta_2023_112044
crossref_primary_10_3390_ijms24065990
crossref_primary_10_1038_s41598_021_98907_8
crossref_primary_10_3390_cimb45040221
crossref_primary_10_3390_agronomy12123230
crossref_primary_10_1016_j_cpb_2023_100317
crossref_primary_10_3390_plants11223158
crossref_primary_10_1177_00368504241237610
crossref_primary_10_1007_s00299_023_03082_x
crossref_primary_10_1007_s00344_024_11619_x
crossref_primary_10_1016_j_jbiotec_2022_11_009
crossref_primary_10_1007_s10725_025_01298_3
crossref_primary_10_1007_s44372_024_00063_6
crossref_primary_10_1016_j_foreco_2021_119964
crossref_primary_10_1016_j_pmpp_2023_101975
crossref_primary_10_1016_j_cj_2025_01_019
crossref_primary_10_1007_s12010_023_04850_x
crossref_primary_10_1016_j_plaphy_2025_109716
crossref_primary_10_3390_ijms25116050
crossref_primary_10_30616_ajb_1387695
crossref_primary_10_1007_s11816_023_00826_9
crossref_primary_10_1111_pbi_14534
crossref_primary_10_1016_j_sajb_2021_09_011
crossref_primary_10_3390_genes14122112
crossref_primary_10_3390_horticulturae10101084
crossref_primary_10_1016_j_stress_2023_100132
crossref_primary_10_1016_j_scienta_2023_112182
crossref_primary_10_3390_metabo11110724
crossref_primary_10_1016_j_indcrop_2025_120763
crossref_primary_10_1007_s42976_024_00539_x
crossref_primary_10_1111_pce_15183
crossref_primary_10_1007_s11738_022_03470_y
crossref_primary_10_1016_j_envexpbot_2023_105427
crossref_primary_10_3389_fpls_2023_1123856
crossref_primary_10_1016_j_jplph_2022_153862
crossref_primary_10_1007_s40415_023_00949_x
crossref_primary_10_3390_plants12142639
crossref_primary_10_1007_s11356_019_06863_8
crossref_primary_10_1016_j_jprot_2021_104457
crossref_primary_10_3390_molecules24132452
crossref_primary_10_1016_j_plaphy_2025_109656
crossref_primary_10_3390_su132313226
crossref_primary_10_1016_j_jplph_2022_153791
crossref_primary_10_3390_plants12112135
crossref_primary_10_1080_11263504_2023_2234906
crossref_primary_10_1093_jxb_erae438
crossref_primary_10_3390_biology11081127
crossref_primary_10_3390_stresses3030040
crossref_primary_10_1016_j_postharvbio_2023_112259
crossref_primary_10_1111_jipb_13054
crossref_primary_10_1111_ppl_14328
crossref_primary_10_1111_ppl_13912
crossref_primary_10_1007_s11240_023_02455_0
crossref_primary_10_1007_s40502_024_00804_5
crossref_primary_10_3390_cells12101431
crossref_primary_10_1021_acsomega_4c04727
crossref_primary_10_1186_s12870_023_04208_9
crossref_primary_10_1016_j_pbi_2023_102353
crossref_primary_10_1016_j_plantsci_2022_111196
crossref_primary_10_3389_fpls_2021_771992
crossref_primary_10_61186_flowerjournal_8_1_183
crossref_primary_10_3390_metabo14090470
crossref_primary_10_1080_17429145_2021_2002444
crossref_primary_10_3389_fpls_2022_874579
crossref_primary_10_3390_agronomy10111703
crossref_primary_10_3389_fpls_2019_01683
crossref_primary_10_1016_j_ijbiomac_2024_132314
crossref_primary_10_1007_s00299_023_03087_6
crossref_primary_10_3390_ijms252413445
crossref_primary_10_3390_agriculture14030425
crossref_primary_10_1038_s41467_022_28189_9
crossref_primary_10_3389_fpls_2022_967537
crossref_primary_10_1016_j_envexpbot_2023_105252
crossref_primary_10_3390_plants11202788
crossref_primary_10_3390_plants12203542
crossref_primary_10_1007_s11274_023_03837_4
crossref_primary_10_3390_ijms22052399
crossref_primary_10_1016_j_plaphy_2021_08_043
crossref_primary_10_1016_j_scienta_2022_111095
crossref_primary_10_3389_fpls_2025_1529598
crossref_primary_10_3390_plants11131738
crossref_primary_10_1016_j_scienta_2021_110315
crossref_primary_10_3390_plants10051005
crossref_primary_10_36899_JAPS_2021_6_0369
crossref_primary_10_1093_hr_uhac058
crossref_primary_10_1111_ppl_13373
crossref_primary_10_1016_j_gene_2020_144990
crossref_primary_10_1016_j_apsb_2025_03_005
crossref_primary_10_1111_tpj_16152
crossref_primary_10_1007_s00709_022_01785_8
crossref_primary_10_1016_j_heliyon_2022_e09094
crossref_primary_10_3390_agronomy10081209
crossref_primary_10_3390_ijms21031011
crossref_primary_10_1007_s00284_023_03502_x
crossref_primary_10_3390_genes14122208
crossref_primary_10_1007_s11104_020_04814_8
crossref_primary_10_1016_j_ecoenv_2022_114248
crossref_primary_10_1007_s00299_025_03438_5
crossref_primary_10_1016_j_foodchem_2024_141641
Cites_doi 10.1007/s00299-015-1751-7
10.1016/j.gene.2014.03.026
10.3389/fpls.2016.00063
10.1016/j.gene.2009.02.010
10.1104/pp.17.00160
10.1007/s00438-016-1203-2
10.1093/pcp/pcu137
10.1021/pr200861w
10.1093/pcp/pct187
10.1016/j.biopha.2017.10.001
10.1016/j.foodchem.2014.03.005
10.1104/pp.114.240507
10.1038/srep23085
10.1016/j.plantsci.2012.07.014
10.1007/s11103-006-9058-2
10.1016/j.plaphy.2010.08.016
10.1002/jsfa.5861
10.1016/j.lfs.2016.02.080
10.1007/s00438-009-0481-3
10.3389/fpls.2017.00943
10.1016/j.febslet.2013.04.028
10.1016/S0076-6879(07)28024-3
10.3389/fpls.2016.01089
10.1016/j.tplants.2014.02.001
10.1104/pp.16.01323
10.1111/nph.14692
10.1007/s11101-011-9211-7
10.1016/j.tplants.2010.06.005
10.1016/j.foodchem.2012.05.068
10.1111/tpj.13008
10.1016/j.plaphy.2007.02.001
10.1007/s00011-013-0689-x
10.1111/tpj.13324
10.1038/srep12412
10.1002/jsfa.5740
10.1111/j.1469-8137.2010.03432.x
10.1007/s00425-010-1108-y
10.1016/j.plantsci.2003.10.024
10.1111/j.1365-313X.2009.04109.x
10.1186/1471-2229-6-26
10.1111/ppl.12798
10.2116/analsci.17.599
10.1042/BJ20040499
10.1126/science.227.4691.1229
10.1111/tpj.12388
10.1007/s11103-008-9408-3
10.1002/jssc.201400720
10.1104/pp.17.01010
10.1016/j.jgg.2014.08.009
10.1093/pcp/pcd017
10.1104/pp.126.2.485
10.1007/s00299-004-0886-8
10.1111/pce.12415
10.1093/bib/bbn017
10.1093/emboj/19.22.6150
10.1105/tpc.7.7.1085
10.1111/j.1365-313X.2008.03436.x
10.1093/jxb/err389
ContentType Journal Article
Copyright Copyright © 2019 Chen, Wu, Li, Qian, Pan, Li, Wang, Wu, Fu, Lin and Yang. 2019 Chen, Wu, Li, Qian, Pan, Li, Wang, Wu, Fu, Lin and Yang
Copyright_xml – notice: Copyright © 2019 Chen, Wu, Li, Qian, Pan, Li, Wang, Wu, Fu, Lin and Yang. 2019 Chen, Wu, Li, Qian, Pan, Li, Wang, Wu, Fu, Lin and Yang
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2019.00178
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_231b97349221456a9874870105f0e044
PMC6393349
30846995
10_3389_fpls_2019_00178
Genre Journal Article
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IGS
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c459t-ae6dfee9cd0bfee2e9157ca78132c18a196539cd70d5396e49b4bb545084a7de3
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:30:55 EDT 2025
Thu Aug 21 18:05:27 EDT 2025
Fri Jul 11 13:24:58 EDT 2025
Thu Jan 02 23:01:11 EST 2025
Thu Apr 24 22:55:49 EDT 2025
Tue Jul 01 02:06:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ROS level
flavonoid pathway
salt stress
NtMYB4
NtCHS1
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-ae6dfee9cd0bfee2e9157ca78132c18a196539cd70d5396e49b4bb545084a7de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Plant Metabolism and Chemodiversity, a section of the journal Frontiers in Plant Science
Edited by: Francesco Paolocci, Institute of Bioscience and Bioresources, National Research Council, Italy
Reviewed by: Pedro Carrasco, University of Valencia, Spain; Andrés Gárriz, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2019.00178
PMID 30846995
PQID 2189547522
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_231b97349221456a9874870105f0e044
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6393349
proquest_miscellaneous_2189547522
pubmed_primary_30846995
crossref_primary_10_3389_fpls_2019_00178
crossref_citationtrail_10_3389_fpls_2019_00178
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-21
PublicationDateYYYYMMDD 2019-02-21
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-21
  day: 21
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Li (B30) 2017; 89
Liu (B36) 2014; 543
Libik (B33) 2005; 23
Legay (B28) 2010; 188
Jiang (B20) 2009; 69
Deinlein (B10) 2014; 19
Zhou (B59); 174
Kim (B25) 2015; 38
Fornalé (B13) 2014; 55
He (B17) 2012; 63
Lim (B34) 2012; 135
Kumar (B27) 2008; 9
Dubos (B12) 2010; 15
Yang (B50) 2009; 436
Fornalé (B14) 2006; 62
Horsch (B18) 1985; 227
Wang (B45) 2016; 291
Chen (B4) 2014; 41
Cui (B8) 2013; 587
Xu (B48) 2011; 27
Li (B29) 2017; 8
Jiang (B21) 2009; 282
Zhang (B55) 2014; 55
Zhang (B56) 2016; 6
Chen (B5) 2015; 34
Zhao (B57) 2016; 172
Watkins (B46) 2017; 175
Li (B32) 2014; 37
Yang (B49) 2001; 17
Kaur (B23) 2016; 150
Pattanaik (B41) 2010; 231
Liu (B35) 2010; 61
Yu (B52) 2008; 54
Ksouri (B26) 2007; 45
Baâtour (B3) 2013; 93
Kerdudo (B24) 2014; 159
Maloney (B37) 2014; 166
Pandey (B40) 2015; 5
Huang (B19) 2016; 7
Moore (B38) 2005; 385
Winkel-Shirley (B47) 2001; 126
Dao (B9) 2011; 10
Richard (B42) 2000; 41
Li (B31) 2015; 36
Agati (B1) 2012; 196
Zhou (B58); 216
Gill (B16) 2010; 48
Yoo (B51) 2014; 63
Colla (B7) 2013; 93
Ashraf (B2) 2004; 166
Ghorbani (B15) 2017; 96
Dixon (B11) 1995; 7
Jin (B22) 2000; 19
Zabala (B53) 2006; 6
Zhang (B54) 2012; 11
Tuteja (B44) 2007; 428
Zhou (B60) 2015; 84
Nakabayashi (B39) 2014; 77
Chen (B6) 2017; 36
Torun (B43) 2018
References_xml – volume: 34
  start-page: 885
  year: 2015
  ident: B5
  article-title: Chalcone synthase EaCHS1 from Eupatorium adenophorum functions in salt stress tolerance in tobacco.
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-015-1751-7
– volume: 543
  start-page: 145
  year: 2014
  ident: B36
  article-title: Identification of the flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes from Antarctic moss and their regulation during abiotic stress.
  publication-title: Gene
  doi: 10.1016/j.gene.2014.03.026
– volume: 7
  year: 2016
  ident: B19
  article-title: Efficient rutin and quercetin biosynthesis through flavonoids-related gene expression in Fagopyrum tataricum Gaertn. Hairy root cultures with UV-B irradiation.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00063
– volume: 436
  start-page: 45
  year: 2009
  ident: B50
  article-title: The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance.
  publication-title: Gene
  doi: 10.1016/j.gene.2009.02.010
– volume: 174
  start-page: 1348
  ident: B59
  article-title: LNK1 and LNK2 corepressors interact with the MYB3 transcription factor in phenylpropanoid biosynthesis.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.00160
– volume: 291
  start-page: 1545
  year: 2016
  ident: B45
  article-title: AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana.
  publication-title: Mol. Genet. Genomics
  doi: 10.1007/s00438-016-1203-2
– volume: 55
  start-page: 2092
  year: 2014
  ident: B55
  article-title: BrMYB4, a suppressor of genes for phenylpropanoid and anthocyanin biosynthesis, is down-regulated by UV-B but not by pigment-inducing sunlight in turnip cv. Tsuda.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcu137
– volume: 11
  start-page: 49
  year: 2012
  ident: B54
  article-title: Mechanisms of plant salt response: insights from proteomics.
  publication-title: J. Proteome Res.
  doi: 10.1021/pr200861w
– volume: 55
  start-page: 507
  year: 2014
  ident: B13
  article-title: AtMYB7, a new player in the regulation of UV-sunscreens in Arabidopsis thaliana.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pct187
– volume: 96
  start-page: 305
  year: 2017
  ident: B15
  article-title: Mechanisms of antidiabetic effects of flavonoid rutin.
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2017.10.001
– volume: 159
  start-page: 12
  year: 2014
  ident: B24
  article-title: Encapsulation of rutin and naringenin in multilamellar vesicles for optimum antioxidant activity.
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2014.03.005
– volume: 166
  start-page: 614
  year: 2014
  ident: B37
  article-title: The anthocyanin reduced tomato mutant demonstrates the role of flavonols in tomato lateral root and root hair development.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.240507
– volume: 6
  year: 2016
  ident: B56
  article-title: An ethylene-responsive factor BpERF11 negatively modulates salt and osmotic tolerance in Betula platyphylla.
  publication-title: Sci. Rep.
  doi: 10.1038/srep23085
– volume: 196
  start-page: 67
  year: 2012
  ident: B1
  article-title: Flavonoids as antioxidants in plants: location and functional significance.
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2012.07.014
– volume: 27
  start-page: 144
  year: 2011
  ident: B48
  article-title: Construction of LSV and LMoV binary virus resistant RNAi vector using gateway technology.
  publication-title: Chin. Agric. Sci. Bull.
– volume: 62
  start-page: 809
  year: 2006
  ident: B14
  article-title: Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors.
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-006-9058-2
– volume: 48
  start-page: 909
  year: 2010
  ident: B16
  article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2010.08.016
– volume: 93
  start-page: 1119
  year: 2013
  ident: B7
  article-title: Effects of saline stress on mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon genotypes grown in floating system.
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.5861
– volume: 150
  start-page: 89
  year: 2016
  ident: B23
  article-title: Therapeutic evaluation of rutin in two-kidney one-clip model of renovascular hypertension in rat.
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2016.02.080
– volume: 282
  start-page: 503
  year: 2009
  ident: B21
  article-title: Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress.
  publication-title: Mol. Genet. Genomics
  doi: 10.1007/s00438-009-0481-3
– volume: 8
  year: 2017
  ident: B29
  article-title: Functional characterization of tea (Camellia sinensis) MYB4a transcription factor using an integrative approach.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00943
– volume: 587
  start-page: 1773
  year: 2013
  ident: B8
  article-title: An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance.
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2013.04.028
– volume: 428
  start-page: 419
  year: 2007
  ident: B44
  article-title: Chapter twenty-four-mechanisms of high salinity tolerance in plants.
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(07)28024-3
– volume: 36
  start-page: 374
  year: 2017
  ident: B6
  article-title: Identification and characterization of chalcone synthase gene family members in Nicotiana tabacum.
  publication-title: J. Plant Growth Regul.
  doi: 10.3389/fpls.2016.01089
– volume: 19
  start-page: 371
  year: 2014
  ident: B10
  article-title: Plant salt-tolerance mechanisms.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2014.02.001
– volume: 172
  start-page: 1973
  year: 2016
  ident: B57
  article-title: Ubiquitination-related MdBT scaffold proteins target a bHLH transcription factor for iron homeostasis.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01323
– volume: 216
  start-page: 814
  ident: B58
  article-title: FtSAD2 and FtJAZ1 regulate activity of the FtMYB11 transcription repressor of the phenylpropanoid pathway in Fagopyrum tataricum.
  publication-title: New Phytol.
  doi: 10.1111/nph.14692
– volume: 36
  start-page: 1
  year: 2015
  ident: B31
  article-title: Extracting chlorogenic acid, rutin, nicotine, and solanesol from tobacco.
  publication-title: Chin. Tobacco Sci.
– volume: 10
  start-page: 397
  year: 2011
  ident: B9
  article-title: Chalcone synthase and its functions in plant resistance.
  publication-title: Phytochem. Rev.
  doi: 10.1007/s11101-011-9211-7
– volume: 15
  start-page: 573
  year: 2010
  ident: B12
  article-title: MYB transcription factors in Arabidopsis.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2010.06.005
– volume: 135
  start-page: 1065
  year: 2012
  ident: B34
  article-title: Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout.
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2012.05.068
– volume: 84
  start-page: 395
  year: 2015
  ident: B60
  article-title: Changing a conserved amino acid in R2R3-MYB transcription repressors results in their cytoplasmic accumulation and abolishes their repressive activity in Arabidopsis.
  publication-title: Plant J.
  doi: 10.1111/tpj.13008
– volume: 45
  start-page: 244
  year: 2007
  ident: B26
  article-title: Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2007.02.001
– volume: 63
  start-page: 197
  year: 2014
  ident: B51
  article-title: Anti-inflammatory effects of rutin on HMGB1-induced inflammatory responses in vitro and in vivo.
  publication-title: Inflamm. Res.
  doi: 10.1007/s00011-013-0689-x
– volume: 89
  start-page: 85
  year: 2017
  ident: B30
  article-title: The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation.
  publication-title: Plant J.
  doi: 10.1111/tpj.13324
– volume: 5
  year: 2015
  ident: B40
  article-title: AtMYB12 expression in tomato leads to large scale differential modulation in transcriptome and flavonoid content in leaf and fruit tissues.
  publication-title: Sci. Rep.
  doi: 10.1038/srep12412
– volume: 93
  start-page: 134
  year: 2013
  ident: B3
  article-title: Salt effect on phenolics and antioxidant activities of Tunisian and Canadian sweet marjoram (Origanum majorana L.) shoots.
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.5740
– volume: 188
  start-page: 774
  year: 2010
  ident: B28
  article-title: EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar.
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03432.x
– volume: 231
  start-page: 1061
  year: 2010
  ident: B41
  article-title: Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco.
  publication-title: Planta
  doi: 10.1007/s00425-010-1108-y
– volume: 166
  start-page: 3
  year: 2004
  ident: B2
  article-title: Potential biochemical indicators of salinity tolerance in plants.
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2003.10.024
– volume: 61
  start-page: 893
  year: 2010
  ident: B35
  article-title: An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2009.04109.x
– volume: 6
  year: 2006
  ident: B53
  article-title: Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection.
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-6-26
– year: 2018
  ident: B43
  article-title: Time-course analysis of salicylic acid effects on ROS regulation and antioxidant defense in roots of hulled and hulless barley under combined stress of drought, heat and salinity.
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.12798
– volume: 17
  start-page: 599
  year: 2001
  ident: B49
  article-title: Estimation of the antioxidant activities of flavonoids from their oxidation potentials.
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.17.599
– volume: 385
  start-page: 301
  year: 2005
  ident: B38
  article-title: The predominant polyphenol in the leaves of the resurrection plant Myrothamnus flabellifolius, 3,4,5 tri-O-galloylquinic acid, protects membranes against desiccation and free radical-induced oxidation.
  publication-title: Biochem. J.
  doi: 10.1042/BJ20040499
– volume: 227
  start-page: 1229
  year: 1985
  ident: B18
  article-title: A simple and general method for transferring genes into plants.
  publication-title: Science
  doi: 10.1126/science.227.4691.1229
– volume: 77
  start-page: 367
  year: 2014
  ident: B39
  article-title: Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids.
  publication-title: Plant J.
  doi: 10.1111/tpj.12388
– volume: 69
  start-page: 91
  year: 2009
  ident: B20
  article-title: Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses.
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-008-9408-3
– volume: 37
  start-page: 3067
  year: 2014
  ident: B32
  article-title: Liquid chromatography with mass spectrometry method based two-step precursor ion scanning for the structural elucidation of flavonoids.
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.201400720
– volume: 175
  start-page: 1807
  year: 2017
  ident: B46
  article-title: Abscisic acid-induced reactive oxygen species are modulated by flavonols to control stomata aperture.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.01010
– volume: 41
  start-page: 617
  year: 2014
  ident: B4
  article-title: SPOROCYTELESS is a novel embryophyte-specific transcription repressor that interacts with TPL and TCP proteins in Arabidopsis.
  publication-title: J. Genet. Genomics
  doi: 10.1016/j.jgg.2014.08.009
– volume: 41
  start-page: 982
  year: 2000
  ident: B42
  article-title: Induction of chalcone synthase expression in white spruce by wounding and jasmonate.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcd017
– volume: 126
  start-page: 485
  year: 2001
  ident: B47
  article-title: Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.126.2.485
– volume: 23
  start-page: 834
  year: 2005
  ident: B33
  article-title: Differences in the activities of some antioxidant enzymes and in H2O2 content during rhizogenesis and somatic embryogenesis in callus cultures of the ice plant.
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-004-0886-8
– volume: 38
  start-page: 559
  year: 2015
  ident: B25
  article-title: AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5.
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12415
– volume: 9
  start-page: 299
  year: 2008
  ident: B27
  article-title: MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences.
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbn017
– volume: 19
  start-page: 6150
  year: 2000
  ident: B22
  article-title: Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis.
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.22.6150
– volume: 7
  start-page: 1085
  year: 1995
  ident: B11
  article-title: Stress-induced phenylpropanoid metabolism.
  publication-title: Plant Cell
  doi: 10.1105/tpc.7.7.1085
– volume: 54
  start-page: 750
  year: 2008
  ident: B52
  article-title: Nature’s assembly line: biosynthesis of simple phenylpropanoids and polyketides.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03436.x
– volume: 63
  start-page: 1511
  year: 2012
  ident: B17
  article-title: Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err389
SSID ssj0000500997
Score 2.5393174
Snippet High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS)...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 178
SubjectTerms flavonoid pathway
NtCHS1
NtMYB4
Plant Science
ROS level
salt stress
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-QwFA4iHrws6rpr1V2ysAcv1WaaNs1xR3YYBefgD9BTSZoUC0M6OFWYi3-77yUzw8yi7MVToPlJvpfkezT5HiG_TU-LmhUqTiVT4KAwFislkphLpqsizyUv8IHz1Sgf3vHL--x-JdQX3gkL8sBh4s6Af2gpUEMPNbVzBT4ycGyM61gnNuFeCRTOvBVnKqh6I_URQcsHvDB5Vk_GqM7NvDwlBlVbOYa8Wv97FPPfm5IrR89gh3yZc0b6J4x1l2xYt0e2-i3wutlX8jrqrh76nCpn6Kg7H94wKGnpIoYBHYSIOrRxFMgevQ7B5wEO2tZ0MFYvrWsbQ_tNO505KDFtpr4tbOTCwe71Yg1WvlH4iLKbQQvhWm3YJvfJ3eDv7fkwnkdViCueyS5WNje1tbIyiYa0ZyXLRKVEAX5pBaihxGAKuSIxkOaWS821BqKVFFwJY9NvZNO1zh4QKo3qSQWQVBlsBODo1aonpNWFqZFWyYicLia5rOaS4xj5YlyC64GolIhKiaiUHpWInCwrTILaxsdF-4jashjKZPsPYDzl3HjK_xlPRH4tMC9hWeG_EuVs-wwdsUJmXAA7jcj3YAPLrlKYiVzKLCJizTrWxrKe45pHL90NfDCF4Rx-xuCPyDZOh39fz47JZvf0bH8AQ-r0T78Y3gD73Qu2
  priority: 102
  providerName: Directory of Open Access Journals
Title NtMYB4 and NtCHS1 Are Critical Factors in the Regulation of Flavonoid Biosynthesis and Are Involved in Salinity Responsiveness
URI https://www.ncbi.nlm.nih.gov/pubmed/30846995
https://www.proquest.com/docview/2189547522
https://pubmed.ncbi.nlm.nih.gov/PMC6393349
https://doaj.org/article/231b97349221456a9874870105f0e044
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LjtMwFLVgYMEG8SY8RkZiwSZDnDh-LBCiI0pBahcMlcoqcmJniFQ5Q5sZ0Q3fzr1OWigqEptYih3b8fXj3MQ-h5CXNi1lzZSJM80MOCiMxcbIJOaalZUSQnOFB5ynMzGZ80-LfPFbDmhowPVB1w71pOar5cmP75u3MODfoMcJ6-3r-mKJxNssME9KdZ3cgGVJopzBdMD6PdE3oqEgtiIEj7lIFz3Vz6E89lapQOZ_CIH-vZHyj5VpfIfcHiAlfdf3gbvkmvP3yM1RC7Bvc5_8nHXTryNOjbd01p1OzhikdHQrcUDHveAObTwFLEg_99r0YC3a1nS8NFetbxtLR0273nhIsW7WIS_M5KOHye3KWXz4zOAZy24DOfS7bvtZ9AGZj99_OZ3Eg-hCXPFcd7FxwtbO6comJYSp0yyXlZEK3NYKjIoMhBnEysRCKBzXJS9LwGGJ4kZalz0kR7717jGh2ppUG6NVlcM8AX5gbVKpXalsjahLR-Rk28hFNTCSozDGsgDPBK1SoFUKtEoRrBKRV7sHLnoyjn8nHaHVdsmQRTvcaFfnxTAoC8C2pZbIz4h87QJqKsF_Q83QOnEJ5xF5sbV5AaMOf6UY79pLKIgpnXMJ4DUij_o-sCsqg5YQWucRkXu9Y68u-zG--RaYvQEuZlCdJ_9R7lNyC982nK5nz8hRt7p0zwEfdeVx-K4A1w8LdhzGwC_mdA9a
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NtMYB4+and+NtCHS1+Are+Critical+Factors+in+the+Regulation+of+Flavonoid+Biosynthesis+and+Are+Involved+in+Salinity+Responsiveness&rft.jtitle=Frontiers+in+plant+science&rft.au=Chen%2C+Shuai&rft.au=Wu%2C+Fengyan&rft.au=Li%2C+Yiting&rft.au=Qian%2C+Yanli&rft.date=2019-02-21&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=10&rft.spage=178&rft_id=info:doi/10.3389%2Ffpls.2019.00178&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon