Overcoming doxorubicin resistance in triple-negative breast cancer using the class I-targeting HDAC inhibitor bocodepsin/OKI-179 to promote apoptosis

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with a poor prognosis. Doxorubicin is part of standard curative therapy for TNBC, but chemotherapy resistance remains an important clinical challenge. Bocodepsin (OKI-179) is a small molecule class I histone deacetylase (HDA...

Full description

Saved in:
Bibliographic Details
Published inBreast cancer research : BCR Vol. 26; no. 1; p. 35
Main Authors Smoots, Stephen G, Schreiber, Anna R, Jackson, Marilyn M, Bagby, Stacey M, Dominguez, Adrian T A, Dus, Evan D, Binns, Cameron A, MacBeth, Morgan, Whitty, Phaedra A, Diamond, Jennifer R, Pitts, Todd M
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 01.03.2024
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with a poor prognosis. Doxorubicin is part of standard curative therapy for TNBC, but chemotherapy resistance remains an important clinical challenge. Bocodepsin (OKI-179) is a small molecule class I histone deacetylase (HDAC) inhibitor that promotes apoptosis in TNBC preclinical models. The purpose of this study was to investigate the combination of bocodepsin and doxorubicin in preclinical TNBC models and evaluate the impact on terminal cell fate, including apoptosis and senescence. TNBC cell lines were treated with doxorubicin and CellTiter-Glo was used to assess proliferation and determine doxorubicin sensitivity. Select cell lines were treated with OKI-005 (in vitro version of bocodepsin) and doxorubicin and assessed for proliferation, apoptosis as measured by Annexin V/PI, and cell cycle by flow cytometry. Immunoblotting was used to assess changes in mediators of apoptosis, cell cycle arrest, and senescence. Senescence was measured by the senescence-associated β-galactosidase assay. An MDA-MB-231 xenograft in vivo model was treated with bocodepsin, doxorubicin, or the combination and assessed for inhibition of tumor growth. shRNA knockdown of p53 was performed in the CAL-51 cell line and proliferation, apoptosis and senescence were assessed in response to combination treatment. OKI-005 and doxorubicin resulted in synergistic antiproliferative activity in TNBC cells lines regardless of p53 mutation status. The combination led to increased apoptosis and decreased senescence. In vivo, the combination resulted in increased tumor growth inhibition compared to either single agent. shRNA knock-down of p53 led to increased doxorubicin-induced senescence that was decreased with the addition of OKI-005 in vitro. The addition of bocodepsin to doxorubicin resulted in synergistic antiproliferative activity in vitro, improved tumor growth inhibition in vivo, and promotion of apoptosis which makes this a promising combination to overcome doxorubicin resistance in TNBC. Bocodepsin is currently in clinical development and has a favorable toxicity profile compared to other HDAC inhibitors supporting the feasibility of evaluating this combination in patients with TNBC.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1465-542X
1465-5411
1465-542X
DOI:10.1186/s13058-024-01799-5